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Abstract

Large Language Models (LLMs) have attracted significant
attention for classification tasks, offering a flexible alternative
to trusted classical machine learning models like LightGBM
through zero-shot prompting. However, their reliability for
structured tabular data remains unclear, particularly in high-
stakes applications like financial risk assessment. Our study
systematically evaluates LLMs and generates their SHAP
values on financial classification tasks. Our analysis shows
a divergence between LLMs self-explanation of feature
impact and their SHAP values, as well as notable differences
between LLMs and LightGBM SHAP values. These findings
highlight the limitations of LLMs as standalone classifiers for
structured financial modeling, but also instill optimism that
improved explainability mechanisms coupled with few-shot
prompting will make LLMs usable in risk-sensitive domains.

1 Introduction
Chatbots powered by Large Language Models (LLMs) such
as GPT-4 (Achiam et al. 2023), have demonstrated strong
performance across a range of natural language process-
ing (NLP) tasks, including classification and reasoning (Wei
et al. 2022). Their ability to function as classifiers with-
out explicit training pipelines, relying solely on few-shot
or zero-shot prompting, has gained significant attention
(Brown et al. 2020; Qin et al. 2023). This raises fundamen-
tal questions about the reliability and validity of LLM-based
classification, particularly in comparison to classical ma-
chine learning models such as XGBoost (Chen and Guestrin
2016) and LightGBM (Ke et al. 2017).

Traditional classification tasks require structured
pipelines involving feature engineering, model training,
validation, and hyperparameter tuning. Fine-tuning models
on tabular data, in particular, demands finesse and expertise
in data preprocessing, GPU management, and balancing
class distributions to prevent trivial solutions. In contrast,
LLMs bypass fine-tuning entirely, requiring only natural
language prompting. This reduces technical barriers,
making them accessible to non-experts - a valuable boost
to adoption of these tools. Nonetheless, before entrusting
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LLMs with critical decisions, a question remains: How to
explain predictions from LLM classifiers?

This question is particularly relevant in finance, a high-
stakes domain where transparency and accountability are
critical because algorithm outputs directly affect credit ac-
cess, interest rates and regulatory compliance (Doshi-Velez
and Kim 2017). Financial institutions operate under strict
governance frameworks such as Basel III (Basel-III 2017)
and GDPR (GDPR 2016), where opaque risk assessment
models can lead to regulatory breaches, reputational dam-
age, and unfair or discriminatory decisions, causing trust
concerns. Unlike decision trees or gradient boosting models,
LLMs are complex black-box models with billions of pa-
rameters, making interpretability a key challenge. This has
led to increasing interest in Explainable AI (XAI) techniques
to analyze LLMs’ internal logic and assess their alignment
with human-interpretable decision patterns.

In this study, we investigate LLMs’ capacity to intro-
spect and explain their own predictive mechanism. For LLM
explainability, we employ Shapley Additive Explanations
(SHAP) (Lundberg and Lee 2017), for which we provide
an efficient LLM implementation. To explain the prediction
mechanism, we prompt LLMs to self-explain on the impact
of each feature on the classification task. From a deployabil-
ity perspective, we go beyond accuracy to assess the faith-
fulness of explanations, their sensitivity to prompt and seri-
alization variations, and the feasibility of post-hoc auditing
under regulatory expectations for high-risk financial AI sys-
tems.

Across four open-source LLMs and three binary classi-
fication tasks with financial tabular data, our experiments
show that overall, zero-shot LLMs are poorly aware of their
predictive mechanism, as their self-explanations do not align
with their SHAP values. LLMs SHAP values also highly dif-
fer from those of LightGBM. Additional work is needed to
improve usability of these LLMs in the financial domain,
such as model augmentation (Theuma and Shareghi 2024),
or more elaborate inference pipelines involving few-shot
prompting.



Template 1: Instance-Level Prompt

Predict <Task Description>. Use the features pro-
vided below to assess the likelihood of <Positive
Class Name>.

<Task Name> Details:
<feature_1 name>: <feature_1 value>
...
<feature_N name>: <feature_N value>

Provide your estimated probability of the <Positive
Class Name>. Do NOT perform coding or calculations,
just provide the probability.
Your answer should only contain the probability estimate
in JSON:

{
"Estimated <Positive Class Name>":
<float value between 0 and 1>

}

2 Related Work
LLMs for Tabular Data
The application of LLMs to tabular data has emerged as a
novel approach in regression tasks. Unlike traditional ma-
chine learning (ML) models, which require explicit train-
ing on labeled datasets, LLMs can be prompted with feature
sets in a zero-shot manner, eliminating task-specific train-
ing. This method involves serializing tabular data into a nat-
ural language format and leveraging the LLM’s pre-trained
knowledge to make predictions.

Hegselmann et al. (2023) introduce TabLLM, a frame-
work that utilizes LLMs for few-shot classification of tab-
ular data by converting rows into natural language represen-
tations and providing a brief description of the classification
problem. Their findings suggest that LLMs can outperform
traditional deep learning models in certain tabular classifi-
cation tasks (Hegselmann et al. 2023). Similarly, Shi et al.
(2024) propose Zero-shot Encoding for Tabular data with
LLMs (ZET-LLM), an approach that treats auto-regressive
LLMs as feature embedding models for tabular prediction
tasks. By implementing a feature-wise serialization and ad-
dressing challenges like limited token lengths and missing
data, they demonstrated that LLMs could serve as effective
zero-shot feature extractors without fine-tuning (Shi et al.
2024).

In this study, we leverage LLMs as zero-shot classifiers
on three financial datasets, directly injecting feature names
and feature values in the prompt.

LLMs Explainability
Feature attribution methods such as SHAP (Lundberg and
Lee 2017) are widely used to assess feature importance in
classical machine learning models like XGBoost (Chen and
Guestrin 2016), LightGBM (Ke et al. 2017) or CatBoost.
However, their role in LLM-based classification remains
underexplored, largely due to the high computational cost:
SHAP requires a high number of inference passes.

Template 2: Feature-Level Prompt

You are working on predicting <Task Description>. It is
a binary classification task where the positive class corre-
sponds to <Positive Class Name>.
One of the features is the following:

<feature name>

What impact do you think this feature will have on the
classification task? Provide your answer among 3 possi-
ble strings: positive | neutral | negative. Do NOT output
reasoning or explanations, just output the feature impact
string. Write it in the following format in JSON:

{
"Feature impact": <string among

positive | negative | neutral>,
}

Template 3: Feature-Level Prompt with Self-
Explanation

You are working on predicting <Task Description>. It is
a binary classification task where the positive class corre-
sponds to <Positive Class Name>.
One of the features is the following:

<feature name>

What impact do you think this feature will have on the
classification task? Provide your answer among 3 possible
strings: positive | neutral | negative. Also provide a brief
explanation of this feature’s impact. Just output the fea-
ture impact string and your explanation. Write it in the
following format in JSON:

{
"Feature impact": <string among

positive | negative | neutral>,
"Explanation": <string value>

}

TokenSHAP (Goldshmidt and Horovicz 2024) combines
cooperative game theory framework with efficient token at-
tribution. Through Monte Carlo sampling, it estimates each
token’s SHAP contribution to the prediction. Mohammadi
(2024) reduced the input space by using a fixed prompt tem-
plate dissected into segments.

Our study is the first to compute SHAP-based feature im-
portance on LLMs prompted to predict a probabilistic out-
come on structured financial classification datasets.

LLMs Self-Explanations
Another line of research focuses on LLM-generated ratio-
nales or self-explanations of their predictions.

Huang et al. (2023) found that LLM rationales can
be plausible but do not reflect internal reasoning. De-
hghanighobadi, Fischer, and Zafar (2025) analyzed coun-
terfactual explanations, showing that LLMs struggle with
causal dependencies. Sarkar (2024) argues that LLMs lack
self-explanatory capabilities due to opaque training dynam-



Bankruptcy Loan Repayment License Expiration Average

Model ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

Gemma-2-9B 0.641 0.059 0.669 0.878 0.601 0.029 0.637 0.322
Llama-3.2-3B 0.524 0.041 0.616 0.851 0.439 0.019 0.526 0.304
Qwen-2.5-7B 0.630 0.054 0.591 0.839 0.433 0.018 0.551 0.304
Mistral-7B-v0.3 0.624 0.060 0.651 0.873 0.573 0.026 0.614 0.320

Table 1: LLMs classification performance summary. Bold numbers highlight best performance on each dataset.

LLM Using rationale? Bankruptcy Loan Repayment License Expiration Average

Gemma-2-9B ✗ 50.0% (10/20) 66.7% (8/12) 33.3% (5/15) 50.0%
✓ 65.0% (13/20) 66.7% (8/12) 40.0% (6/15) 57.2%

Llama-3.2-3B ✗ 35.0% (7/20) 41.7% (5/12) 60.0% (9/15) 45.6%
✓ 30.0% (6/20) 58.3% (7/12) 53.3% (8/15) 47.2%

Qwen-2.5-7B ✗ 15.0% (3/20) 33.3% (4/12) 26.7% (4/15) 25.0%
✓ 30.0% (6/20) 25.0% (3/12) 33.3% (5/15) 29.4%

Mistral-7B-v0.3 ✗ 35.0% (7/20) 25.0% (3/12) 26.7% (4/15) 28.9%
✓ 20.0% (4/20) 58.3% (7/12) 33.3% (5/15) 37.2%

Table 2: Percent features in agreement between LLMs self-explanation and LLMs SHAP values. Due to the three-class setup,
the baseline accuracy is 33%. Bold numbers highlight best performance on each dataset. The rationale column shows whether a
prompt asking for self-explanation was presented. In parenthesis are shown the fraction of features which each LLM correctly
predicted.

ics, while Turpin et al. (2023) showed that CoT-generated
explanations (Wei et al. 2022) can be misleading.

A key question arising from this endeavour, and which
we explore through this paper, is whether LLMs’ self-
explanations align with actual feature contribution.

3 Methodology
Datasets

We experiment with three classification tasks (each framed
as a binary classification) covering vastly different aspects
of financial machine learning.

Bankruptcy We use the Polish Companies Bankruptcy
dataset, explored in Zięba, Tomczak, and Tomczak (2016),
keeping the subset with 1-year future bankruptcy predic-
tion, totaling 7,027 companies including 271 going bankrupt
(3.9% positive ratio). To keep the features size manageable,
we only keep the top 20 features out of the dataset’s ini-
tial 64, identified by computing the feature importance of a
LightGBM model. All 20 features are numeric, see Table 4
in Section A.

Loan Repayment We use a very popular Kaggle dataset1,
with 79,206 loan applications, including 63,629 that are
fully paid (80.3% positive ratio). Of the 21 features, 12 are
numeric, see Table 5 in Section A.

1https://www.kaggle.com/datasets/sndpred/loan-data

License Expiration We leverage the recently introduced
Hong Kong Securities and Futures Commission (SFC)
dataset (AlKetbi et al. 2024). Due to the size, we only keep
the last month (January 2024), where 23,001 employees are
recorded and 478 see their SFC license not renewed within
the next month (2.1% positive ratio). All 15 features used
are numeric, see Table 6 in Section A.

Models & Inference
We use four recent open-source LLMs:
gemma-2-9b-instruct (Gemma-2-9B, Team et al.
2024), llama-3.2-3b-instruct (Llama-3.2-
3B, Dubey et al. 2024), qwen-2.5-7b-instruct
(Qwen-2.5-7B, Yang et al. 2024) and
mistral-7b-instruct-v0.3 (Mistral-7B-v0.3,
Jiang et al. 2023). Weights were downloaded from Hug-
gingFace (Wolf et al. 2020), and inference was done locally
through vLLM2 on two NVIDIA A10G 24GB GPUs. The
same instance-level prompt was used for each type of LLM,
shown in Template 1. The probability of the positive class
was generated in JSON format.

Explainability
LLMs SHAP Values We use SHAP for post hoc ex-
planations (Lundberg and Lee 2017), specifically the
model-agnostic PermutationExplainer. We adopt
this efficient SHAP estimator because our prediction func-
tion is an LLM inference, which is costly. To balance accu-

2https://github.com/vllm-project/vllm



Figure 1: SHAP dependence plot for Qwen-2.5-7B highest importance feature on the Bankruptcy dataset.

Figure 2: SHAP dependence plot for Mistral-7B-v0.3 highest importance feature on the Bankruptcy dataset.

racy and runtime, we sample 250 instances from each dataset
for explanation. We construct the background (masker)
via k-means clustering with C = 5 centroids using
shap.kmeans, and set the max_evals budget, so the
explainer executes exactly T = 4 permutations in our ex-
periments.

Approximate cost (model calls). Let K be the number
of instances explained, M the number of features (e.g. 20
on Bankruptcy), B the number of background draws per
masked evaluation (here B = C = 5), and T the number of
random permutations. The PermutationExplainer requires
approximately:

#calls ≈ K × T × (M + 1)×B = O(K T M B) (1)

model evaluations. In SHAP’s implementation, T is gov-

erned by max_evals via the practical rule:

T ≈
⌊max_evals

2M

⌋
(2)

i.e., roughly 2M masked evaluations per permutation
path. With max_evals = 200 and M = 21, this yields
T = ⌊200/(2 × 21)⌋ = 4. Using B = 5, the per instance
cost is therefore ≈ 4× (21+1)× 5 = 440 in the model calls
(for the loan repayment dataset with M = 21; other datasets
scale accordingly).

Why it is more efficient than KernelExplainer?
With a summarized background of C centroids, the domi-
nant model-call complexity of KernelExplainer scales
as:

#calls ≈ K × C ×M2 = O(K CM2) (3)



Figure 3: Per-feature agreement between LLMs self-explanations with rationale and LLMs SHAP values. Clear disagreements
persist even among the top-k important features

due to sampling coalitions and fitting a kernel-weighted
regression. In our setting (C = 5, M = 21) this
is ≈ 5 × 212 = 2205 evaluations per instance. By
contrast, PermutationExplainer scales linearly in
M and avoids the regression solve, yielding an expected
per-instance reduction of

speedup ≈ CM2

T (M + 1)B
≈ 2205

440
≈ 5× (4)

The fivefold decrease in model calls translates into
substantially lower LLM inference time while main-
taining faithful attributions, which is why we use
PermutationExplainer with T = 4.

LLMs Self-Explanations Motivated by the new reason-
ing capabilities of LLMs (Wei et al. 2022; Huang and Chang
2022; Ke et al. 2025), we leverage the LLM as an explain-
ability tool on its own (Huang et al. 2023). Specifically, for
each feature, we prompt its description to the LLM and ask it
to predict whether the feature will have a negative, neutral or
positive impact on the classification ; with an option to pro-
vide a self-explanation (rationale) about its prediction. Tem-
plate 2 and Template 3 show the two corresponding feature-
level prompt templates.

4 Experiments
Overall, the classification performance results are consis-
tently above random chance. Because the models are used

zero-shot, performance is modest (Table 1); nevertheless, re-
sults indicate detectable signal on finance datasets. To us,
this means that with some modification, LLMs have poten-
tial for being used in the financial domain. In the following
analysis, we only consider numerical features when comput-
ing SHAP values.

LLMs SHAP Values and LLMs Self-Explanations
Comparison
Figure 1 and Figure 2 demonstrate the SHAP dependence
plots on the examples of the Qwen-2.5-7B and Mistral-7B-
v0.3 models, showcasing the disparity between what LLMs
think they do (positive or negative) vs. what they actually do
(SHAP). In both cases, the LLM incorrectly predicts a pos-
itive feature impact whereas the SHAP values are strongly
negatively correlated with the feature values.

To quantify this disparity, we compare SHAP values with
the feature values through Pearson correlation coefficient.
We classify the correlation into three feature impacts: neg-
ative (Pearson below -0.1), neutral (between -0.1 and 0.1)
and positive (greater than 0.1). This feature impact is com-
pared against the LLM self-explanation as a way to assess
the LLM’s own understanding of its classification process.

Results are shown in Table 2. The prompt asking for a
rationale provides a moderate, yet consistent improvement
in classification agreement with SHAP feature impact over
the baseline prompt. Gemma-2-9B outperforms other LLMs
both in terms of performance and self-explanation accuracy
(Tables 1 and 2). However, even Gemma-2-9B scores only a



LLM Bankruptcy Loan License
τ Dir% τ Dir% τ Dir%

Gemma-2-9B 0.011 65.0% 0.000 50.0% -0.352 66.7%
Llama-3.2-3B 0.084 50.0% 0.276 58.3% -0.276 53.3%
Qwen-2.5-7B -0.042 50.0% 0.190 75.0% 0.029 60.0%
Mistral-7B-v0.3 0.116 55.0% 0.124 58.3% -0.143 53.3%

Average 0.042 55.0% 0.148 60.4% -0.186 58.3%

Table 3: Alignment between LLMs and LightGBM SHAP
values. τ is the Kendall rank correlation on full feature order,
and Dir% = % of features with identical SHAP sign.

bit above 50% self-explanation accuracy on average across
all datasets.

Figure 3 extends the analysis by showing the LLM self-
explanation agreement for each individual, and sorting fea-
tures by decreasing feature importance. At each feature im-
portance rank, we split the agreement on each (dataset,
model) pair in two buckets: Agree on top and Disagree on
bottom. As seen, even for the top three most important fea-
tures, which should be trivial to classify, there are many
cases where LLMs cannot predict the correct feature impact
on classification.

Thus, we conclude that zero-shot LLMs are not able to
identify a feature’s impact on classification. To take ad-
vantage of the potential demonstrated in Table 1, few-shot
performance will need to be assessed.

LLMs and LightGBM SHAP Values Comparison
To further investigate LLMs SHAP Values, we compare
them against the ones of LightGBM (Ke et al. 2017), a well-
established, state-of-the-art gradient boosting decision tree
model. Results displayed in Table 3 show that LLMs and
LightGBM have low correlation in terms of SHAP values.
Their agreement on the direction of a feature’s impact is
just a bit above random chance on average (50-60%). We
conclude that LLMs’ classification reasoning greatly differs
from the classification process of LightGBM.

Why do LLMs mis-sign top features?
Figure 1 and Figure 2 illustrate cases where LLM self-
reported impacts (“positive”) contradict SHAP dependence
trends (strongly negative). Table 2 shows that asking for ra-
tionales increases agreement only modestly (e.g., Gemma-
2-9B improves from 50.0% to 57.2% on average), and Ta-
ble 3 reports low Kendall’s τ alignment with LightGBM. To-
gether, these suggest that LLM self-explanations are shaped
by lexical priors in feature names rather than the dataset-
specific conditional relationships captured by SHAP.

Potential mitigation techniques (not requiring re-
training):
• Feature-name neutralization: anonymize feature

names (e.g., f1, . . . , fM ) in prompts to reduce bias from
tokens such as cash, profit, or liabilities, then map back
for human consumption.

• Serialization robustness: vary feature order, delimiters,
and descriptions to assess prediction/explanation stabil-
ity; LLMs on tables are known to be sensitive to serial-
ization choices (Hegselmann et al. 2023).

• Agreement reporting: in addition to percent agree-
ment, report beyond-chance measures (e.g., Cohen’s κ
or Matthews correlation) between SHAP signs and LLM
labels.

• Sanity checks for explanations: apply label or feature
randomization tests to ensure explanations collapse un-
der appropriate perturbations (Adebayo et al. 2018).

We view the persistent disagreements at top importance
ranks (Figure 3) as a deployability red flag whenever feature-
level justifications are required by policy or governance.

Interpreting Performance Under Class Imbalance
Why PR-AUC matters here. All three tasks are substan-
tially imbalanced: bankruptcy (3.9% positives), license ex-
piration (2.1%), and loan repayment (80.3% positive class
defined as fully paid). In such settings, PR-AUC is more in-
formative than ROC-AUC because it directly reflects preci-
sion at given recalls and is sensitive to the positive rate, un-
like ROC-AUC which can appear optimistic when negatives
dominate (Saito and Rehmsmeier 2015; Davis and Goadrich
2006).

Lift over baseline. To contextualize Table 1, we report
the PR-AUC lift defined as Lift = PR-AUC/baseline. On
Bankruptcy, PR-AUCs of respectively 0.059, 0.041, 0.054,
0.060 correspond to lifts of 1.51×, 1.05×, 1.39×, and
1.54×, respectively (average 1.37×) over the 3.9% base-
line. On Loan Repayment, PR-AUCs of respectively 0.878,
0.851, 0.839, 0.873 imply lifts of 1.09×, 1.06×, 1.05×,
and 1.09× (average 1.07×) against the 80.3% baseline.
On License Expiration, PR-AUCs of respectively 0.029,
0.019, 0.018, 0.026 yield lifts of 1.38×, 0.91×, 0.86×, and
1.24× (average 1.10×) over the 2.1% baseline. These num-
bers (from Table 1) show weak but non-trivial signal on
Bankruptcy and mixed results on the very sparse License
task; Loan Repayment gains are small because the baseline
(0.803) is already high.

Deployability implication. Even without any fine-tuning
or feature engineering, zero-shot LLMs recover modest sig-
nal on some tabular finance tasks. However, the small deltas
over baseline and the sub-baseline result in one License set-
ting indicate that few-shot prompting, ensembling, or hy-
bridization with tabular models are likely prerequisites for
deployment in risk-sensitive contexts (Hegselmann et al.
2023; Shi et al. 2024).

5 Discussion
Limitations and Threats to Validity
Several limitations of this study warrant discussion. First,
the interpretation of performance metrics under data im-
balance presents challenges. We emphasized the use of
PR-AUC and baseline-normalized lift, as relying solely
on ROC-AUC can overstate apparent gains on highly



skewed datasets (Saito and Rehmsmeier 2015). Second,
our SHAP-based attribution analysis depends on the choice
of background samples and estimator. For computational
efficiency, we employed the PermutationExplainer with
k-means maskers, but attributions may vary with both
the background distribution and the max_evals param-
eter. A small ablation varying these choices would further
strengthen interpretability claims.

Third, LLM outputs exhibit sensitivity to prompt serial-
ization, that is, variations in feature order or phrasing can af-
fect the model’s reasoning trace. Future work should system-
atically quantify this prompt sensitivity through controlled
perturbation benchmarks such as SUC or serialization ro-
bustness tests. Fourth, the computational cost of explainabil-
ity presents a practical constraint. We explained K = 250
rows per dataset using SHAP, with T = 4 and B = 5, lead-
ing to approximately 110k model calls per dataset-model
pair. Across three datasets and four LLMs, this results in
roughly 1.32 million evaluations, which poses scalability
challenges for deployment-grade auditing.

Finally, our analysis highlights that LLM self-
explanations should not be equated with true causal
mechanisms. The low agreement observed between SHAP
attributions and LLM-generated rationales (see Tables 2–3)
indicates that while LLM rationales may appear plausible,
they often lack faithfulness to underlying model behavior.
Consequently, explanation outputs must be independently
audited, for instance through sanity checks or falsifica-
tion tests, before being considered reliable in regulated
decision-making contexts.

Calibration and Decision-Theoretic Concerns.

Since LLMs output probabilities, deployment must priori-
tize calibration. Classic calibration methods, such as Platt
scaling or isotonic regression, trained on validation sets
can enhance downstream decision quality (Niculescu-Mizil
and Caruana 2005; Zadrozny and Elkan 2002). Future work
should consider (i) reporting reliability diagrams and Brier
scores; (ii) providing 95% CIs for AUC and PR-AUC;
(iii) translating metrics into cost-sensitive operating points.
These calibration-aware strategies are critical, especially in
asymmetric cost domains such as financial services

Deployment Implications

When (Not) to Use Zero-Shot LLMs for Tabular Fi-
nance. Our findings align with standard deployability di-
mensions: validity, explainability, calibration, robustness,
governance, and cost. While zero-shot LLMs show mod-
est predictive validity (see Section 4), their self-explanatory
faithfulness is lacking (Tables 2-3). This supports the case
against direct deployment in regulated finance without safe-
guards. The results imply that any LLM-based tabular
classifier must undergo rigorous validation (e.g. explana-
tion checks, serialization tests), calibration, threshold gov-
ernance, and human-in-the-loop review before deployment.

Go/No-Go Deployability Guidance

Green-lights (pilot only): Use in small-data scenar-
ios where gradient-boosted trees underperform; low-stakes
triage; auxiliary signals in a hybrid model (e.g., LLM +
LightGBM) with independent tabular baselines and audit-
ing.

Red-flags (no deployment without mitigation): Appli-
cations with regulatory or legal consequences (e.g., credit,
AML, HR); those requiring faithful feature-level explana-
tions; high prompt formatting sensitivity; failure to pass cal-
ibration or explanation sanity tests; absence of monitoring/-
fallback plans.

6 Conclusion
The growing adoption of LLMs for structured classification,
especially by non-expert users, raises foundational concerns
about their reliability and interpretability. This study system-
atically evaluates zero-shot LLMs on a suite of financial tab-
ular classification tasks. While results show potential, per-
formance remains modest and explanation fidelity is limited.

Currently, zero-shot LLMs are best viewed as fallback op-
tions in small-data settings where fine-tuning is infeasible.
Their outputs should not be trusted without rigorous audit-
ing.

Future work should benchmark few-shot and many-shot
LLMs using structured and unstructured data. Research into
domain-specific fine-tuning and hybrid model integration
will be key to making LLMs viable for deployment in high-
stakes financial applications.
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Appendix
A Features Descriptions

Features for all datasets are presented on Tables 4 to 6.



Feature description Range
((cash + short-term securities + AR - short-term liabilities) / (OPEX - depreciation)) x 365 [-3039.4, 2104.43]
retained earnings / total assets [-0.72, 0.8]
sales / total assets [0.46, 7.88]
(gross profit + extraordinary items + financial expenses) / total assets [-0.24, 0.84]
(gross profit + depreciation) / sales [-0.18, 0.71]
sales (n) / sales (n-1) [0.53, 2.98]
profit on operating activities / total assets [-0.21, 0.76]
gross profit (in 3 years) / total assets [-0.42, 1.26]
(equity - share capital) / total assets [-0.58, 0.95]
(net profit + depreciation) / total liabilities [-0.32, 8.45]
profit on operating activities / financial expenses [-11.97, 4116.67]
logarithm of total assets [2.9, 6.01]
(total liabilities - cash) / sales [-0.41, 2.22]
operating expenses / total liabilities [-0.27, 27.02]
(current assets - inventory) / long-term liabilities [0.15, 609.35]
constant capital / total assets [-0.19, 0.97]
(current assets - inventory - receivables) / short-term liabilities [0.0, 8.45]
net profit / inventory [-2.68, 46.08]
(current assets - inventory) / short-term liabilities [0.13, 13.6]
total costs / total sales [0.16, 1.23]

Table 4: Bankruptcy dataset features. AR - account receivables, OPEX - operating expenses. The numerical value intervals are
bounded by the 1st and the 99th percentiles for each variable.

Feature description Range
Loan Amount [1600.0, 35000.0]
Term categorical: {’36 months’, ’60 months’}
Interest Rate [6.03, 25.29]
Installment [55.32, 1204.57]
Grade categorical: {’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’}
Sub-grade categorical: {’A1’, ’A2’, ... ’G4’, ’G5’}
Employment Length categorical: {’<1 year’, ’1 year’, ’2 years’, ..., ’10+ years’}
Home Ownership categorical: {’MORTGAGE’, ’NONE’, ’OTHER’, ’OWN’, ’RENT’}
Annual Income [19000.0, 250000.0]
Verification Status categorical: {’Not Verified’, ’Source Verified’, ’Verified’}
Purpose categorical: 14 possible values (e.g ’wedding’)
Debt-to-Income (DTI) Ratio [1.6, 36.41]
Open Credit Accounts [3.0, 27.0]
Public Records [0.0, 2.0]
Revolving Balance [169.05, 83505.9]
Revolving Utilization Rate [1.2, 98.0]
Total Accounts [6.0, 60.0]
Initial Listing Status categorical: {’f’, ’w’}
Application Type categorical: {’DIRECT PAY’, ’INDIVIDUAL’, ’JOINT’}
Mortgage Accounts [0.0, 9.0]
Public Record Bankruptcies [0.0, 1.0]

Table 5: Loan Repayment dataset features. The numerical value intervals are bounded by the 1st and the 99th percentiles for
each variable. For categorical features, the values space is shown.



Feature description Range
Number of unique companies that the employee has worked at [1.0, 7.0]
Number of unique companies that the employee has worked at per working day [0.0, 0.01]
Tenure across all companies (days) [142.0, 3631.0]
Tenure at the current company (days) [23.0, 3584.0]
Longest tenure (days) [10.0, 2897.69]
Average tenure (days) [7.86, 2744.34]
Shortest tenure (days) [1.0, 2739.07]
Gender {0.0, 1.0}
Is the employee Hongkonger? {0.0, 1.0}
Is the employee Chinese? {0.0, 1.0}
Is the employee British? {0.0, 1.0}
Number of employees in the company [2.0, 1669.0]
Days of existence of the company [0.0, 3647.0]
Cumulated tenure of all employees in the company [0.0, 1094284.0]
Average tenure in the company [85.0, 1432.4]

Table 6: License Expiration dataset features. The numerical value intervals are bounded by the 1st and the 99th percentiles for
each variable.


