Under review as a conference paper at ICLR 2026

TOPOWEAVER-R1: REINFORCING DIFFICULTY-
AWARE TOPOLOGY EVOLUTION IN MULTI-AGENT
COMPETITION-LEVEL CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have shown that large language model (LLM)-driven multi-
agent systems (MAS) are promising for addressing complex problems, with
competition-level code generation as a representative domain. By emulating the
collaboration among human programmers, these systems leverage predefined in-
teraction topologies to achieve notable gains. However, such fixed structures in-
troduce interaction redundancy and excessive token costs as task difficulty drops.
While graph pruning and generation methods can produce sparser topologies,
they remain static during inference, unable to adapt to execution feedback, and
often converge to limited density ranges. To overcome these issues, we pro-
pose TopoWeaver-R1, a reinforcement learning—optimized MAS centered on an
LLM orchestrator agent, which supports end-to-end evolutionary dynamic inter-
action topology generation. For each query, it infers agent roles and task dif-
ficulty, then constructs a task-adapted, density-aware layered directed acyclic
graph (DAG) topology. The topology evolves via execution feedback and history,
thereby improving the task-solving performance of the generated code. On three
competition-level and two basic code datasets, TopoWeaver-R1 achieves state-of-
the-art accuracy, with up to 14.6% higher accuracy, 13% lower density and 68%
lower token cost than the strongest baseline. Our approach transitions multi-agent
topologies from static designs to dynamic, feedback-driven evolutionary designs
with fine-grained, difficulty-aware density control.

(a) From Yaml to Graph (b) Cost Analysis with Graph Density

Turn 1

Topology 1

45

Average Graph Density Score (Scomplex)
+

S <
s
2
Topologies Decoded from 30 40 50 60 70 80
[Structure Language (YAML) Generated from TopoWeaver-R1] YAML Aceuracy(%)

(c) Code Generation Performance Comparison

ent
80 TopoWeaver-R1(3B)
60

40

Accuracy(%)

w
S

0
APPs LiveCodeBench CodeContests HumanEval MBPP

Figure 1: (a) YAML representation of the topology, its mapping to the actual graph, and the two-turn
graph evolution. (b) APPS results showing performance, average graph density (ScompiexT Sparser),
and completion tokens, with circle size indicating token savings (diameter more). (¢) Code gener-
ation performance comparison of representative baselines.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Competition-level programming is widely regarded as one of the most demanding problem-solving
tasks(Khan et al., [2023; |[Hendrycks et al., 2021). It requires deep understanding of problem state-
ments, complex reasoning, algorithmic proficiency, and the ability to generate executable code that
passes comprehensive test cases. While LLMs show strong general reasoning abilities, single mod-
els often lack the structural decomposition and iterative self-correction needed to solve such tasks
effectively(Austin et al., 2021). LLM-based MAS have recently achieved remarkable progress in
competition-level code generation(Islam et al., 2024; 2025)). Their exceptional performance largely
stems from carefully designed interaction topologies that facilitate efficient coordination. How-
ever, no fixed topology suits all problems: easy cases favor lean pipelines, while hard cases require
denser, tightly coordinated interactions. Moreover, the topology usually remains fixed at inference,
and execution feedback (unit test failures) does not induce structural changes. As a result, iterative
execution may suffer from redundant interaction or degraded performance. This motivates a cen-
tral question: How can we automatically generate task-specific interaction topologies that scale
density with difficulty and evolve in response to execution feedback?

A growing body of work has explored this direction. Graph pruning methods (Zhang et al.l [2024aj
Zhuge et al.,[2024) reduce costs by iteratively removing edges or roles, but the resulting fixed topolo-
gies may not align with task-specific demands, leading to degraded performance. Graph-generation
approaches (Zhang et al.|[2024b)) improve over pruning by conditioning on the input query, but they
typically rely on monotonic sparsity constraints that drive convergence to a fixed density range, and
the generated topology remains frozen during inference without adaptation to execution feedback.
Workflow-centric RL methods (Gao et al.| 2025} [Li et al., [2025) train a single agent to manage
linearized multi-stage workflows using end-to-end reinforcement learning. While effective under
limited inter-agent overhead, they restrict interaction to sequential message passing and lack the
expressiveness and adaptability of interaction graphs.

To realize these capabilities, we first introduce a novel layered DAG topology. Unlike prior de-
signs(Qian et al.,[2024)), it enables intra-layer parallelism as well as cross-layer interactions. Distinc-
tively, this topology is expressed in a structured language (YAML), which makes it human-readable
and directly generable by LLM agents. Building on this foundation, we present TopoWeaver-R1,
a reinforcement learning(RL) optimized MAS centered on an LL.M orchestrator agent that
performs multi-turn, end-to-end dynamic generation of the above interaction topologies for
competition-level code generation. We first apply supervised fine-tuning(SFT) to equip the or-
chestrator with priors over interaction graphs. To better capture the characteristics of multi-agent
interaction, we further propose a graph density evaluation function tailored to our proposed layered
DAG structure. Finally, to optimize the orchestrator with RL, we design a multi-objective reward
based on this metric that balances structural correctness, code accuracy, and density. A distinctive
feature of our density reward is the introduction of difficulty-dependent bounds on topology den-
sity. This fine-grained control enables explicit cost—accuracy trade-offs under token budgets. In
summary, our main contributions are as follows:

* We propose a novel layered DAG topology for multi-agent interaction that supports
intra-layer parallelism and cross-layer interactions. The topology is represented in a
human-readable format that can be directly generated by agents.

* We introduce TopoWeaver-R1, an RL-optimized MAS centered on an LLM orches-
trator agent, which enables end-to-end difficulty-aware evolutionary dynamic interaction
topology generation in competition-level code generation.

* We introduce a graph density evaluation function for layered DAGs and use it to design
a multi-objective reward function balancing structural correctness, code accuracy, and
difficulty-aware density under task-specific constraints.

* We demonstrate state-of-the-art performance on multiple competition-level and founda-
tional code benchmarks, achieving higher accuracy with lower average density and
reduced cost compared to existing methods.

Under review as a conference paper at ICLR 2026

q Stagel: Data Collection & SFT \(Stage2: Multi-Turn Reinforcement Learning w:th GRPO)

———————————————— The Output

N
a) Tok Turn K e -
[ﬁ] o @ | Rollout Module okens of Tum K, \
1 O,k \
d b | olcy Model 2 W\ ey .
| : : |
1 \ > p o
! 2 y
;

1

|

|

= 3 |

Code Problems = : Code Problems

|

|

|

GPT-40 - b

A * * &
Dth:tl;L;lsty ‘ IInfered D:fftculty Code

——————————————— Problems

competition-level data . T-n . basic- ,m, dm / NIl -7
ompetition-evel ot \ (1= ONTtlIES

| @ SFT Warm Up
g @9 Agent Role Pool

Advantages

First Turn Yamls/

~ Reference Model Mg)
(® Planning Agent <
\)| Topologies (@ Algorithmic Agent [algorTEhmer] wie/s Generatlon by TopoWeaver-R1
Quen-2.5- | - © . D ——
Instruct 38/ (© Debugging Agent [debuggers <t‘—‘l
‘ /) W</, S
| X i ‘\ = @
| \ @ Environment <3=—"'
f N H Q{f Code
/ \ "M Excution | | %—@ C)@a) Orchestrator Problems
k\Second Turn Yamls) GPT-40 Results Agent
_ == VAN)

Figure 2: Overall framework of the proposed TopoWeaver-R1. The approach proceeds in three
stages: (1) SFT on diverse topologies to instill structural priors in the base LLM (Qwen-2.5-Instruct-
3B); (2) RL with GRPO to learn task-adaptive, difficulty-aware topology policies from execution
feedback, yielding the orchestrator agent; and (3) multi-turn dynamic topology generation for end-
to-end code problem solving.

2 ToOPOWEAVER-R1

TopoWeaver-R1 is an RL-optimized MAS centered on an orchestrator agent, designed for end-to-
end, multi-turn generation of difficulty-aware evolutionary interaction topologies. The system is
first SFT-trained on constructed topologies to instill structural priors, and then optimized with RL
via GRPO to generate topologies that adapt to task difficulty and evolve through execution feedback.
In this section, we present a detailed description of the overall framework and its components, as
illustrated in Fig[2]

2.1 PROBLEM DEFINITION

2.1.1 INTERACTION TOPOLOGY NOTATIONS

We first introduce a novel multi-agent interaction topology expressed in a human-readable struc-
tured language (YAML). As shown in Fig[l| (a), this topology is structurally defined as an im-
proved layered DAG, where step denotes a layer and ref denotes an edge, supporting both intra-
layer parallelism and cross-layer connections. Furthermore, it supports multi-turn evolutionary
generation driven by execution feedback from multi-agent interactions Formally, it is denoted as

G®) = (V) £®)) where £ is the turn index. Each node v{*) € V(*) represents an agent instance
that executes during turn k. The entire topology is generated and orchestrated by the orchestrator
agent. See Appendix [D|for detailed notions of the interaction topology.

2.1.2 TOPOWEAVER-R1 PARADIGM

Given a code problem z, the orchestrator agent policy 7y generates, at turn k& € {1,..., K}, a
variable-length YAML token sequence
0k = (Ok,15 -+ Ok Jox]) ()
that encodes the interaction topology. The sequence is deterministically decoded into a layered DAG
gk = DecodeTopo(oy,), 2)

In particular, TopoWeaver-R1 calibrates the topology density to the inferred difficulty of x. This
induces variable oy, lengths |oy| and reduces superfluous reasoning and token usage. The environ-
ment then executes agents according to G*) and returns feedback z;, which can be further decom-
posed as zj, = (21, 2§°%), where z[°'* collects the outputs of multiple agents generated, and 2§°%
denotes the sandboxed code-execution outcome. Let the turn history be Hj, = {(G™, z,)}r<.
The joint process factorizes as

Under review as a conference paper at ICLR 2026

K
po(o1:K,21:K |) = H mo(ok | I,Hk)Penv(Zk \ I,g(k),Hk), 3)
N—_— ———
k

=1 Topology generation .
Execution feedback

Equation 3]factorizes the multi-turn process into topology generation with environment execution: at

turn & the policy emits oy, conditioned on (x, H},), the environment executes under G(*) and returns

zi. Feedback zj, is appended to Hy1 and conditions the next generation, so the topology is updated

online in response to execution feedback. See Appendix [D.T|for algorithmic details.

2.1.3 GRAPH DENSITY EVALUATION FUNCTION

To better assess the complexity and performance of multi-agent interactions and explicitly account
for cost consumption, we define the graph complexity evaluation function described by three metrics,
including the number of nodes, the edge density and graph depth. The first two metrics can reflect
the token costs, while the last indicator reflects the degree of parallelism of the system, or in other
words, the response time. Let n; denote the number of agent invocations in step 7, s be the total
steps for each round, then the total number of nodes is

Vi=3 n @)
i=1

Edges are formed through agent references, with the total number of edges given by

B = " |Agent;[ref]], (5)

i=1 j=1

and the depth of the graph is related to the depth of invocation of the agent, denoted by d. Inspired
by Theorem [I we use the number of DAG layers (the total steps s) instead. For normalization, we
map each metric into the unit interval [0, 1]. The normalized scores are defined as:

\4 E s
Shode = eXp<_ﬁx‘(l)) y Sedge = eXp(‘W) s Sdepth =1- v (6)

where [is task difficulty level, each level is associated with a maximum allowed number of nodes
Niax(l). Snode reflects the node complexity based on the graph size. Seqqe captures the edge com-
plexity relative to a complete graph, and Sgepn quantifies the spread of the graph by comparing its
depth to the total number of nodes. The overall graph complexity evaluation function is defined as:

Scomplex = & - €exXp (Al : Snode +)\2 : Sedge + >\3 : Sdepth) (7)

Scomplex Serves as a component of the reward function r¢(~), as defined in Eq and contributes to

the trajectory reward A; in the Group Relative Policy Optimization (GRPO) advantage function, as
detailed in Eq@ The mathematical derivation that precisely defines Scompiex as the topology density

is provided in Appendix
2.2 SFT DATA GENERATION

To endow the base LLM with topology priors and facilitate its optimization during reinforcement
learning, we built a supervised corpus. From three competition-level datasets and three difficulty
tiers, we sampled 50 problems per tier per dataset (450 total). We designed a customized system
prompt and queried GPT-40 to produce one YAML topology per problem. Each topology was vali-
dated by our checker for format correctness, de-duplication, and density within the difficulty band.
For each topology, we constructed error-aware prompts from distinct failure types and generated a
second-turn iterative topology. Combined with first-turn runs, this yielded 2,700 competition-level
interaction graphs. We repeated the pipeline on two basic datasets to obtain 300 initial examples
across difficulties; here the model inferred difficulty and generated the topology accordingly. In
total we collected 4,500 examples. This produces a base model endowed with strong priors for
topology generation.

Under review as a conference paper at ICLR 2026

Table 1: Rewards for Topology Validation and Code Execution Errors

YAML Topology Correctness Rewards Code Execution Error Rewards
Error Type Explanation Reward Error Type Explanation Reward
[NO_YAML_FOUND] No YAML block found. -2.0 C0f1e execules but outputs 1.0
mismatch with expected
YAML parse failed. -1.5 Execution exceeded time limit. 0.9
YAML parsed, TV & = Frmrererarres : imi
J but fails the topology schema. -1.0 [((MEMORY L1MIT ExCEEDED]] Execution exceeded memory limit. 0.8
Violates topology logic rules. -0.5 [RUNTIME_ERROR] Program crashed during execution. 0.7
- - [COMPTLATION_ERROR] Program failed to compile. 0.6

2.3 REINFORCING DYNAMIC TOPOLOGIES FOR LLM-MA VIA TRAJECTORY-LEVEL POLICY
OPTIMIZATION

GRPO-Based Training for Dynamic Topology Generation After SFT, we further train the or-
chestrator policy to generate dynamic multi-agent interaction topologies using GRPO. See Appendix
for the multi-turn trajectory and return definition. Specifically, the advantage of trajectory i is

defined as
. Ri(r) —mean({R;(7)}5.,)

A= std({R;(m)})) ’ ®

j=1

Here, R; can be viewed as the instance-level realization of R(7) (defined in Eq. within the group
of GG sampled trajectories.

The GRPO objective function can be formally expressed as follows:

€] K;—10ik|
o 1 1 - " . 7r9(0717k,u | vai,k70i7k;,<u) 2
Toreo®) = £33 3 win i
; Told (0i e | Ty Hi ko, 04 ke, <)

i=1 k=0 u=1
. 001k | T, Hi ks 0i k<) ; (10po)
clip = : = Jd—el1+e| Al — DR,
<7Told(0i,k,u | @, Hi 1, 0i ke, <u) ! KL
o 9)
Here, L; = >, |0i x| denotes the total number of topology tokens in trajectory 7, € controls the

clipping range, and]D?(OEO) is the token-level KL regularizer computed only over topology tokens (as

in Eq. [26).

Design of a Rule-Based Multi-Objective Reward Function The reward function directly in-
fluences the optimization process in RL. In this subsection, we elaborate on the definition of the
immediate per-turn reward function 7 (-) introduced in Eq.

To provide a single training signal that balances correctness, topology quality, and efficiency, we
instantiate the immediate reward function in Eq. [24]as a weighted composite:

ro(G®), £52%) = wi (G, 25°%) + wary (G (10)

where the non-negative weights w; reflect the relative importance of each component. Here, 7. (exe-
cution correctness) is derived from z{°% and G (k) providing a reward for both the YAML validation
and the code execution results; r, (graph density) evaluates the interaction topology G (k)| serving
as the topology density reward function. This instantiation makes explicit that r4(-) in Eq. [24]is
realized as a weighted sum of multiple objectives, yielding a scalar reward signal for trajectory-level
optimization.

Execution Result Reward We first validate the format after the commander generates YAML.
If no YAML is found or YAML does not match the rule, the system raises an error, and gives a
punishment according to the type of error. The types of error are shown as:

Eyaml_errors = {[[NO_YAML_FOUND]), ([YAML_PARSE_ERROR] J,([YAML_SCHEMA_INVALID]),

}

Y

Under review as a conference paper at ICLR 2026

Then the testing agent gives the evaluation results of the generated code. Unless the result of test
case matches the expected answer, the system raises a fail information based on the code run results.
The error types for the code execution are defined and summarized as follows:

Ecode_errors = { y([TIME_LIMIT_EXCEEDED]], [MEMORY_LIMIT_EXCEEDED]},

(12)

([RUNTIME_ERROR]), [[COMPILATION_ERROR])}

The specific reward values for topology validation and code execution errors are provided in Table
Additionally, the reward for is 1.5, while no reward value is applied for successful
YAML validation.

Interaction Graph Complexity Reward Function To classify the interaction graph complexity
according to difficulty levels, we define the function Scomplex for the interaction topology graph
density in Eq.[/| Given the task difficulty level [, each level is associated with a maximum allowed
number of nodes Ny« (1). For each turn &, the per-turn upper bound under the three difficulty levels
is set to 4, 7, and 10, respectively.

4, [=1 (easy),
NE (1)y={7, =2 (medium), ke {1,2}. (13)
10, [= 3 (hard),

If | V] (the number of nodes, as defined in Eq. {4)) exceeds this bound, the graph is considered overly
complex and penalized accordingly. Finally, the overall interaction graph evaluation score is defined
as

Scomplem ‘V| S Nmax(l)a
ry(GH) = (14)

tanh(W) , otherwise.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Metrics To comprehensively evaluate our approach in terms of performance, topol-
ogy dynamics, and cost efficiency across problems of varying difficulty and type, we select two
basic code generation datasets and three contest-level code generation datasets: (1) Basic Code
Generation Datasets: including HumanEval(Chen et al., 2021), MBPP(Austin et al.l 2021);
(2) Contest-Level Code Generation Datasets: including APPS(Hendrycks et al., 2021), Live-
CodeBench (V4)(Jain et al., 2024), and CodeContests(Li et al.| [2022). The generated code is exe-
cuted within a secure sandbox (Khan et al.,[2023)) environment. Model performance is then measured
by the pass@1 rate on each test set.

Baselines To provide a comprehensive comparison and highlight the effectiveness of our ap-
proach, we evaluate against four categories of baselines: (1)Vanilla: This setting reflects the
capability of a single backbone model. We adopt GPT-40-mini as the representative back-
bone. (2)Classical Multi-Agent Systems: AutoGen(Wu et al,, |2024), MetaGPT(Hong et al.|
2024) and MapCoder(Islam et al) 2024). (3)Multi-Agent Systems with Workflow Optimiza-
tion: AF1low(Zhang et al)2024c), FlowReasoner(Gao et al.|[2025) and Chain-of-Agents.
(4)Multi-Agent Systems with Topology Optimization: GPTSwarm(Zhuge et all [2024),
AgentPrune(Zhang et al.; 2024a), G-Designer (Zhang et al.,2024b)), and MacNet (Qian et al.,
2024).(See Appendix [B.1|for details.)

3.2 MAIN RESULTS

In this section, we provide extensive experimental evidence to analyze the effectiveness of our pro-
posed TopoWeaver-R1 method. Specifically, we evaluate its accuracy across diverse code gen-
eration tasks (Section [3.2.T), the dynamic adaptability of topology density and its superior cost-
efficiency(Section[3.2.2)), the fine-grained comparison across difficulty level(Section [3.2.3), and ad-
ditional experimental results(Appendix [C).

Under review as a conference paper at ICLR 2026

Table 2: Main performance of TopoWeaver-R1 on three competition-level and two basic code gen-
eration datasets (mean + std over 3 runs).

Contest-level Code Generation Basic Code Generation
Method Avg.
APPs LiveCodeBench CodeContests ~ Avg. HumanEval MBPP Avg.
Vanilla
GPT-40-mini 20.3&0_2) 26.3(102) 18.6@0‘4) 21.7(1,0_3) 87.6&0_2) 73.5&0‘1) 80.5&0_]) 51-1(i0.2)

Classical Multi-Agent Systems (No Workflow/Topology Optimization)

AutoGen 23.6x23) 30.2(:15) 20.8x1.9) 24.919) 90.4z08) 92.3x04) 91.406) 58.1(x13)
MetaGPT 51314 42813 35.6(12) 43.2,,5 95802 92.3@03 94.1w02) 68.7.06
MapCoder 40.2z09) 3741y 36.307) 38.0z0.9) 96.4@0.5) 94.1,04) 95.3z0.5) 66.6¢:0.7)
Multi-Agent Systems with Workflow Optimization

AFlow 35417y 24.61.1) 21415 27114 94.2:03) 82.4(x0.1) 88.3x02) 57.7(x0.8)
FlowReasoner 39.1z19) 43.8@2.1) ﬂ(iw) 40.2¢:1.9 %&05) 93.9z0.7) m(ﬂ)_@) 67.51.3)
Chain-of-Agents(32B) 41.6(x1.3) Mum) 34.6(x12) 40.3@z12) 95.3202) 90.2:03) 92.8202) 67.90.)
Multi-Agent Systems with Topology Optimization

GPTSwarm 36.5&2_]) 40.8(125) 31.6(13,()) 36.3&2'5) 94.8&]_1) 91.6(11,3) 93.2&[2) 64.8(11‘9)
AgentPrune(Complex) 38.6(x19) 41.72. 33.5:08 37.9z16 96.10s) 91.808) 94.007) 65.9¢:1.1
AgentPrune(Layered) 39.3x16) 41918 31.4:09) 37.5@14) 96.607) 92.3203) 94.5:05) 66.010)
MacNet(Complex) 37.6x08 39.407) 28.7x07) 35.2(x07) 95.8x04) 89.4x02) 92.6:03) 63.90.5)
MacNet(Layered) 36.9z06) 40.305) 28.908) 35.40.6) 95.202) 90.303) 92.803) 64.1x0.5)
G-Designer 37.2x15 38.813) 26.9x12) 34.3@13) 95.6(x09) 90.9:08) 93.2x09) 63.7(x1.1
TopoWeaver-R1(3B) 58.8(:03) 46.3x04) 38.8(x05 48.0x03) 97.50x0.1) 95.102) 96.3(:02) 72.1(x03)

3.2.1 CODE GENERATION PERFORMANCE

As shown in Table[2] our approach consistently achieves the highest accuracy across all five datasets.
In the contest-level benchmarks, TopoWeaver-R1 reaches pass@1 accuracies of 58.8%, 46.3%,
and 38.8% on APPS, LiveCodeBench (v4), and CodeContests, respectively, outperforming the
second-best methods by absolute margins of 14.6 %, 3.1%, and 1.1% percentage points. In the
basic code generation tasks, our method achieves pass@1 accuracies of 97.5% on HumanEval and
95.1% on MBPP, surpassing the second-best methods by absolute margins of 1.0% and 0.7 %
percentage points, respectively(See Appendix for details).

3.2.2 COMPARISON OF DYNAMIC TOPOLOGY GENERATION AND COST EFFICIENCY

Table 3: APPS results comparing TopoWeaver-R1 with baselines on performance, cost, and average
topology density.

Dataset | Method Performance Prompt Tokens Completion Tokens Scomplex (T)
AFlow 354 531450 184800 3.7
FlowReasoner 39.1 437250 148050 2.4
Chain-of-Agents (32B) 41.6 334650 134250 4.1

APPS | GPTSwarm 36.5 381450 155400 3.5
AgentPrune (Layered) 39.3 364950 141150 3.8
MacNet (Layered) 36.9 472950 200100 2.9
G-Designer 37.2 320550 139200 3.6

TopoWeaver-R1 (3B) 58.8 277600 79800 5.2

In Table [3 and Figure. [I{b), using the APPS dataset as a case study, we visually compare our ap-
proach with six alternative workflow and topology optimization methods to assess both cost effi-
ciency and average topology density. For cost, we report the consumption of Prompt Tokens
and Completion Tokens; for density, we adopt the average score Scomplex from Eq.[7} where larger
values indicate lower (sparser) topology density. The table shows that TopoWeaver-R1 attains the
lowest consumption of prompt tokens and the consumption of completion tokens and the highest
average Scomplex (i.€. the sparsest interaction topology), while still achieving the best accuracy. This

Under review as a conference paper at ICLR 2026

indicates that, in contest-level code generation, our method delivers higher performance at lower
cost.

3.2.3 AVERAGE TOPOLOGY DENSITY COMPARISON BY DIFFICULTY LEVEL

Medium Medium B Medium
Hard Hard % Hard

—
wpiee)

ity Score (Scom

Average Graph Density Score (Sco

Average Graph Dens
G

e o N e

(b) CodeContest

Figure 3: Comparison of the average topology density (ScompiexT Sparser) across three competition-
level code datasets at three difficulty levels.

o™

(¢) LiveCodeBench(v4)

(a)APPS

Moreover, Figure[3|presents a fine-grained comparison across difficulty levels on three contest-Level
datasets . Our method modulates topology density with problem difficulty. It uses sparser graphs
for easier instances and denser graphs for harder ones, thereby reducing token cost on easy cases
while preserving accuracy on hard cases. In contrast, competing methods exhibit little or no density
adaptation across difficulty, which leads to unnecessary token expenditure.

3.3 ABLATION STUDY

Impact of Supervised Fine-tuning and Reinforcement Learning We examine whether CoT-
based SFT is necessary by comparing (i) direct RL without SFT and (ii) SFT followed by RL. We
report three metrics to make the performance factors explicit: (1) Performance, measured by code-
generation pass@1; (2) Scomplex for graph density; and (3) Valid topology (%), the percentage
of topologies that satisfy the formatting constraints and the difficulty-specific density cap. From
Table [d} the SFT stage is crucial for producing valid and executable topologies: small open-source
backbones trained without SFT rarely meet the required format and density, and consequently fail
to produce correct code. In contrast, SFT only (without RL) attains a moderate valid-topology rate;

Table 4: Ablation study on Training Strategies and Reward Design.

Method APPS HumanEval
Performance Scomplex (1) Valid Topo (%) Performance Scomplex (1) Valid Topo (%)
Full Model 58.8 52 100 97.5 5.8 100
Training ~ w/o SFT - - 15 - - 13
Strategies w/o RL 29.8 2.7 56.5 90.2 32 57.2
W/0 e (Eyam_errors) 30.3 2.9 56.8 91.4 3.0 58.1
W/0 T'e(Ecode_errors) 35.5 5.0 96.4 93.1 5.6 99.2
Reward W/0 Shode 49.2 3.8 85.8 96.9 4.8 87.2
W/0 Seqge 455 45 89.3 96.1 4.6 90.5
W/0 Sgiameter 48.3 3.9 91.7 95.3 4.1 93.4
w/o 14(G*M) 52.6 3.0 83.2 97.2 3.4 85.6

Impact of Multi-objective Reward Design Table [4] summarizes the impact of individual reward
components on model performance. We observe that the YAML-format error term 7 (Eyam_errors) has
the strongest effect on the valid-topology rate, whereas the code-execution error term 7 (Ecode_errors)
most strongly affects code accuracy (pass@1). The three topology-density sub-rewards Shode, Sedges
and Sgiameter influence both density control and accuracy to different extents, with w/o Syqe causing
the largest degradation in code-generation performance. Lower topology density (especially without
rge(G (k))) can reduce accuracy by limiting agents and interactions. With the full reward, optimiz-
ing density and accuracy together guides the policy to suitable interaction patterns and densities,
boosting performance while keeping token usage efficient.

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

4.1 LLM-BASED MAS FOR CODE GENERATION

LLM-based multi-agent systems have shown promise in code generation(Huang et al., 2023 [Nunez
et al., 2024} [Ishibashi & Nishimural [2024). Frameworks such as MetaGPT(Hong et al.l [2024)) and
AutoGen(Wu et al.| 2024) introduce software development workflows and role-playing to enhance
collaboration. These approaches, however, face challenges in competition-level settings, which de-
mand deeper algorithmic reasoning and precise implementation. MapCoder(Islam et al.| [2024) us-
ing multi-round planning, retrieval scoring, and algorithmic tutorials to achieve notable results. Still,
since competition problems vary widely in difficulty, fixed agent frameworks often incur unneces-
sary overhead—such as redundant interaction and roles—on simpler tasks, motivating more adaptive
solutions.

4.2 ToOPOLOGY OPTIMIZATION AND GENERATION FOR MAS

Recent works (Zhuge et al} 2024} Zhang et al.| [2024c) have explored optimizing interaction topolo-
gies in multi-agent systems to improve efficiency. Graph pruning methods, such as AgentPrune
(Zhang et al.| |2024a) and AgentDropout(Wang et al., |2025a), iteratively reduce interaction graphs
to a minimal structure. However, these rely on a fixed topology per task. Dynamic orchestration
methods(Zhang et al., 2025 Dang et al., [2025)) select a topology through multi-round optimiza-
tion but still finalize it before execution. Generation-based approaches like G-Designer(Zhang et al.,
2024b) produce a topology from problem descriptions, allowing finer adaptation but remaining static
thereafter. A common limitation is the tendency to converge to uniformly sparse structures, lacking
fine-grained difficulty awareness.

Agentic reinforcement learning (RL) methods(Wang et al., [2025bj Jin et al., 2025) have recently
introduced new paradigms for large language models, enabling them to move beyond single-turn
outputs toward multi-turn interactions with the environment and tool usage. These approaches op-
timize the model by incorporating external tools or agent—environment interactions into the agent’s
output as part of a complete trajectory, thereby endowing the agent with the capability of multi-round
interaction with its environment. Inspired by this line of work, several studies have further explored
end-to-end optimization of agent workflows by leveraging full interaction trajectories, as seen in
FlowReasoner(Gao et al.l [2025) and Chain-of-Agents(Li et al., 2025). While FlowReasoner intro-
duces local parallelism within certain operator blocks, it still cannot express rich graph-structured
interactions; Chain-of-Agents, in contrast, follows a purely sequential workflow without any par-
allel branches. Departing from these lines, we propose an Agentic RL-based approach centered
on a central orchestrator that dynamically generates and iteratively refines interaction topologies in
natural language, conditioned on execution feedback. A key innovation is a difficulty-aware density
reward, which explicitly modulates topology sparsity according to problem difficulty.

5 CONCLUSION

In summary, TopoWeaver-R1 establishes a new paradigm for competition-level code generation by
integrating difficulty-aware reinforcement learning with multi-turn topology evolution. By training
an orchestrator agent to dynamically generate and refine interaction topologies through execution
feedback and density-aware rewards, our method achieves fine-grained adaptability across problem
difficulties. This paradigm advances multi-agent code generation toward systems that are not only
accurate, but also cost-efficient and scalable.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All datasets used are publicly available, and
no human subjects or sensitive personal data were involved. The research is conducted solely for
scientific purposes, with no foreseeable risks of harmful use or conflicts of interest.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The paper provides de-
tailed descriptions of the proposed method (Section[2)), training settings (Appendix[B.2), evaluation
protocols (Paragraph[3.1)), and ablation studies (Section[3.3). All datasets (Paragraph|3.1)) used are
publicly available, and we describe the data preprocessing steps in the supplementary materials.
Pseudocode and proofs of the theoretical results are included in the appendix. We will also upload a
compressed package containing the complete main code for reproduction.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min
Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint
arXiv:2504.15257, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A Ilm multi-agent framework
toward ultra large-scale code generation and optimization. arXiv preprint arXiv:2404.02183,
2024.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. arXiv preprint arXiv:2405.11403,2024.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Codesim: Multi-agent
code generation and problem solving through simulation-driven planning and debugging. arXiv
preprint arXiv:2502.05664, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando

Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

10

Under review as a conference paper at ICLR 2026

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-rl: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang,
Qianben Chen, Weichen Sun, Qiexiang Wang, et al. Chain-of-agents: End-to-end agent founda-
tion models via multi-agent distillation and agentic rl. arXiv preprint arXiv:2508.13167, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9802-9822, 2023.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Ana Nunez, Nafis Tanveer Islam, Sumit Kumar Jha, and Peyman Najafirad. Autosafecoder: A multi-
agent framework for securing llm code generation through static analysis and fuzz testing. arXiv
preprint arXiv:2409.10737, 2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, et al. Scaling large language model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, and Min Zhang.
Agentdropout: Dynamic agent elimination for token-efficient and high-performance llm-based
multi-agent collaboration. arXiv preprint arXiv:2503.18891, 2025a.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024a.

11

Under review as a conference paper at ICLR 2026

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint arXiv:2410.11782, 2024b.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiagi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024c.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

12

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We used large language models (LLMs) solely as general-purpose assistive tools. Specifically,
LLMs were employed for language polishing, grammar refinement, and improving the clarity of
the manuscript. In addition, we occasionally used LLMs to assist in debugging minor programming
issues (e.g., syntax errors or code formatting), but not for problem solving, experimental design,
data analysis, or ideation of the research. The substantive contributions—including research ideas,
methodology design, implementation, analysis, and writing of technical content—were entirely the
work of the authors.

B SUPPLEMENTARY EXPERIMENTAL SETUP

B.1 SUPPLEMENTARY DETAILS ON BASELINES

To provide a comprehensive comparison and highlight the effectiveness of our approach, we evaluate
against four categories of baselines: (1)Vanilla: This setting reflects the capability of a single back-
bone model. We adopt GPT-40-mini as the representative backbone. (2)Classical Multi-Agent
Systems: This category includes three representative frameworks: AutoGen(Wu et al., [2024)) is
a general-purpose multi-agent framework, MetaGPT(Hong et al., 2024) is designed for generic
coding tasks, and MapCoder(Islam et al., 2024)targets competitive programming code genera-
tion. (3)Multi-Agent Systems with Workflow Optimization: This category comprises three sys-
tems: AF1ow(Zhang et al.,[2024c)) leverages search-based methods to optimize the workflow, while
FlowReasoner(Gaoetal.[2025) and Chain-of—-Agents are recent reinforcement learning ap-
proaches that optimize multi-agent workflows end-to-end. (4)Multi-Agent Systems with Topology
Optimization. This category covers GPTSwarm(Zhuge et al., 2024), AgentPrune(Zhang et al.,
2024a), G-Designer (Zhang et al) 2024b), and MacNet(Qian et al., 2024). These approaches
explicitly focus on optimizing the agent interaction topology.

For multi-agent baselines, we align the role definitions and system prompts with those used in
our method. For workflow and topology optimization methods, we set the maximum number of
participating agent nodes to 20. This matches the upper bound of topology density in our frame-
work when solving the most challenging problems with up to two interaction turns, ensuring a
fair comparison. Following the setup in MacNet, we note that our topology can be viewed as an
evolved variant of layered graphs. Our topology exhibits an intermediate density, between complex
and layered graphs. To ensure comprehensive and reliable evaluation, we therefore compare
AgentPrune and MacNet under both complex-graph and layered-graph initialization settings.

B.2 IMPLEMENTATION DETAILS

For TopoWeaver-R1, we use Qwen2.5-3B-Instruct (Yang et al.,[2024)) as the backbone. During the
SFT stage, we adopt the LLaMA-Factory framework (Zheng et al.,[2024) for training. Specifically,
we utilize 4500 synthetic samples constructed from three contest-level code generation datasets
across three difficulty levels (see Section [2.2]for details). The training is performed with an initial
learning rate of 1 x 10~4, a batch size of 4, and LoRA-based fine-tuning, while all other hyperpa-
rameters are kept at their default values. During the reinforcement learning stage, we implement
GRPO using the Verl (Sheng et al.||[2025) framework with vLLM for generation(code development
based on Search-R1 (Jin et al., 2025))). We set the group size to G = 8, with a batch size of 8, a
learning rate of 1 x 10~°, a policy temperature of 1, and a maximum completion length of 4096
tokens. To balance performance and computational cost, we further limit the maximum number of
turns (i.e., multi-agent interaction turns) to 2. Throughout training, individual agents are executed
with gpt—-4.1-nano and interact in real time with a code execution sandbox to obtain authentic
runtime feedback. Both stages are conducted on a 4-GPU A800 cluster.

B.3 PROGRESSIVE QUALITY FILTERING FOR SFT DATA
Our training data consist of valid, executable, and semantically correct topologies generated by

GPT-40-mini under code-oriented tasks. All data are produced using the same role configuration
and topology density constraints adopted in our orchestrator. The second-turn interaction topologies

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

are real and valid structures obtained from actual error messages and historical multi-agent logs,
rather than synthetic approximations.

We first perform strict YAML syntax verification to ensure that each example is well-formed and
can be parsed by standard YAML loaders. This step guarantees that all topologies can be
safely converted into JSON objects for subsequent processing, preventing malformed or incom-
plete structures from entering the dataset. Second, we apply semantic validation using a predefined
JSON_SCHEMA. After converting each YAML topology into JSON, we verify that it satisfies all
orchestration constraints. The validation rules include: (1) The ref field of all agents in the first
timestep must be empty. (2) For every agent, all agent IDs listed in its ref field must correspond to
agents that have appeared in earlier timesteps. These schema-level checks ensure the structural con-
sistency and logical correctness of the generated topologies. We further remove duplicate topologies
and preserve only those that successfully interact with the execution environment. This step ensures
that the topologies are not merely syntactically valid but are also actionable and executable within
the orchestrator runtime. All remaining samples are re-validated using GPT-4o-mini to ensure se-
mantic soundness, consistency, and correctness. Finally, we manually inspect a randomly sampled
5% subset of the data to further confirm high-quality labeling and structural validity.

14

Under review as a conference paper at ICLR 2026

B.4 SYSTEM PROMPT FOR ORCHESTRATOR AGENT

- You are a Orchestrator agent. Your goal is to coordinate a multi-agent team to
solve the given code problem by generating a YAML-formatted interaction plan.
Each plan should specify:

- Which agents to activate at each step;
- Which previous agents' outputs are referenced.
Agent types:
-kplanner>: plans algorithmic strategy.
- : retrieves relevant knowledge.
-[algorithmer>} analyzes problem structure and decomposes it into key algorithmic
components or subroutines.
-[<coder: generates code based on other agents' information.
-|«debuggery}: fixes incorrect code (only used after af<coder?).
- : verifies code (must be used in the last step, referencing[<coder or
<debuggers)
Format:
Output only the YAML plan.
Each step includes one or more agents with optional references.
HH#H# Notes:
1. There are three levels of difficulty, arranged from low to high as follows:
introductory, interview, competition.
2. Determine whether the task difficulty is introductory, interview, or competition.
3. **Dynamically adjust the number of steps and agents** based on the difficulty
of the problem.
4. For **more difficult problems**, **involve more agents** if necessary. \
For **simpler problems**, you may **reduce both the number of agents** and
the number of steps involved.
5. The last step must include a* " referencing at least one of “codery or
[edebugger]
6. Execute up to max **{max_turn_num}** rounds in total, until the code passes
verification by the * [.
7.In the first step, all agents must have empty “ref” fields.
The Code Problem is:
Task: " {question}’
Your output should be a YAML-formatted plan only.
your output: \n
_

Figure 4: The figure shows the system prompt for the orchestrator agent.

We show in the figure the system prompt of the trained orchestrator agent.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 CoODE GENERATION PERFORMANCE ANALYSIS

We observe that MetaGPT, a code-oriented multi-agent framework with a fixed interaction scheme,
achieves the second-best performance on average. Among optimization-oriented approaches, the
two end-to-end reinforcement learning methods, FlowReasoner and Chain-of-Agents, rank next
and narrowly trail MetaGPT in average results. By contrast, topology optimization methods under-

15

Under review as a conference paper at ICLR 2026

perform, likely because their learned topologies remain comparatively rigid and struggle to adapt to
the highly variable and complex nature of competitive programming tasks. G-Designer is a method
that generates interaction graphs based on the given problem. However, we observe that although
these methods are adapted to different tasks, the difficulty of competition-level problems is hard to
distinguish intuitively, and thus such adaptations do not lead to significant improvements in code
performance. Within this family, AgentPrune and MacNet perform better under layered-graph ini-
tialization, suggesting that for relatively sequential code-generation tasks, layered graphs provide
a more suitable inductive bias than unstructured complex graphs. Building on this, TopoWeaver-
R1 retains the inductive bias of layered graphs yet adapts dynamically per problem, yielding
state-of-the-art overall accuracy.

@ B £y @) I T S
Steps Steps Steps

(a) Training Reward Score (b) Valid Topology num (¢) Valid Reward Score

Figure 5: The figure shows the dynamics of three key metrics during RL training: (a) training reward,
(b) average number of valid two-turn topologies, and (c) validation reward. The results indicate
that our method progressively converges toward generating topologies with reasonable density and
achieving accurate code problem solving in later training stages.

C.2 ANALYSIS ON THE RL TRAINING CURVE

To better understand the training dynamics of the reinforcement learning stage, we plot the trajec-
tories of (i) the average reward, (ii) the count of topologies passing the density check, and (iii) the
validation score over the first 110 RL training steps (Figure[6). Our key observations are as follows:
all three metrics increase steadily with training, indicating that the self-critic RL procedure is stable
and makes consistent progress. These results further demonstrate that our method trains effectively
and remains stable.

16

Under review as a conference paper at ICLR 2026

C.3 CASE STUDY

()

Hard Problems

EXADD
(=

Case 1 Case 2

GaU,

Case 1

.

Figure 6: The figure shows the generated interaction topologies for two problem cases at each
difficulty level.

Based on the generated cases shown in the figure, our method exhibits the following characteris-
tics. First, it can generate different initial interaction topologies tailored to the characteristics of
individual problems, with topology density varying according to difficulty. Second, the method dy-
namically adjusts the second-round topology based on the execution results of the first round; this
adjustment does not necessarily reduce the number of agents, as additional agents may be intro-
duced when errors occur. Finally, when agents from the first round reappear in the second round,
their behavior evolves according to their prior outputs, thereby achieving iterative evolution. These
characteristics highlight the customizability and adaptability of our approach, which in turn enhance
system performance while reducing costs in a fine-grained manner.

C.4 ZERO-SHOT TRANSFER TO UNSEEN ROLES AND TASK TYPES

To evaluate the transferability of our orchestrator to unseen problem types and newly introduced
agent roles, we conducted a small-scale study on 50 filtered samples from the GAIA
dataset. These samples were strictly restricted to tasks where the inputs consist solely of
single-modality textual descriptions, which differ substantially from the code-generation domain
used for training.

No additional training was performed. Instead, we expanded the orchestrator’s role pool by adding
two previously unseen roles: an online search agent <online_searcher> and a visual vali-
dation agent <visual_checker>, together with their corresponding tool interfaces. Using the

17

Under review as a conference paper at ICLR 2026

original trained model, the orchestrator was able to naturally integrate these new roles into the
generated interaction topologies, despite never encountering them during SFT or RL training.

Under this strict zero-shot transfer setting, the framework achieved a success rate of 15.8% on the
selected GAIA samples, demonstrating that the orchestrator exhibits non-trivial generalization to
unseen domains, unseen task types, and unseen agent capabilities.

C.5 SUPPLEMENTARY CROSS-DOMAIN EXPERIMENTS

While our method was initially designed with a focus on competition-level code generation, this
Jocus was a deliberate choice rather than a limitation. Competition-level tasks provide a highly
challenging and well-instrumented testbed that allows us to rigorously examine dynamic topology
evolution under strict execution feedback, token constraints, and difficulty-aware limits. Aligned
with our research interests, our goal was to develop a specialized multi-agent orchestration al-
gorithm for this domain, offering a complementary perspective to prior multi-agent architecture
studies that emphasize broad task coverage. Nevertheless, our method is inherently generalizable.
To address the reviewer’s concern, we additionally evaluate the cross-domain applicability of our
approach.

Following the role definitions and data filtering strategy used in Chain-of-Agents ?, we ex-
panded the agent role pool in our orchestrator’s system prompt. The newly introduced roles in-
clude: <online_searcher> for web-based retrieval, <thinker> for complex reasoning,
<verifier> for answer verification, and <planner> for task decomposition and high-level
orchestration. All roles were redefined and implemented for reasoning-centric tasks. We selected

subsets from three representative datasets—GAIA(Mialon et al) 2023), HLE(Phan et al) 2023),
and PopQA (Mallen et al] 2023)—to evaluate multi-hop reasoning and question answering.

For the reward function, we retain the YAML validation and topology-density components, which
remain general across tasks and domains. To adapt the pipeline, we replace the code-execution
validator with an LLM-based answer validator and simplify the reward to a binary scheme: 1 for
correctness and 0 otherwise. All other training and inference settings remain unchanged. We re-
trained our model under this configuration and report results below.

Table 5: Cross-domain evaluation of TopoWeaver-R1 on GAIA, HLE, and PopQA. Results are
reported as mean =+ std over three seeds.

Method Backbone GAIA L1 GAIAL2 GAIAL3 GAIA Avg. HLE Avg. PopQA

Chain-of-Agents 7B 69.2z08) 50.9:07) 33.3@11 50.8z03) 18.0z06) 46.5x13)
TopoWeaver-R1 (ours) 3B 72.0z0.4) 53.4z03) 36.1x05 53.8(z04) 22.6z02) 50.3(x0.3)

The results demonstrate that TopoWeaver-R1 outperforms Chain-of-Agents across all datasets de-
spite using a considerably smaller backbone (3B vs. 7B). Our method achieves strong accuracy and
maintains low variance across seeds, highlighting both the robustness and adaptability of the pro-
posed topology optimization framework. These findings provide further evidence that our approach
generalizes beyond code generation and can be transferred to new reasoning-oriented domains with
minimal modification.

D DETAILED DEFINITIONS OF TOPOLOGY NOTIONS
(k)

Agent Node Notations Each agent node v; " is defined as:

o) = {Type;, Base,, Role("), View" ", Mem(<"'} v

%

The Type; field specifies one of three agent categories: (1) The Orchestrator agent is a locally
deployed large language model (LLM) proposed and trained in this work, designed to generate
multi-turn YAML interaction topologies in an end-to-end orchestrator and to manage the execution
of multiple agents; (2) The LLM-agent is a prompt-conditioned LLM (open-source or via API)

18

Under review as a conference paper at ICLR 2026

that is assigned a role; and (3) the ToolAgent, which is equipped with callable external APIs such as

retrieval engines or code execution tool. Rolegk)

<coder>). Viewz(-kfl)

is the turn-specific role/prompt (e.g., <planner>,

is the orchestrator-curated visible context for this agent, including selected

k)

outputs from its dependencies and possibly from last turn. Finally, Mem§< stores the cross-turn

history of agent ¢ prior to turn k.

Notations for Agent Communication Edges In our framework, the edge set is constructed di-
rectly from the ref fields specified in the YAML plan, and we categorize edges into three types.
First, intra-turn edges ginra Pk« PK) connect agents within the same turn according to their
declared references. Second, inter-turn cross-agent edges E°% C PE=1) 5 Pk) capture dependen-
cies across two consecutive turns when an agent in turn ¢ explicitly references outputs from other
agents in turn k— 1. Third, inter-turn self-edges £ C {(vgk_l), vz(k)) | v; € V} are automatically
added whenever the same agent is invoked across two consecutive turns, allowing it to incorporate
and refine its own previous outputs.

Orchestrator-Guided Multi-Agent Interaction. Given a task z, the orchestrator agent emits a
YAML plan for turn k. The plan tokens are sampled from the orchestrator policy and determinis-
tically decoded into a strict layered DAG G(*) (see Eq. . The node set V(*) is instantiated with
LLM-agents and ToolAgents; execution follows the step (layer) order implied by G(*): agents within
the same step run in parallel, and there are no intra-step edges. We intentionally exclude intra-
step interaction to facilitate parallel execution and reduce scheduling complexity. Although a fully
connected DAG allows richer expressiveness, we find that enforcing structural sparsity within steps

improves interpretability, efficiency, and learning stability. For a node vgk), the turn-k output is
produced as

M ~Pg(M | z, Role!"”, View" ™V, Mem{", (" : ({") M) e @), (15)

£ is the intra-turn dependency set (a strict layered DAG) parsed from the YAML ref fields;
{M;k) : (vj(»k), vgk)) € £} collects the outputs of all in-neighbors of vz(k) in turn k; Rolel(.k) is the

—1)

turn-specific role/prompt of v;; Viewl(k is the orchestrator-curated summary of the previous turn

(topology/error cues) provided as read-only context; Mem§<k) is the agent-local cross-turn memory

prior to turn k; Py, denotes the agent’s conditional kernel (LLM likelihood for language agents;

deterministic operator such as retriever r or executor ¢ for ToolAgents); and Mi(k)

(k)

%

is the outputs
produced by v, in turn k.

After execution, each agent appends its output to its memory, Memz(sk) = Ule {Mi(t)}. Each turn

concludes with a tester agent that executes the candidate code and returns a status s(*), which can

either be [PASSED| or one of the errors from the set Egprors defined in Eq If s®!) = [PASSED , the

process stops and the solution is accepted. Otherwise, the orchestrator agent collects the observation
o) = {Eerrorss Liogs, G (k) }, which includes error types Eerrors» €xecution logs Liogs, and the turn-

k topology trace G(*). Based on the observation, the orchestrator agent generates the next-turn
interaction graph via Eq[T]and Eq[2] During this process, the orchestrator decides which agents to
reuse from memory, which to rerun, and which to activate. The orchestrator continues to regenerate
the topology for each turn as needed until the code result is or the maximum number of
turns K is reached.

Definition 1. For a strict layered DAG G*), the node set V(¥ is divided into b independent sets

{Vl(k), cee Vék)} with a well-defined layer structure. It has the following properties:

(Sequentiality) for any edges (u,v), it satisfies that u € Vi(k), v E Vj(k), and i < j.

(Conciseness) for any nodes u € V(k) where 1 b, there must exist an edge (u,v) such that
y i g

v E Vj(»k), where i < j.

19

Under review as a conference paper at ICLR 2026

Algorithm 1 Online Topology Generation Workflow of TopoWeaver-R1

Require: Input query z, Policy model 7y, Maximum Rounds K
Ensure: Final output 2

1: initialize history H.

2: initialize local memory {Mem;} for each agent v;

3: initialize z < @

4: for round k£ <— 1to K do

5: Ok:(Ok,17-~-,0k,\ok\)N7T6'('|33,Hk)

6 if no valid YAML detected in o then

7 yr < YAMLCheck(oy)

8 Hyy1 + Hy.append((og, yx))

9: continue

10: end if

11: G*) = DecodeTopo(oy)

12: 2 = (2001 260%¢) « ExecRun(z, G, Hy,)

13:if in 2£°% then

14: break > Early stopping
15: end if

16: Hyy1 < Hy.append((G*),)

17: 24—z + 2z

18: end for

19: return final output z
20: procedure EXECRUN(z, G%)| H},)

21: initialize 27°' < @

22: for layer in G*) do

23: Run {v; | v; € layer} in parallel:

24: M® ~ Py (M |z, Rolel™, View!* ™ Mem!{=*), {M;k) : (v§k)7vfk)) e EMY)
25: Add M™ to Mem;

26: Z;oles — ZZOZES + Mz(k)

27: end for

28: Extract code codey, from z}l¢

29: zgede « tester(codey,)

30: return (20!, z§ode)
31: end procedure

D.1 ALGORITHM WORKFLOW OF TOPOWEAVER-R 1

We conclude the overall algorithm workflow of TopoWeaver-R1 in Algorithm|T]

D.2 THEORETICAL DERIVATION AND PROOF OF TOPOLOGY DENSITY

From Token Cost to Topology Density In order to achieve the goal of cost saving, we define the
topology density based on the cost efficiency. Now we give the mathematical derivation here to show
that in MAS, the complexity of agent interactions can be formally mapped into graph properties to
quantify operational costs.

We first model the interaction per round as a graph G*) = (V(*) £(k)) 'where vertices V*) repre-
sent agents and edges £(*) capture dependency relationships in round k.

To eliminate the influence of difficulty on topology scale, we prefer the average cost on each agent.
For each agent, the token cost mainly consists of three parts: the prompt, the reference information
and the output. To simplify this process, we have the following assumptions. (1) the length of
prompt and output is the same and fixed for every agent, denoted as m. (2) As for the round k, we
must take the information from the previous rounds into account. So we assume that each agent has
additional |[V(*~1)| x m tokens as its input. (3) Under the same level of difficulty, V()| ~ [VU)|
for Vi, j < k.

20

Under review as a conference paper at ICLR 2026

The total cost can be approximately expressed in the following form:

s
Cow = Y m+mx [VED| 4 m x |Agent;[ref]]| + m x [Wees(Agent;)|, (16)

?

where Wit(Agent;) is defined as {a | Agent; € a[ref]}, which contains all agents that have refer-
enced Agent;. This expression can be further simplified to Eq.

y®
Coott = m x ([VE [+ [VE - [WED] N (| Agent[ref]| + [Wier(Agent:)|)). (17)

Notice that Z‘iv(k)‘ |Agent;[ref]| = ZLV(M‘ |[Wiet(Agent;)| = |E|, the total cost is given by
Eq.[T8]

Cooat = m x (VP 4+ VP pE=D) 49| B, (18)
With the assumption (3), the average cost for each agent is given by Eq.[I9
> E|
C=m><(1+|V|+2|V|). (19)

Notice that topology with linear structure always has lower complexity score. However, the linear

structure lacks the ability to call agents in parallel. That means the next agent must wait until current

agent finish its task instead of work in the same time. Considering this time cost (also called delay),

we take graph depth d into account. When minimizing the average cost, we can ignore the constant

part and token length m. Then we obtain the expression of topology density before normalization.
|E]

S=|V|+2— +d. (20)

The interaction cost is then analytically linked to three topological features:

* Number of Agents N = |V|: The total number of agents is a primary driver of base
computational and memory overhead. Each agent typically encapsulates a large language
model (LLM) or a policy network, thus the cost of inference, state maintenance, and context
management scales at least linearly with N. This represents the fixed cost of maintaining
the system.

* Edge Density: The average degree e = % correlates with interaction overhead. Higher
density implies more pairwise interactions per nodes, increasing synchronization and
message-passing costs.

* Graph Depth d: The number of nodes of the longest path between any two agents defines

the worst-case coordination latency. Large depths necessitate multi-hop communications,
amplifying delay and potential error propagation.

The number of agents and edge density can be explicitly derived from the definition of the YAML
field. However, the depth d needs additional calculations. To cope with this problem, we extract the
properties of manager-guided multi-agent interaction and conclude it as the following theorem.

Theorem 1. Given DAG G(*) defined by manager-guided multi-agent interaction, G(*) is a partite-
graph with b parts. Then we have d*) = b, where d(*) is the depth of G(¥).

Proof. First, we prove that there exists a path with length b, equivalently, there exists a path that
sequentially visits each part V7, V5, ..., V.

By definition, V; contains only sources (no incoming edges from within G(*)), and V}, contains only
sinks (no outgoing edges within G(¥)). Choose any sink t € V4. Since t € V; and edges go from
lower to higher parts, ¢t must have a predecessor p,_1 € V,—1 (if b > 1). Similarly, p,_; must have
a predecessor p,_2 € Vj,_2. Repeating this process yields a path backwards from the sink:

P1L—> P2 — - = pp-1 >t

21

Under review as a conference paper at ICLR 2026

where p; € V; fori =1,2,...,b— 1. The forward path P = p; — ps — -+ — pp—1 —> t visits b
different parts (V1, Vo, ..., V,) and contains exactly b vertices.

Then we prove that d < b.

Assume that a path P = v; — va — - -+ — v, exists with m > b vertices. Let v; € V,;,. Since any
edge v; — v;41 must satisfy a; < a;4+; (by the Definition , the sequence of part indices is strictly
increasing:
ar < ag < -+ < Q-

This sequence has m distinct integers. However, these integers must all lie in the set {1,2,...,b},
which contains only b distinct integers. The assumption m > b requires finding more than b distinct
integers in a set of size b, which is impossible. Therefore, no such path P can exist. Consequently,
any path has at most b vertices, and the depth d < b. O

We must emphasize that in most cases, the agent calling steps satisfy s = b, which means b can be
directly calculated. However, in rare cases, inter-interactions may not happen between two layers,
e.g. Vi(k) and V). In this situation, Vi(k) U V;k) is an independent set, which leads to b < s and
additional response time. So we use s as a measurement of the graph depth to recognize the two
sequences with the same topology.

Now we have the basic expressions of topology density as Eq. [21]

E|
S=|V|+2— +s. 1)

Topology Density Normalization With the difficulty level [, we have the maximum allowed num-
ber of nodes Ny,ax(l). To normalize the density of different difficulties into the same distribution,
we scale the formula to (0, 1).

Nﬁ‘:' @ < 1. After limiting the upper bound of |V|, we further constrain the limitation

of % Notice that the agent communication edges are categorized into three types, intra-round
edges, inter-round cross-agent edges and inter-round self-edges. Among them, we have intra-round
edges |Eiptra| < W with the Definition || for the intra-round edges. For the inter-round
edges, inter-round self-edges can be approximately equal to |V'| with the assumption (3), and we
have inter-round cross-agent edges | Ecross_inter| < |V|(|[V| — 1). Then for the edge density,

First, we have

_ |Eint7’a| ‘Eself inter‘ |Ecross inter'
e< = > ; (22)
Vi 2|V| 2|V|
with the simplified form € < |V| — 0.5. Then the normalization form is %. When the
topology degenerate as linear structure, the depth d is equal to |V'| which is the upper bound. So we
have ﬁ < 1.

When complexity gets higher, it requires the final expression of complexity score to decrease. So,
we implement a monotonically decreasing activate function in the final expression of the complexity
score Scomplezity With exponential function e~ in Eq.

D.3 DETAILED DEFINITIONS OF MULTI-AGENT ROLES

Inspired by the design of MapCoder, our agent pool consists of six distinct agent types, each ded-
icated to different functions in the code generation process. In each round of code generation, the
Managing Agent performs reasoning and selects the necessary agents from this pool. The names
and token representations of each agent type are outlined in Figure[2] middle.

D.3.1 RETRIEVAL AGENTS

Following Search-R1(Jin et al.l [2025), the following retrieval agents employ the ES model as the
unified retriever. E5 serves as the retrieval backbone and is invoked by retrieval agents to identify
semantically relevant documents during inference. The retrieval agents can incorporate inputs from
other agents as reference context to enhance retrieval accuracy. To enable retrieval of semantically

22

Under review as a conference paper at ICLR 2026

similar code solutions, we construct an offline retrieval agent. Following VoyageAl, we create a
document for each elementary programming problem with a canonical solution (i.e., APPS, Hu-
manEval, and MBPP) by concatenating the description of the natural language problem with its
corresponding reference implementation. advanced library usage.

D.3.2 PLANNING AGENT

The Planning Agent takes as input the original problem along with the outputs of other agents
selected by the managed agent in the previous step, and aims to generate a step-by-step coding plan
for solving the original problem. In addition, the Planning Agent can iteratively refine its plan based
on previous error messages and the last-round plan, aiming to produce a more effective solution
strategy.

D.3.3 ALGORITHMIC AGENT

The algorithmic agent takes as input the code problem and the outputs of other agents, and produces
a customized sequence of algorithmic solution steps tailored to the given problem.

D.3.4 CODING AGENT

The Coding Agent generates an initial code solution by leveraging the problem description, the
step-by-step coding plan produced by the Planning Agent, and reference materials—such as code
snippets or tutorials—retrieved by the Retrieval Agent.

D.3.5 DEBUGGING AGENT

Starting from the second round, when the initial code generation encounters issues, the Debugging
Agent can iteratively revise the code by leveraging previous error messages and interaction history.
Alternatively, it can regenerate code based on the updated coding plan and newly retrieved refer-
ence materials. The specific strategy adopted is determined by the Planning decisions made by the
Managing Agent.

D.3.6 TESTING AGENT

At the end of each iteration, we invoke the Testing Agent to evaluate the correctness of the generated
code. It returns a binary pass/fail signal along with graded error diagnostics, which are used both
for computing the reward function and as a termination criterion for the iterative process.

E SUPPLEMENTARY DEFINITIONS FOR RL

E.1 DEFINITIONS OF MULTI-TURN TRAJECTORIES AND RETURNS IN RL

We define the multi-turn trajectory as:

7= {(0k, 20, 7)Y (23)
where oy, is the YAML token sequence encoding the interaction topology of turn k, z; denotes the
corresponding multi-agent execution outcome produced by the environment, and 7, is the immediate
reward assigned based on the execution result. The reward is computed via a function 74(-) that
evaluates the current interaction graph and the code validation outcome:

ri=1g(GM), 25) (24)
code

where 2;°% is the result of executing input—output test cases in a sandboxed code-validation tool.
Different rewards or penalties are assigned depending on whether the code passes the tests or on
the specific type of error encountered. In addition, the structural contribution is computed based
on whether the topology density of G(*) stays within a task-specific upper bound determined by
the difficulty of the problem. The overall return of a trajectory is defined as the discounted sum of
per-turn rewards:
K—1
R(r) = A, (25)
k=0

23

Under review as a conference paper at ICLR 2026

where v € [0,1] is a discount factor that modulates the relative importance of earlier versus later
rewards. This return serves as the training signal for optimizing the policy.

E.2 REINFORCEMENT LEARNING OBJECTIVE FOR GENERATING TOPOLOGIES WITH
ADAPTIVE COMPLEXITY

The general return R(7) serves as the training signal to optimize the topology generation policy,
which aims to produce interaction graphs with dynamic structural complexity adapted to the diffi-
culty of the input problem, while maximizing the likelihood of generating code that passes all test
cases. Our goal is to maximize expected return on trajectories sampled from the current policy,
while regularizing against a reference policy using a token-level Kullback-Leibler (KL) divergence.
Notably, the policy 7y is responsible only for generating the topology token sequences og; all agent
responses, code execution traces (contained in zy) are treated as environment outputs and are ex-
cluded from the KL regularization term.

We define the following trajectory-level optimization objective:

1 K-l lOk‘ 7T9(Ok |:L‘ Hk O)
s)) , <
maax]Ewer, {ok}~me [R(T)} — IBE{ok}~we m Z Zlog u u (26)
k=0 u=1

'/Tref(ok,u | &€, Hkv 0k,<u)

where 7 = {(ok, 21, 75) }j— is the trajectory induced by the topology sequences {0} sampled
from the policy mg, with the corresponding interaction graphs, agent outputs, and rewards deter-
ministically generated by the environment. The term L(7) = ZkK:_Ol |ox| denotes the total number
of topology tokens in the trajectory, and S is a weighting coefficient that balances reward maxi-
mization against policy divergence. Here, z is a problem instance drawn from the dataset D, and
Ok,<u = (Ok,1,---,0k u—1) denotes the prefix token sequence generated prior to position u in round

E.3 REWARD DESIGN AND SENSITIVITY ANALYSIS

E.3.1 REWARD DESIGN PRINCIPLES

Our reward design follows three core objectives: (1) ensuring syntactic validity of the YAML topol-
0gy, (2) guaranteeing functional correctness of the generated solution, and (3) controlling com-
munication cost by encouraging difficulty-aware sparsity in the agent topology. These objectives
are realized through two components: r. for execution correctness (syntax and solution outcome),
and 1, for topology density. The separation enables targeted optimization for both correctness and
structural efficiency.

YAML Format and Structural Validity. [nvalid YAML structures receive a strong negative re-
ward, as they cannot support valid multi-agent execution. Other YAML format penalties apply only
to the topology structure itself and are independent of roles or tasks. Once the YAML structure is
correct, the penalty becomes zero, enabling r to focus solely on program execution correctness.

Topology Density Reward. 7he density reward r, consists of three components—the number of
nodes, number of edges, and graph depth—as defined in Eq. 7 of the main paper. The weights
(A1 Ao @ A3) are not heuristic but derived from the theoretical analysis of information flow in
layered DAGs. Following Eq. 20, we adopt Ay = 0.5, Ao = 1, and A3 = 0.5 to preserve the
theoretical 1:2:1 ratio. This ensures that topology sparsity is accurately captured, while keeping the
total reward magnitude comparable to execution-based signals such as code correctness.

Difficulty-Aware Density Bounds. We additionally set topology density upper bounds of 4, 7, and
10 for tasks of different difficulty levels. These values are obtained through statistical analysis of
thousands of SFT-generated samples, examining the distribution of topology densities required for
successful solutions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.4 SENSITIVITY ANALYSIS OF 1, AND 7

Both reward components are initialized with equal weights wi = wo = 1 for r. and r,. This
balanced configuration reflects their comparable ranges and the need to trade off correctness with
communication efficiency. To examine robustness, we perform a sensitivity analysis by sweeping the
topology density weight wo from 0.25 to 2.0, while fixing w, = 1. Using the APPS dataset, we begin
with the post-SFT model and train for 60 steps (50% of total training). For each ws, we record
Pass@ [accuracy and relative token cost.

Table 6: Sensitivity analysis of the topology weight ws. Results are Pass@ I and relative token cost
after 60 RL steps on APPS.

wa (topology weight) Pass@1 Rel. Token Cost

0.25 37.8 1.61x
0.50 38.0 1.46x
1.0 (ours) 40.1 1.00x
1.50 39.2 0.88x
2.00 389 0.76x

Observations. The results indicate that performance remains stable across a wide range of ws
values. Pass@ [varies by less than 5.2% throughout the sweep (from 38.0 to 40.1), demonstrating
that model performance is not sensitive to the precise value of wo. As expected, larger wo penal-
izes dense topologies more strongly, resulting in reduced token cost. Importantly, no instability is
observed across all settings. Thus, the main conclusions of the paper are robust under reasonable
perturbations of reward weights.

25

	Introduction
	TopoWeaver-R1
	Problem Definition
	Interaction Topology Notations
	TopoWeaver-R1 Paradigm
	 Graph Density Evaluation Function

	SFT data Generation
	Reinforcing Dynamic Topologies for LLM-MA via Trajectory-Level Policy Optimization

	Experiments
	Experimental Setup
	Main Results
	Code Generation Performance
	Comparison of Dynamic Topology Generation and Cost Efficiency
	Average Topology Density Comparison by Difficulty Level

	Ablation Study

	Related Works
	LLM-Based MAS for Code Generation
	Topology Optimization and Generation for MAS

	Conclusion
	LLM Usage Statement
	Supplementary Experimental Setup
	Supplementary Details on Baselines
	Implementation Details
	Progressive Quality Filtering for SFT Data
	System Prompt for Orchestrator Agent

	Additional Experimental Results
	Code Generation Performance Analysis
	Analysis on the RL Training Curve
	Case Study
	Zero-Shot Transfer to Unseen Roles and Task Types
	Supplementary Cross-Domain Experiments

	Detailed Definitions of Topology Notions
	Algorithm Workflow of TopoWeaver-R1
	Theoretical Derivation and Proof of Topology Density
	Detailed Definitions of Multi-Agent Roles
	Retrieval Agents
	Planning Agent
	Algorithmic Agent
	Coding Agent
	Debugging Agent
	Testing Agent

	Supplementary Definitions for RL
	Definitions of Multi-Turn Trajectories and Returns in RL
	Reinforcement Learning Objective for Generating Topologies with Adaptive Complexity
	Reward Design and Sensitivity Analysis
	Reward Design Principles

	Sensitivity Analysis of re and rg

