
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOPOWEAVER-R1: REINFORCING DIFFICULTY-
AWARE TOPOLOGY EVOLUTION IN MULTI-AGENT
COMPETITION-LEVEL CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have shown that large language model (LLM)-driven multi-
agent systems (MAS) are promising for addressing complex problems, with
competition-level code generation as a representative domain. By emulating the
collaboration among human programmers, these systems leverage predefined in-
teraction topologies to achieve notable gains. However, such fixed structures in-
troduce interaction redundancy and excessive token costs as task difficulty drops.
While graph pruning and generation methods can produce sparser topologies,
they remain static during inference, unable to adapt to execution feedback, and
often converge to limited density ranges. To overcome these issues, we pro-
pose TopoWeaver-R1, a reinforcement learning–optimized MAS centered on an
LLM orchestrator agent, which supports end-to-end evolutionary dynamic inter-
action topology generation. For each query, it infers agent roles and task dif-
ficulty, then constructs a task-adapted, density-aware layered directed acyclic
graph (DAG) topology. The topology evolves via execution feedback and history,
thereby improving the task-solving performance of the generated code. On three
competition-level and two basic code datasets, TopoWeaver-R1 achieves state-of-
the-art accuracy, with up to 14.6% higher accuracy, 13% lower density and 68%
lower token cost than the strongest baseline. Our approach transitions multi-agent
topologies from static designs to dynamic, feedback-driven evolutionary designs
with fine-grained, difficulty-aware density control.

(c) Code Generation Performance Comparison

(a) From Yaml to Graph (b) Cost Analysis with Graph Density
```yaml
- step: 1
      agents: 
           - agent: 
               ref: []
           - agent: 
               ref: []
- step: 2 
      agents:
           - agent: 
                ref:  [                     ,                     ]
           - agent: 
                ref:  [                     ,                     ]
- step: 3 
      agents:
           - agent: 
                ref:  [                     ,                     ,     
                          ]
- step: 4 
      agents:
           - agent: 
               ref:   [                    ,                      ,           
                          ]
- step: 5
      agents:
           - agent: 
               ref:  [                   ]
```

<planner><planner>

<searcher><searcher>

<algorithmer><algorithmer>

Turn 1

Topology 1

Topology 2

Structure Language (YAML) Generated from TopoWeaver-R1
Topologies Decoded from

YAML

Iteration
<planner><planner> <searcher><searcher>

<planner><planner>
<planner><planner> <searcher><searcher>

<searcher><searcher>
<planner><planner> <searcher><searcher>

<algorithmer><algorithmer>

<coder><coder>
<planner><planner> <searcher><searcher>

<algorithmer><algorithmer>

<tester><tester>
<coder><coder>

P S

PA

S

C

T

P S

PA

S

C

T

A

D

T

A

D

T
<coder><coder>

<tester><tester>
<debugger><debugger>

Turn 2
<algorithmer><algorithmer>

<planner><planner> <searcher><searcher>
<tester><tester>

<planner><planner>
<algorithmer><algorithmer>

<tester><tester>
<debugger><debugger>

<debugger>

Turn 2
<algorithmer>

<planner> <searcher>
<tester>

<planner>
<algorithmer>

<tester>
<debugger>

```yaml
- step: 6 
      agents:
           - agent: 
                ref:  
[                       ,                       ,                  ,       
                        ]
- step: 7 
      agents:
           - agent: 
               ref:   [                       ,                  ,                      
                        ]
- step: 8
      agents:
           - agent: 
               ref:  [                      ]
```

<tester><tester>

<coder><coder>

Figure 1: (a) YAML representation of the topology, its mapping to the actual graph, and the two-turn
graph evolution. (b) APPS results showing performance, average graph density (Scomplex↑ sparser),
and completion tokens, with circle size indicating token savings (diameter↑ more). (c) Code gener-
ation performance comparison of representative baselines.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Competition-level programming is widely regarded as one of the most demanding problem-solving
tasks(Khan et al., 2023; Hendrycks et al., 2021). It requires deep understanding of problem state-
ments, complex reasoning, algorithmic proficiency, and the ability to generate executable code that
passes comprehensive test cases. While LLMs show strong general reasoning abilities, single mod-
els often lack the structural decomposition and iterative self-correction needed to solve such tasks
effectively(Austin et al., 2021). LLM-based MAS have recently achieved remarkable progress in
competition-level code generation(Islam et al., 2024; 2025). Their exceptional performance largely
stems from carefully designed interaction topologies that facilitate efficient coordination. How-
ever, no fixed topology suits all problems: easy cases favor lean pipelines, while hard cases require
denser, tightly coordinated interactions. Moreover, the topology usually remains fixed at inference,
and execution feedback (unit test failures) does not induce structural changes. As a result, iterative
execution may suffer from redundant interaction or degraded performance. This motivates a cen-
tral question: How can we automatically generate task-specific interaction topologies that scale
density with difficulty and evolve in response to execution feedback?

A growing body of work has explored this direction. Graph pruning methods (Zhang et al., 2024a;
Zhuge et al., 2024) reduce costs by iteratively removing edges or roles, but the resulting fixed topolo-
gies may not align with task-specific demands, leading to degraded performance. Graph-generation
approaches (Zhang et al., 2024b) improve over pruning by conditioning on the input query, but they
typically rely on monotonic sparsity constraints that drive convergence to a fixed density range, and
the generated topology remains frozen during inference without adaptation to execution feedback.
Workflow-centric RL methods (Gao et al., 2025; Li et al., 2025) train a single agent to manage
linearized multi-stage workflows using end-to-end reinforcement learning. While effective under
limited inter-agent overhead, they restrict interaction to sequential message passing and lack the
expressiveness and adaptability of interaction graphs.

To realize these capabilities, we first introduce a novel layered DAG topology. Unlike prior de-
signs(Qian et al., 2024), it enables intra-layer parallelism as well as cross-layer interactions. Distinc-
tively, this topology is expressed in a structured language (YAML), which makes it human-readable
and directly generable by LLM agents. Building on this foundation, we present TopoWeaver-R1,
a reinforcement learning(RL) optimized MAS centered on an LLM orchestrator agent that
performs multi-turn, end-to-end dynamic generation of the above interaction topologies for
competition-level code generation. We first apply supervised fine-tuning(SFT) to equip the or-
chestrator with priors over interaction graphs. To better capture the characteristics of multi-agent
interaction, we further propose a graph density evaluation function tailored to our proposed layered
DAG structure. Finally, to optimize the orchestrator with RL, we design a multi-objective reward
based on this metric that balances structural correctness, code accuracy, and density. A distinctive
feature of our density reward is the introduction of difficulty-dependent bounds on topology den-
sity. This fine-grained control enables explicit cost–accuracy trade-offs under token budgets. In
summary, our main contributions are as follows:

• We propose a novel layered DAG topology for multi-agent interaction that supports
intra-layer parallelism and cross-layer interactions. The topology is represented in a
human-readable format that can be directly generated by agents.

• We introduce TopoWeaver-R1, an RL-optimized MAS centered on an LLM orches-
trator agent, which enables end-to-end difficulty-aware evolutionary dynamic interaction
topology generation in competition-level code generation.

• We introduce a graph density evaluation function for layered DAGs and use it to design
a multi-objective reward function balancing structural correctness, code accuracy, and
difficulty-aware density under task-specific constraints.

• We demonstrate state-of-the-art performance on multiple competition-level and founda-
tional code benchmarks, achieving higher accuracy with lower average density and
reduced cost compared to existing methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Code Problems

Difficulty
Labels

Code Problems

Difficulty
Labels

competition-level data basic-level data

Code Problems

Infered Difficulty
Labels

Code Problems

Infered Difficulty
Labels

GPT-4o

First Turn Yamls

A

Medium
Easy

Hard

Decoded to
Topologies

GPT-4o

S

S

S

S

P

P

P

P

A

C

C

T

TT

CC

Second Turn Yamls

Qwen-2.5-
Instruct 3B

Environment

Code Execution
Sandbox

Environment

Code Execution
Sandbox

Stage1: Data Collection & SFT

SFT Warm Up

Excution
Results

Stage2: Multi-Turn Reinforcement Learning with GRPO

Code
Problems

O1,|K1|

O2,|K2|

OG, |KG|

...

O1,|K1|

O2,|K2|

OG, |KG|

...

Infer
Difficulty Level

&Appropriate
Roles

Agent Role Pool

Searching Agent SS <searcher><searcher>Searching Agent S <searcher>

PP Planning Agent <planner><planner>P Planning Agent <planner>

Algorithmic AgentAA <algorithmer><algorithmer>Algorithmic AgentA <algorithmer>

Coding AgentCC <coder><coder>Coding AgentC <coder>

DD Debugging Agent <debugger><debugger>D Debugging Agent <debugger>

T Testing Agent <tester><tester>T Testing Agent <tester>

Agent Role Pool

Searching Agent S <searcher>

P Planning Agent <planner>

Algorithmic AgentA <algorithmer>

Coding AgentC <coder>

D Debugging Agent <debugger>

T Testing Agent <tester>

Medium

P

A

S

S

C

T
Easy

P

T

CC

Hard
S

S

P

P A

C

T

Decoded to
Topologies

Environment

Code Execution
Sandbox

Environment

Code Execution
Sandbox

The Output
Tokens of Turn K

Memory

Policy Model

Rollout Module

Reference Model

WRONG ANSWERWRONG ANSWER

RUNTIME_ERRORRUNTIME_ERROR

PASSEDPASSEDWRONG ANSWER

RUNTIME_ERROR

PASSED

Reward FunctionReward Function

...

Medium Level
Too Complex

YAML PARSE
ERROR

Reward Values

xG

...

xG

r1e r1e r1g
yaml code

R1

r2e r2e r2g
yaml code

R2 RG

rGe rGe rGg
yaml code

Advantages
A1 A2 AG

...

xG
A1 A2 AG

...

xG

KL

Orchestrator
 Agent

Stage3: Topologies Generation by TopoWeaver-R1

Code
Problems

Code Running Results

YAML Validation YAML Validation Code Running ResultCode Running Result

Topo Density: +Scomplex if Nnodes<= Max
Nodes(Per Level) else -Spunish

PASSEDPASSED

RUNTIME_ERRORRUNTIME_ERROR

WRONG ANSWERWRONG ANSWERDD

TT

D

T

P

T

DD

A

S

P

T

D

A

S

c

Figure 2: Overall framework of the proposed TopoWeaver-R1. The approach proceeds in three
stages: (1) SFT on diverse topologies to instill structural priors in the base LLM (Qwen-2.5-Instruct-
3B); (2) RL with GRPO to learn task-adaptive, difficulty-aware topology policies from execution
feedback, yielding the orchestrator agent; and (3) multi-turn dynamic topology generation for end-
to-end code problem solving.

2 TOPOWEAVER-R1

TopoWeaver-R1 is an RL-optimized MAS centered on an orchestrator agent, designed for end-to-
end, multi-turn generation of difficulty-aware evolutionary interaction topologies. The system is
first SFT-trained on constructed topologies to instill structural priors, and then optimized with RL
via GRPO to generate topologies that adapt to task difficulty and evolve through execution feedback.
In this section, we present a detailed description of the overall framework and its components, as
illustrated in Fig.2.

2.1 PROBLEM DEFINITION

2.1.1 INTERACTION TOPOLOGY NOTATIONS

We first introduce a novel multi-agent interaction topology expressed in a human-readable struc-
tured language (YAML). As shown in Fig.1 (a), this topology is structurally defined as an im-
proved layered DAG, where step denotes a layer and ref denotes an edge, supporting both intra-
layer parallelism and cross-layer connections. Furthermore, it supports multi-turn evolutionary
generation driven by execution feedback from multi-agent interactions. Formally, it is denoted as
G(k) = (V(k), E(k)), where k is the turn index. Each node v

(k)
i ∈ V(k) represents an agent instance

that executes during turn k. The entire topology is generated and orchestrated by the orchestrator
agent. See Appendix D for detailed notions of the interaction topology.

2.1.2 TOPOWEAVER-R1 PARADIGM

Given a code problem x, the orchestrator agent policy πθ generates, at turn k ∈ {1, . . . ,K}, a
variable-length YAML token sequence

ok = (ok,1, . . . , ok,|ok|), (1)

that encodes the interaction topology. The sequence is deterministically decoded into a layered DAG

G(k) = DecodeTopo(ok), (2)

In particular, TopoWeaver-R1 calibrates the topology density to the inferred difficulty of x. This
induces variable ok lengths |ok| and reduces superfluous reasoning and token usage. The environ-
ment then executes agents according to G(k) and returns feedback zk which can be further decom-
posed as zk = (zroles

k , zcode
k), where zroles

k collects the outputs of multiple agents generated, and zcode
k

denotes the sandboxed code-execution outcome. Let the turn history be Hk = {(G(h), zh)}h<k.
The joint process factorizes as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

pθ(o1:K , z1:K | x) =
K∏

k=1

πθ(ok | x,Hk)︸ ︷︷ ︸
Topology generation

Penv

(
zk | x,G(k), Hk

)
︸ ︷︷ ︸

Execution feedback

, (3)

Equation 3 factorizes the multi-turn process into topology generation with environment execution: at
turn k the policy emits ok conditioned on (x,Hk), the environment executes under G(k) and returns
zk. Feedback zk is appended to Hk+1 and conditions the next generation, so the topology is updated
online in response to execution feedback. See Appendix D.1 for algorithmic details.

2.1.3 GRAPH DENSITY EVALUATION FUNCTION

To better assess the complexity and performance of multi-agent interactions and explicitly account
for cost consumption, we define the graph complexity evaluation function described by three metrics,
including the number of nodes, the edge density and graph depth. The first two metrics can reflect
the token costs, while the last indicator reflects the degree of parallelism of the system, or in other
words, the response time. Let ni denote the number of agent invocations in step i, s be the total
steps for each round, then the total number of nodes is

|V| =
s∑

i=1

ni. (4)

Edges are formed through agent references, with the total number of edges given by

|E| =
s∑

i=1

ni∑
j=1

|Agentj [ref]|, (5)

and the depth of the graph is related to the depth of invocation of the agent, denoted by d. Inspired
by Theorem 1, we use the number of DAG layers (the total steps s) instead. For normalization, we
map each metric into the unit interval [0, 1]. The normalized scores are defined as:

Snode = exp
(
− |V |

Nmax(l)

)
, Sedge = exp

(
− |E|

|V |(|V |−0.5)

)
, Sdepth = 1− s

|V | . (6)

where l is task difficulty level, each level is associated with a maximum allowed number of nodes
Nmax(l). Snode reflects the node complexity based on the graph size. Sedge captures the edge com-
plexity relative to a complete graph, and Sdepth quantifies the spread of the graph by comparing its
depth to the total number of nodes. The overall graph complexity evaluation function is defined as:

Scomplex = α · exp (λ1 · Snode + λ2 · Sedge + λ3 · Sdepth) (7)

Scomplex serves as a component of the reward function rϕ(·), as defined in Eq.14, and contributes to
the trajectory reward Âi in the Group Relative Policy Optimization (GRPO) advantage function, as
detailed in Eq.8. The mathematical derivation that precisely defines Scomplex as the topology density
is provided in Appendix D.2.

2.2 SFT DATA GENERATION

To endow the base LLM with topology priors and facilitate its optimization during reinforcement
learning, we built a supervised corpus. From three competition-level datasets and three difficulty
tiers, we sampled 50 problems per tier per dataset (450 total). We designed a customized system
prompt and queried GPT-4o to produce one YAML topology per problem. Each topology was vali-
dated by our checker for format correctness, de-duplication, and density within the difficulty band.
For each topology, we constructed error-aware prompts from distinct failure types and generated a
second-turn iterative topology. Combined with first-turn runs, this yielded 2,700 competition-level
interaction graphs. We repeated the pipeline on two basic datasets to obtain 300 initial examples
across difficulties; here the model inferred difficulty and generated the topology accordingly. In
total we collected 4,500 examples. This produces a base model endowed with strong priors for
topology generation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Rewards for Topology Validation and Code Execution Errors

YAML Topology Correctness Rewards Code Execution Error Rewards

Error Type Explanation Reward Error Type Explanation Reward

[NO_YAML_FOUND] No YAML block found. -2.0 [WRONG_ANSWER]
Code executes but outputs
mismatch with expected 1.0

[YAML_PARSE_ERROR] YAML parse failed. -1.5 [TIME_LIMIT_EXCEEDED] Execution exceeded time limit. 0.9

[YAML_SCHEMA_INVALID]
YAML parsed,

but fails the topology schema. -1.0 [MEMORY_LIMIT_EXCEEDED] Execution exceeded memory limit. 0.8

[YAML_LOGIC_INVALID] Violates topology logic rules. -0.5 [RUNTIME_ERROR] Program crashed during execution. 0.7

- [COMPILATION_ERROR] Program failed to compile. 0.6

2.3 REINFORCING DYNAMIC TOPOLOGIES FOR LLM-MA VIA TRAJECTORY-LEVEL POLICY
OPTIMIZATION

GRPO-Based Training for Dynamic Topology Generation After SFT, we further train the or-
chestrator policy to generate dynamic multi-agent interaction topologies using GRPO. See Appendix
E.1 for the multi-turn trajectory and return definition. Specifically, the advantage of trajectory i is
defined as

Âi =
Ri(τ)−mean

(
{Rj(τ)}Gj=1

)
std
(
{Rj(τ)}Gj=1

) , (8)

Here, Ri can be viewed as the instance-level realization of R(τ) (defined in Eq. 25) within the group
of G sampled trajectories.

The GRPO objective function can be formally expressed as follows:

JGRPO(θ) =
1

G

G∑
i=1

1

Li

Ki−1∑
k=0

|oi,k|∑
u=1

min

[
πθ(oi,k,u | x,Hi,k, oi,k,<u)

πold(oi,k,u | x,Hi,k, oi,k,<u)
Âi,

clip

(
πθ(oi,k,u | x,Hi,k, oi,k,<u)

πold(oi,k,u | x,Hi,k, oi,k,<u)
, 1− ε, 1 + ε

)
Âi

]
− β D(topo)

KL .

(9)
Here, Li =

∑Ki−1
k=0 |oi,k| denotes the total number of topology tokens in trajectory i, ε controls the

clipping range, and D(topo)
KL is the token-level KL regularizer computed only over topology tokens (as

in Eq. 26).

Design of a Rule-Based Multi-Objective Reward Function The reward function directly in-
fluences the optimization process in RL. In this subsection, we elaborate on the definition of the
immediate per-turn reward function rϕ(·) introduced in Eq. 24.

To provide a single training signal that balances correctness, topology quality, and efficiency, we
instantiate the immediate reward function in Eq. 24 as a weighted composite:

rϕ(G(k), zcode
k) = w1 re(G(k), zcode

k) + w2 rg(G(k)) (10)

where the non-negative weights wi reflect the relative importance of each component. Here, re (exe-
cution correctness) is derived from zcode

k and G(k), providing a reward for both the YAML validation
and the code execution results; rg (graph density) evaluates the interaction topology G(k), serving
as the topology density reward function. This instantiation makes explicit that rϕ(·) in Eq. 24 is
realized as a weighted sum of multiple objectives, yielding a scalar reward signal for trajectory-level
optimization.

Execution Result Reward We first validate the format after the commander generates YAML.
If no YAML is found or YAML does not match the rule, the system raises an error, and gives a
punishment according to the type of error. The types of error are shown as:

Eyaml_errors = { [NO_YAML_FOUND] , [YAML_PARSE_ERROR] , [YAML_SCHEMA_INVALID] ,
[YAML_LOGIC_INVALID] }

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Then the testing agent gives the evaluation results of the generated code. Unless the result of test
case matches the expected answer, the system raises a fail information based on the code run results.
The error types for the code execution are defined and summarized as follows:

Ecode_errors = { [WRONG_ANSWER] , [TIME_LIMIT_EXCEEDED] , [MEMORY_LIMIT_EXCEEDED] ,
[RUNTIME_ERROR] , [COMPILATION_ERROR] }

(12)

The specific reward values for topology validation and code execution errors are provided in Table
1. Additionally, the reward for PASSED is 1.5, while no reward value is applied for successful
YAML validation.

Interaction Graph Complexity Reward Function To classify the interaction graph complexity
according to difficulty levels, we define the function Scomplex for the interaction topology graph
density in Eq. 7. Given the task difficulty level l, each level is associated with a maximum allowed
number of nodes Nmax(l). For each turn k, the per-turn upper bound under the three difficulty levels
is set to 4, 7, and 10, respectively.

N (k)
max(l) =


4, l = 1 (easy),
7, l = 2 (medium),
10, l = 3 (hard),

k ∈ {1, 2}. (13)

If |V | (the number of nodes, as defined in Eq. 4) exceeds this bound, the graph is considered overly
complex and penalized accordingly. Finally, the overall interaction graph evaluation score is defined
as

rg(G(k)) =

Scomplex, |V | ≤ Nmax(l),

tanh
(

Nmax(l)−|V |
Nmax(l)

)
, otherwise.

(14)

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Metrics To comprehensively evaluate our approach in terms of performance, topol-
ogy dynamics, and cost efficiency across problems of varying difficulty and type, we select two
basic code generation datasets and three contest-level code generation datasets: (1) Basic Code
Generation Datasets: including HumanEval(Chen et al., 2021), MBPP(Austin et al., 2021);
(2) Contest-Level Code Generation Datasets: including APPS(Hendrycks et al., 2021), Live-
CodeBench (V4)(Jain et al., 2024), and CodeContests(Li et al., 2022). The generated code is exe-
cuted within a secure sandbox (Khan et al., 2023) environment. Model performance is then measured
by the pass@1 rate on each test set.

Baselines To provide a comprehensive comparison and highlight the effectiveness of our ap-
proach, we evaluate against four categories of baselines: (1)Vanilla: This setting reflects the
capability of a single backbone model. We adopt GPT-4o-mini as the representative back-
bone. (2)Classical Multi-Agent Systems: AutoGen(Wu et al., 2024), MetaGPT(Hong et al.,
2024) and MapCoder(Islam et al., 2024). (3)Multi-Agent Systems with Workflow Optimiza-
tion: AFlow(Zhang et al., 2024c), FlowReasoner(Gao et al., 2025) and Chain-of-Agents.
(4)Multi-Agent Systems with Topology Optimization: GPTSwarm(Zhuge et al., 2024),
AgentPrune(Zhang et al., 2024a), G-Designer (Zhang et al., 2024b), and MacNet(Qian et al.,
2024).(See Appendix B.1 for details.)

3.2 MAIN RESULTS

In this section, we provide extensive experimental evidence to analyze the effectiveness of our pro-
posed TopoWeaver-R1 method. Specifically, we evaluate its accuracy across diverse code gen-
eration tasks (Section 3.2.1), the dynamic adaptability of topology density and its superior cost-
efficiency(Section 3.2.2), the fine-grained comparison across difficulty level(Section 3.2.3), and ad-
ditional experimental results(Appendix C).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main performance of TopoWeaver-R1 on three competition-level and two basic code gen-
eration datasets (mean ± std over 3 runs).

Method
Contest-level Code Generation Basic Code Generation

Avg.
APPs LiveCodeBench CodeContests Avg. HumanEval MBPP Avg.

Vanilla
GPT-4o-mini 20.3(±0.2) 26.3(±0.2) 18.6(±0.4) 21.7(±0.3) 87.6(±0.2) 73.5(±0.1) 80.5(±0.1) 51.1(±0.2)

Classical Multi-Agent Systems (No Workflow/Topology Optimization)
AutoGen 23.6(±2.3) 30.2(±1.5) 20.8(±1.9) 24.9(±1.9) 90.4(±0.8) 92.3(±0.4) 91.4(±0.6) 58.1(±1.3)

MetaGPT 51.3(±1.4) 42.8(±1.3) 35.6(±1.2) 43.2(±1.3) 95.8(±0.2) 92.3(±0.3) 94.1(±0.2) 68.7(±0.6)

MapCoder 40.2(±0.9) 37.4(±1.1) 36.3(±0.7) 38.0(±0.9) 96.4(±0.5) 94.1(±0.4) 95.3(±0.5) 66.6(±0.7)

Multi-Agent Systems with Workflow Optimization
AFlow 35.4(±1.7) 24.6(±1.1) 21.4(±1.5) 27.1(±1.4) 94.2(±0.3) 82.4(±0.1) 88.3(±0.2) 57.7(±0.8)

FlowReasoner 39.1(±1.9) 43.8(±2.1) 37.7(±1.6) 40.2(±1.9) 97.3(±0.5) 93.9(±0.7) 95.6(±0.6) 67.5(±1.3)

Chain-of-Agents(32B) 41.6(±1.3) 44.9(±1.2) 34.6(±1.2) 40.3(±1.2) 95.3(±0.2) 90.2(±0.3) 92.8(±0.2) 67.9(±0.6)

Multi-Agent Systems with Topology Optimization
GPTSwarm 36.5(±2.1) 40.8(±2.5) 31.6(±3.0) 36.3(±2.5) 94.8(±1.1) 91.6(±1.3) 93.2(±1.2) 64.8(±1.9)

AgentPrune(Complex) 38.6(±1.9) 41.7(±2.1) 33.5(±0.8) 37.9(±1.6) 96.1(±0.5) 91.8(±0.8) 94.0(±0.7) 65.9(±1.1)

AgentPrune(Layered) 39.3(±1.6) 41.9(±1.8) 31.4(±0.9) 37.5(±1.4) 96.6(±0.7) 92.3(±0.3) 94.5(±0.5) 66.0(±1.0)

MacNet(Complex) 37.6(±0.8) 39.4(±0.7) 28.7(±0.7) 35.2(±0.7) 95.8(±0.4) 89.4(±0.2) 92.6(±0.3) 63.9(±0.5)

MacNet(Layered) 36.9(±0.6) 40.3(±0.5) 28.9(±0.8) 35.4(±0.6) 95.2(±0.2) 90.3(±0.3) 92.8(±0.3) 64.1(±0.5)

G-Designer 37.2(±1.5) 38.8(±1.3) 26.9(±1.2) 34.3(±1.3) 95.6(±0.9) 90.9(±0.8) 93.2(±0.9) 63.7(±1.1)

TopoWeaver-R1(3B) 58.8(±0.3) 46.3(±0.4) 38.8(±0.5) 48.0(±0.3) 97.5(±0.1) 95.1(±0.2) 96.3(±0.2) 72.1(±0.3)

3.2.1 CODE GENERATION PERFORMANCE

As shown in Table 2, our approach consistently achieves the highest accuracy across all five datasets.
In the contest-level benchmarks, TopoWeaver-R1 reaches pass@1 accuracies of 58.8%, 46.3%,
and 38.8% on APPS, LiveCodeBench (v4), and CodeContests, respectively, outperforming the
second-best methods by absolute margins of 14.6%, 3.1%, and 1.1% percentage points. In the
basic code generation tasks, our method achieves pass@1 accuracies of 97.5% on HumanEval and
95.1% on MBPP, surpassing the second-best methods by absolute margins of 1.0% and 0.7%
percentage points, respectively(See Appendix C.1 for details).

3.2.2 COMPARISON OF DYNAMIC TOPOLOGY GENERATION AND COST EFFICIENCY

Table 3: APPS results comparing TopoWeaver-R1 with baselines on performance, cost, and average
topology density.

Dataset Method Performance Prompt Tokens Completion Tokens Scomplex (↑)

APPS

AFlow 35.4 531450 184800 3.7
FlowReasoner 39.1 437250 148050 2.4
Chain-of-Agents (32B) 41.6 334650 134250 4.1

GPTSwarm 36.5 381450 155400 3.5
AgentPrune (Layered) 39.3 364950 141150 3.8
MacNet (Layered) 36.9 472950 200100 2.9
G-Designer 37.2 320550 139200 3.6
TopoWeaver-R1 (3B) 58.8 277600 79800 5.2

In Table 3 and Figure. 1(b), using the APPS dataset as a case study, we visually compare our ap-
proach with six alternative workflow and topology optimization methods to assess both cost effi-
ciency and average topology density. For cost, we report the consumption of Prompt Tokens
and Completion Tokens; for density, we adopt the average score Scomplex from Eq. 7, where larger
values indicate lower (sparser) topology density. The table shows that TopoWeaver-R1 attains the
lowest consumption of prompt tokens and the consumption of completion tokens and the highest
average Scomplex (i.e. the sparsest interaction topology), while still achieving the best accuracy. This

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

indicates that, in contest-level code generation, our method delivers higher performance at lower
cost.

3.2.3 AVERAGE TOPOLOGY DENSITY COMPARISON BY DIFFICULTY LEVEL

(a)APPS (b) CodeContest (c) LiveCodeBench(v4)

Figure 3: Comparison of the average topology density (Scomplex↑ sparser) across three competition-
level code datasets at three difficulty levels.

Moreover, Figure 3 presents a fine-grained comparison across difficulty levels on three contest-Level
datasets . Our method modulates topology density with problem difficulty. It uses sparser graphs
for easier instances and denser graphs for harder ones, thereby reducing token cost on easy cases
while preserving accuracy on hard cases. In contrast, competing methods exhibit little or no density
adaptation across difficulty, which leads to unnecessary token expenditure.

3.3 ABLATION STUDY

Impact of Supervised Fine-tuning and Reinforcement Learning We examine whether CoT-
based SFT is necessary by comparing (i) direct RL without SFT and (ii) SFT followed by RL. We
report three metrics to make the performance factors explicit: (1) Performance, measured by code-
generation pass@1; (2) Scomplex for graph density; and (3) Valid topology (%), the percentage
of topologies that satisfy the formatting constraints and the difficulty-specific density cap. From
Table 4, the SFT stage is crucial for producing valid and executable topologies: small open-source
backbones trained without SFT rarely meet the required format and density, and consequently fail
to produce correct code. In contrast, SFT only (without RL) attains a moderate valid-topology rate;

Table 4: Ablation study on Training Strategies and Reward Design.

Method APPS HumanEval

Performance Scomplex (↑) Valid Topo (%) Performance Scomplex (↑) Valid Topo (%)

Full Model 58.8 5.2 100 97.5 5.8 100

Training
Strategies

w/o SFT – – 15 – – 13
w/o RL 29.8 2.7 56.5 90.2 3.2 57.2

Reward

w/o re(Eyaml_errors) 30.3 2.9 56.8 91.4 3.0 58.1
w/o re(Ecode_errors) 35.5 5.0 96.4 93.1 5.6 99.2
w/o Snode 49.2 3.8 85.8 96.9 4.8 87.2
w/o Sedge 45.5 4.5 89.3 96.1 4.6 90.5
w/o Sdiameter 48.3 3.9 91.7 95.3 4.1 93.4
w/o rg(G(k)) 52.6 3.0 83.2 97.2 3.4 85.6

Impact of Multi-objective Reward Design Table 4 summarizes the impact of individual reward
components on model performance. We observe that the YAML-format error term re(Eyaml_errors) has
the strongest effect on the valid-topology rate, whereas the code-execution error term re(Ecode_errors)
most strongly affects code accuracy (pass@1). The three topology-density sub-rewards Snode, Sedge,
and Sdiameter influence both density control and accuracy to different extents, with w/o Snode causing
the largest degradation in code-generation performance. Lower topology density (especially without
rg(G(k))) can reduce accuracy by limiting agents and interactions. With the full reward, optimiz-
ing density and accuracy together guides the policy to suitable interaction patterns and densities,
boosting performance while keeping token usage efficient.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

4.1 LLM-BASED MAS FOR CODE GENERATION

LLM-based multi-agent systems have shown promise in code generation(Huang et al., 2023; Nunez
et al., 2024; Ishibashi & Nishimura, 2024). Frameworks such as MetaGPT(Hong et al., 2024) and
AutoGen(Wu et al., 2024) introduce software development workflows and role-playing to enhance
collaboration. These approaches, however, face challenges in competition-level settings, which de-
mand deeper algorithmic reasoning and precise implementation. MapCoder(Islam et al., 2024) us-
ing multi-round planning, retrieval scoring, and algorithmic tutorials to achieve notable results. Still,
since competition problems vary widely in difficulty, fixed agent frameworks often incur unneces-
sary overhead—such as redundant interaction and roles—on simpler tasks, motivating more adaptive
solutions.

4.2 TOPOLOGY OPTIMIZATION AND GENERATION FOR MAS

Recent works (Zhuge et al., 2024; Zhang et al., 2024c) have explored optimizing interaction topolo-
gies in multi-agent systems to improve efficiency. Graph pruning methods, such as AgentPrune
(Zhang et al., 2024a) and AgentDropout(Wang et al., 2025a), iteratively reduce interaction graphs
to a minimal structure. However, these rely on a fixed topology per task. Dynamic orchestration
methods(Zhang et al., 2025; Dang et al., 2025) select a topology through multi-round optimiza-
tion but still finalize it before execution. Generation-based approaches like G-Designer(Zhang et al.,
2024b) produce a topology from problem descriptions, allowing finer adaptation but remaining static
thereafter. A common limitation is the tendency to converge to uniformly sparse structures, lacking
fine-grained difficulty awareness.

Agentic reinforcement learning (RL) methods(Wang et al., 2025b; Jin et al., 2025) have recently
introduced new paradigms for large language models, enabling them to move beyond single-turn
outputs toward multi-turn interactions with the environment and tool usage. These approaches op-
timize the model by incorporating external tools or agent–environment interactions into the agent’s
output as part of a complete trajectory, thereby endowing the agent with the capability of multi-round
interaction with its environment. Inspired by this line of work, several studies have further explored
end-to-end optimization of agent workflows by leveraging full interaction trajectories, as seen in
FlowReasoner(Gao et al., 2025) and Chain-of-Agents(Li et al., 2025). While FlowReasoner intro-
duces local parallelism within certain operator blocks, it still cannot express rich graph-structured
interactions; Chain-of-Agents, in contrast, follows a purely sequential workflow without any par-
allel branches. Departing from these lines, we propose an Agentic RL-based approach centered
on a central orchestrator that dynamically generates and iteratively refines interaction topologies in
natural language, conditioned on execution feedback. A key innovation is a difficulty-aware density
reward, which explicitly modulates topology sparsity according to problem difficulty.

5 CONCLUSION

In summary, TopoWeaver-R1 establishes a new paradigm for competition-level code generation by
integrating difficulty-aware reinforcement learning with multi-turn topology evolution. By training
an orchestrator agent to dynamically generate and refine interaction topologies through execution
feedback and density-aware rewards, our method achieves fine-grained adaptability across problem
difficulties. This paradigm advances multi-agent code generation toward systems that are not only
accurate, but also cost-efficient and scalable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All datasets used are publicly available, and
no human subjects or sensitive personal data were involved. The research is conducted solely for
scientific purposes, with no foreseeable risks of harmful use or conflicts of interest.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The paper provides de-
tailed descriptions of the proposed method (Section.2), training settings (Appendix.B.2), evaluation
protocols (Paragraph.3.1), and ablation studies (Section.3.3). All datasets (Paragraph.3.1) used are
publicly available, and we describe the data preprocessing steps in the supplementary materials.
Pseudocode and proofs of the theoretical results are included in the appendix. We will also upload a
compressed package containing the complete main code for reproduction.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min
Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint
arXiv:2504.15257, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
toward ultra large-scale code generation and optimization. arXiv preprint arXiv:2404.02183,
2024.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Codesim: Multi-agent
code generation and problem solving through simulation-driven planning and debugging. arXiv
preprint arXiv:2502.05664, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang,
Qianben Chen, Weichen Sun, Qiexiang Wang, et al. Chain-of-agents: End-to-end agent founda-
tion models via multi-agent distillation and agentic rl. arXiv preprint arXiv:2508.13167, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9802–9822, 2023.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Ana Nunez, Nafis Tanveer Islam, Sumit Kumar Jha, and Peyman Najafirad. Autosafecoder: A multi-
agent framework for securing llm code generation through static analysis and fuzz testing. arXiv
preprint arXiv:2409.10737, 2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, et al. Scaling large language model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, and Min Zhang.
Agentdropout: Dynamic agent elimination for token-efficient and high-performance llm-based
multi-agent collaboration. arXiv preprint arXiv:2503.18891, 2025a.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint arXiv:2410.11782, 2024b.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024c.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We used large language models (LLMs) solely as general-purpose assistive tools. Specifically,
LLMs were employed for language polishing, grammar refinement, and improving the clarity of
the manuscript. In addition, we occasionally used LLMs to assist in debugging minor programming
issues (e.g., syntax errors or code formatting), but not for problem solving, experimental design,
data analysis, or ideation of the research. The substantive contributions—including research ideas,
methodology design, implementation, analysis, and writing of technical content—were entirely the
work of the authors.

B SUPPLEMENTARY EXPERIMENTAL SETUP

B.1 SUPPLEMENTARY DETAILS ON BASELINES

To provide a comprehensive comparison and highlight the effectiveness of our approach, we evaluate
against four categories of baselines: (1)Vanilla: This setting reflects the capability of a single back-
bone model. We adopt GPT-4o-mini as the representative backbone. (2)Classical Multi-Agent
Systems: This category includes three representative frameworks: AutoGen(Wu et al., 2024) is
a general-purpose multi-agent framework, MetaGPT(Hong et al., 2024) is designed for generic
coding tasks, and MapCoder(Islam et al., 2024)targets competitive programming code genera-
tion. (3)Multi-Agent Systems with Workflow Optimization: This category comprises three sys-
tems: AFlow(Zhang et al., 2024c) leverages search-based methods to optimize the workflow, while
FlowReasoner(Gao et al., 2025) and Chain-of-Agents are recent reinforcement learning ap-
proaches that optimize multi-agent workflows end-to-end. (4)Multi-Agent Systems with Topology
Optimization. This category covers GPTSwarm(Zhuge et al., 2024), AgentPrune(Zhang et al.,
2024a), G-Designer (Zhang et al., 2024b), and MacNet(Qian et al., 2024). These approaches
explicitly focus on optimizing the agent interaction topology.

For multi-agent baselines, we align the role definitions and system prompts with those used in
our method. For workflow and topology optimization methods, we set the maximum number of
participating agent nodes to 20. This matches the upper bound of topology density in our frame-
work when solving the most challenging problems with up to two interaction turns, ensuring a
fair comparison. Following the setup in MacNet, we note that our topology can be viewed as an
evolved variant of layered graphs. Our topology exhibits an intermediate density, between complex
and layered graphs. To ensure comprehensive and reliable evaluation, we therefore compare
AgentPrune and MacNet under both complex-graph and layered-graph initialization settings.

B.2 IMPLEMENTATION DETAILS

For TopoWeaver-R1, we use Qwen2.5-3B-Instruct (Yang et al., 2024) as the backbone. During the
SFT stage, we adopt the LLaMA-Factory framework (Zheng et al., 2024) for training. Specifically,
we utilize 4500 synthetic samples constructed from three contest-level code generation datasets
across three difficulty levels (see Section 2.2 for details). The training is performed with an initial
learning rate of 1 × 10−4, a batch size of 4, and LoRA-based fine-tuning, while all other hyperpa-
rameters are kept at their default values. During the reinforcement learning stage, we implement
GRPO using the Verl (Sheng et al., 2025) framework with vLLM for generation(code development
based on Search-R1 (Jin et al., 2025)). We set the group size to G = 8, with a batch size of 8, a
learning rate of 1 × 10−6, a policy temperature of 1, and a maximum completion length of 4096
tokens. To balance performance and computational cost, we further limit the maximum number of
turns (i.e., multi-agent interaction turns) to 2. Throughout training, individual agents are executed
with gpt-4.1-nano and interact in real time with a code execution sandbox to obtain authentic
runtime feedback. Both stages are conducted on a 4-GPU A800 cluster.

B.3 PROGRESSIVE QUALITY FILTERING FOR SFT DATA

Our training data consist of valid, executable, and semantically correct topologies generated by
GPT-4O-mini under code-oriented tasks. All data are produced using the same role configuration
and topology density constraints adopted in our orchestrator. The second-turn interaction topologies

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

are real and valid structures obtained from actual error messages and historical multi-agent logs,
rather than synthetic approximations.

We first perform strict YAML syntax verification to ensure that each example is well-formed and
can be parsed by standard YAML loaders. This step guarantees that all topologies can be
safely converted into JSON objects for subsequent processing, preventing malformed or incom-
plete structures from entering the dataset. Second, we apply semantic validation using a predefined
JSON_SCHEMA. After converting each YAML topology into JSON, we verify that it satisfies all
orchestration constraints. The validation rules include: (1) The ref field of all agents in the first
timestep must be empty. (2) For every agent, all agent IDs listed in its ref field must correspond to
agents that have appeared in earlier timesteps. These schema-level checks ensure the structural con-
sistency and logical correctness of the generated topologies. We further remove duplicate topologies
and preserve only those that successfully interact with the execution environment. This step ensures
that the topologies are not merely syntactically valid but are also actionable and executable within
the orchestrator runtime. All remaining samples are re-validated using GPT-4o-mini to ensure se-
mantic soundness, consistency, and correctness. Finally, we manually inspect a randomly sampled
5% subset of the data to further confirm high-quality labeling and structural validity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.4 SYSTEM PROMPT FOR ORCHESTRATOR AGENT

You are a Orchestrator agent. Your goal is to coordinate a multi-agent team to
solve the given code problem by generating a YAML-formatted interaction plan.
Each plan should specify:
- Which agents to activate at each step;
- Which previous agents’ outputs are referenced.
Agent types:
- <planner>: plans algorithmic strategy.
- <searcher>: retrieves relevant knowledge.
- <algorithmer>: analyzes problem structure and decomposes it into key algorithmic
components or subroutines.
- <coder>: generates code based on other agents' information.
- <debugger>: fixes incorrect code (only used after a <coder>).
- <tester>: verifies code (must be used in the last step, referencing <coder> or
<debugger>)
Format:
Output only the YAML plan.
Each step includes one or more agents with optional references.

Notes:
1. There are three levels of difficulty, arranged from low to high as follows:
introductory, interview, competition.
2. Determine whether the task difficulty is introductory, interview, or competition.
3. **Dynamically adjust the number of steps and agents** based on the difficulty
of the problem.
4. For **more difficult problems**, **involve more agents** if necessary. \
For **simpler problems**, you may **reduce both the number of agents** and
the number of steps involved.
5. The last step must include a `<tester>` referencing at least one of `<coder>` or
`<debugger>`
6. Execute up to max **{max_turn_num}** rounds in total, until the code passes
verification by the `<tester>`.
7. In the first step, all agents must have empty `ref` fields.

The Code Problem is:
Task: `{question}`

Your output should be a YAML-formatted plan only.
your output: \n

Figure 4: The figure shows the system prompt for the orchestrator agent.

We show in the figure the system prompt of the trained orchestrator agent.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 CODE GENERATION PERFORMANCE ANALYSIS

We observe that MetaGPT, a code-oriented multi-agent framework with a fixed interaction scheme,
achieves the second-best performance on average. Among optimization-oriented approaches, the
two end-to-end reinforcement learning methods, FlowReasoner and Chain-of-Agents, rank next
and narrowly trail MetaGPT in average results. By contrast, topology optimization methods under-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

perform, likely because their learned topologies remain comparatively rigid and struggle to adapt to
the highly variable and complex nature of competitive programming tasks. G-Designer is a method
that generates interaction graphs based on the given problem. However, we observe that although
these methods are adapted to different tasks, the difficulty of competition-level problems is hard to
distinguish intuitively, and thus such adaptations do not lead to significant improvements in code
performance. Within this family, AgentPrune and MacNet perform better under layered-graph ini-
tialization, suggesting that for relatively sequential code-generation tasks, layered graphs provide
a more suitable inductive bias than unstructured complex graphs. Building on this, TopoWeaver-
R1 retains the inductive bias of layered graphs yet adapts dynamically per problem, yielding
state-of-the-art overall accuracy.

(a) Training Reward Score (c) Valid Reward Score(b) Valid Topology num

Figure 5: The figure shows the dynamics of three key metrics during RL training: (a) training reward,
(b) average number of valid two-turn topologies, and (c) validation reward. The results indicate
that our method progressively converges toward generating topologies with reasonable density and
achieving accurate code problem solving in later training stages.

C.2 ANALYSIS ON THE RL TRAINING CURVE

To better understand the training dynamics of the reinforcement learning stage, we plot the trajec-
tories of (i) the average reward, (ii) the count of topologies passing the density check, and (iii) the
validation score over the first 110 RL training steps (Figure 6). Our key observations are as follows:
all three metrics increase steadily with training, indicating that the self-critic RL procedure is stable
and makes consistent progress. These results further demonstrate that our method trains effectively
and remains stable.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.3 CASE STUDY

P
S

A
DS C T

A

S
P

A

S

C T D T
P

S

P

A

S

C T D T
P

S
A C T P D T

C T D TPC T

Hard Problems

Medium Problems

Easy Problems

Case 1 Case 2

Case 1 Case 2

Case 1 Case 2

Figure 6: The figure shows the generated interaction topologies for two problem cases at each
difficulty level.

Based on the generated cases shown in the figure, our method exhibits the following characteris-
tics. First, it can generate different initial interaction topologies tailored to the characteristics of
individual problems, with topology density varying according to difficulty. Second, the method dy-
namically adjusts the second-round topology based on the execution results of the first round; this
adjustment does not necessarily reduce the number of agents, as additional agents may be intro-
duced when errors occur. Finally, when agents from the first round reappear in the second round,
their behavior evolves according to their prior outputs, thereby achieving iterative evolution. These
characteristics highlight the customizability and adaptability of our approach, which in turn enhance
system performance while reducing costs in a fine-grained manner.

C.4 ZERO-SHOT TRANSFER TO UNSEEN ROLES AND TASK TYPES

To evaluate the transferability of our orchestrator to unseen problem types and newly introduced
agent roles, we conducted a small-scale study on 50 filtered samples from the GAIA (Mialon et al.,
2023) dataset. These samples were strictly restricted to tasks where the inputs consist solely of
single-modality textual descriptions, which differ substantially from the code-generation domain
used for training.

No additional training was performed. Instead, we expanded the orchestrator’s role pool by adding
two previously unseen roles: an online search agent <online_searcher> and a visual vali-
dation agent <visual_checker>, together with their corresponding tool interfaces. Using the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

original trained model, the orchestrator was able to naturally integrate these new roles into the
generated interaction topologies, despite never encountering them during SFT or RL training.

Under this strict zero-shot transfer setting, the framework achieved a success rate of 15.8% on the
selected GAIA samples, demonstrating that the orchestrator exhibits non-trivial generalization to
unseen domains, unseen task types, and unseen agent capabilities.

C.5 SUPPLEMENTARY CROSS-DOMAIN EXPERIMENTS

While our method was initially designed with a focus on competition-level code generation, this
focus was a deliberate choice rather than a limitation. Competition-level tasks provide a highly
challenging and well-instrumented testbed that allows us to rigorously examine dynamic topology
evolution under strict execution feedback, token constraints, and difficulty-aware limits. Aligned
with our research interests, our goal was to develop a specialized multi-agent orchestration al-
gorithm for this domain, offering a complementary perspective to prior multi-agent architecture
studies that emphasize broad task coverage. Nevertheless, our method is inherently generalizable.
To address the reviewer’s concern, we additionally evaluate the cross-domain applicability of our
approach.

Following the role definitions and data filtering strategy used in Chain-of-Agents ?, we ex-
panded the agent role pool in our orchestrator’s system prompt. The newly introduced roles in-
clude: <online_searcher> for web-based retrieval, <thinker> for complex reasoning,
<verifier> for answer verification, and <planner> for task decomposition and high-level
orchestration. All roles were redefined and implemented for reasoning-centric tasks. We selected
subsets from three representative datasets—GAIA(Mialon et al., 2023), HLE(Phan et al., 2025),
and PopQA(Mallen et al., 2023)—to evaluate multi-hop reasoning and question answering.

For the reward function, we retain the YAML validation and topology-density components, which
remain general across tasks and domains. To adapt the pipeline, we replace the code-execution
validator with an LLM-based answer validator and simplify the reward to a binary scheme: 1 for
correctness and 0 otherwise. All other training and inference settings remain unchanged. We re-
trained our model under this configuration and report results below.

Table 5: Cross-domain evaluation of TopoWeaver-R1 on GAIA, HLE, and PopQA. Results are
reported as mean ± std over three seeds.

Method Backbone GAIA L1 GAIA L2 GAIA L3 GAIA Avg. HLE Avg. PopQA

Chain-of-Agents 7B 69.2(±0.8) 50.9(±0.7) 33.3(±1.1) 50.8(±0.8) 18.0(±0.6) 46.5(±1.3)

TopoWeaver-R1 (ours) 3B 72.0(±0.4) 53.4(±0.3) 36.1(±0.5) 53.8(±0.4) 22.6(±0.2) 50.3(±0.3)

The results demonstrate that TopoWeaver-R1 outperforms Chain-of-Agents across all datasets de-
spite using a considerably smaller backbone (3B vs. 7B). Our method achieves strong accuracy and
maintains low variance across seeds, highlighting both the robustness and adaptability of the pro-
posed topology optimization framework. These findings provide further evidence that our approach
generalizes beyond code generation and can be transferred to new reasoning-oriented domains with
minimal modification.

D DETAILED DEFINITIONS OF TOPOLOGY NOTIONS

Agent Node Notations Each agent node v
(k)
i is defined as:

v
(k)
i =

{
Typei, Basei, Role(k)

i , View(k−1)
i , Mem(<k)

i

}
(1)

The Typei field specifies one of three agent categories: (1) The Orchestrator agent is a locally
deployed large language model (LLM) proposed and trained in this work, designed to generate
multi-turn YAML interaction topologies in an end-to-end orchestrator and to manage the execution
of multiple agents; (2) The LLM-agent is a prompt-conditioned LLM (open-source or via API)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

that is assigned a role; and (3) the ToolAgent, which is equipped with callable external APIs such as
retrieval engines or code execution tool. Role(k)

i is the turn-specific role/prompt (e.g., <planner>,
<coder>). View(k−1)

i is the orchestrator-curated visible context for this agent, including selected
outputs from its dependencies and possibly from last turn. Finally, Mem(<k)

i stores the cross-turn
history of agent i prior to turn k.

Notations for Agent Communication Edges In our framework, the edge set is constructed di-
rectly from the ref fields specified in the YAML plan, and we categorize edges into three types.
First, intra-turn edges E intra ⊆ V(k) × V(k) connect agents within the same turn according to their
declared references. Second, inter-turn cross-agent edges Ecross ⊆ V(k−1)×V(k) capture dependen-
cies across two consecutive turns when an agent in turn t explicitly references outputs from other
agents in turn k−1. Third, inter-turn self-edges E self ⊆ {(v(k−1)

i , v
(k)
i) | vi ∈ V} are automatically

added whenever the same agent is invoked across two consecutive turns, allowing it to incorporate
and refine its own previous outputs.

Orchestrator-Guided Multi-Agent Interaction. Given a task x, the orchestrator agent emits a
YAML plan for turn k. The plan tokens are sampled from the orchestrator policy and determinis-
tically decoded into a strict layered DAG G(k) (see Eq. 2). The node set V(k) is instantiated with
LLM-agents and ToolAgents; execution follows the step (layer) order implied by G(k): agents within
the same step run in parallel, and there are no intra-step edges. We intentionally exclude intra-
step interaction to facilitate parallel execution and reduce scheduling complexity. Although a fully
connected DAG allows richer expressiveness, we find that enforcing structural sparsity within steps
improves interpretability, efficiency, and learning stability. For a node v

(k)
i , the turn-k output is

produced as

M
(k)
i ∼ Pθi

(
M | x, Role(k)

i , View(k−1)
i , Mem(<k)

i , {M (k)
j : (v

(k)
j , v

(k)
i) ∈ E(k)}

)
. (15)

E(k) is the intra-turn dependency set (a strict layered DAG) parsed from the YAML ref fields;
{M (k)

j : (v
(k)
j , v

(k)
i) ∈ E(k)} collects the outputs of all in-neighbors of v(k)i in turn k; Role(k)

i is the

turn-specific role/prompt of vi; View(k−1)
i is the orchestrator-curated summary of the previous turn

(topology/error cues) provided as read-only context; Mem(<k)
i is the agent-local cross-turn memory

prior to turn k; Pθi denotes the agent’s conditional kernel (LLM likelihood for language agents;
deterministic operator such as retriever r or executor ξ for ToolAgents); and M

(k)
i is the outputs

produced by v
(k)
i in turn k.

After execution, each agent appends its output to its memory, Mem(≤k)
i =

⋃k
t=1{M

(t)
i }. Each turn

concludes with a tester agent that executes the candidate code and returns a status s(k), which can
either be PASSED or one of the errors from the set Eerrors defined in Eq.12. If s(k) = PASSED , the
process stops and the solution is accepted. Otherwise, the orchestrator agent collects the observation
O(k) =

{
Eerrors, Llogs, G(k)

}
, which includes error types Eerrors, execution logs Llogs, and the turn-

k topology trace G(k). Based on the observation, the orchestrator agent generates the next-turn
interaction graph via Eq.1 and Eq.2. During this process, the orchestrator decides which agents to
reuse from memory, which to rerun, and which to activate. The orchestrator continues to regenerate
the topology for each turn as needed until the code result is PASSED or the maximum number of
turns K is reached.

Definition 1. For a strict layered DAG G(k), the node set V(k) is divided into b independent sets
{V(k)

1 , . . . ,V(k)
b } with a well-defined layer structure. It has the following properties:

(Sequentiality) for any edges (u, v), it satisfies that u ∈ V(k)
i , v ∈ V(k)

j , and i < j.

(Conciseness) for any nodes u ∈ V(k)
i where i ̸= b, there must exist an edge (u, v) such that

v ∈ V(k)
j , where i < j.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 Online Topology Generation Workflow of TopoWeaver-R1

Require: Input query x, Policy model πθ, Maximum Rounds K
Ensure: Final output z

1: initialize history H·
2: initialize local memory {Memi} for each agent vi
3: initialize z ← ∅
4: for round k ← 1 to K do
5: ok = (ok,1, . . . , ok,|ok|) ∼ πθ(·|x,Hk)
6: if no valid YAML detected in ok then
7: yk ← YAMLCheck(ok)
8: Hk+1 ← Hk.append((ok, yk))
9: continue

10: end if
11: G(k) = DecodeTopo(ok)
12: zk = (zroles

k , zcode
k)← ExecRun(x,G(k), Hk)

13: if PASSED in zcode
k then

14: break ▷ Early stopping
15: end if
16: Hk+1 ← Hk.append((G(k), zk))
17: z ← z + zk
18: end for
19: return final output z
20: procedure EXECRUN(x,G(k), Hk)
21: initialize zrolesk ← ∅
22: for layer in G(k) do
23: Run {vi | vi ∈ layer} in parallel:
24: M

(k)
i ∼ Pθi

(
M | x, Role(k)

i , View(k−1)
i , Mem(<k)

i , {M (k)
j : (v

(k)
j , v

(k)
i) ∈ E(k)}

)
25: Add M

(k)
i to Memi

26: zrolesk ← zrolesk +M
(k)
i

27: end for
28: Extract code codek from zrolesk

29: zcodek ← tester(codek)
30: return (zrolesk , zcodek)
31: end procedure

D.1 ALGORITHM WORKFLOW OF TOPOWEAVER-R1

We conclude the overall algorithm workflow of TopoWeaver-R1 in Algorithm 1

D.2 THEORETICAL DERIVATION AND PROOF OF TOPOLOGY DENSITY

From Token Cost to Topology Density In order to achieve the goal of cost saving, we define the
topology density based on the cost efficiency. Now we give the mathematical derivation here to show
that in MAS, the complexity of agent interactions can be formally mapped into graph properties to
quantify operational costs.

We first model the interaction per round as a graph G(k) = (V(k), E(k)), where vertices V(k) repre-
sent agents and edges E(k) capture dependency relationships in round k.

To eliminate the influence of difficulty on topology scale, we prefer the average cost on each agent.
For each agent, the token cost mainly consists of three parts: the prompt, the reference information
and the output. To simplify this process, we have the following assumptions. (1) the length of
prompt and output is the same and fixed for every agent, denoted as m. (2) As for the round k, we
must take the information from the previous rounds into account. So we assume that each agent has
additional |V(k−1)| ×m tokens as its input. (3) Under the same level of difficulty, |V(i)| ≈ |V(j)|
for ∀i, j ≤ k.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The total cost can be approximately expressed in the following form:

Ctotal =

|V(k)|∑
i

m+m× |V(k−1)|+m× |Agenti[ref]||+m× |Wref(Agenti)|, (16)

where Wref(Agenti) is defined as {a | Agenti ∈ a[ref]}, which contains all agents that have refer-
enced Agenti. This expression can be further simplified to Eq. 17

Ctotal = m× (|V(k)|+ |V(k)| · |V(k−1)|+
|V(k)|∑

i

(|Agenti[ref]|+ |Wref(Agenti)|)). (17)

Notice that
∑|V(k)|

i |Agenti[ref]| =
∑|V(k)|

i |Wref(Agenti)| = |E|, the total cost is given by
Eq. 18.

Ctotal = m× (|V(k)|+ |V(k)| · |V(k−1)|+ 2|E|). (18)

With the assumption (3), the average cost for each agent is given by Eq. 19.

C̄ = m× (1 + |V |+ 2
|E|
|V |

). (19)

Notice that topology with linear structure always has lower complexity score. However, the linear
structure lacks the ability to call agents in parallel. That means the next agent must wait until current
agent finish its task instead of work in the same time. Considering this time cost (also called delay),
we take graph depth d into account. When minimizing the average cost, we can ignore the constant
part and token length m. Then we obtain the expression of topology density before normalization.

S = |V |+ 2
|E|
|V |

+ d. (20)

The interaction cost is then analytically linked to three topological features:

• Number of Agents N = |V |: The total number of agents is a primary driver of base
computational and memory overhead. Each agent typically encapsulates a large language
model (LLM) or a policy network, thus the cost of inference, state maintenance, and context
management scales at least linearly with N . This represents the fixed cost of maintaining
the system.

• Edge Density: The average degree ē = |E|
|V | correlates with interaction overhead. Higher

density implies more pairwise interactions per nodes, increasing synchronization and
message-passing costs.

• Graph Depth d: The number of nodes of the longest path between any two agents defines
the worst-case coordination latency. Large depths necessitate multi-hop communications,
amplifying delay and potential error propagation.

The number of agents and edge density can be explicitly derived from the definition of the YAML
field. However, the depth d needs additional calculations. To cope with this problem, we extract the
properties of manager-guided multi-agent interaction and conclude it as the following theorem.

Theorem 1. Given DAG G(k) defined by manager-guided multi-agent interaction, G(k) is a partite-
graph with b parts. Then we have d(k) = b, where d(k) is the depth of G(k).

Proof. First, we prove that there exists a path with length b, equivalently, there exists a path that
sequentially visits each part V1, V2, . . . , Vb.

By definition, V1 contains only sources (no incoming edges from within G(k)), and Vb contains only
sinks (no outgoing edges within G(k)). Choose any sink t ∈ Vb. Since t ∈ Vb and edges go from
lower to higher parts, t must have a predecessor pb−1 ∈ Vb−1 (if b > 1). Similarly, pb−1 must have
a predecessor pb−2 ∈ Vb−2. Repeating this process yields a path backwards from the sink:

p1 → p2 → · · · → pb−1 → t,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where pi ∈ Vi for i = 1, 2, . . . , b− 1. The forward path P = p1 → p2 → · · · → pb−1 → t visits b
different parts (V1, V2, . . . , Vb) and contains exactly b vertices.

Then we prove that d ≤ b.

Assume that a path P = v1 → v2 → · · · → vm exists with m > b vertices. Let vi ∈ Vai
. Since any

edge vi → vi+1 must satisfy ai < ai+1 (by the Definition 1), the sequence of part indices is strictly
increasing:

a1 < a2 < · · · < am.

This sequence has m distinct integers. However, these integers must all lie in the set {1, 2, . . . , b},
which contains only b distinct integers. The assumption m > b requires finding more than b distinct
integers in a set of size b, which is impossible. Therefore, no such path P can exist. Consequently,
any path has at most b vertices, and the depth d ≤ b.

We must emphasize that in most cases, the agent calling steps satisfy s = b, which means b can be
directly calculated. However, in rare cases, inter-interactions may not happen between two layers,
e.g. V(k)

i and V(k)
j . In this situation, V(k)

i ∪ V(k)
j is an independent set, which leads to b < s and

additional response time. So we use s as a measurement of the graph depth to recognize the two
sequences with the same topology.

Now we have the basic expressions of topology density as Eq. 21

S = |V |+ 2
|E|
|V |

+ s. (21)

Topology Density Normalization With the difficulty level l, we have the maximum allowed num-
ber of nodes Nmax(l). To normalize the density of different difficulties into the same distribution,
we scale the formula to (0, 1).

First, we have |V |
Nmax(l)

≤ 1. After limiting the upper bound of |V |, we further constrain the limitation

of |E|
|V | . Notice that the agent communication edges are categorized into three types, intra-round

edges, inter-round cross-agent edges and inter-round self-edges. Among them, we have intra-round
edges |Eintra| ≤ |V |(|V |−1)

2 with the Definition 1 for the intra-round edges. For the inter-round
edges, inter-round self-edges can be approximately equal to |V | with the assumption (3), and we
have inter-round cross-agent edges |Ecross_inter| ≤ |V |(|V | − 1). Then for the edge density,

ē ≤ |Eintra|
|V |

+
|Eself_inter|

2|V |
+
|Ecross_inter|

2|V |
, (22)

with the simplified form ē ≤ |V | − 0.5. Then the normalization form is |E|
|V |(|V |−0.5) . When the

topology degenerate as linear structure, the depth d is equal to |V | which is the upper bound. So we
have z

|V | ≤ 1.

When complexity gets higher, it requires the final expression of complexity score to decrease. So,
we implement a monotonically decreasing activate function in the final expression of the complexity
score Scomplexity with exponential function e−x in Eq. 7.

D.3 DETAILED DEFINITIONS OF MULTI-AGENT ROLES

Inspired by the design of MapCoder, our agent pool consists of six distinct agent types, each ded-
icated to different functions in the code generation process. In each round of code generation, the
Managing Agent performs reasoning and selects the necessary agents from this pool. The names
and token representations of each agent type are outlined in Figure.2 middle.

D.3.1 RETRIEVAL AGENTS

Following Search-R1(Jin et al., 2025), the following retrieval agents employ the E5 model as the
unified retriever. E5 serves as the retrieval backbone and is invoked by retrieval agents to identify
semantically relevant documents during inference. The retrieval agents can incorporate inputs from
other agents as reference context to enhance retrieval accuracy. To enable retrieval of semantically

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

similar code solutions, we construct an offline retrieval agent. Following VoyageAI, we create a
document for each elementary programming problem with a canonical solution (i.e., APPS, Hu-
manEval, and MBPP) by concatenating the description of the natural language problem with its
corresponding reference implementation. advanced library usage.

D.3.2 PLANNING AGENT

The Planning Agent takes as input the original problem along with the outputs of other agents
selected by the managed agent in the previous step, and aims to generate a step-by-step coding plan
for solving the original problem. In addition, the Planning Agent can iteratively refine its plan based
on previous error messages and the last-round plan, aiming to produce a more effective solution
strategy.

D.3.3 ALGORITHMIC AGENT

The algorithmic agent takes as input the code problem and the outputs of other agents, and produces
a customized sequence of algorithmic solution steps tailored to the given problem.

D.3.4 CODING AGENT

The Coding Agent generates an initial code solution by leveraging the problem description, the
step-by-step coding plan produced by the Planning Agent, and reference materials—such as code
snippets or tutorials—retrieved by the Retrieval Agent.

D.3.5 DEBUGGING AGENT

Starting from the second round, when the initial code generation encounters issues, the Debugging
Agent can iteratively revise the code by leveraging previous error messages and interaction history.
Alternatively, it can regenerate code based on the updated coding plan and newly retrieved refer-
ence materials. The specific strategy adopted is determined by the Planning decisions made by the
Managing Agent.

D.3.6 TESTING AGENT

At the end of each iteration, we invoke the Testing Agent to evaluate the correctness of the generated
code. It returns a binary pass/fail signal along with graded error diagnostics, which are used both
for computing the reward function and as a termination criterion for the iterative process.

E SUPPLEMENTARY DEFINITIONS FOR RL

E.1 DEFINITIONS OF MULTI-TURN TRAJECTORIES AND RETURNS IN RL

We define the multi-turn trajectory as:

τ = {(ok, zk, rk)}K−1
k=0 , (23)

where ok is the YAML token sequence encoding the interaction topology of turn k, zk denotes the
corresponding multi-agent execution outcome produced by the environment, and rk is the immediate
reward assigned based on the execution result. The reward is computed via a function rϕ(·) that
evaluates the current interaction graph and the code validation outcome:

rk = rϕ
(
G(k), zcode

k

)
(24)

where zcode
k is the result of executing input–output test cases in a sandboxed code-validation tool.

Different rewards or penalties are assigned depending on whether the code passes the tests or on
the specific type of error encountered. In addition, the structural contribution is computed based
on whether the topology density of G(k) stays within a task-specific upper bound determined by
the difficulty of the problem. The overall return of a trajectory is defined as the discounted sum of
per-turn rewards:

R(τ) =

K−1∑
k=0

γk rk, (25)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where γ ∈ [0, 1] is a discount factor that modulates the relative importance of earlier versus later
rewards. This return serves as the training signal for optimizing the policy.

E.2 REINFORCEMENT LEARNING OBJECTIVE FOR GENERATING TOPOLOGIES WITH
ADAPTIVE COMPLEXITY

The general return R(τ) serves as the training signal to optimize the topology generation policy,
which aims to produce interaction graphs with dynamic structural complexity adapted to the diffi-
culty of the input problem, while maximizing the likelihood of generating code that passes all test
cases. Our goal is to maximize expected return on trajectories sampled from the current policy,
while regularizing against a reference policy using a token-level Kullback–Leibler (KL) divergence.
Notably, the policy πθ is responsible only for generating the topology token sequences ok; all agent
responses, code execution traces (contained in zk) are treated as environment outputs and are ex-
cluded from the KL regularization term.

We define the following trajectory-level optimization objective:

max
θ

Ex∼D, {ok}∼πθ
[R(τ)] − β E{ok}∼πθ

 1

L(τ)

K−1∑
k=0

|ok|∑
u=1

log
πθ(ok,u | x,Hk, ok,<u)

πref(ok,u | x,Hk, ok,<u)

 (26)

where τ = {(ok, zk, rk)}K−1
k=0 is the trajectory induced by the topology sequences {ok} sampled

from the policy πθ, with the corresponding interaction graphs, agent outputs, and rewards deter-
ministically generated by the environment. The term L(τ) =

∑K−1
k=0 |ok| denotes the total number

of topology tokens in the trajectory, and β is a weighting coefficient that balances reward maxi-
mization against policy divergence. Here, x is a problem instance drawn from the dataset D, and
ok,<u = (ok,1, . . . , ok,u−1) denotes the prefix token sequence generated prior to position u in round
k.

E.3 REWARD DESIGN AND SENSITIVITY ANALYSIS

E.3.1 REWARD DESIGN PRINCIPLES

Our reward design follows three core objectives: (1) ensuring syntactic validity of the YAML topol-
ogy, (2) guaranteeing functional correctness of the generated solution, and (3) controlling com-
munication cost by encouraging difficulty-aware sparsity in the agent topology. These objectives
are realized through two components: re for execution correctness (syntax and solution outcome),
and rg for topology density. The separation enables targeted optimization for both correctness and
structural efficiency.

YAML Format and Structural Validity. Invalid YAML structures receive a strong negative re-
ward, as they cannot support valid multi-agent execution. Other YAML format penalties apply only
to the topology structure itself and are independent of roles or tasks. Once the YAML structure is
correct, the penalty becomes zero, enabling re to focus solely on program execution correctness.

Topology Density Reward. The density reward rg consists of three components—the number of
nodes, number of edges, and graph depth—as defined in Eq. 7 of the main paper. The weights
(λ1 : λ2 : λ3) are not heuristic but derived from the theoretical analysis of information flow in
layered DAGs. Following Eq. 20, we adopt λ1 = 0.5, λ2 = 1, and λ3 = 0.5 to preserve the
theoretical 1:2:1 ratio. This ensures that topology sparsity is accurately captured, while keeping the
total reward magnitude comparable to execution-based signals such as code correctness.

Difficulty-Aware Density Bounds. We additionally set topology density upper bounds of 4, 7, and
10 for tasks of different difficulty levels. These values are obtained through statistical analysis of
thousands of SFT-generated samples, examining the distribution of topology densities required for
successful solutions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.4 SENSITIVITY ANALYSIS OF re AND rg

Both reward components are initialized with equal weights w1 = w2 = 1 for re and rg . This
balanced configuration reflects their comparable ranges and the need to trade off correctness with
communication efficiency. To examine robustness, we perform a sensitivity analysis by sweeping the
topology density weight w2 from 0.25 to 2.0, while fixing w1 = 1. Using the APPS dataset, we begin
with the post-SFT model and train for 60 steps (50% of total training). For each w2, we record
Pass@1 accuracy and relative token cost.

Table 6: Sensitivity analysis of the topology weight w2. Results are Pass@1 and relative token cost
after 60 RL steps on APPS.

w2 (topology weight) Pass@1 Rel. Token Cost

0.25 37.8 1.61×
0.50 38.0 1.46×

1.0 (ours) 40.1 1.00×
1.50 39.2 0.88×
2.00 38.9 0.76×

Observations. The results indicate that performance remains stable across a wide range of w2

values. Pass@1 varies by less than 5.2% throughout the sweep (from 38.0 to 40.1), demonstrating
that model performance is not sensitive to the precise value of w2. As expected, larger w2 penal-
izes dense topologies more strongly, resulting in reduced token cost. Importantly, no instability is
observed across all settings. Thus, the main conclusions of the paper are robust under reasonable
perturbations of reward weights.

25

	Introduction
	TopoWeaver-R1
	Problem Definition
	Interaction Topology Notations
	TopoWeaver-R1 Paradigm
	 Graph Density Evaluation Function

	SFT data Generation
	Reinforcing Dynamic Topologies for LLM-MA via Trajectory-Level Policy Optimization

	Experiments
	Experimental Setup
	Main Results
	Code Generation Performance
	Comparison of Dynamic Topology Generation and Cost Efficiency
	Average Topology Density Comparison by Difficulty Level

	Ablation Study

	Related Works
	LLM-Based MAS for Code Generation
	Topology Optimization and Generation for MAS

	Conclusion
	LLM Usage Statement
	Supplementary Experimental Setup
	Supplementary Details on Baselines
	Implementation Details
	Progressive Quality Filtering for SFT Data
	System Prompt for Orchestrator Agent

	Additional Experimental Results
	Code Generation Performance Analysis
	Analysis on the RL Training Curve
	Case Study
	Zero-Shot Transfer to Unseen Roles and Task Types
	Supplementary Cross-Domain Experiments

	Detailed Definitions of Topology Notions
	Algorithm Workflow of TopoWeaver-R1
	Theoretical Derivation and Proof of Topology Density
	Detailed Definitions of Multi-Agent Roles
	Retrieval Agents
	Planning Agent
	Algorithmic Agent
	Coding Agent
	Debugging Agent
	Testing Agent

	Supplementary Definitions for RL
	Definitions of Multi-Turn Trajectories and Returns in RL
	Reinforcement Learning Objective for Generating Topologies with Adaptive Complexity
	Reward Design and Sensitivity Analysis
	Reward Design Principles

	Sensitivity Analysis of re and rg

