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Abstract

Online alignment in machine translation refers001
to the task of aligning a target word to a002
source word when the target sequence has only003
been partially decoded. Good online align-004
ments facilitate important applications such as005
lexically constrained translation where user-006
defined dictionaries are used to inject lexical007
constraints into the translation model. We008
propose a novel posterior alignment technique009
that is truly online in its execution and su-010
perior in terms of alignment error rates com-011
pared to existing methods. Our proposed in-012
ference technique jointly considers alignment013
and token probabilities in a principled man-014
ner and can be seamlessly integrated within015
existing constrained beam-search decoding al-016
gorithms. On five language pairs, including017
two distant language pairs, we achieve con-018
sistent drop in alignment error rates. When019
deployed on seven lexically constrained trans-020
lation tasks, we achieve significant improve-021
ments in BLEU specifically around the con-022
strained positions.023

1 Introduction024

Online alignment seeks to align a target word025

to a source word at the decoding step when the026

word is output in an auto-regressive neural trans-027

lation model (Kalchbrenner and Blunsom, 2013;028

Cho et al., 2014; Sutskever et al., 2014). This029

is unlike the more popular offline alignment task030

that assumes the presence of the entire target sen-031

tence (Och and Ney, 2003). State of the art methods032

of offline alignment based on matching of whole033

source and target sentences are not applicable for034

online alignment (Jalili Sabet et al., 2020; Dou and035

Neubig, 2021), where we need to commit on the036

alignment of a target word based on only the gen-037

erated prefix thus far.038

An important application of online alignment039

is lexically constrained translation which allows040

injection of domain-specific terminology and other041

phrasal constraints during decoding (Hasler et al., 042

2018; Hokamp and Liu, 2017; Alkhouli et al., 2018; 043

Crego et al., 2016). Other applications include 044

preservation of markups between the source and 045

target (Müller, 2017), and supporting source word 046

edits in summarization (Shen et al., 2019). These 047

applications need to infer the specific source token 048

which aligns with output token. Thus, alignment 049

and translation is to be done simultaneously. 050

Existing online alignment methods can be cate- 051

gorized into Prior and Posterior alignment methods. 052

Prior alignment methods (Garg et al., 2019; Song 053

et al., 2020) extract alignment based on the atten- 054

tion at time step t when outputting token yt. The at- 055

tention probabilities at time-step t are conditioned 056

on tokens output before time t. Thus, the alignment 057

is estimated prior to observing yt. Naturally, the 058

quality of alignment can be improved if we condi- 059

tion on the target token yt (Shankar and Sarawagi, 060

2019). This motivated Chen et al. (2020) to propose 061

a posterior alignment method where alignment is 062

calculated from the attention probabilities at the 063

next decoder step t + 1. While alignment qual- 064

ity improved as a result, their method is not truly 065

online since it does not generate alignment syn- 066

chronously with the token. The delay of one step 067

makes it difficult and cumbersome to incorporate 068

terminology constraints during beam decoding. 069

We propose a truly online posterior alignment 070

method that provides higher alignment accuracy 071

than existing online methods, while also being syn- 072

chronous. Because of that we can easily integrate 073

posterior alignment to improve lexicon-constrained 074

translation in state of the art constrained beam- 075

search algorithms such as VDBA (Hu et al., 2019). 076

Our method (Align-VDBA) presents a signifi- 077

cant departure from existing papers on alignment- 078

guided constrained translation (Chen et al., 2020; 079

Song et al., 2020) that employ a greedy algorithm 080

with poor constraint satisfaction rate (CSR). For 081

example, on a ja→en their CSR is 20 points lower 082
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than ours. Moreover, the latter does not benefit083

from larger beam sizes unlike VDBA-based meth-084

ods that significantly improve with larger beam085

widths. Compared to Chen et al. (2020), our086

method improves average overall BLEU scores by087

1.2 points and average BLEU scores around the088

constrained span by up to 9 points. In the evalua-089

tions performed in these earlier work, VDBA was090

not allocated the slightly higher beam size needed091

to pro-actively enforce constraints without com-092

promising BLEU. Compared to Hu et al. (2019)093

(VDBA), this paper’s contributions include online094

alignments and their use in more fluent constraint095

placement.096

Contributions097

• A truly online posterior alignment method that098

integrates into existing NMT sytems via a train-099

able light-weight module.100

• Higher online alignment accuracy on five lan-101

guage pairs including two distant language pairs102

where we improve over the best existing in seven103

out of ten translation models.104

• Principled method of modifying VDBA to in-105

corporate posterior alignment probabilities in106

lexically-constrained decoding. VDBA enforces107

constraints ignoring source alignments, our108

change (Align-VDBA), leads to more fluent con-109

straint placement.110

• Establishing that VDBA-based pro-active111

constrained inference should be preferred112

over prevailing greedy alignment-guided113

inference (Chen et al., 2021; Song et al., 2020)114

when high constraint satisfaction rate (CSR) is115

important to the end-user. Further, VDBA and116

our Align-VDBA inference with beam size 10117

provide 1.2 BLEU increase over these methods118

with the same beam size.119

2 Posterior Online Alignment120

Given a sentence x = x1, . . . , xS in the source lan-121

guage and a sentence y = y1, . . . , yT in the target122

language, an alignmentA between the word strings123

is a subset of the Cartesian product of the word po-124

sitions (Brown et al., 1993; Och and Ney, 2003):125

A ⊆ {(s, t) : s = 1, . . . , S; t = 1, . . . , T} such126

that the aligned words can be considered transla-127

tions of each other. An online alignment at time-128

step t commits on alignment of the tth output token129

conditioned only on x and y<t = y1, y2, . . . yt−1.130

Additionally, if token yt is also available we call131

it a posterior online alignment. We seek to embed132

online alignment with existing NMT systems. We 133

will first briefly describe the architecture of state 134

of the art NMT systems. We will then elaborate 135

on how alignments are computed from attention 136

distributions in prior work and highlight some limi- 137

tations, before describing our proposed approach. 138

2.1 Background 139

Transformers (Vaswani et al., 2017) adopt the pop- 140

ular encoder-decoder paradigm used for sequence- 141

to-sequence modeling (Cho et al., 2014; Sutskever 142

et al., 2014; Bahdanau et al., 2015). The en- 143

coder and decoder are both multi-layered networks 144

with each layer consisting of a multi-headed self- 145

attention and a feedforward module. The decoder 146

layers additionally make use of multi-headed atten- 147

tion to encoder states. We elaborate on this atten- 148

tion mechanism next since it plays an important 149

role in alignments. 150

2.1.1 Decoder-Encoder Attention in NMTs 151

The encoder transforms the S input tokens into 152

a sequence of token representations H ∈ RS×d. 153

Each decoder layer (indexed by ` ∈ {1, . . . , L}) 154

computes multi-head attention over H by aggregat- 155

ing outputs from a set of η independent attention 156

heads. The attention output from a single head 157

n ∈ {1, . . . , η} in decoder layer ` is computed 158

as follows. Let the output of the self-attention 159

sub-layer in decoder layer ` at the tth target to- 160

ken be denoted as g`t . Using three projection ma- 161

trices W`,n
Q , W`,n

V , W`,n
K ∈ Rd×dn , the query 162

vector q`,nt ∈ R1×dn and key and value matrices, 163

K`,n ∈ RS×dn and V`,n ∈ RS×dn , are computed 164

using the following projections: q`,nt = g`tW
`,n
Q , 165

K`,n = HW`,n
K , and V`,n = HW`,n

V .1 These are 166

used to calculate the attention output from head n, 167

Z`,nt = P (a`,nt |x,y<t)V`,n, where: 168

P (a`,nt |x,y<t) = softmax

(
q`,nt (K`,n)ᵀ√

d

)
(1) 169

For brevity, the conditioning on x,y<t is dropped 170

and P (a`,nt ) is used to refer to P (a`,nt |x,y<t) in 171

the following sections. 172

Finally, the multi-head attention output is given 173

by [Z`,1t , . . . ,Z`,ηt ]WO where [ ] denotes the 174

column-wise concatenation of matrices and WO ∈ 175

Rd×d is an output projection matrix. 176

1dn is typically set to d
η

so that a multi-head attention layer
does not introduce more parameters compared to a single head
attention layer.
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2.1.2 Alignments from Attention177

Several prior work have proposed to extract178

word alignments from the above attention prob-179

abilities. For example Garg et al. (2019) pro-180

pose a simple method called NAIVEATT that181

aligns a source word to the tth target token using182

argmaxj
1

η

η∑
n=1

P (a`,nt,j |x,y<t) where j indexes183

the source tokens. In NAIVEATT, we note that the184

attention probabilities P (a`,nt,j |x,y<t) at decoding185

step t are not conditioned on the current output to-186

ken yt. Alignment quality would benefit from con-187

ditioning on yt as well. This observation prompted188

Chen et al. (2020) to extract alignment of token yt189

using attention P (a`,nt,j |x,y≤t) computed at time190

step t+ 1. The asynchronicity inherent to this shift-191

by-one approach (SHIFTATT) makes it difficult192

and more computationally expensive to incorporate193

lexical constraints during beam decoding.194

2.2 Our Proposed Method: POSTALN195

We propose POSTALN that produces posterior196

alignments synchronously with the output tokens,197

while being more computationally efficient com-198

pared to previous approaches like SHIFTATT. We199

incorporate a lightweight alignment module to con-200

vert prior attention to posterior alignments in the201

same decoding step as the output. Figure 1 illus-202

trates how this alignment module fits within the203

standard Transformer architecture.204

The alignment module is placed at the penulti-205

mate decoder layer ` = L − 1 and takes as input206

1) the encoder output H, 2) the output of the self-207

attention sub-layer of decoder layer `, g`t and, 3)208

the embedding of the decoded token e(yt). Like209

in standard attention it projects H to obtain a key210

matrix, but to obtain the query matrix it uses both211

decoder state g`t (that summarizes y<t) and e(yt)212

to compute the posterior alignment P (a
post
t ) as:213

P (a
post
t ) =

1

η

η∑
n=1

softmax

(
qnt,post(K

n
post)

ᵀ

√
d

)
,214

qnt,post = [g`t , e(yt)]W
n
Q,post, K

n
post = HWn

K,post215

Here Wn
Q,post ∈ R2d×dn and Wn

K,post ∈ Rd×dn .216

This computation is synchronous with produc-217

ing the target token yt, thus making it compatible218

with beam search decoding (as elaborated further219

in Section 3). It also accrues minimal computa-220

tional overhead since P (a
post
t ) is defined using H221

Inputs x

Input Emb

Positional
Encoding

Layer 1

Layer 2

Layer L

H

Outputs y<t

Output Emb

Positional
Encoding

Layers 1 to `− 1

Self-Attention

Add and Norm

Cross-Attention
Alignment
Module

Add and Norm

Feed Forward

Add and Norm

Layers `+ 1 to L

Linear & Softmax

Output
Probabilities

Alignment
Probabilities

yt

g`
t

Figure 1: Our alignment module is an encoder-
decoder attention sub-layer, similar to the existing
cross-attention sub-layer. It takes as inputs the encoder
output H as the key, and the concatenation of the output
of the previous self-attention layer g`

t and the currently
decoded token yt as the query, and outputs posterior
alignment probabilities apost

t .

and gL−1
t , that are both already cached during a 222

standard decoding pass. 223

Note that if the query vector qnt,post is computed 224

using only gL−1
t , without concatenating e(yt), then 225

we get prior alignments that we refer to as PRIO- 226

RATT. In our experiments, we explicitly compare 227

PRIORATT with POSTALN to show the benefits of 228

using yt in deriving alignments while keeping the 229

rest of the architecture intact. 230

Training Our posterior alignment sub-layer is 231

trained using alignment supervision, while freez- 232

ing the rest of the translation model parameters. 233

Specifically, we train a total of 3d2 additional pa- 234

rameters across the matrices Wn
K,post and Wn

Q,post. 235

Since gold alignments are very tedious and expen- 236

sive to create for large training datasets, alignment 237

labels are typically obtained using existing tech- 238

niques. We use bidirectional symmetrized SHIF- 239

TATT alignments, denoted by Si,j that refers to an 240

alignment between the ith target word and the jth 241

source word, as reference labels to train our align- 242

ment sub-layer. Then the objective (following Garg 243

et al. (2019)) can be defined as: 244

max
Wn

Q,post,W
n
K,post

1

T

T∑
i=1

S∑
j=1

Si,j log
(
P (a

post
i,j |x,y≤i)

)
245
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Next, we demonstrate the role of posterior online246

alignments on an important downstream task.247

3 Lexicon Constrained Translation248

In the lexicon constrained translation task, for249

each to-be-translated sentence x, we are given a250

set of source text spans and the corresponding251

target tokens in the translation. A constraint Cj252

comprises a pair (Cxj , Cyj ) where Cxj = (pj , pj +253

1 . . . , pj + `j) indicates input token positions, and254

Cyj = (yj1, y
j
2 . . . , y

j
mj ) denote target tokens that255

are translations of the input tokens xpj . . . xpj+`j .256

For the output tokens we do not know their po-257

sitions in the target sentence. The different con-258

straints are non-overlapping and each is expected259

to be used exactly once. The goal is to translate the260

given sentence x and satisfy as many constraints261

in C =
⋃
j Cj as possible while ensuring fluent262

and correct translations. Since the constraints do263

not specify target token position, it is natural to264

use online alignments to guide when a particular265

constraint is to be enforced.266

3.1 Background: Constrained Decoding267

Existing inference algorithms for incorporating lex-268

icon constraints differ in how pro-actively they en-269

force the constraints. A passive method is used in270

Song et al. (2020) where constraints are enforced271

only when the prior alignment is at a constrained272

source span. Specifically, if at decoding step t,273

i = argmaxi′ P (at,i′) is present in some constraint274

Cxj , the output token is fixed to the first token yj1275

from Cyj . Otherwise, the decoding proceeds as276

usual. Also, if the translation of a constraint Cj has277

started, the same is completed (yj2 through yjmj ) for278

the next mj − 1 decoding steps before resuming279

unconstrained beam search. The pseudocode for280

this method is provided in Appendix G.281

For the posterior alignment methods of Chen282

et al. (2020) this leads to a rather cumbersome in-283

ference (Chen et al., 2021). First, at step t they pre-284

dict a token ŷt, then start decoding step t+ 1 with285

ŷt as input to compute the posterior alignment from286

attention at step t+ 1. If the maximum alignment287

is to the constrained source span Cxj they revise the288

output token to be yj1 from Cyj , but the output score289

for further beam-search continues to be of ŷt. In290

this process both the posterior alignment and token291

probabilities are misrepresented since they are both292

based on ŷt instead of the finally output token yj1.293

The decoding step at t + 1 needs to be restarted294

after the revision. The overall algorithm continues 295

to be normal beam-search, which implies that the 296

constraints are not enforced pro-actively. 297

Many prior methods have proposed more pro- 298

active methods of enforcing constraints, including 299

the Grid Beam Search (GBA, Hokamp and Liu 300

(2017)), Dynamic Beam Allocation (DBA, Post 301

and Vilar (2018)) and Vectorized Dynamic Beam 302

Allocation (VDBA, Hu et al. (2019)). The latest 303

of these, VDBA, is efficient and available in pub- 304

lic NMT systems (Ott et al., 2019; Hieber et al., 305

2020). Here multiple banks, each corresponding to 306

a particular number of completed constraints, are 307

maintained. At each decoding step, a hypothesis 308

can either start a new constraint and move to a new 309

bank or continue in the same bank (either by not 310

starting a constraint or progressing on a constraint 311

mid-completion). This allows them to achieve near 312

100% enforcement. However, VDBA enforces the 313

constraints by considering only the target tokens 314

of the lexicon and totally ignores the alignment of 315

these tokens to the source span. This could lead 316

to constraints being placed at unnatural locations 317

leading to loss of fluency. Examples appears in 318

Table 4 where we find that VDBA just attaches the 319

constrained tokens at the end of the sentence. 320

3.2 Our Proposal: Align-VDBA 321

We modify VDBA with alignment probabilities to 322

better guide constraint placement. The score of a 323

constrained token is now the joint probability of 324

the token, and the probability of the token being 325

aligned with the corresponding constrained source 326

span. Formally, if the current token yt is a part of 327

the jth constraint i.e. yt ∈ Cyj , the generation prob- 328

ability of yt, P (yt|x,y<t) is scaled by multiplying 329

with the alignment probabilities of yt with Cxj , the 330

source span for constraint i. Thus, the updated 331

probability is given by: 332

P (yt, Cxj |x,y<t)︸ ︷︷ ︸
Joint Prob

= P (yt|x,y<t)︸ ︷︷ ︸
Token Prob

∑
r∈Cxj

P (apost
t,r |x,y≤t)

︸ ︷︷ ︸
Src Align. Prob.

(2) 333

P (yt, Cxj |x,y<t) denotes the joint probability of 334

outputting the constrained token and the align- 335

ment being on the corresponding source span. 336

Since the supervision for the alignment proba- 337

bilities was noisy, we found it useful to recali- 338

brate the alignment distribution using a temper- 339

ature scale T , so that the recalibrated probability is 340

∝ Pr(a
post
t,r |x,y≤t)

1
T . We used T = 2 i.e., square- 341
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Algorithm 1 Align-VDBA: Modifications to DBA shown in blue. (Adapted from Post and Vilar (2018))
1: Inputs beam: K hypothesis in beam, scores: K × |VT | matrix of scores where scores[k, y] denotes the score of kth

hypothesis extended with token y at this step, constraints: {(Cxj , Cyj )}
2: candidates← [(k, y, scores[k, y], beam[k].constraints.add(y)] for k, y in ARGMAX_K(scores)
3: for 1 ≤ k ≤ K do . Go over current beam
4: for all y ∈ VT that are unmet constraints for beam[k] do . Expand new constraints
5: alignProb← Σconstraint_xs(y) POSTALN(k, y) . Modification in blue (Eqn (2))
6: candidates.append( (k, y, scores[k, y] × alignProb), beam[k].constraints.add(y) ) )
7: candidates.append( (k, y, scores[k, y], beam[k].constraints.add(y) ) ) . Original DBA Alg.
8: w = ARGMAX(scores[k, :])
9: candidates.append( (k,w, scores[k,w], beam[k].constraints.add(w) ) ) . Best single word

10: newBeam← ALLOCATE(candidates, K)

root of the alignment probability.342

We present the pseudocode of our modification343

(steps 5 and 6, in blue) to DBA in Algorithm 1.344

Other details of the algorithm including the han-345

dling of constraints and the allocation steps (step346

10) are involved and we refer the reader to Post347

and Vilar (2018) and Hu et al. (2019) to understand348

these details. The point of this code is to show that349

our proposed posterior alignment method can be350

easily incorporated into these algorithms so as to351

provide a more principled scoring of constrained352

hypothesis in a beam than the ad hoc revision-based353

method of Chen et al. (2021). Additionally, pos-354

terior alignments lead to better placement of con-355

straints than in the original VDBA algorithm.356

4 Experiments357

We first compare our proposed posterior online358

alignment method on quality of alignment against359

existing methods in Section 4.2, and in Section 4.3,360

we demonstrate the impact of the improved align-361

ment on the lexicon-constrained translation task.362

4.1 Setup363

We deploy the fairseq toolkit (Ott et al., 2019)364

and use transformer_iwslt_de_en pre-365

configured model for all our experiments. Other366

configuration parameters include: Adam optimizer367

with β1 = 0.9, β2 = 0.98, a learning rate of 5e−4368

with 4000 warm-up steps, an inverse square root369

schedule, weight decay of 1e−4, label smoothing370

of 0.1, 0.3 probability dropout and a batch size of371

4500 tokens. The transformer models are trained372

for 50,000 iterations. Then, the alignment module373

is trained for 10,000 iterations, keeping the other374

model parameters fixed. A joint byte pair encoding375

(BPE) is learned for the source and the target lan-376

guages with 10k merge operation (Sennrich et al.,377

2016) using subword-nmt.378

de-en en-fr ro-en en-hi ja-en
Training 1.9M 1.1M 0.5M 1.6M 0.3M
Validation 994 1000 999 25 1166
Test 508 447 248 140 1235

Table 1: Number of sentence pairs for the five datasets
used. Note that gold alignments are available only for
a handful of sentence pairs in the test set.

All experiments were done on a single 11GB 379

Nvidia GeForce RTX 2080 Ti GPU on a machine 380

with 64 core Intel Xeon CPU and 755 GB memory. 381

The vanilla Transformer models take between 15 382

to 20 hours to train for different datasets. Starting 383

from the alignments extracted from these models, 384

the POSTALN alignment module trains in about 3 385

to 6 hours depending on the dataset. 386

4.2 Alignment Task 387

We evaluate online alignments on ten translation 388

tasks spanning five language pairs. Three of these 389

are popular in alignment papers (Zenkel et al., 390

2019): German-English (de-en), English-French 391

(en-fr), Romanian-English (ro-en). These are all 392

European languages that follow the same subject- 393

verb-object (SVO) ordering. We also present re- 394

sults on two distant language pairs, English-Hindi 395

(en-hi) and English-Japanese (ja-en), that follow a 396

SOV word order which is different from the SVO 397

word order of English. Data statistics are shown in 398

Table 1 and details are in Appendix C. 399

Evaluation Method: For evaluating alignment 400

performance, it is necessary that the target sentence 401

is exactly the same as for which the gold alignments 402

are provided. Thus, for the alignment experiments, 403

we force the output token to be from the gold tar- 404

get and only infer the alignment. We then report 405

the Alignment Error Rate (AER) (Och and Ney, 406

2000) between the gold alignments and the pre- 407

dicted alignments for different methods. Though 408
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Dela
y de-en en-fr ro-en en-hi ja-en

Method de→en en→de en→fr fr→en ro→en en→ro en→hi hi→en ja→en en→ja
Statistical Methods (Not Online)

GIZA++ (Och and Ney, 2003) End 18.9 19.7 7.3 7.0 27.6 28.3 35.9 36.4 41.8 39.0
FastAlign (Dyer et al., 2013) End 28.4 32.0 16.4 15.9 33.8 35.5 - - - -

No Alignment Training
NAIVEATT (Garg et al., 2019) 0 32.4 40.0 24.0 31.2 37.3 33.2 49.1 53.8 62.2 63.5
SHIFTATT (Chen et al., 2020) +1 20.0 22.9 14.7 20.4 26.9 27.4 35.3 38.6 53.6 48.6

With Alignment Training
PRIORATT 0 23.4 25.8 14.0 16.6 29.3 27.2 36.4 35.1 52.7 50.9
SHIFTAET (Chen et al., 2020) +1 15.8 19.5 10.3 10.4 22.4 23.7 29.3 29.3 42.5 41.9
POSTALN [Ours] 0 15.5 19.5 9.9 10.4 21.8 23.2 28.7 28.9 41.2 42.2

Table 2: AER for de-en, en-fr, ro-en, en-hi, ja-en language pairs. “Delay" indicates the decoding step at which
the alignment of the target token is available. NAIVEATT, PRIORATT and POSTALN are truly online and output
alignment at the same time step (delay=0), while SHIFTATT and SHIFTAET output one decoding step later.

our focus is online alignment, for comparison to409

previous works, we also report results on bidirec-410

tional symmetrized alignments in Appendix D.411

Methods compared: We compare our method412

with both existing statistical alignment models,413

namely GIZA++ (Och and Ney, 2003) and FastAl-414

ign (Dyer et al., 2013), and recent Transformer-415

based alignment methods of Garg et al. (2019)416

(NAIVEATT) and Chen et al. (2020) (SHIFTATT417

and SHIFTAET). Chen et al. (2020) also propose a418

variant of SHIFTATT called SHIFTAET that delays419

computations by one time-step as in SHIFTATT,420

and additionally includes a learned attention sub-421

layer to compute alignment probabilities. We also422

present results on PRIORATT which is similar to423

POSTALN but does not use yt.424

Results: The alignment results are shown in Ta-425

ble 2. First, AERs using statistical methods FastAl-426

ign and GIZA++ are shown. Here, for fair compar-427

ison, the IBM models used by GIZA++ are trained428

on the same sub-word units as the Transformer429

models and sub-word alignments are converted430

to word level alignments for AER calculations.431

(GIZA++ has remained a state-of-the-art alignment432

technique and continues to be compared against.)433

Next, we present alignment results for two vanilla434

Transformer models - NAIVEATT and SHIFTATT435

- that do not train a separate alignment module. The436

high AER of NAIVEATT shows that attention-as-is437

is very distant from alignment but posterior atten-438

tion is closer to alignments than prior. Next we look439

at methods that train alignment-specific parameters:440

PRIORATT, a prior attention method; SHIFTAET441

and POSTALN, both posterior alignment methods.442

We observe that with training even PRIORATT443

has surpassed non-trained posterior. The posterior444

attention methods outperform the prior attention445

methods by a large margin, with an improvement 446

of 4.0 to 8.0 points. Within each group, the meth- 447

ods with a trained alignment module outperform 448

the ones without by a huge margin. POSTALN per- 449

forms better or matches the performance of SHIF- 450

TAET (achieving the lowest AER in nine out of 451

ten cases in Table 2) while avoiding the one-step 452

delay in alignment generation. Even on the distant 453

languages, POSTALN achieves significant reduc- 454

tions in error. For ja→en, we achieve a 1.3 AER 455

reduction compared to SHIFTAET which is not a 456

truly online method. Figure 2 shows an example 457

to illustrate the superior alignments of POSTALN 458

compared to NAIVEATT and PRIORATT. 459

4.3 Impact of POSTALN on 460

Lexicon-Constrained Translation 461

We next depict the impact of improved AERs from 462

our posterior alignment method on a downstream 463

lexicon-constrained translation task. Following pre- 464

vious work (Hokamp and Liu, 2017; Post and Vilar, 465

2018; Song et al., 2020; Chen et al., 2020, 2021), 466

we extract constraints using the gold alignments 467

and gold translations. Up to three constraints of 468

up to three words each are used for each sentence. 469

Spans correctly translated by a greedy decoding 470

are not selected as constraints. 471

Metrics: We report BLEU (Papineni et al., 2002) 472

scores, Constraint Satisfaction Rate (CSR) (Song 473

et al., 2020), and the time required to translate all 474

test sentences as reported by others (Song et al., 475

2020). Additionally to evaluate the appropriateness 476

of constraint placement, we compute the BLEU of 477

spans consisting of the constraints and a window 478

of a few words, specifically three, on both sides of 479

the constraint. We call this measure SpanBLEU. 480

All numbers are averages over five different sets of 481
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Figure 2: Alignments for de→en by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar
to Gold alignments in the last column.

de→en en→fr ro→en en→hi ja→en

Method
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

No constraints 0.0 4.6 32.9 87 0.0 8.7 34.8 64 0.0 8.8 33.4 47 0.0 6.3 19.7 21 0.0 8.8 18.9 237
NAIVEATT 28.7 86.1 36.6 147 36.5 88.0 38.3 93 33.3 92.3 36.5 99 22.5 88.4 23.6 27 15.1 75.9 20.2 315
PRIORATT 35.0 92.8 37.6 159 42.1 94.4 38.9 97 36.0 91.2 37.2 100 27.2 91.5 24.4 28 16.7 79.7 20.4 326
SHIFTATT 41.0 96.6 38.7 443 45.0 93.5 38.7 239 39.2 94.2 37.4 241 23.2 78.7 21.9 58 15.2 72.7 19.3 567
SHIFTAET 43.1 97.5 39.1 458 46.6 94.3 39.0 235 40.8 94.4 37.6 263 24.3 80.2 22.0 62 18.1 75.9 19.7 596
POSTALN 42.7 97.2 39.0 399 46.3 94.1 38.7 218 40.0 93.5 37.4 226 23.8 79.0 22.0 47 18.2 75.7 19.7 460
VDBA 44.5 98.9 38.5 293 51.9 98.5 39.5 160 43.1 99.1 37.9 165 29.8 92.3 24.5 49 24.3 95.6 21.6 494
Align-VDBA 44.5 98.6 38.6 357 52.9 98.4 39.7 189 44.1 98.9 38.1 203 30.5 91.5 24.7 70 25.1 95.5 21.8 630

Table 3: Constrained translation results showing SpanBLEU, CSR (Constraint Satisfaction Rate), BLEU scores
and total decoding time (in seconds) for the test set. Align-VDBA has the highest SpanBLEU on all datasets.

randomly sampled constraint sets. Standard devia-482

tions across all runs are listed in Appendix E. The483

beam size is set to ten by default; results for other484

beam-sizes appear in Appendix E.485

Methods Compared: First we compare all the486

alignment methods presented in Section 4.2 on the487

constrained translation task using the alignment488

based token-replacement algorithm of Song et al.489

(2020) described in Section 3.1. Next, we present a490

comparison between VBDA (Hu et al., 2019) and491

our modification Align-VDBA.492

Results: Table 3 shows that VDBA and our Align-493

VDBA that pro-actively enforce constraints have494

a much higher CSR and higher SpanBLEU com-495

pared to the other lazy constraint enforcement meth-496

ods. For example, for ja→ en greedy methods497

can only achieve a CSR of 76% compared to 96%498

of the VDBA-based methods. In terms of overall499

BLEU too these methods provide an average in-500

crease in BLEU of 1.2 and an average increase in501

SpanBLEU of 5 points. On average, Align-VDBA502

has a 0.7 point greater SpanBLEU compared to503

VDBA. It also has a greater BLEU than VDBA504

on all the five datasets and statistically comparable505

CSRs (difference less than 1 constraint on average).506

Table 4 lists some example translations produced507

by VDBA vs Align-VDBA. We observe instances508

where VDBA places constraints at the end of the509

translated sentence (e.g., “pusher", “development") 510

unlike Align-VDBA. It is also interesting to see that 511

in some cases where constraints contain frequent 512

stop words (like of, the, etc.) appearing multiple 513

times in the translated sentence, VDBA picks the 514

token in the wrong position to tack on the con- 515

straint (e.g., “strong backing of", “of qualified") 516

while Align-VDBA places the constraint correctly. 517

Dataset→ IATE.414 Wiktionary.727
Method (Beam Size) ↓ CSR BLEU (∆) CSR BLEU (∆)
Baseline (5) 76.3 25.8 76.9 26.0
Train-by-app. (5) 92.9 26.0 (+0.2) 90.7 26.9 (+0.9)
Train-by-rep. (5) 94.5 26.0 (+0.2) 93.4 26.3 (+0.3)
No constraints (10) 77.0 29.7 72.4 29.9
Align-VDBA (10) 99.8 30.8 (+1.1) 99.5 31.0 (+1.1)

Table 5: Constrained translation results on the two real
world constraints from Dinu et al. (2019).

Real World Constraints: We also evaluate our 518

method using real world constraints extracted from 519

IATE and Wiktionary datasets by Dinu et al. (2019). 520

In Table 5 we compare Align-VDBA with the soft- 521

constraints method of Dinu et al. (2019) that re- 522

quires special retraining to teach the model to copy 523

constraints. We reproduced the numbers from their 524

paper in the first three rows. Their baseline num- 525

bers are almost 4 BLEU points worse than our base- 526

line since they used a smaller transformer NMT 527
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Constraints (gesetz zur, law also), (dealer, pusher)
Gold of course, if a drug addict becomes a pusher, then it is right and necessary that he should pay and answer before the law also.
VDBA certainly, if a drug addict becomes a dealer, it is right and necessary that he should be brought to justice before the law also pusher.
Align-VDBA certainly, if a drug addict becomes a pusher, then it is right and necessary that he should be brought to justice before the law also.
Constraints (von mehrheitsverfahren, of qualified)
Gold ... whether this is done on the basis of a vote or of consensus, and whether unanimity is required or some form of qualified majority.
VDBA ... whether this is done by means of qualified votes or consensus, and whether unanimity or form of majority procedure apply.
Align-VDBA ... whether this is done by voting or consensus, and whether unanimity or form of qualified majority voting are valid.
Constraints (zustimmung der, strong backing of)
Gold ... which were adopted with the strong backing of the ppe group and the support of the socialist members.
VDBA ... which were then adopted with broad agreement from the ppe group and with the strong backing of the socialist members.
Align-VDBA ... which were then adopted with strong backing of the ppe group and with the support of the socialist members.
Constraints (den usa, the usa), (sicherheitssystems an, security system that), (entwicklung, development)
Gold matters we regard as particularly important are improving the working conditions between the weu and the eu

and the development of a european security system that is not dependent on the usa .
VDBA we consider the usa ’s european security system to be particularly important in improving working conditions

between the weu and the eu and developing a european security system that is independent of the united states development .
Align-VDBA we consider the development of the security system that is independent of the usa to be particularly important

in improving working conditions between the weu and the eu .

Table 4: Anecdotes showing constrained translations produced by VDBA vs. Align-VDBA.

model, thus making running times incomparable.528

When we compare the increment ∆ in BLEU over529

the respective baselines, Align-VDBA shows much530

greater gains of +1.1 vs. their +0.5. Also, Align-531

VDBA provides a much larger CSR of 99.6 com-532

pared to their 92. Results for other beam sizes and533

other methods appear in Appendix F.534

5 Related Work535

Online Prior Alignment from NMTs: Zenkel536

et al. (2019) find alignments using a single-head537

attention submodule, optimized to predict the next538

token. Garg et al. (2019) and Song et al. (2020)539

supervise a single alignment head from the penul-540

timate multi-head attention with prior alignments541

from GIZA++ alignments or FastAlign. Bahar et al.542

(2020) and Shankar et al. (2018) treat alignment543

as a latent variable and impose a joint distribution544

over token and alignment while supervising on the545

token marginal of the joint distribution.546

Online Posterior Alignment from NMTs:547

Shankar and Sarawagi (2019) first identify the role548

of posterior attention for more accurate alignment.549

However, their NMT was a single-headed RNN.550

Chen et al. (2020) implement posterior attention in551

a multi-headed Transformer but they incur a delay552

of one step between token output and alignment.553

We are not aware of any prior work that extracts554

truly online posterior alignment in modern NMTs.555

Offline Alignment Systems: Several recent meth-556

ods apply only in the offline setting: Zenkel et al.557

(2020) extend an NMT with an alignment module;558

Nagata et al. (2020) frame alignment as a question559

answering task; and Jalili Sabet et al. (2020); Dou560

and Neubig (2021) leverage contextual embeddings561

from pretrained multilangual models. 562

Lexicon Constrained Translation: Hokamp and 563

Liu (2017) and Post and Vilar (2018); Hu et al. 564

(2019) modify beam search to ensure that tar- 565

get phrases from a given constrained lexicon are 566

present in the translation. These methods ignore 567

alignment with the source but ensure high success 568

rate for appearance of the target phrases in the con- 569

straint. Song et al. (2020) and Chen et al. (2021) 570

do consider source alignment but they do not en- 571

force constraints leading to lower CSR. Dinu et al. 572

(2019) and Lee et al. (2021) propose alternative 573

training strategies for constraints, whereas we fo- 574

cus on working with existing models. Recently, 575

non autoregressive methods have been proposed 576

for enforcing target constraints but they require that 577

the constraints are given in the order they appear in 578

the target translation (Susanto et al., 2020). 579

6 Conclusion 580

In this paper we proposed a simple architectural 581

modification to modern NMT systems to obtain ac- 582

curate online alignments. The key idea that led to 583

high alignment accuracy was conditioning on the 584

output token. Further, our designed alignment mod- 585

ule enables such conditioning to be performed syn- 586

chronously with token generation. This property 587

led us to Align-VDBA, a principled decoding algo- 588

rithm for lexically constrained translation based on 589

joint distribution of target token and source align- 590

ments. Future work includes harnessing such joint 591

distributions for other forms of constraints, for ex- 592

ample, nested constraints that arise when translat- 593

ing structured documents and projecting HTML 594

tags from source to target sentences. 595
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A Alignment Error Rate868

Given gold alignments consisting of sure align-869

ments S and possible alignments P , and the pre-870

dicted alignments A, the Alignment Error Rate871

(AER) is defined as (Och and Ney, 2000):872

AER = 1− |A ∩ P|+ |A ∩ S||A|+ |S|873

Note that here S ⊆ P . Also note that since our874

models are trained on sub-word units but gold align-875

ments are over words, we need to convert align-876

ments between word pieces to alignments between877

words. A source word and target word are said to878

be aligned if there exists an alignment link between879

any of their respective word pieces.880

B SpanBLEU881

Given a reference sentence, a predicted translation882

and a set of constraints, for each constraints, a seg-883

ment of the sentence is chosen which contains the884

constraint and window size words (if available) sur-885

rounding the constraint words on either side. Such886

segments, called spans, are collected for the refer-887

ence and predicted sentences in the test and BLEU888

is computed over these spans. If a constraint is not889

satisfied in the prediction, the corresponding span890

is considered to be the empty string. An example is891

shown in Table 6. Table 7 shows how SpanBLEU892

varies as a function of varying window size for a893

fixed English-French constraint set with beam size894

set to 10.895

Window Size→ 2 3 4 5 6 7 8
No constraints 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NAIVEATT 34.4 32.0 30.4 29.5 29.4 29.5 29.7
PRIORATT 41.5 38.7 36.4 35.1 34.9 35.0 35.2
SHIFTATT 44.9 41.5 38.9 37.3 36.4 36.2 36.0
SHIFTAET 47.0 43.2 40.4 38.7 38.0 37.6 37.4
POSTALN 46.4 42.7 39.8 38.0 37.1 36.9 36.6
VDBA 54.9 50.5 46.8 44.6 43.5 43.0 42.6
Align-VDBA 56.4 51.7 47.9 45.6 44.4 43.7 43.3

Table 7: SpanBLEU vs Window Size for a constraint
set of English-French with beam size 10.

C Description of the Datasets896

The European languages consist of parallel sen-897

tences for three language pairs from the Europarl898

Corpus and alignments from Mihalcea and Peder-899

sen (2003), Och and Ney (2000), Vilar et al. (2006).900

Following previous works (Ding et al., 2019; Chen901

et al., 2020), the last 1000 sentences of the training902

data are used as validation data.903

For English-Hindi, we use the dataset from Mar- 904

tin et al. (2005) consisting of 3440 training sentence 905

pairs, 25 validation and 90 test sentences with gold 906

alignments. Since training Transformers requires 907

much larger datasets, we augment the training set 908

with 1.6 million sentences from the IIT Bombay 909

Parallel Corpus (Kunchukuttan et al., 2018). We 910

also add the first 50 sentences from the dev set of 911

IIT Bombay Parallel Corpus with manually anno- 912

tated alignments to the test set giving a total of 140 913

test sentences. 914

For Japanese-English, we use The Kyoto Free 915

Translation Task (Neubig, 2011). It comprises 916

roughly 330K training, 1166 validation and 1235 917

test sentences. As with other datasets, gold align- 918

ments are available only for the test sentences. The 919

Japanese text is already segmented and we use it 920

without additional changes. 921

The real world constraints datasets of Dinu et al. 922

(2019) are extracted from the German-English 923

WMT newstest 2017 task with the IATE dataset 924

consisting of 414 sentences (451 constraints) and 925

the Wiktionary 727 sentences (879 constraints). 926

The constraints come from the IATE and Wik- 927

tionary termninology databases. 928

D Bidirectional Symmetrized Alignment 929

We report AERs using bidirectional symmetrized 930

alignments in Table 8 in order to provide fair com- 931

parisons to results in prior literature. The sym- 932

metrization is done using the grow-diagonal heuris- 933

tic (Koehn et al., 2005; Och and Ney, 2000). Since 934

bidirectional alignments need the entire text in both 935

languages, these are not online alignments. 936

Method de-en en-fr ro-en en-hi ja-en
Statistical Methods

GIZA++ 18.6 5.5 26.3 35.9 39.7
FastAlign 27.0 10.5 32.1 - -

No Alignment Training
NAIVEATT 29.2 16.9 31.4 43.8 57.1
SHIFTATT 16.9 7.8 24.3 30.9 46.2

With Alignment Training
PRIORATT 22.0 10.1 26.3 32.1 48.2
SHIFTAET 15.4 5.6 21.0 26.7 40.1
POSTALN 15.3 5.5 21.0 26.1 39.5

Table 8: AERs for bidirectional symmetrized align-
ments. POSTALN consistently performs the best.
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Reference we consider the development of a robust security system that is independent of the
Prediction we consider developing a robust security system which is independent of the

SpanBLEU (Window Size = 2)
Cons. No Reference Spans Predicted Spans
1 consider the development of a (empty sentence)
2 a robust security system that is a robust security system which is
SpanBLEU = BLEU(Reference Spans, Predicted Spans)

Table 6: An example SpanBLEU computation

de→en en→fr ro→en en→hi ja→en
Beam
Size

Method
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

5 No constraints 0.0 5.0 32.9 78 0.0 8.7 34.6 61 0.0 8.4 33.3 45 0.0 5.6 19.7 18 0.0 7.9 19.1 221
NAIVEATT 28.9 86.2 36.7 127 36.7 88.6 38.0 87 32.9 91.8 36.3 88 23.0 89.9 23.9 25 15.1 77.0 20.3 398
PRIORATT 35.3 93.0 37.7 136 42.2 94.7 38.6 89 36.0 91.6 37.0 89 27.6 91.7 24.7 26 16.8 80.2 20.6 353
SHIFTATT 41.0 96.7 38.7 268 45.2 93.8 38.4 167 39.2 94.4 37.2 160 23.8 81.8 22.0 42 15.1 72.6 19.3 664
SHIFTAET 43.1 97.6 39.1 291 46.5 94.8 38.6 165 40.8 94.7 37.5 163 24.5 83.6 22.1 44 18.0 76.5 19.6 583
POSTALN 42.7 97.3 39.0 252 46.1 93.9 38.5 151 39.8 93.5 37.3 141 23.3 79.7 21.7 39 17.9 75.3 19.6 469
VDBA 39.6 99.4 37.8 203 45.9 99.5 38.5 109 36.6 99.2 36.7 117 27.3 96.6 24.2 37 22.1 96.9 20.9 397
Align-VDBA 40.3 99.0 38.0 244 47.4 99.3 38.7 132 37.6 99.7 36.8 139 27.2 95.6 24.1 46 22.5 97.2 21.0 460

10 No constraints 0.0 4.6 32.9 87 0.0 8.7 34.8 64 0.0 8.8 33.4 47 0.0 6.3 19.7 21 0.0 8.8 18.9 237
NAIVEATT 28.7 86.1 36.6 147 36.5 88.0 38.3 93 33.3 92.3 36.5 99 22.5 88.4 23.6 27 15.1 75.9 20.2 315
PRIORATT 35.0 92.8 37.6 159 42.1 94.4 38.9 97 36.0 91.2 37.2 100 27.2 91.5 24.4 28 16.7 79.7 20.4 326
SHIFTATT 41.0 96.6 38.7 443 45.0 93.5 38.7 239 39.2 94.2 37.4 241 23.2 78.7 21.9 58 15.2 72.7 19.3 567
SHIFTAET 43.1 97.5 39.1 458 46.6 94.3 39.0 235 40.8 94.4 37.6 263 24.3 80.2 22.0 62 18.1 75.9 19.7 596
POSTALN 42.7 97.2 39.0 399 46.3 94.1 38.7 218 40.0 93.5 37.4 226 23.8 79.0 22.0 47 18.2 75.7 19.7 460
VDBA 44.5 98.9 38.5 293 51.9 98.5 39.5 160 43.1 99.1 37.9 165 29.8 92.3 24.5 49 24.3 95.6 21.6 494
Align-VDBA 44.5 98.6 38.6 357 52.9 98.4 39.7 189 44.1 98.9 38.1 203 30.5 91.5 24.7 70 25.1 95.5 21.8 630

20 No constraints 0.0 4.9 32.8 84 0.0 8.4 34.8 69 0.0 8.7 33.2 50 0.0 6.5 19.5 20 0.0 8.2 18.9 255
NAIVEATT 28.8 86.1 36.6 133 36.4 88.1 38.3 118 33.4 92.1 36.6 126 23.4 90.1 24.0 34 15.0 75.5 20.1 403
PRIORATT 34.9 92.6 37.4 128 42.0 94.5 38.9 123 35.9 91.0 37.3 121 27.1 92.2 24.6 33 16.6 79.5 20.4 423
SHIFTATT 40.9 96.4 38.7 398 45.7 94.2 39.0 378 39.1 94.0 37.3 409 23.0 77.5 21.8 82 15.2 72.3 19.2 827
SHIFTAET 43.1 97.1 39.0 395 47.1 95.0 39.2 404 40.5 93.9 37.5 403 24.0 79.5 21.9 80 17.9 76.0 19.6 872
POSTALN 42.7 97.0 39.0 354 46.8 94.9 39.1 351 39.6 93.0 37.3 376 23.5 77.6 21.8 73 18.0 75.3 19.6 687
VDBA 45.1 97.7 38.4 337 52.5 95.7 39.7 250 43.8 96.2 38.0 268 28.7 86.8 23.6 82 24.3 93.6 21.9 780
Align-VDBA 45.2 97.3 38.4 400 52.5 95.1 39.5 292 44.8 96.3 38.2 330 29.2 85.8 23.5 107 24.7 93.2 21.8 870

Table 9: Lexically Constrained Translation Results with different beam sizes. All numbers are average over 5
randomly sampled constraint sets and running times are in seconds.
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Figure 3: Alignments for en→hi by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar
to Gold alignments in the last column.

E Additional Lexicon-Constrained937

Translation Results938

Constrained translation results for beam sizes 5,939

10 and 20 are shown in Table 9. The standard940

deviations for Table 3 are shown in Table 11.941

F Additional Real World Constrained 942

Translation Results 943

Results on the real world constrained translation 944

datasets of Dinu et al. (2019) for all the methods in 945

Table 3 with beam sizes 5, 10 and 20 are presented 946

in Table 10. 947
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Dataset→ IATE.414 Wiktionary.727
Beam
Size

Method ↓ Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

5 No constraints 27.9 76.6 29.7 134 26.3 72.0 29.9 217
NAIVEATT 29.2 96.9 29.2 175 29.0 95.3 29.1 341
PRIORATT 31.2 97.1 29.7 198 32.2 95.9 29.9 306
SHIFTATT 34.9 96.7 29.9 355 35.3 96.5 30.0 568
SHIFTAET 35.2 96.3 30.0 378 35.8 97.1 30.2 637
POSTALN 35.3 96.7 30.0 272 35.8 96.7 30.2 467
VDBA 35.3 98.8 29.8 258 35.0 99.2 30.4 442
Align-VDBA 35.4 99.8 29.8 280 35.1 99.3 30.3 534

10 No constraints 28.3 77.0 29.7 113 26.3 72.4 29.9 164
NAIVEATT 28.9 97.3 29.1 145 29.2 95.3 29.1 269
PRIORATT 31.3 96.9 29.5 155 32.3 96.0 29.9 260
SHIFTATT 34.9 96.3 29.8 345 35.3 96.8 30.3 600
SHIFTAET 35.2 95.9 29.9 350 35.9 97.2 30.4 664
POSTALN 35.1 95.9 29.9 287 35.8 97.0 30.3 458
VDBA 37.6 99.8 30.9 257 36.9 99.4 30.9 451
Align-VDBA 37.5 99.8 30.8 353 37.3 99.5 31.0 540

20 No constraints 28.4 77.2 29.9 103 26.3 72.1 30.0 177
NAIVEATT 28.9 96.9 29.0 188 29.1 95.4 29.3 325
PRIORATT 31.3 96.9 29.6 203 32.6 96.4 30.1 338
SHIFTATT 34.7 96.1 29.8 528 35.3 96.8 30.2 892
SHIFTAET 35.0 95.8 29.9 539 36.1 97.3 30.4 923
POSTALN 35.1 96.1 29.9 420 36.0 97.0 30.4 751
VDBA 37.8 99.8 30.9 381 37.4 99.2 31.2 680
Align-VDBA 37.9 99.8 30.9 465 38.0 99.5 31.3 818

Table 10: Additional results for the real world con-
straints for all methods and different beam sizes.

G Alignment-based Token Replacement948

Algorithm949

The pseudocode for the algorithm used in Song950

et al. (2020); Chen et al. (2021) and our non-VDBA951

based methods in Section 4.3 is presented in Al-952

gorithm 2. As described in Section 3.1, at each953

decoding step, if the source token having the max-954

imum alignment at the current step lies in some955

constraint span, the constraint in question is de-956

coded until completion before resuming normal957

decoding.958

Though different alignment methods are rep-959

resented using a call to the same ATTENTION960

function in Algorithm 2, these methods incur961

varying computational overheads. For instance,962

NAIVEATT incurs little additional cost, PRIO-963

RATT and POSTALN involve a multi-head atten-964

tion computation. For SHIFTATT and SHIFTAET,965

an entire decoder pass is done when ATTENTION is966

called, thereby incurring a huge overhead as shown967

in Table 3.968

H Layer Selection for Alignment969

Supervision of Distant Language Pairs970

For the alignment supervision, we used align-971

ments extracted from vanilla Transformers using972

the SHIFTATT method. To do so, however, we973

need to choose the decoder layers from which to974

extract the alignments. The validation AERs can975

be used for this purpose but since gold validation 976

alignments are not available, Chen et al. (2020) sug- 977

gest selecting the layers which have the best con- 978

sistency between the alignment predictions from 979

the two translation directions. 980

For the European language pairs, this turns out to 981

be layer 3 as suggested by Chen et al. (2020). How- 982

ever, for the distant language pairs Hindi-English 983

and Japanese-English, this is not the case and layer 984

selection needs to be done. The AER between the 985

two translation directions on the validation set, with 986

alignments obtained from different decoder layers, 987

are shown in Tables 12 and 13. 988
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Algorithm 2 k-best extraction with argmax replacement decoding.
Inputs: A k × |VT | matrix of scores (for all tokens up to the currently decoded ones). k beam states.

1: function SEARCH_STEP(beam, scores)
2: next_toks, next_scores← ARGMAX_K(scores, k=2, dim=1) . Best 2 tokens for each beam
3: candidates← []
4: for 0 ≤ h < 2 · k do
5: candidate← beam[h//2]
6: candidate.tokens.append(next_toks[h//2, h%2])
7: candidate.scores← next_scores[h//2, h%2]
8: candidates.append(candidate)
9: attention← ATTENTION(candidates)

10: aligned_x← ARGMAX(attention, dim=1)
11: for 0 ≤ h < 2 · k do
12: if aligned_x[h] ∈ Cxi for some i and not candidates[h].inprogress then . Start constraint
13: candidates[h].inprogress← True
14: candidates[h].constraintNum← i
15: candidates[h].tokenNum← 0
16: if candidates[h].inprogress then . Replace token with constraint tokens
17: candidates[h].tokens[-1]← constraints[candidates[h].constraintNum][candidates[h].tokenNum]
18: candidates[h].tokenNum← candidates[h].tokenNum + 1
19: if constraints[candidates[h].constraintNum].length == candidates[h].tokenNum then
20: candidates[h].inprogress← False . Finish current constraint
21: candidates← REMOVE_DUPLICATES(candidates)
22: newBeam← TOP_K(candidates)
23: return newBeam

de→en en→fr ro→en en→hi ja→en

Method
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

Span
BLEU

CSR BLEU Time
Span

BLEU
CSR BLEU Time

No constraints 0.0 0.6 0.0 8.9 0.0 2.2 0.0 0.8 0.0 1.7 0.0 2.0 0.0 1.8 0.0 2.4 0.0 0.7 0.0 28.1
NAIVEATT 2.0 0.9 0.3 9.6 2.7 2.5 0.4 5.0 1.1 0.9 0.3 2.5 2.7 3.9 0.3 2.8 0.9 1.6 0.1 5.6
PRIORATT 1.6 1.0 0.1 13.3 1.9 0.8 0.5 2.0 1.4 1.0 0.4 7.3 0.7 1.8 0.4 3.3 0.9 1.4 0.2 6.5
SHIFTATT 1.6 0.6 0.3 35.7 2.8 1.3 0.4 20.2 1.5 1.0 0.6 14.8 2.3 3.9 0.5 6.1 0.4 1.4 0.1 7.0
SHIFTAET 1.7 0.8 0.3 36.8 2.3 0.9 0.4 18.5 2.0 1.0 0.6 13.9 2.6 2.0 0.6 8.6 0.6 0.6 0.1 42.5
POSTALN 1.8 0.6 0.3 12.8 2.3 0.9 0.4 9.9 1.5 1.1 0.6 26.7 2.6 2.6 0.6 5.0 0.6 1.0 0.1 11.0
VDBA 1.7 0.6 0.2 33.3 1.7 0.7 0.3 6.8 1.6 0.6 0.3 7.1 1.4 2.8 0.9 1.2 0.9 0.9 0.2 50.0
Align-VDBA 1.7 0.4 0.1 27.4 1.6 0.8 0.3 7.4 1.3 0.9 0.4 15.0 1.3 2.9 0.9 7.4 1.0 0.9 0.3 91.0

Table 11: Standard deviations of the metrics shown in Table 3 across five sets of randomly sampled constraint sets.

1 2 3 4 5 6
1 65.5 55.8 56.1 95.2 94.6 96.6
2 59.2 47.5 44.5 95.1 91.9 95.8
3 62.6 52.1 48.3 93.7 91.4 95.2
4 88.6 83.3 82.1 89.9 88.0 90.3
5 91.6 87.7 88.5 91.4 88.8 90.2
6 93.5 91.1 92.5 92.5 90.5 90.7

Table 12: AER between en→hi and hi→en SHIF-
TATT alignments on the validation set for EnHi

1 2 3 4 5 6
1 93.5 90.0 94.4 92.2 95.1 95.1
2 86.5 58.7 86.9 69.4 87.2 86.2
3 87.4 59.4 87.1 69.1 87.1 86.2
4 89.1 69.1 85.9 74.2 84.9 85.4
5 93.4 88.5 89.1 87.1 86.8 88.1
6 93.5 89.4 90.0 88.1 87.7 88.7

Table 13: AER between ja→en and en→ja SHIF-
TATT alignments on the validation set for JaEn
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