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Abstract
Explainable artificial intelligence (XAI) methods
are portrayed as a remedy for debugging and trust-
ing statistical and deep learning models, as well as
interpreting their predictions. However, recent ad-
vances in adversarial machine learning highlight
the limitations and vulnerabilities of state-of-the-
art explanations, putting their security and trust-
worthiness into question. The possibility of ma-
nipulating, fooling or fairwashing evidence of the
model’s reasoning has detrimental consequences
when applied in high-stakes decision-making and
knowledge discovery. This concise survey of over
50 papers summarizes research concerning adver-
sarial attacks on explanations of machine learning
models, as well as fairness metrics. We discuss
how to defend against attacks and design robust in-
terpretation methods. We contribute a list of exist-
ing insecurities in XAI and outline the emerging
research directions in adversarial XAI (AdvXAI).

1. Introduction
Explainable artificial intelligence (XAI) methods [for a brief
overview see Holzinger et al., 2022, and for a comprehensive
survey refer to Schwalbe & Finzel, 2023], e.g. post-hoc ex-
planations like PDP (Friedman, 2001), SG (Simonyan et al.,
2014), LIME (Ribeiro et al., 2016), IG (Sundararajan et al.,
2017), SHAP (Lundberg & Lee, 2017), TCAV (Kim et al.,
2018), Grad-CAM (Selvaraju et al., 2020) to name a few,
provide various mechanisms to interpret predictions of ma-
chine learning models. A popular critique of XAI, in favour
of inherently interpretable models, is its inability to faith-
fully explain the black-box (Rudin, 2019). Nevertheless,
explanations find success in applications like autonomous
driving (Gu et al., 2020) or drug discovery (Jiménez-Luna
et al., 2020), and can be used to better understand the reason-
ing of large models like AlphaZero (McGrath et al., 2022).
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Recently, adversarial machine learning (AdvML, Kolter &
Madry, 2018; Rosenberg et al., 2021; Machado et al., 2021)
became more prevalent in research on XAI, yet vulnera-
bilities of explanations raise concerns about their trustwor-
thiness and security (Papernot et al., 2018). To assess the
scope of these threats, we contribute a systemization of the
current state of knowledge concerning adversarial attacks
on model explanations (Section 2) and defense mechanisms
against these attacks (Section 3). Figure 1 presents one of
such attacks, which is often called adversarial example, i.e.
a slightly changed image drastically changes the explana-
tion of the class predicted by a model. An aggregation of
explanations obtained with different methods shows to be
less susceptible to such manipulation. While most related
surveys summarize explanation robustness (Mishra et al.,
2021), attacks on model predictions (Machado et al., 2021),
and the application of XAI in AdvML (Liu et al., 2021),
this survey highlights the rapidly emerging cross-domain
research in what we call adversarial explainable AI (Ad-
vXAI). We moreover confront it with the closely related
work concerning adversarial attacks on machine learning
fairness metrics (Section 4). A concise overview of over 50
papers allows us to specify the frontier research directions
in AdvXAI (Section 5).

We acknowledge this is not a systematic review, but rather
an approachable outlook to recognize the potential gaps and
define future directions. We first included visible papers pub-
lished in major machine learning conferences (ICML, ICLR,
NeurIPS, AAAI) and journals (AIj, NMI) since Ghorbani
et al. (2019). We then extensively searched their citation
networks for papers related to AdvXAI published in other
venues. We purposely exclude a large number of papers fo-
cusing primarily on explanation evaluation without relating
to the adversarial scenario (refer to Nauta et al., 2023).

2. Adversarial attacks on model explanations
To the best of our knowledge, Ghorbani et al. (2019) is the
first contribution to mention3 and propose an adversarial
attack against explanation methods, specifically gradient-
based saliency maps (Simonyan et al., 2014; Sundararajan

3Note that we acknowledge papers in order of date published,
i.e. presented at a conference, as opposed to the first date appearing
online, e.g. as a preprint or final proceedings version.
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Figure 1. Adversarial example attack on an explanation of the image classifier’s prediction (left, adapted from Dombrowski et al., 2019,
with permission) and an aggregating defense mechanism against this attack (right, adapted from Rieger & Hansen, 2020, with permission).

et al., 2017) of (convolutional) neural networks. Previous
related work discussed the worst-case (adversarial) notion
of explanation robustness (Alvarez Melis & Jaakkola, 2018,
page 7) and the notion of explanation sensitivity (Ancona
et al., 2018; Kindermans et al., 2019). Crucially, Adebayo
et al. (2018) introduced randomization tests showing that a
visual inspection of explanations alone can favor methods
compelling to humans. It raised to attention the need for
evaluating the explanations’ quality, especially for deep
models, with possible implications in adversarial settings.

Table 1 lists attacks on explanation methods, with the cor-
responding strategy of changing data, e.g. an adversarial
example manipulates the explanation without impacting the
prediction (Ghorbani et al., 2019; Dombrowski et al., 2019),
changing the model, e.g. fine-tuning or regularizing weights
manipulates explanations without impacting the predictive
performance (Heo et al., 2019; Dimanov et al., 2020), or
changing both data and the model, e.g. in the case when
an attacker poisons the training dataset (Zhang et al., 2021).
Viering et al. (2019) manipulate Grad-CAM explanations of
a convolutional neural network by changing its weights, but
also proposes to leave a backdoor in the network (triggered
by specific input patterns), which allows retrieving original
explanations. Noppel et al. (2023) extend fooling expla-
nations through fine-tuning and backdooring to consider:
(i) a red-herring attack that manipulates the explanation to
cover an adversarial change in the model’s prediction, e.g. a
misclassification, and (ii) a fully disguising attack that aims
to show the original explanation for a changed prediction.

For each of the attacks in Table 1, we record the mentioned
data modalities with the corresponding datasets used in ex-
periments, as well as model algorithms. Observation 1.
The majority of proposed attacks assume prior knowledge
that the explained model is a neural network, e.g. to uti-
lize gradient descent in constructing adversarial examples

or changing model parameters, as opposed to black-box
approaches that could work with various model algorithms.

In a black-box setting, Slack et al. (2020) manipulate LIME
and SHAP explanations for tabular data by exploiting their
reliance on perturbing input data for estimation. The pro-
posed attack substitutes a biased black-box with a model
surrogate to effectively hide bias, e.g. from auditors. In de-
tail, an out-of-distribution detector is trained to divide input
data such that the black-box’es predictions in-distribution
remain biased, but its behavior on the perturbed data is con-
trolled, which makes the explanations look fair. Merrer &
Trédan (2020) consider a similar adversarial scenario and
show that providing explanations cannot prevent a remote
service from hiding the true reasons that lead to its predic-
tions. It concludes that an impractically large number of
user queries is required to detect explanation manipulation.

While the majority of adversarial attacks are on local meth-
ods for interpreting individual predictions; other attacks
specifically target global methods explaining the overall
model’s reasoning (Lakkaraju & Bastani, 2020; Baniecki
& Biecek, 2022; Brown & Kvinge, 2022; Baniecki et al.,
2022; Laberge et al., 2023). Instead of changing model
or data, Lakkaraju & Bastani (2020) introduce misleading
rule-based explanations that approximate a model based on
the MUSE framework (Lakkaraju et al., 2019). Results of
a user study show that various high-fidelity explanations
faithful to the black-box considerably affect human judge-
ment. Baniecki & Biecek (2022) and Baniecki et al. (2022)
introduce genetic-based algorithms to manipulate SHAP
and PDP explanations respectively. The proposed poison-
ing attack iteratively changes data used in the process of
estimating global explanations, and thus can be exploited
by an adversary to provide false evidence of feature impor-
tance and effects. Laberge et al. (2023) consider a similar
adversarial scenario and attack global SHAP using stealthily
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Table 1. Summary of adversarial attacks on explanations of machine learning models. We abbreviate the following: data (D), model (M),
image (I), tabular (T), language (Lg), neural network (N), black-box (B), local (L), global (G). Appendix A lists other abbreviations.

Attack Changes strategy Modality dataset Model algorithm Explanation algorithm

(Ghorbani et al., 2019) D adversarial example I ImageNet, CIFAR-10 N SqueezeNet, InceptionNet L SG, IG, DeepLIFT

(Kindermans et al., 2019) D adversarial example I MNIST, ImageNet N MLP, CNN, VGG L SG, GI, IG, LRP, ..

(Viering et al., 2019) M & D backdooring attack I ImageNet N VGG L Grad-CAM

(Subramanya et al., 2019) D adversarial example I ImageNet, VOC2012 N VGG, ResNet, DenseNet L Grad-CAM

(Heo et al., 2019) M model manipulation I ImageNet N VGG, ResNet, DenseNet L SG, Grad-CAM, LRP

(Dombrowski et al., 2019) D adversarial example I ImageNet, CIFAR-10 N VGG, ResNet, DenseNet, .. L SG, GI, IG, LRP, ..

(Dimanov et al., 2020) M model manipulation T Credit, COMPAS, Adult, .. N MLP L SG, GI, IG, SHAP, ..

(Slack et al., 2020) M surrogate model T Credit, COMPAS, Crime B rule set L SHAP, LIME

(Lakkaraju & Bastani, 2020) – T Bail B rule set G MUSE

(Anders et al., 2020) D surrogate model T credit, I MNIST, CIFAR10, .. N LR, CNN, VGG L SG, GI, IG, LRP

(Kuppa & Le-Khac, 2020) D adversarial example T PDF, Android, UGR16 N MLP, GAN L SG, GI, IG, LRP, ..

(Zhang et al., 2020) D adversarial example I ImageNet N ResNet, DenseNet L SG, CAM, RTS, ..

(Merrer & Trédan, 2020) M surrogate model T Credit B DT, MLP L custom

(Shokri et al., 2021) – membership inference T Adult, Hospital, .. I CIFAR-10, .. B MLP, CNN L IG, LRP, LIME, ..

(Sinha et al., 2021) D adversarial example Lg IMDB, SST, AG News B DistilBERT, RoBERTa L IG, LIME

(Zhang et al., 2021) D & M data poisoning T Fracture, I Dogs N MLP, ResNet L SG, CAM

(Slack et al., 2021a) D model manipulation T Credit, Crime N MLP L counterfactual

(Baniecki & Biecek, 2022) D data poisoning T Heart, Apartments B XGBoost G SHAP, L SHAP

(Brown & Kvinge, 2022) D data poisoning I ImageNet, CUB N InceptionNet, ResNet, ViT, .. G TCAV, FFV

(Baniecki et al., 2022) D data poisoning T Heart, Friedman B MLP, RF, GBDT, SVM, KNN, .. G PDP

(Pawelczyk et al., 2023b) – membership inference T Adult, Hospital B LR, NN L counterfactual

(Laberge et al., 2023) D data poisoning T COMPAS, Adult, Bank, Crime B MLP, RF, XGBoost G SHAP

(Noppel et al., 2023) M & D backdooring attack I CIFAR-10, GTSRB N ResNet L SG, Relevance-CAM, ..

biased sampling of the data points used to approximate ex-
planations (an algorithm introduced in Fukuchi et al., 2020).
Experiments show an improvement in manipulating SHAP
over previous work of Baniecki & Biecek (2022), which
further underlines SHAP’ vulnerability (Slack et al., 2020).

Explanations might be exploited to breach privacy. Shokri
et al. (2021) introduce membership inference attacks that
use information from feature attribution explanations to de-
termine whether a data point was present in the training
dataset. Pawelczyk et al. (2023b) propose membership in-
ference attacks using counterfactual explanations instead.

Observation 2. Attacking local explanations may impact
the model’s behaviour globally (Heo et al., 2019; Dimanov
et al., 2020; Anders et al., 2020; Noppel et al., 2023), and
vice versa, fooling global explanations may manipulate local
explanations in the process (Lakkaraju & Bastani, 2020;
Baniecki & Biecek, 2022; Laberge et al., 2023). Both of
these interactions could improve detectability in practice.

Observation 3. To this date, there are relatively sparse
studies concerning adversarial attacks on concept-based
explanations, e.g. Brown & Kvinge (2022) attack TCAV
and FFV (Goh et al., 2021), counterfactual explanations,
e.g. Slack et al. (2021a) attack counterfactuals for neural

networks (Guidotti, 2022), and overall explanations for lan-
guage models, e.g. Sinha et al. (2021) attack IG and LIME.

Observation 4. Research on attacking explanations for
image classification relies on a few popular datasets, e.g.
ImageNet (Deng et al., 2009) reoccurs in 8 out of 11 studies.
In parallel, a larger variety of tabular scenarios is tested.

While many contributions consider the detectability of the
attack (Subramanya et al., 2019; Kuppa & Le-Khac, 2020;
Zhang et al., 2020), and some propose ways of mitigating the
attacks’ effects via robustifying mechanisms (Dombrowski
et al., 2019; Anders et al., 2020; Zhang et al., 2020), we next
systemize contributions that mostly focus on defending.

3. Defense against the attacks on explanations
Whenever a new attack algorithm is introduced in adversar-
ial machine learning, various ways to address the explana-
tion’s limitations and fix its insecurities are proposed. Chen
et al. (2019b) is one of the first attempts to defend from
adversarial examples introduced by Ghorbani et al. (2019)
via regularizing a neural network. The proposed robust at-
tribution regularization forces IG explanations to remain
unchanged under perturbation attacks. Rieger & Hansen
(2020) propose an alternative defense strategy against such
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Table 2. Summary of defenses against the attacks on explanations of machine learning models. Each work on explanations’ robustness is
connected with up to two attacks that are mentioned to be potentially addressed by it. We abbreviate the following: data (D), model (M),
image (I), tabular (T), language (Lg), neural network (N), black-box (B), local (L), global (G). Appendix A lists other abbreviations.

Defense Attack(s) Modality dataset Model algorithm Explanation algorithm

(Woods et al., 2019) – I ImageNet, COCO, .. N ResNet L Grad-CAM

(Chen et al., 2019b) (Ghorbani et al., 2019) I FashionMNIST, Flower, .. N CNN, ResNet L IG

(Rieger & Hansen, 2020) (Ghorbani et al., 2019)
(Dombrowski et al., 2019) I ImageNet N VGG L SG, IG, LRP, GBP

(Boopathy et al., 2020) (Ghorbani et al., 2019)
(Dombrowski et al., 2019) I MNIST, CIFAR-10, .. N CNN, ResNet L IG, CAM, Grad-CAM

(Lakkaraju et al., 2020) (Ghorbani et al., 2019)
(Lakkaraju & Bastani, 2020) T Bail, Academic, Health B MLP, RF, GBDT, .. G MUSE, LIME, SHAP

(Wang et al., 2020) (Ghorbani et al., 2019)
(Dombrowski et al., 2019) I CIFAR-10, ImageNet, Flower N ResNet L SG, IG, SmoothGrad

(La Malfa et al., 2021) – Lg IMDB, SST, Twitter N MLP, CNN L Anchors

(Ghalebikesabi et al., 2021) (Slack et al., 2020) T COMPAS, Adult, Bike, ..
I MNIST

B XGBoost, CNN L SHAP, GradSHAP

(Schneider et al., 2022) – Lg IMDB, WoS B CNN L Grad-CAM

(Shrotri et al., 2022) (Slack et al., 2020) T Credit, COMPAS, Crime, .. B RF L LIME

(Dombrowski et al., 2022) (Dombrowski et al., 2019) I CIFAR-10, ImageNet N CNN, VGG, ResNet L SG, GI, IG, LRP, ..

(Tang et al., 2022) (Ghorbani et al., 2019)
(Dombrowski et al., 2019) I MNIST, FashionMNIST N CNN L SG

(Vreš & Robnik-Šikonja, 2022) (Slack et al., 2020) T Credit, COMPAS, Crime B MLP, RF, SVM, .. L LIME, SHAP, IME

(Liu et al., 2022) (Ghorbani et al., 2019) I VOC2007 N VGG L SG

(Carmichael & Scheirer, 2023) (Slack et al., 2020) T Credit, COMPAS, Crime B rule set L SHAP, LIME

(Joo et al., 2023) (Ghorbani et al., 2019)
(Dombrowski et al., 2019) I CIFAR-10, ImageNet N ResNet, LeNet L SG, GI, LRP, GBP

(Virgolin & Fracaros, 2023) (Slack et al., 2021a) T Credit, COMPAS, Adult, .. B MLP, RF L counterfactual

(Wicker et al., 2023) (Heo et al., 2019)
(Dombrowski et al., 2019)

T Credit, Adult,
I MNIST, MedMNIST

N MLP, CNN L GI, DeepLIFT, GradSHAP

(Pawelczyk et al., 2023a) (Slack et al., 2021a) T Credit, COMPAS, Adult N LR, MLP L counterfactual

adversarial examples (Ghorbani et al., 2019; Dombrowski
et al., 2019), i.e. aggregating multiple explanations created
with various algorithms. As the attack targets only a single
explanation method, their aggregated mean remains close
to the original explanation (shown in Figure 1).

Table 2 lists defenses against the attacks on explanations,
where for each, we record the datasets, models and explana-
tion algorithms mentioned in experiments. Excluded from
it are works that improve explanation robustness without
directly relating to the potential adversarial attack scenario
(e.g. see Yeh et al., 2019; Zhou et al., 2021; Zhao et al.,
2021; Slack et al., 2021b, and references given there). We
link each defense with an attack, but omit to list all at-
tacks potentially addressed by the defense for brevity. The
three missing links are worth clarifying here. Woods et al.
(2019) is an early work that introduces adversarial explana-
tions, which have improved robustness against adversarial

examples targeting model predictions. Similarly, La Malfa
et al. (2021) proposes to improve explanations of language
models against adversarial perturbations. Unlike most of
the contributions that focus on algorithms, Schneider et al.
(2022) conduct a user study with artificially manipulated
explanations to evaluate if humans can discover the poten-
tial attack in practice (related to Lakkaraju & Bastani, 2020;
Poursabzi-Sangdeh et al., 2021). Pawelczyk et al. (2023a)
and Virgolin & Fracaros (2023) introduce mechanisms to im-
prove the robustness of counterfactual explanations against
adversarial perturbations (we link the latter with an other-
wise unreferenced attack of Slack et al. (2021a)).

Boopathy et al. (2020) extend the regularization training
method of Chen et al. (2019b) to use an l1-norm 2-class
interpretation discrepancy measure. Experiments show an
improvement in effectiveness and computation cost when
defending explanations over previous work (including Chen
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et al., 2019b). Moreover, achieving robust explanations
alone improves prediction robustness when explanations are
compared with the proposed measure. Wang et al. (2020)
introduce a smooth surface regularization procedure to force
robust attributions by minimizing the difference between
explanations for nearby points. Experiments show a trade-
off between regularization performance and computation
cost (also with respect to Chen et al., 2019b). Also, models
with smoothed geometry become less susceptible to trans-
fer attacks, i.e. where an adversary targeting one explana-
tion method fools other gradient-based explanations as well.
Dombrowski et al. (2022); Tang et al. (2022) further com-
pare and extend the in-training techniques to regularize neu-
ral networks towards improving explanation robustness (also
mentioned in Dombrowski et al., 2019). Dombrowski et al.
(2022) use the approximated norm of the Hessian as a reg-
ularization term during training to bound the l2-distance
between the gradients of the original and perturbed sam-
ples, which benefits gradient-based explanations. Joo et al.
(2023) propose to improve this approach by introducing
a cosine robust criterion to measure the cosine-distance
instead. As shown in experiments comparing the two dis-
tance measures, it effectively solves issues with normalizing
gradient-based attribution values that are used when inter-
preting predictions in practice. Most recent work in this
line of research introduces certifiably robust explanations
of neural networks (Liu et al., 2022; Wicker et al., 2023),
which reassure that no adversarial explanation exists for a
given set of input or model weights.

In parallel to defending adversarial attacks on gradient-
based explanations of neural networks, several works ad-
dress the possibility of fooling model-agnostic LIME and
SHAP (Slack et al., 2020). Ghalebikesabi et al. (2021)
modifies SHAP estimator by sampling data from a local
neighbourhood distribution instead of the marginal or con-
ditional global reference distribution. Experiments show
that such constructed on-manifold explainability improves
explanations’ robustness, i.e. SHAP defends from the attack.
Shrotri et al. (2022) modifies LIME estimator to take into
account user-specified constraints on the input space that
restrict the allowed data perturbations. Alike, experiments
show that constrained explanations are less susceptible to
out-of-distribution attacks. Moreover, analysing differences
between the original and constrained explanations allows
for detecting an adversarially discriminative classifier. In
contrast, Vreš & Robnik-Šikonja (2022) introduce focused
sampling with various data generators to improve the ad-
versarial robustness of both LIME and SHAP. Instead of
directly improving perturbation-based explanation methods,
Carmichael & Scheirer (2023) propose to “unfool” expla-
nations with conditional anomaly detection. An algorithm
based on k-nearest neighbours scores the abnormality of in-
put samples conditioned on their classification labels. Com-

paring the empirical distribution function of scores between
the original and potentially adversarially perturbed samples
given a user-defined threshold proves to be effective for
attack detection. Removing abnormal samples from the per-
turbed input set defends an explanation against fooling. We
summarize the described XAI failure modes in Figure 2.

Observation 5. Comparing Tables 1 & 2 highlights ex-
isting insecurities in XAI methods; namely, not clearly ad-
dressed are backdooring attacks (Viering et al., 2019; Nop-
pel et al., 2023), data poisoning attacks (Zhang et al., 2021;
Baniecki et al., 2022), attacks specific to language (Sinha
et al., 2021) and concept-based explainability (Brown &
Kvinge, 2022).

Observation 6. To this date, there are sparse studies con-
cerning defenses against attacks on global explanations,
e.g. Lakkaraju et al. (2020) robustify model-agnostic global
explanations against a general class of distribution shifts
related to adversarial perturbations (Ghorbani et al., 2019).

4. Adversarial attacks on fairness metrics
Closely related to adversarial attacks on explanations are
attacks on machine learning fairness metrics, e.g. predic-
tive equality (Corbett-Davies et al., 2017) and (statistical)
demographic parity (refer to Mehrabi et al., 2021a, for an
introduction to machine learning fairness). Intuitively, al-
gorithms targeting model predictions and accuracy can be
applied to manipulate other functions of the model output
as well. Table 3 in Appendix B lists a representative set
of adversarial attacks on group fairness metrics, with the
corresponding strategy of changing data (Fukuchi et al.,
2020), the model (Aivodji et al., 2019; 2021), or jointly
changing data and the model (Solans et al., 2020; Mehrabi
et al., 2021b; Hussain et al., 2022).

Fukuchi et al. (2020) introduce a stealthily biased sampling
procedure to adversarially craft an unbiased dataset used
to estimate fairness metrics. It is formally defined as a
Wasserstein distance minimization problem and solved with
an efficient algorithm for a minimum-cost flow problem in
practice. Experiments focus on quantifying the trade-off
between lowering the perceived model bias and detecting ad-
versarial sampling. Contrary, Solans et al. (2020) introduce
a data poisoning attack to increase bias as measured with
fairness metrics via adding data points to the training dataset
so that the model discriminates against a certain group of
individuals. While the approach relies on the differentia-
tion of neural networks for optimization, experiments show
the transferability of data poisoning to other algorithms in
a black-box setting. Mehrabi et al. (2021b) propose alter-
native data poisoning attacks, also in both black-box and
white-box settings relying on gradient computation to opti-
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Figure 2. Summary of the possible XAI failure modes on data and model levels.

mize a loss function for data sampling. Experiments show
an improvement in manipulating fairness over previous work
of Solans et al. (2020). Hussain et al. (2022) extend data poi-
soning attacks on fairness to the task of node classification
with graph convolutional networks. Aivodji et al. (2019;
2021) introduce fairwashing attacks changing the model,
i.e. an adversary approximates an unfair black-box model
with a faithful surrogate model appearing as fair. Experi-
ments analyse the fidelity-unfairness trade-off and the effect
of fairwashing on impacting feature effect model explana-
tions. Further related is work concerning attacking fairness
in imaging, where Nanda et al. (2021) introduce the notion
of robustness bias, which requires all groups to be equally
susceptible to adversarial attacks. Ferry et al. (2023) con-
sider a different adversarial strategy and introduce a dataset
extraction attack to retrieve a piece of information about
a sensitive attribute based on fairness criteria. Related are
membership inference attacks on privacy using explanations
(Shokri et al., 2021; Pawelczyk et al., 2023b).

Observation 7. Research on attacking fairness methods
focuses on the notion of group fairness, i.e. treating different
groups of inputs equally, and omits subgroup or individual
fairness, i.e. predicting similarly for similar individuals (see
the distinction in Mehrabi et al., 2021a, table 1).

5. Frontier research directions in AdvXAI
We conclude by outlining research directions in AdvXAI.

Attacks. Currently most exploited by the attacks are the
first-introduced and most popular XAI methods, e.g. SHAP
and Grad-CAM. Future work on adversarial attacks may
consider targeting the more recent enhancements that aim to
overcome their limitations, e.g. SHAPR that takes into ac-
count feature dependence in tabular data (Aas et al., 2021) or
Shap-CAM for improved explanations of convolutional neu-
ral networks (Zheng et al., 2022). Alike model-specific ex-
planations of neural networks, worth assessing is the vulner-

ability of explanation methods specific to tree-based models,
e.g. TreeSHAP (Lundberg et al., 2020), but also white-box
attacks on explanations assuming prior knowledge that the
model is an ensemble of decision trees. Beyond post-hoc
explainability, adversarial attacks could target vulnerabil-
ities of the interpretable by-design deep learning models
like ProtoPNet (Chen et al., 2019a) and its extensions (e.g.
see Rymarczyk et al., 2022, and its related work). Finally,
there are adversarial attacks on model predictions that ac-
tively aim to bypass through a particular defense mechanism
(e.g. see Machado et al., 2021, table 4) and such a threat of
circumventing the defense in XAI is currently unexplored.

AdvXAI beyond classical models towards transformers.
Nowadays, the transformer architecture is the frontier of ma-
chine learning research and applications of deep learning in
practice. Thus, the adversarial robustness of explanations of
large models for various modalities like GPT (Bubeck et al.,
2023), ViT (Dosovitskiy et al., 2021), and TabPFN (Holl-
mann et al., 2023) deserves special attention. For example,
Ali et al. (2022) extend LRP explanations to transformers,
which might propagate the explanations’ vulnerability to
adversarial attacks as shown in previous work (Heo et al.,
2019; Anders et al., 2020). We acknowledge that the re-
cently proposed transformer-based foundation models, e.g.
SAM (Kirillov et al., 2023), more and more frequently in-
clude benchmarks specific to evaluating responsibility, e.g.
whether segmenting people from images is unbiased with
respect to their perceived gender presentation, age group
or skin tone (Schumann et al., 2021). The possibility of
attacking such fairness measurements by biased sampling
becomes a trust issue (Fukuchi et al., 2020).

AdvXAI beyond the image and tabular data modalities.
A majority of contributions surveyed here, so as XAI, con-
cern machine learning predictive models trained on imaging
and tabular datasets. Further work is required to evaluate
which and how severe are adversarial attacks concerning
other data modalities like language (La Malfa et al., 2021;
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Schneider et al., 2022), graphs (Hussain et al., 2022), time
series, multimodal systems, and explanations of reinforce-
ment learning agents (Olson et al., 2021).

Future work. One goal of this survey is to reiterate the
apparent insecurities in XAI, i.e. the unaddressed attacks
on explanation methods (Viering et al., 2019; Zhang et al.,
2021; Brown & Kvinge, 2022; Baniecki et al., 2022; Noppel
et al., 2023; Laberge et al., 2023). We also underline that a
possibility of manipulating fairness metrics has detrimental
consequences when applied in audit and law enforcement,
and therefore developing metrics robust against the attacks
is desirable. Note that although a particular XAI method is
attacked or defended, in fact, the evidence of model predic-
tions is in question here. Our future goal is to categorise the
surveyed attack and defense mechanisms in a way to guide
practitioners in which scenarios it is secure to use a given
model and explanation, e.g. when a researcher uses XG-
Boost with SHAP instead of logistic regression for scientific
discovery.

Ethics, impact on society, and law concerning AdvXAI.
Finally, we need to take into account the broader impact
adversarial research has on society. How does AdvXAI fit
into regulations like AI Act (Floridi, 2021), the four-fifths
rule of fairness (Watkins et al., 2022), or the right to expla-
nation (Krishna et al., 2023)? These questions are yet to be
answered. For a more philosophical consideration on expla-
nation robustness, we refer the reader to the argument by
Hancox-Li (2020) concerning epistemic and ethical reasons
for seeking objective explanations.
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A. List of abbreviations and proper names
(with references)

• Anchors: high-precision model-agnostic explanations
(Ribeiro et al., 2018)

• CAM: class activation mapping (Zhou et al., 2016)

• CNN: convolutional neural network (Lecun et al.,
1998)

• DT: decision tree (Breiman et al., 1984)

• EOdds: equalized odds (Hardt et al., 2016)

• EOpp: equal opportunity (Hardt et al., 2016)

• fairlearn software (Weerts et al., 2023)

• FFV: faceted feature visualization (Goh et al., 2021)

• GBDT: gradient boosting decision tree (Friedman,
2001)

• GBP: guided backpropagation (Springenberg et al.,
2015)

• GCN: graph convolutional network (Kipf & Welling,
2017)

• GI: gradient input (Shrikumar et al., 2017)

• Grad-CAM: gradient-weighted class activation map-
ping (Selvaraju et al., 2020)

• IG: integrated gradients (Sundararajan et al., 2017)

• IME: interactions-based method for explanation
(Štrumbelj & Kononenko, 2014)

• KNN: k-nearest neighbors (see Hastie et al., 2001, sec-
tion 13.3)

• LIME: local interpretable model-agnostic explanations
(Ribeiro et al., 2016)

• LR: logistic regression (see Hastie et al., 2001, section
4.4)

• LRP: layer-wise relevance propagation (Bach et al.,
2015)

• MLP: multi-layer perceptron (see Hastie et al., 2001,
chapter 11)

• MUSE: model understanding subspace explanations
(Lakkaraju et al., 2019)

• NB: naı̈ve Bayes (see Hastie et al., 2001, section 6.6.3)

• PDP: partial dependence plot (introduced in Friedman,
2001, section 8.2)

• PE: predictive equality (Corbett-Davies et al., 2017)

• Relevance-CAM: relevance-weighted class activation
mapping (Lee et al., 2021)

• RF: random forest (Breiman, 2001)

• RTS: real time saliency (Dabkowski & Gal, 2017)

• SG: simple gradient (Simonyan et al., 2014)

• SHAP: Shapley additive explanations (Lundberg &
Lee, 2017)

• SP: statistical (demographic) parity (see Mehrabi et al.,
2021a, section 4.1)

• SVM: support vector machine (Boser et al., 1992)

• TCAV: testing with concept activation vectors (Kim
et al., 2018)

• ViT: vision transformer (Dosovitskiy et al., 2021)

• XGBoost (Chen & Guestrin, 2016)
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Table 3. Related work concerning adversarial attacks on fairness metrics of machine learning models. We abbreviate the following:
data (D), model (M), image (I), tabular (T), graph (Gr), neural network (N), black-box (B), group (G). Appendix A lists other abbreviations.

Attack Changes strategy Modality dataset Model algorithm Fairness metric

(Aivodji et al., 2019) M surrogate model T COMPAS, Adult B RF G SP

(Fukuchi et al., 2020) D data poisoning T COMPAS, Adult B RF, LR G SP

(Solans et al., 2020) D & M data poisoning T COMPAS B LR, RF, SVM, DT, NB G SP, EOdds

(Mehrabi et al., 2021b) D & M data poisoning T Credit, COMPAS, Drug B MLP G SP, EOdds

(Nanda et al., 2021) D, M adversarial example I Adience, UTKFace, .. N VGG, ResNet, DenseNet, .. G robustness bias

(Aivodji et al., 2021) M surrogate model T Credit, COMPAS, Adult, .. B MLP, RF, AdaBoost, XGBoost G SP, PE, EOdds, EOpp

(Hussain et al., 2022) D & M data poisoning Gr Pokec, DBLP N GCN G SP, EOdds, EOpp

(Ferry et al., 2023) – data reconstruction T ACSIncome, ACSPublicCoverage B DT+fairlearn G SP, PE, EOdds, EOpp

B. Adversarial attacks on fairness metrics
See Table 3.


