
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ADDITION CIRCUIT: HOW LLMS ADD IN THEIR
HEADS USING STATE VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are often treated as black boxes, yet many of
their behaviours suggest the presence of internal, algorithm-like structures. We
present addition circuit as a concrete, mechanistic example of such a structure:
a sparse set of attention heads that perform integer addition. Focusing on two
popular open-source models (Llama 3.1 8B and Llama 3.1-70B), we make the
following contributions. (i) We extend prior work on two-argument addition to
the multi-argument setting, showing that both models employ fixed subsets of at-
tention heads specialized in encoding summands at specific positions in addition
prompts. (ii) We introduce state vectors that efficiently capture how models repre-
sent summands in their activation spaces. We find that each model learns a com-
mon representation of integers that generalizes across prompt formats and across
six languages, whether numbers are expressed as Arabic digits or word numerals.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in symbolic tasks, includ-
ing arithmetic, logic, and algorithmic reasoning, despite being trained on natural language corpora
with no explicit supervision for such skills. However, the exact mechanism by which these com-
putations are performed remains poorly understood. A deep understanding of their mathematical
reasoning capabilities becomes increasingly important as LLMs become more and more common
components of larger systems, often supporting human decision makers in critical domains such as
finance, healthcare and legal.

To address this gap, we study how Llama 3.1 8B and Llama 3.1 70B perform addition, extending
prior work beyond the standard two-argument, single-token setting (Zhang et al., 2024; Zhou et al.,
2024). Specifically, we analyze multi-argument addition of up to five integers where each summand
is a single token. Our analysis reveals a sparse set of heads reliably assigning high attention scores
to the arguments of addition, reusable addition circuit that generalizes across prompt templates and
number formats (Arabic digits and word numerals) in six languages.

Additionally, we introduce state vectors which accurately capture the representation of each sum-
mand. State vectors let us localize which parts of the model encode each argument and enable
us to perform targeted causal interventions to test whether those representations are necessary and
sufficient for correct addition.

2 RELATED WORK

Mechanistic Interpretability Mechanistic Interpretability aims at explaining model’s computa-
tions. Olah et al. (2020) argued that it is possible to discover circuits - small subsets of model’s
parameters responsible for accomplishing given task. Popular examples of circuits include modular
addition circuit (Nanda et al., 2023) and the Indirect Object Identification circuit (Wang et al., 2022)
(Ameisen et al., 2025) is a recent broad study on circuit discovery

Interventions and Vector Arithmetic Multiple works explored the idea of localizing specific
knowledge or computation in LLM’s weights by modifying model’s activations during inference
and measuring the change in its downstream behaviour (logits difference, task accuracy). Activation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

patching (Zhang & Nanda, 2024; Goldowsky-Dill et al., 2023; Turner et al., 2024), steering vectors
(Panickssery et al., 2024; Arditi et al., 2024) and function vectors (Todd et al., 2024).

LLMs and Arithmetic tasks Recent studies have increasingly focused on understanding how large
language models (LLMs) represent numbers and perform addition. Stolfo et al. (2023) investigates
arithmetic circuits and identifies key layers transferring the information required for arithmetic tasks
to the final token positions. Nanda et al. (2023) reverse-engineers the a+b mod p algorithm in a toy
model, providing a weight-level interpretation of the learned mechanism. Zhou et al. (2024) demon-
strates that GPT-2-XL leverages Fourier Features to perform addition. Similarly, Zhang et al. (2024)
describes the circuits underlying arithmetic reasoning in Llama 2-7B, Llama 2-13B, and Mistral-
7B, identifying a small set of attention heads that specialize in attending to operands and operators
across a variety of arithmetic tasks, with their importance confirmed through attention knockout ex-
periments. Concurrent to our work, Hu et al. (2025) examines the two-argument addition case and
the number representations in Llama 3.1-8B when one of the summands is not given directly but has
to be inferred in-context from a set of examples. Kantamneni & Tegmark (2025) study two-argument
addition in GPT-J, Pythia-6.9B, and Llama 3.1-8B, showing that the models embed numbers along
a multidimensional helix that can be described using just seven parameters, and apply a “clock” al-
gorithm to compute sums. Finally, Cheng et al. (2025) proposes that LLMs solve arithmetic tasks in
two stages: first by abstracting the problem, and then by performing the computation. The addition
circuit introduced in our work corresponds to this second stage.

3 METHOD

3.1 BACKGROUND AND NOTATION

We focus on autoregressive, transformer-based language models Vaswani et al. (2017). Given a
sequence of tokens t1, t2, . . . , tn from a vocabulary V , the model computes a probability distribution
over the next token. Each token is first embedded into a dmodel-dimensional space: z0

i = Embed(ti).
The resulting vectors are then passed through the L transformer layers. Each layer consists of
a Multi-Head Attention (MHA) layer followed by a feedforward MLP layer1. At each layer, all
hidden states are processed by a single MHA and a single MLP:

attli = MHAl(zl
0, . . . ,z

l
i)

mlpl
i = MLPl(zl

i + attli)

zl+1
i = zl

i + attli + mlpl
i,

The sequence of stacked hidden states {z0
1:n, z

1
1:n, . . . ,z

L
1:n} is called the residual stream (Elhage

et al., 2021). For readability, we will omit the layer index where it is clear from the context.

We adopt the notation consistent with Todd et al. (2024): the k-th attention head hk is parametrized
with four matrices WQ

k, WK
k, WV

k ∈ Rdmodel×dhead ,WO
k ∈ Rdhead×dmodel . The output of a given

head h is defined as:
h(z1:n) = AV WO, h(z1:n) ∈ Rn×dmodel ,

where

Q = z1:nWQ, Q ∈ Rn×dhead

K = z1:nWK , K ∈ Rn×dhead

V = z1:nWV , V ∈ Rn×dhead

A = softmax

(
QK⊤
√
dhead

)
, A ∈ Rn×n

In the calculation of the attention-weight matrix A, all strictly upper-triangular entries (i > j)
of QK⊤ are masked (set to −∞) to prevent the earlier tokens from attending to the subsequent
ones. The final output of the MHA can be calculated as the sum of the outputs of each of its heads
att(z1:n) =

∑nheads
k=1 hk(z1:n), where nheads =

dmodel
dhead

is the total number of attention heads per layer.

1Following Stolfo et al. (2023), we omit the Normalization Layers (Ba et al., 2016) and Positional Embed-
dings for brevity, as they are not central to our analysis.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

This is mathematically equivalent to the original formulation in Vaswani et al. (2017) using the
concatenation of all head outputs and then multiplying them by a single WO matrix. The per-head
notation used in this work makes it easier to study the effect of each attention head on the residual
stream.

Additionally, models from the Llama family Grattafiori et al. (2024) implement self-attention us-
ing Group Query Attention (GQA). All heads belonging to the same group share WK and WV

matrices for keys and values computation. The MLP layer is a gated MLP defined as MLP(zi) =
σ(ziWgate) ◦ (ziWup)Wdown, where Wgate,Wup ∈ Rd×4d, Wdown ∈ R4d×d, σ is a SiLU acti-
vation function (Elfwing et al., 2017), and ◦ represents the element-wise multiplication (Liu et al.,
2021).

Finally, the hidden state zL
n corresponding to the last token position in the output of the final layer

is multiplied by the unembedding matrix U ∈ Rd×|V| and the softmax function is applied to the
resulting vector to obtain probability distribution over the model’s vocabulary V . In this analysis,
we focus on generating the single next token by selecting the one with the highest probability.

3.2 DATASETS

We construct a dataset of addition prompts with up to 5 arguments. We observed that the simple
prompt x1 + · · · + xN = often results in the model answering by repeating the first argument of
addition. The following prompt templates were chosen to avoid this behaviour and incentivize the
model to directly output the result of addition without 2:

‘Hence, x1 + x2 + [. . .] + xN is equal to ’ (Prompt Format 1)
and

‘Alice has x1 apples, Bob has x2 apples, [. . .] has xN apples. In total, they have ’
(Prompt Format 2)

We vary the number of arguments N ∈ {2, 3, 4, 5}. In each prompt replace the argument placehold-
ers xi with either Arabic digits or numerals in one of the following languages: English, Spanish,
French, German, Portuguese, Italian. We only consider values xi ∈ [0, 99] to make sure the re-
sult can be also represented by a single token. The exact translations of prompts can be found in
Appendix A

3.3 MODELS

We test two transformer-based models: Llama 3.1 8B and Llama 3.1 70B. All three use Grouped-
Query-Attention mechanism. The configuration parameters of each of the models are presented in
Table 1. Both models tokenize all integers in the range [0, . . . , 999] as a single token.

Table 1: Comparison of model architectures.

Model Layers Heads / Layer Residual Stream
Dimension

Number of Heads
per Group

Llama 3.1 8B 32 32 4096 8
Llama 3.1 70B 80 64 8192 8

3.4 STATE VECTORS

Let Hℓ denote the set of all heads in layer ℓ. For a given prompt p and any set of heads G ⊆ Hℓ let
vi,j(p,G) be the head-restricted contribution from the hidden state at position i to the hidden state
at position j:

vi,j(p,G) =
∑
h∈G

Aℓ,h
j,i (p) z

ℓ−1
i (p)W ℓ,h

V W ℓ,h
O , (1)

2The code used to construct the dataset and perform all the experiments is available at
https://anonymous.4open.science/r/addition-6CF9/

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where Aℓ,h
j,i denotes the attention score in j-th row and i-th column of the attention matrix Aℓ,h.

We define state vector si,j(P, G) as the average head-restricted contribution vi,j(p,G) over a set of
prompts P:

si,j(P, G) =
1

|P|
∑
p∈P

vi,j(p,G) (2)

By selecting an appropriate pair of indices and an appropriate set of prompts and heads, we can
interpret state vectors as abstract representations of concepts. In section 4, we demonstrate how
both Llama 3.1 8B and Llama 3.1 70B represent the arguments of addition as state vectors and how
they reuse this representation across diverse prompts requiring integer addition.

4 ADDITION CIRCUIT

4.1 FINDING THE ADDITION CIRCUIT: MULTIPLE SINGLE-TOKEN ARGUMENTS

We will show that the addition circuit encodes each argument of addition xi using small sets of
heads Gℓ

xi
located in the middle layers of the model.

To better illustrate this idea, for each number of arguments 2 ≤ N ≤ 5 and argument position
1 ≤ i ≤ N we sampled 100 prompts and compute the average attention scores for all heads in all
layers across all prompts. We do this separately for both Prompt Format 1 and Prompt Format 2. In
Figure 1 we present the average attention scores for layer 15. As can be seen in the plot, on average,
head L15H13 specializes in attending to the argument x2. Similarly, head L15H3 specializes in
attending to x3. Additional figures for other layers and Llama 3.1 70B can be found in Appendix B.

x1 x2

0

5

10

15

20

25

30

He
ada)

N = 2

x1 x2 x3

0

5

10

15

20

25

30

He
ad

N = 3

x1 x2 x3 x4

0

5

10

15

20

25

30

He
ad

N = 4

x1 x2 x3 x4 x5

0

5

10

15

20

25

30

He
ad

N = 5

x1 x2

0

5

10

15

20

25

30

He
adb)

N = 2

x1 x2 x3

0

5

10

15

20

25

30

He
ad

N = 3

x1 x2 x3 x4

0

5

10

15

20

25

30

He
ad

N = 4

x1 x2 x3 x4 x5

0

5

10

15

20

25

30

He
ad

N = 5

0.2

0.4

0.6

0.8

Figure 1: Average attention patterns for Llama 3.1 8B Layer 15, across 100 prompts for different
numbers of arguments N using Prompt Format 1 in the top row and Prompt Format 2 in the bottom
row.

(2,
 1)

(2,
 2)

(3,
 1)

(3,
 2)

(3,
 3)

(4,
 1)

(4,
 2)

(4,
 3)

(4,
 4)

(5,
 1)

(5,
 2)

(5,
 3)

(5,
 4)

(5,
 5)

(Number of Arguments, Argument Position)

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

La
ye

r

Llama 3.1 8B

(2,
 1)

(2,
 2)

(3,
 1)

(3,
 2)

(3,
 3)

(4,
 1)

(4,
 2)

(4,
 3)

(4,
 4)

(5,
 1)

(5,
 2)

(5,
 3)

(5,
 4)

(5,
 5)

(Number of Arguments, Argument Position)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

La
ye

r

Llama 3.1 70B

Figure 2: Intervention accuracy on Llama 3.1 8B and Llama 3.1 70B models by intervening on a
single layer for different total number N of arguments and argument positions

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

To formalize this idea, we begin by finding a subset of layers responsible for processing the argu-
ments of addition. Let PN,i,c be a set of 100 randomly sampled N-argument prompts following
Prompt Format 1 such that all arguments are integers in the range [0, . . . , 99], and for each prompt
xi = c. Since all arguments are represented as a single token, all prompts in PN,i,c have the
same length |p|. For all 2 ≤ N ≤ 5, 1 ≤ i ≤ N, 0 ≤ c ≤ 99, we compute a state vector
sℓpos(xi),|p|(PN,i,c, H

ℓ). This state vector captures the average contribution from the hidden state
representing xi = c to the last token position at layer ℓ.

We use the state vectors computed above to perform the intervention. We sample a random N -
argument prompt p with xi = c and use it to perform a single forward pass through the model.
Next we randomly sample a new value c′ ̸= c and we intervene on the model’s computations by
modifying the hidden state in a single layer ℓ at the last token position in the residual stream directly
after the multi-head attention module:

zℓ
|p| ← zℓ

|p| − sℓpos(xi),|p|(PN,i,c, H
ℓ) + sℓpos(xi),|p|(PN,i,c′ , H

ℓ) (3)

Intuitively, this operation corresponds to erasing the information about the value c of the i-th argu-
ment from the residual stream and replacing it with a new value c′. Assuming that the sum of the N
arguments in the original prompt was equal to S, we consider the intervention to be successful only
if the first token returned by the model after the intervention is equal to S − c+ c′.

We perform 100 times for every layer and for every number of arguments and argument position i
and report the results in Figure 2. Notably, the interventions have a high success rate only in layers
15, 16 for Llama 3.1 8B model and layer 39 for Llama 3.1 70B model, confirming that modifying
the outputs of these layers has a causal effect on the result of addition.

Next, we want to narrow down a subset of heads specialized in encoding each of the arguments
of addition. We define sets Gℓ

xi
as k heads with the highest average attention scores assigned to

xi for 5-argument prompts. We set k = 3 for Llama 3.1 8B and k = 6 for Llama 3.1 70B. The
exact heads are listed in the Appendix C. We test the addition circuit described above by performing
100 causal interventions as described above, this time using state vectors computed using subsets of
heads Gℓ ⊂ Hℓ instead of the full set of heads. We report the results in Figure 3

2 3 4 5
Number of Arguments

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama 3.1 8B

2 3 4 5
Number of Arguments

Llama 3.1 70B

Base Model
Intervention

Figure 3: Base Model (no intervention) and Intervention accuracy using state vectors over 100
prompts in Prompt Format 1 An intervention is considered successful if the model’s output token
matches the sum of arguments with xi = c replaced by xi = c′. Shaded regions indicate the 95%
confidence interval.

Across both models and all argument positions, intervention accuracy remains above 60% and
closely follows the baseline accuracy. This provides strong evidence that (i) the state vectors capture
how the model represents each argument of addition in prompts following Prompt Format 1, and (ii)
modifying the selected head subsets identified above aha a causal influence on the final sum.

4.2 ADDITION CIRCUIT AND STATE VECTORS GENERALIZE TO OTHER PROMPT FORMATS

So far, we demonstrated that state vectors can be used to intervene on activations of the model to
causally change the value of a given argument when the input prompt follows the Prompt Format 1.
In thise section, we demonstrate that the discovered state vectors generalize to other prompt formats.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

We show this by applying the same state vectors computed in the previous section using Prompt
Format 1 by applying them to prompts in Prompt Format 2.

In contrast to the previous prompt format, Prompt Format 2 does not include mathematical symbols
other than integers, and the model needs to infer the need for adding numbers from the context.
Additionally, prompts in this format contain nouns and verbs, which could potentially obscure the
addition task and affect the values of hidden states in the residual stream.

We repeat the causal interventions as described in the previous paragraph; however, we do not
compute new state vectors using this new prompt format, but instead, we directly apply the state
vectors computed earlier using Prompt Format 1. We report the results in Figure 4

2 3 4 5
Number of Arguments

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama 3.1 8B

2 3 4 5
Number of Arguments

Llama 3.1 70B

Base Model
Intervention

Figure 4: Base Model (no intervention) and Intervention accuracy using state vectors computed for
Prompt Format 1, over 100 prompts in Prompt Format 2. An intervention is considered successful
if the model’s output token matches the sum of arguments with xi = c replaced by xi = c′. Shaded
regions indicate the 95% confidence interval.

As can be seen in the plot, the intervention accuracy closely follows the base accuracy for both
models. This shows that state vectors are not tied to a specifc prompt template but generalize across
prompts for which models have to perform addition.

4.3 STATE VECTORS ARE SEMANTIC ENTITIES

To assess the extent to which state vectors generalize, we perform interventions using the same state
vectors on prompts in other languages. Instead of representing xi using Arabic digits, we use numer-
als in different languages, for example, ”twenty-seven” instead of ”27”. This significantly changes
how each of the prompts is processed, since numerals are represented with a variable number of
tokens. Moreover, prompts can have a variable length, and numerals can start at different token
positions depending on the exact values of previous arguments.

We intervene on the activations of the model presented with prompt Prompt Format 1, where the
entire sentence and all arguments are translated to one of the 6 languages: English, German, Italian,
Spanish, Portuguese and French. The exact translations are listed in the A. The results are summa-
rized in Figure 5. The intervention accuracy closely follows the baseline accuracy of each of the
models.

The fact that state vectors computed for Prompt Format 1 generalize well to a diverse set of other
prompts shows that the model first identifies the location of each of the addition arguments and
then uses the addition circuit to perform the calculation. It provides evidence for the existence of
reusable, generalized representations emerging in the middle layers of each of the studied models,
which can be approximated using state vectors.

4.4 ADDITION CIRCUIT: TWO MULTI-TOKEN ARGUMENTS

In this section, we briefly discuss how models add two arguments represented by multiple-tokens.
As a motivational observation, consider an example prompt following the Prompt Format 1 with
argument 123123123, 45645645. As illustrated in Figure 6 Llama 3.1 8B processes the sum-
mands in three digit groups from left to right, converting each group into a single token. Moreover,
it can be seen from the plot that at each generated token, the model reuses the components from the
addition circuit described above, namely head L16H21 attends to the currently processed token of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.0

0.2

0.4

0.6

0.8

1.0

En
gl

ish

Llama 3.1 8B Llama 3.1 70B

0.0

0.2

0.4

0.6

0.8

1.0

Fr
en

ch

0.0

0.2

0.4

0.6

0.8

1.0

Ge
rm

an

0.0

0.2

0.4

0.6

0.8

1.0

Ita
lia

n

Base Model
Intervention

0.0

0.2

0.4

0.6

0.8

1.0

Sp
an

ish

2 3 4 5
Number of Arguments

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtu

ge
se

2 3 4 5
Number of Arguments

Figure 5: Intervention accuracy using state vectors computed for Prompt Format 1 with arabic nu-
merals on Prompt Format 1 in natural languages. The intervention accuracy always closely follows
the baseline accuracy of the model, demonstrating the causal effectiveness and the strong general-
ization of state vectors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

the first argument and head L15H13 attends to the currently processed token of the second argument.
This suggests that the discovered addition circuit is a part of a larger circuit performing the addition
of arguments represented with multiple tokens.

0

5

10

15

20

25

30

La
ye

r 1
4

0

5

10

15

20

25

30

La
ye

r 1
5

<|be
gin

_of
_te

xt|
> H

en
ce ,

12
3
12

3
12

3 +
45

6
45

6 45 is
 eq

ua
l to

0

5

10

15

20

25

30

La
ye

r 1
6

<|be
gin

_of
_te

xt|
> H

en
ce ,

12
3
12

3
12

3 +
45

6
45

6 45 is
 eq

ua
l to

57
9

<|be
gin

_of
_te

xt|
> H

en
ce ,

12
3
12

3
12

3 +
45

6
45

645 is
 eq

ua
l to

57
9
57

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Attention patterns in Llama 3.1 8B for the addition of two integers represented as multiple
tokens. Rows correspond to the attention heads in layers 14–16, columns show the attention patterns
for three generated tokens. For each head, only the attention scores from the final token position are
shown. The model processes both arguments by shifting its attention token by token from left to
right - currently processed tokens are marked with red lines.

5 DISCUSSION

Our findings reveal a surprisingly modular and consistent mechanism by which the Llama 3.1 8B
and Llama 3.1 70B models perform multi-argument arithmetic. Specifically, we show that individ-
ual attention heads consistently specialize in attending to specific argument positions in the addition
tasks. This pattern is consistent across a wide variety of prompt styles and numeric representa-
tions, suggesting that the model has learned an abstract, position-aware representation of addition
arguments.

One particularly striking observation is the independence of attention-based computations in the
multi-argument, single-token setting. We demonstrate that the contribution of each argument to
the final output is largely separable and can be manipulated independently using a small subset of
attention heads. These subsets are stable across the prompt format or tokenization of the numbers
indicating that the model learns representations of the summands which are semantic rather than
symbolic.

This finding supports the hypothesis that LLMs learn canonical representations for integers. Our
causal interventions confirm the causal role of these vectors: modifying the output of just a few at-
tention heads can deterministically change the output of the model in a predictable and interpretable
way.

This work contributes to the growing body of mechanistic interpretability research by providing
tools and insights for locating and manipulating localized algorithmic behaviour within large-scale
language models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

LIMITATIONS

While our proposed framework is not limited to any particular architecture or domain, the experi-
mental evidence provided in this paper focuses on LLama 3.1 family of models, and future work is
needed to verify if these results translate to other architectures

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction, 2024. URL https:
//arxiv.org/abs/2406.11717.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. https://
arxiv.org/abs/1607.06450, 2016. arXiv:1607.06450 [stat.ML].

Ziling Cheng, Meng Cao, Leila Pishdad, Yanshuai Cao, and Jackie Chi Kit Cheung. Can llms
reason abstractly over math word problems without cot? disentangling abstract formulation from
arithmetic computation, 2025. URL https://arxiv.org/abs/2505.23701.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. https://arxiv.org/abs/1702.
03118, 2017. arXiv:1702.03118 [cs.LG].

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023. URL https://arxiv.org/abs/2304.05969.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey. The llama 3 herd of
models. https://arxiv.org/abs/2407.21783, 2024. arXiv:2407.21783 [cs.AI].

Xinyan Hu, Kayo Yin, Michael I. Jordan, Jacob Steinhardt, and Lijie Chen. Understanding in-
context learning of addition via activation subspaces. https://arxiv.org/abs/2505.
05145, 2025. arXiv:2505.05145 [cs.LG].

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition.
https://arxiv.org/abs/2502.00873, 2025. arXiv:2502.00873 [cs.AI].

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps. CoRR,
abs/2105.08050, 2021. URL https://arxiv.org/abs/2105.08050.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. https://arxiv.org/abs/2301.05217,
2023. arXiv:2301.05217 [cs.LG].

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

9

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2505.23701
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2505.05145
https://arxiv.org/abs/2505.05145
https://arxiv.org/abs/2502.00873
https://arxiv.org/abs/2105.08050
https://arxiv.org/abs/2301.05217

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.
org/abs/2312.06681.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of arith-
metic reasoning in language models using causal mediation analysis. https://arxiv.org/
abs/2305.15054, 2023. arXiv:2305.15054 [cs.CL].

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David
Bau. Function vectors in large language models. https://arxiv.org/abs/2310.15213,
2024. arXiv:2310.15213 [cs.CL].

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
https://arxiv.org/abs/2308.10248.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. https://arxiv.org/abs/
1706.03762, 2017. arXiv:1706.03762 [cs.CL].

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods, 2024. URL https://arxiv.org/abs/2309.16042.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming Cheung, Xinmei Tian, Xu Shen, and Jieping
Ye. Interpreting and improving large language models in arithmetic calculation. https://
arxiv.org/abs/2409.01659, 2024. arXiv:2409.01659 [cs.CL].

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use
fourier features to compute addition. https://arxiv.org/abs/2406.03445, 2024.
arXiv:2406.03445 [cs.LG].

A TRANSLATIONS

Language Translation of the prompt ”Hence, 37 + 86 is equal to ”

English Hence, thirty seven + eighty six is equal to
German Daher ist siebenunddreißig + sechsundachtzig gleich
Italian Quindi, trentasette + ottantasei è uguale a
Spanish Por lo tanto, treinta y siete + ochenta y seis es igual a
Portuguese Portanto, trinta e sete + oitenta e seis é igual a
French Ainsi, trente-sept + quatre-vingt-six est égal à

10

https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2309.16042
https://arxiv.org/abs/2409.01659
https://arxiv.org/abs/2409.01659
https://arxiv.org/abs/2406.03445

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

B AVERAGE ACTIVATION PATTERNS

0 2 4 6 8 10 12
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30
He

ad

n_args = 4

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(a) Layer 13

0 2 4 6 8 10 12
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

5

10

15

20

25

30
He

ad

n_args = 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Layer 14

0 2 4 6 8 10 12
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(c) Layer 15

0 2 4 6 8 10 12
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(d) Layer 16

0 2 4 6 8 10 12
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(e) Layer 17

Figure 7: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1 8B
model for Prompt Format 1. Layers 14 and 15 are visibly more consistent at tracking the positions
of addition arguments.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Layer 13

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Layer 14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(c) Layer 15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(d) Layer 16

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

5

10

15

20

25

30

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(e) Layer 17

Figure 8: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1 8B
model for Prompt Format 2. Layers 14 and 15 are visibly more consistent at tracking the positions
of addition arguments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

0 2 4 6 8 10 12
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(a) Layer 38

0 2 4 6 8 10 12
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(b) Layer 39

0 2 4 6 8 10 12
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(c) Layer 40

0 2 4 6 8 10 12
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(d) Layer 41

0 2 4 6 8 10 12
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 2 4 6 8 10 12 14
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(e) Layer 42

Figure 9: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1
70B model for Prompt Format 1. Layer 39 is visibly more consistent at tracking the positions of
addition arguments.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(a) Layer 38

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(b) Layer 39

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(c) Layer 40

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(d) Layer 41

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 2

0 5 10 15 20
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 3

0 5 10 15 20 25 30
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 4

0 5 10 15 20 25 30 35
Token Position

0

10

20

30

40

50

60

He
ad

n_args = 5

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(e) Layer 42

Figure 10: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1
70B model for Prompt Format 2. Layer 39 is visibly more consistent at tracking the positions of
addition arguments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

C APPENDIX

Table 2: Sets Gℓ
xi

of attention heads encoding each of the addition arguments in the residual stream
in multi-argument prompts for layers 15 and 16

Model Layer x1 x2 x3 x4 x5

Llama 3.1 8B 15
H30
H28
H0

H13
H28
H30

H3
H28
H31

H2
H31
H28

H2
H31
H28

16
H21
H19
H20

H3
H20
H19

H3
H20
H19

H1
H20
H3

H1
H20
H11

Llama 3.1 70B 39

H13
H8
H11
H42
H12
H44

H9
H12
H11
H43
H8

H42

H9
H12
H45
H42
H11
H8

H45
H12
H9
H42
H11
H8

H45
H42
H12
H9

H11
H8

41

H59
H56
H63
H58
H62
H61

H63
H59
H56
H58
H62
H61

H63
H59
H58
H56
H62
H61

H63
H59
H58
H56
H62
H61

H59
H56
H63
H58
H62
H61

15

	Introduction
	Related Work
	Method
	Background and Notation
	Datasets
	Models
	State Vectors

	Addition Circuit
	Finding the Addition Circuit: Multiple Single-Token Arguments
	Addition Circuit and State Vectors Generalize to Other Prompt Formats
	State Vectors are Semantic Entities
	Addition Circuit: Two Multi-Token Arguments

	Discussion
	Translations
	Average Activation Patterns
	Appendix

