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ABSTRACT

Large Language Models (LLMs) are often treated as black boxes, yet many of
their behaviours suggest the presence of internal, algorithm-like structures. We
present addition circuit as a concrete, mechanistic example of such a structure:
a sparse set of attention heads that perform integer addition. Focusing on two
popular open-source models (Llama 3.1 8B and Llama 3.1-70B), we make the
following contributions. (i) We extend prior work on two-argument addition to
the multi-argument setting, showing that both models employ fixed subsets of at-
tention heads specialized in encoding summands at specific positions in addition
prompts. (ii) We introduce state vectors that efficiently capture how models repre-
sent summands in their activation spaces. We find that each model learns a com-
mon representation of integers that generalizes across prompt formats and across
six languages, whether numbers are expressed as Arabic digits or word numerals.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in symbolic tasks, includ-
ing arithmetic, logic, and algorithmic reasoning, despite being trained on natural language corpora
with no explicit supervision for such skills. However, the exact mechanism by which these com-
putations are performed remains poorly understood. A deep understanding of their mathematical
reasoning capabilities becomes increasingly important as LLMs become more and more common
components of larger systems, often supporting human decision makers in critical domains such as
finance, healthcare and legal.

To address this gap, we study how Llama 3.1 8B and Llama 3.1 70B perform addition, extending
prior work beyond the standard two-argument, single-token setting (Zhang et al., 2024; Zhou et al.,
2024). Specifically, we analyze multi-argument addition of up to five integers where each summand
is a single token. Our analysis reveals a sparse set of heads reliably assigning high attention scores
to the arguments of addition, reusable addition circuit that generalizes across prompt templates and
number formats (Arabic digits and word numerals) in six languages.

Additionally, we introduce state vectors which accurately capture the representation of each sum-
mand. State vectors let us localize which parts of the model encode each argument and enable
us to perform targeted causal interventions to test whether those representations are necessary and
sufficient for correct addition.

2 RELATED WORK

Mechanistic Interpretability Mechanistic Interpretability aims at explaining model’s computa-
tions. |Olah et al.| (2020)) argued that it is possible to discover circuits - small subsets of model’s
parameters responsible for accomplishing given task. Popular examples of circuits include modular
addition circuit (Nanda et al.|[2023)) and the Indirect Object Identification circuit (Wang et al., 2022)
(Ameisen et al., 2025) is a recent broad study on circuit discovery

Interventions and Vector Arithmetic Multiple works explored the idea of localizing specific
knowledge or computation in LLM’s weights by modifying model’s activations during inference
and measuring the change in its downstream behaviour (logits difference, task accuracy). Activation



patching (Zhang & Nanda, [2024; |Goldowsky-Dill et al., [2023}; [Turner et al|2024), steering vectors
(Panickssery et al., |2024} |Arditi et al.,[2024) and function vectors (Todd et al., 2024).

LLMs and Arithmetic tasks Recent studies have increasingly focused on understanding how large
language models (LLMs) represent numbers and perform addition. Stolfo et al.[(2023)) investigates
arithmetic circuits and identifies key layers transferring the information required for arithmetic tasks
to the final token positions. |[Nanda et al.|(2023) reverse-engineers the a+b mod p algorithm in a toy
model, providing a weight-level interpretation of the learned mechanism. Zhou et al.| (2024)) demon-
strates that GPT-2-XL leverages Fourier Features to perform addition. Similarly, Zhang et al.|(2024)
describes the circuits underlying arithmetic reasoning in Llama 2-7B, Llama 2-13B, and Mistral-
7B, identifying a small set of attention heads that specialize in attending to operands and operators
across a variety of arithmetic tasks, with their importance confirmed through attention knockout ex-
periments. Concurrent to our work, [Hu et al|(2025) examines the two-argument addition case and
the number representations in Llama 3.1-8B when one of the summands is not given directly but has
to be inferred in-context from a set of examples. |Kantamneni & Tegmark](2025) study two-argument
addition in GPT-J, Pythia-6.9B, and Llama 3.1-8B, showing that the models embed numbers along
a multidimensional helix that can be described using just seven parameters, and apply a “clock™ al-
gorithm to compute sums. Finally, Cheng et al.|(2025) proposes that LLMs solve arithmetic tasks in
two stages: first by abstracting the problem, and then by performing the computation. The addition
circuit introduced in our work corresponds to this second stage.

3 METHOD

3.1 BACKGROUND AND NOTATION

We focus on autoregressive, transformer-based language models [Vaswani et al.| (2017). Given a
sequence of tokens £y, ¢a, . . ., ¢, from a vocabulary V), the model computes a probability distribution
over the next token. Each token is first embedded into a dpeqei-dimensional space: z? = Embed(t;).
The resulting vectors are then passed through the L transformer layers. Each layer consists of
a Multi-Head Attention (MHA) layer followed by a feedforward MLP laye At each layer, all
hidden states are processed by a single MHA and a single MLP:

attt = MHA! (2], ..., 2]
mlp! = MLP!(z! + att!)
zf“ = zf + atté + mlpé,
The sequence of stacked hidden states {29, 2}, ..., 2L, } is called the residual stream (Elhage
et al.,[2021)). For readability, we will omit the layer index where it is clear from the context.

We adopt the notation consistent with |Todd et al.[(2024)): the k-th attention head h* is parametrized
with four matrices WQ’c s WKk, va € R%moder Xdead WO’C € Rt X dmoael  The output of a given
head h is defined as:

h(z1.,) = AVWy, h(zy.,) € R"Xdmeact

where
Q=z21.,Wg, QR
K =2z.,Wg, K cRV

V=21,Wy, VR
T

A = softmax (QK

\ dhead

In the calculation of the attention-weight matrix A, all strictly upper-triangular entries (i > j)
of QKT are masked (set to —o00) to prevent the earlier tokens from attending to the subsequent
ones. The final output of the MHA can be calculated as the sum of the outputs of each of its heads
att(z1.,) = Y h*(z1.,), where npeads = % is the total number of attention heads per layer.

), AGRan

"Following |Stolfo et al.[(2023), we omit the Normalization Layers (Ba et al.,[2016) and Positional Embed-
dings for brevity, as they are not central to our analysis.



This is mathematically equivalent to the original formulation in [Vaswani et al.| (2017) using the
concatenation of all head outputs and then multiplying them by a single W matrix. The per-head
notation used in this work makes it easier to study the effect of each attention head on the residual
stream.

Additionally, models from the Llama family |Grattafiori et al.| (2024) implement self-attention us-
ing Group Query Attention (GQA). All heads belonging to the same group share Wx and Wy,
matrices for keys and values computation. The MLP layer is a gated MLP defined as MLP(z;) =
0(2iWaue) © (2iWap) Wiown, Where Weye, Wy, € R Wy, € R4%4 5 s a SiLU acti-
vation function (Elfwing et al.l2017), and o represents the element-wise multiplication (Liu et al.,
2021).

Finally, the hidden state 2 corresponding to the last token position in the output of the final layer
is multiplied by the unembedding matrix U € R**IV| and the softmax function is applied to the
resulting vector to obtain probability distribution over the model’s vocabulary V. In this analysis,
we focus on generating the single next token by selecting the one with the highest probability.

3.2 DATASETS

We construct a dataset of addition prompts with up to 5 arguments. We observed that the simple
prompt x1 + --- + x = often results in the model answering by repeating the first argument of
addition. The following prompt templates were chosen to avoid this behaviour and incentivize the
model to directly output the result of addition Withoutﬁ

‘Hence, 1 + 22+ [...] + zy isequal to”’ (Prompt Format 1)
and
‘Alice has z: apples, Bob has x5 apples, [...]| has xy apples. In total, they have ’
(Prompt Format 2)

We vary the number of arguments N € {2,3,4,5}. In each prompt replace the argument placehold-
ers x; with either Arabic digits or numerals in one of the following languages: English, Spanish,
French, German, Portuguese, Italian. We only consider values z; € [0,99] to make sure the re-
sult can be also represented by a single token. The exact translations of prompts can be found in

Appendix [A]

3.3 MODELS

We test two transformer-based models: Llama 3.1 8B and Llama 3.1 70B. All three use Grouped-
Query-Attention mechanism. The configuration parameters of each of the models are presented in

Table Both models tokenize all integers in the range [0, . .., 999] as a single token.

Table 1: Comparison of model architectures.

Model Layers Heads / Layer Residual Stream Number of Heads

Dimension per Group
Llama 3.1 8B 32 32 4096 8
Llama 3.1 70B 80 64 8192 8

3.4 STATE VECTORS

Let H* denote the set of all heads in layer £. For a given prompt p and any set of heads G C H* let
v;,5(p, G) be the head-restricted contribution from the hidden state at position 4 to the hidden state
at position j:
A - £hyprls
vij(p,G) = > A (p) Z () W WS, (1)
heG

>The code used to construct the dataset and perform all the experiments is available at
https://anonymous.4open.science/r/addition-6CF9/



where AZ " denotes the attention score in j-th row and i-th column of the attention matrix A%”".

We deﬁne state vector s; (P, G) as the average head-restricted contribution v; ;(p, G) over a set of
prompts P:

50s(P.C0) = o RN @

peP

By selecting an appropriate pair of indices and an appropriate set of prompts and heads, we can
interpret state vectors as abstract representations of concepts. In section ] we demonstrate how
both Llama 3.1 8B and Llama 3.1 70B represent the arguments of addition as state vectors and how
they reuse this representation across diverse prompts requiring integer addition.

4 ADDITION CIRCUIT

4.1 FINDING THE ADDITION CIRCUIT: MULTIPLE SINGLE-TOKEN ARGUMENTS

We will show that the addition circuit encodes each argument of addition x; using small sets of
heads Gfai located in the middle layers of the model.

To better illustrate this idea, for each number of arguments 2 < N < 5 and argument position
1 <7 < N we sampled 100 prompts and compute the average attention scores for all heads in all
layers across all prompts. We do this separately for both |Prompt Format 1{and |Prompt Format 2| In
Figure[T] we present the average attention scores for layer 15. As can be seen in the plot, on average,
head L15H13 specializes in attending to the argument z5. Similarly, head L15H3 specializes in
attending to 3. Additional figures for other layers and Llama 3.1 70B can be found in Appendix [B]
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Figure 1: Average attention patterns for Llama 3.1 8B Layer 15, across 100 prompts for different

numbers of arguments N using [Prompt Format 1|in the top row and [Prompt Format 2|in the bottom
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Figure 2: Intervention accuracy on Llama 3.1 8B and Llama 3.1 70B models by intervening on a
single layer for different total number NV of arguments and argument positions



To formalize this idea, we begin by finding a subset of layers responsible for processing the argu-
ments of addition. Let Py ; . be a set of 100 randomly sampled N-argument prompts following
such that all arguments are integers in the range [0, . .., 99], and for each prompt
x; = c. Since all arguments are represented as a single token, all prompts in Py ; . have the
same length |p|. Forall2 < N < 51 <4 < N,0 < ¢ < 99, we compute a state vector
sﬁos( o),pl (]P’N_,i’c, H Z). This state vector captures the average contribution from the hidden state
representing z; = c to the last token position at layer £.

We use the state vectors computed above to perform the intervention. We sample a random N-
argument prompt p with x; = ¢ and use it to perform a single forward pass through the model.
Next we randomly sample a new value ¢’ # c¢ and we intervene on the model’s computations by
modifying the hidden state in a single layer ¢ at the last token position in the residual stream directly
after the multi-head attention module:

¢ ¢ ¥ 14 ¢ 4
Zip| 4 Zjp| = Spos(aa), ol PNier HY) + Spos(a, 1pl PN iers HY) 3)

Intuitively, this operation corresponds to erasing the information about the value c of the i-th argu-
ment from the residual stream and replacing it with a new value ¢’. Assuming that the sum of the N
arguments in the original prompt was equal to .S, we consider the intervention to be successful only
if the first token returned by the model after the intervention is equal to S — ¢ + ¢'.

We perform 100 times for every layer and for every number of arguments and argument position
and report the results in Figure[2] Notably, the interventions have a high success rate only in layers
15, 16 for Llama 3.1 8B model and layer 39 for Llama 3.1 70B model, confirming that modifying
the outputs of these layers has a causal effect on the result of addition.

Next, we want to narrow down a subset of heads specialized in encoding each of the arguments
of addition. We define sets Gﬁ as k heads with the highest average attention scores assigned to
x; for 5-argument prompts. We set k = 3 for Llama 3.1 8B and £ = 6 for Llama 3.1 70B. The
exact heads are listed in the Appendix [C] We test the addition circuit described above by performing
100 causal interventions as described above, this time using state vectors computed using subsets of
heads G* C H instead of the full set of heads. We report the results in Figure
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Figure 3: Base Model (no intervention) and Intervention accuracy using state vectors over 100
prompts in An intervention is considered successful if the model’s output token
matches the sum of arguments with x; = ¢ replaced by x; = ¢. Shaded regions indicate the 95%
confidence interval.

Across both models and all argument positions, intervention accuracy remains above 60% and
closely follows the baseline accuracy. This provides strong evidence that (i) the state vectors capture

how the model represents each argument of addition in prompts following [Prompt Format 1} and (ii)
modifying the selected head subsets identified above aha a causal influence on the final sum.

4.2 ADDITION CIRCUIT AND STATE VECTORS GENERALIZE TO OTHER PROMPT FORMATS

So far, we demonstrated that state vectors can be used to intervene on activations of the model to

causally change the value of a given argument when the input prompt follows the [Prompt Format
In thise section, we demonstrate that the discovered state vectors generalize to other prompt formats.



We show this by applying the same state vectors computed in the previous section using
by applying them to prompts in

In contrast to the previous prompt format, does not include mathematical symbols
other than integers, and the model needs to infer the need for adding numbers from the context.
Additionally, prompts in this format contain nouns and verbs, which could potentially obscure the
addition task and affect the values of hidden states in the residual stream.

We repeat the causal interventions as described in the previous paragraph; however, we do not
compute new state vectors using this new prompt format, but instead, we directly apply the state

vectors computed earlier using We report the results in Figure ]

Llama 3.1 8B Llama 3.1 70B

o ]| 3

—e— Base Model
Intervention

Accuracy
o
o
|

=}
IS
L

o
N

o
=}

T T T T T T T T
2 3 4 5 2 3 4 5
Number of Arguments Number of Arguments

Figure 4: Base Model (no intervention) and Intervention accuracy using state vectors computed for
over 100 prompts in [Prompt Format 2] An intervention is considered successful
if the model’s output token matches the sum of arguments with x; = c replaced by z; = ¢/. Shaded
regions indicate the 95% confidence interval.

As can be seen in the plot, the intervention accuracy closely follows the base accuracy for both
models. This shows that state vectors are not tied to a specifc prompt template but generalize across
prompts for which models have to perform addition.

4.3 STATE VECTORS ARE SEMANTIC ENTITIES

To assess the extent to which state vectors generalize, we perform interventions using the same state
vectors on prompts in other languages. Instead of representing x; using Arabic digits, we use numer-
als in different languages, for example, “twenty-seven” instead of ”27”. This significantly changes
how each of the prompts is processed, since numerals are represented with a variable number of
tokens. Moreover, prompts can have a variable length, and numerals can start at different token
positions depending on the exact values of previous arguments.

We intervene on the activations of the model presented with prompt where the
entire sentence and all arguments are translated to one of the 6 languages: English, German, Italian,
Spanish, Portuguese and French. The exact translations are listed in the [A] The results are summa-
rized in Figure 5] The intervention accuracy closely follows the baseline accuracy of each of the
models.

The fact that state vectors computed for [Prompt Format I] generalize well to a diverse set of other
prompts shows that the model first identifies the location of each of the addition arguments and
then uses the addition circuit to perform the calculation. It provides evidence for the existence of
reusable, generalized representations emerging in the middle layers of each of the studied models,
which can be approximated using state vectors.

4.4 ADDITION CIRCUIT: TWO MULTI-TOKEN ARGUMENTS

In this section, we briefly discuss how models add two arguments represented by multiple-tokens.
As a motivational observation, consider an example prompt following the with
argument 123123123, 45645645. As illustrated in Figure [6] Llama 3.1 8B processes the sum-
mands in three digit groups from left to right, converting each group into a single token. Moreover,
it can be seen from the plot that at each generated token, the model reuses the components from the
addition circuit described above, namely head L16H21 attends to the currently processed token of
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Figure 5: Intervention accuracy using state vectors computed for [Prompt Format 1| with arabic nu-
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the baseline accuracy of the model, demonstrating the causal effectiveness and the strong general-

ization of state vectors.



the first argument and head L15H13 attends to the currently processed token of the second argument.
This suggests that the discovered addition circuit is a part of a larger circuit performing the addition
of arguments represented with multiple tokens.
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Figure 6: Attention patterns in Llama 3.1 8B for the addition of two integers represented as multiple
tokens. Rows correspond to the attention heads in layers 14—16, columns show the attention patterns
for three generated tokens. For each head, only the attention scores from the final token position are
shown. The model processes both arguments by shifting its attention token by token from left to
right - currently processed tokens are marked with red lines.

5 DISCUSSION

Our findings reveal a surprisingly modular and consistent mechanism by which the Llama 3.1 8B
and Llama 3.1 70B models perform multi-argument arithmetic. Specifically, we show that individ-
ual attention heads consistently specialize in attending to specific argument positions in the addition
tasks. This pattern is consistent across a wide variety of prompt styles and numeric representa-
tions, suggesting that the model has learned an abstract, position-aware representation of addition
arguments.

One particularly striking observation is the independence of attention-based computations in the
multi-argument, single-token setting. We demonstrate that the contribution of each argument to
the final output is largely separable and can be manipulated independently using a small subset of
attention heads. These subsets are stable across the prompt format or tokenization of the numbers
indicating that the model learns representations of the summands which are semantic rather than
symbolic.

This finding supports the hypothesis that LLMs learn canonical representations for integers. Our
causal interventions confirm the causal role of these vectors: modifying the output of just a few at-
tention heads can deterministically change the output of the model in a predictable and interpretable
way.

This work contributes to the growing body of mechanistic interpretability research by providing
tools and insights for locating and manipulating localized algorithmic behaviour within large-scale
language models.



LIMITATIONS

While our proposed framework is not limited to any particular architecture or domain, the experi-
mental evidence provided in this paper focuses on LLama 3.1 family of models, and future work is
needed to verify if these results translate to other architectures
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Figure 7: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1 8B

model for [Prompt Format 1] Layers 14 and 15 are visibly more consistent at tracking the positions
of addition arguments.
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(e) Layer 17
Figure 8: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1 8B

model for [Prompt Format 2] Layers 14 and 15 are visibly more consistent at tracking the positions
of addition arguments.
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Figure 9: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1

70B model for Layer 39 is visibly more consistent at tracking the positions of
addition arguments.
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Figure 10: Average attention patterns over 100 random prompts for middle layers of the Llama 3.1

70B model for Layer 39 is visibly more consistent at tracking the positions of
addition arguments.
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C APPENDIX

Table 2: Sets Gﬁi of attention heads encoding each of the addition arguments in the residual stream
in multi-argument prompts for layers 15 and 16

Model Layer | 3 To T3 Ty T

H30 | H13 | H3 H2 H2

15 H28 | H28 | H28 | H31 | H31
HO | H30 | H31 | H28 | H28
H21 | H3 H3 Hl1 Hl1

16 H19 | H20 | H20 | H20 | H20
H20 | H19 | H19 | H3 | H11
H13 | H9 H9 | H45 | H45
H8 | H12 | H12 | H12 | H42
39 H11 | H11 | H45 | H9 | HI2
Llama 3.1 70B H42 | H43 | H42 | H42 | H9

H12 | H8 | H11 | H11 | H11
H44 | H42 | HS8 HS H8

H59 | H63 | H63 | H63 | H59
H56 | H59 | H59 | H59 | H56
H63 | H56 | H58 | H58 | H63
H58 | H58 | H56 | H56 | H58
H62 | H62 | H62 | H62 | H62
H61 | H61 | H61 | H61 | H61

Llama 3.1 8B

41
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