
Data Augmentation for Supervised Graph Outlier Detection via
Latent Diffusion Models

Kay Liu† Hengrui Zhang† Ziqing Hu§ Fangxin Wang† Philip S. Yu†
†University of Illinois Chicago §University of Notre Dame

{zliu234, hzhan55, fwang51, psyu}@uic.edu zhu4@nd.edu

Abstract
A fundamental challenge confronting supervised graph outlier detection algo-
rithms is the prevalent problem of class imbalance, where the scarcity of outlier
instances compared to normal instances often results in suboptimal performance.
Recently, generative models, especially diffusion models, have demonstrated their
efficacy in synthesizing high-fidelity images. Despite their extraordinary genera-
tion quality, their potential in data augmentation for supervised graph outlier de-
tection remains largely underexplored. To bridge this gap, we introduce GODM,
a novel data augmentation for mitigating class imbalance in supervised Graph
Outlier detection via latent Diffusion Models. Extensive experiments conducted
on multiple datasets substantiate the effectiveness and efficiency of GODM. The
case study further demonstrated the generation quality of our synthetic data. To
foster accessibility and reproducibility, we encapsulate GODM into a plug-and-
play package and release it at PyPI: https://pypi.org/project/godm/.

1 Introduction

Graph outlier detection has emerged as a popular and important area of research and practice in graph
machine learning [1–3]. Graph outlier detection focuses on detecting outliers within graph-structured
data that significantly deviate from standard patterns. It has been proven valuable in domains such
as fraud detection [4], fake news detection [5], spam detection [6], anti-money laundering [7], etc.
Despite the advancements in graph outlier detection techniques, similar to supervised outlier detection
on other data modalities, graph outlier detection suffers a fundamental challenge known as class
imbalance. This challenge manifests as a significantly lower number of positive instances (outliers)
compared to negative instances (inliers). For example, the ratio of positive to negative is only 1:85
on DGraph dataset [4], reflecting the extreme ratio in real-world financial fraud detection scenarios.
This class imbalance problem poses challenges in the training of graph outlier detectors and often
results in suboptimal performance. Specifically, as the negative instances dominate the training data,
the loss function can be biased towards the majority of the negative class and, hence, exhibit poor
generalization capability in identifying true outliers.

Data
Augmentation

Graph Oultier
Detector

Original Graph Real Data

Synthetic Data

real inlier real outlier synthetic outlier

Figure 1: An toy example of data augmentation
for class imbalance in graph outlier detection.

Common practices mitigate this imbalance by up-
sampling or downsampling [8]. Upsampling aug-
ments the minority positive class by replicating
outliers, whereas downsampling reduces the size
of the majority negative class by randomly drop-
ping normal instances. However, these methods
often have their own risks, such as overfitting out-
liers in upsampling or the loss of valuable training
data through downsampling. Another common
approach to alleviate class imbalance is through
instance reweighting in the loss function, assign-
ing greater weights to outliers and less weights to

K. Liu et al., Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models. Proceed-
ings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29,
2024.

https://pypi.org/project/godm/

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

inliers. This approach is mathematically equivalent to upsampling and downsampling, thereby having
a similar problem. For a more comprehensive summary of previous methods, please refer to Appendix
A. These challenges underscore the need for more sophisticated data augmentation methods that can
generate some synthetic data to balance the class distribution in the training data, thereby improving
the performance of graph outlier detection, as Figure 1 shows.

In recent years, generative models, particularly diffusion models, have achieved significant ad-
vancements in synthesizing high-fidelity image data [9]. Diffusion models capture intricate data
distributions and generate high-quality samples by gradually denoising the samples from a simple
prior distribution (e.g., Gaussian distribution). Diffusion models provide more generative power
compared to variational autoencoders and offer more stable training than generative adversarial
networks. On graph data, although some works have explored the possibility of diffusion on molecu-
lar graphs [10, 11], few studies have been conducted to apply diffusion models to tackle the class
imbalance problem in the task of graph outlier detection. However, existing diffusion models can
hardly be directly adapted to large-scale graph outlier detection applications due to the following
non-trivial challenges: (1) Heterogeneity: Unlike relatively simple molecular graphs, the information
contained in graphs for outlier detection can be highly heterogeneous, including high dimensional
features and more than one type of edge, even temporal information. Existing diffusion models
are primarily designed for monotypic information, exemplified by the RGB channels in image data.
(2) Efficiency: In the application of graph outlier detection, e.g., financial fraud detection, the graphs
are typically much larger than molecular graphs, up to millions, even billions scale. The prohibitive
computational cost of diffusion models hinders their direct application in outlier detection on large
graphs. (3) Condition: As we only want to generate outliers rather than normal nodes in synthetic
graphs, conditional generation is required to mitigate the problem of class imbalance.

To bridge this gap, we apply diffusion models in graph outlier detection and propose a data aug-
mentation for mitigating class imbalance in supervised Graph Outlier detection via latent Diffusion
Models (GODM). Our main idea is to generate outliers in graph space while conducting diffusion in
latent space. To address heterogeneity, we propose Variational Encoder to map the heterogeneous
information inherent within the graph data into a unified latent space. In addition, Graph Generator
synthesizes different types of information back to graph space from the latent embedding. To alleviate
the efficiency problem, instead of direct diffusion in graph space, we only conduct diffusion in the
latent space crafted by the variational encoder. Furthermore, we use negative sampling and graph
clustering to reduce the computational cost. For diffusion models, we also adopt EDM [12] instead
of commonly used DDPM [13] to facilitate the generation efficiency of Latent Diffusion Model. For
the condition, we not only give a class label to the variational encoder to form node embedding with
class information but also conduct conditional generation on both Latent Diffusion Model and Graph
Generator. Finally, our heterogeneous, efficient, and conditional GODM can generate graphs with
outliers that are integrated with the original real graph for the training of the downstream graph outlier
detector. Importantly, GODM is model agnostic, providing researchers and practitioners with the
flexibility to integrate it across various graph outlier detectors. To foster accessibility, we make our
code a plug-and-play package, which can be easily adopted on PyG Data object.

2 Preliminary
In this section, we establish the notation adopted in the subsequent sections and rigorously formulate
the problem of data augmentation for addressing class imbalance in supervised graph outlier detection.

2.1 Notation

Let G = (V, E ,X,y, t,p) denotes a graph with n nodes, where V = {vi}ni=1 is the set of nodes,
and E = {eij} represents the set of edges. Here, eij = (vi, vj) denotes an edge between node vi
and node vj . The matrix X ∈ Rn×d contains d-dimensional feature vectors xi for each node vi.
y ∈ {0, 1}n represents the vector of the node label yi for each node vi, where 0 denotes an inlier,
while 1 denotes an outlier. t = {tij} ∈ N and p = {pij} ∈ {1, . . . , P} are the optional non-negative
integer edge timestamp and edge type, respectively, where P is the number of edge types.

2.2 Problem Formulation

In this paper, we focus on the task of graph outlier detection, which is formally defined as:

2

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Graph
Clustering

GNN

Graph
Ensemble

...

Graph Generator

Edge Type:

Variational EncoderGraph Partitions

Variational Autoencoder in Graph Space Latent Diffusion Model

Feature:

Edges:

Timestamp:

Negative
Sampling

Reverse Denoising Process

positive edge negative edgereal inlier real outlier synthetic outlier

Denoising Function

Forward Diffusion Process

...

Figure 2: The architecture of proposed data augmentation method GODM.

Definition 1 (Graph Outlier Detection) In this paper, we focus on node level outlier detection.
Given a graph G, graph outlier detection can be regarded as a binary classification task that learns a
detector D : vi → {0, 1} that classifies every node in G to an inlier (0) or an outlier (1).

In the task of graph outlier detection, we aim to mitigate class imbalance by data augmentation:

Definition 2 (Data Augmentation for Class Imbalance) In outlier detection, the number of inliers
is far more than the number of outliers, i.e., |{vi | yi = 0}| ≫ |{vi | yi = 1}|. We aim to
learn a parameterized data augmentation model to generate realistic and diverse synthetic graph
Ĝ = (V̂, Ê , X̂, ŷ, t̂, p̂), where ŷi = 1,∀vi ∈ V̂ . The synthetic graph Ĝ is integrated with the original
graph G to alleviate the class imbalance in the training of the graph outlier detector D.

3 Methodology
In this section, we elaborate on the proposed data augmentation method GODM.

3.1 Overview

Figure 2 shows the architecture of GODM. It starts by partitioning the input graph G with graph
clustering algorithms and conducting negative sampling on edges to reduce memory consumption.
Subsequently, each partitioned subgraph is encoded into a latent space representation denoted by
Z0 through Variational Encoder based on graph neural networks (GNNs), followed by a forward
diffusion Z0 → ZS in the latent space, where S is the maximum step in the diffusion model. The
reverse denoising process ẐS → Ẑ0 iteratively estimates the noise and generates the latent embedding
Ẑ0 from a predefined prior distribution p(ẐS) using a denoising function, which is a multi-layer
perceptron (MLP), conditioned on class labels ŷ. Graph Generator employs the latent representations
Ẑ0 to conditionally reconstruct the node features and graph structures alongside other information
available in the original real graph. By ensembling generated information, we are able to obtain Ĝ that
contains the nodes that are statistically similar to the real outliers. This synthetic graph Ĝ, in concert
with the original graph G, is leveraged to the training of the downstream graph outlier detector D.

3.2 Variational Encoder

Graph data is inherently complex and heterogeneous, containing both node feature X and graph
structure E , sometimes also partial node labels y, temporal information t, and edge types p. However,
current diffusion models are mainly designed for monotypic information (e.g., the magnitude of RGB
channels in images). To bridge this gap, we adopt a GNN-based Variational Encoder E : G → Z to
map different types of information in the graph space into a unified latent space.

3

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Node Feature. To encode the node feature into the latent space, we take the feature of each node as
the initial embedding for the input of the encoder, i.e., h0

i = xi.

Class Label. As we only generate outliers by conditional generation, we encode node labels y = {yi}
into the initial node embedding by: h0

i = xi +wC
E · yi, where wC

E ∈ Rd is a linear transformation.

Graph Structure. Graph neural networks (GNNs) have emerged as a profound architecture for learn-
ing graph data. GNNs efficaciously learn the node representations by encoding the graph topology
and node feature simultaneously with message passing. In this paper, we take GraphSAGE [14] as
an example. For each layer of GraphSAGE, each node updates its embedding by aggregating the
message within the neighborhood:

hl
i = ACT(Wl · CAT(hl−1

i ,AGG({ml
ij ,∀eij ∈ E}), (1)

where hl
i is the node embedding for node vi in the l−th layer, ml

ij is the edge-wise message of edge

eij , and ACT is a non-linear activation function. Wl ∈ Rdl×2dl−1

is the linear transformation, where
dl and dl−1 are the hidden dimension of l-th layer and (l − 1)-th layer, respectively. While CAT
represents concatenation, AGG denotes the aggregation function (e.g., mean). In vanilla GraphSAGE,
an edge-wise message is the embedding of source node vj from the last layer ml

ij = hl−1
j .

Edge Type. However, sometimes, we have different types of edges in graphs, known as heterogeneous
graphs or heterogeneous information networks [15, 16]. As different edge types can encapsulate
various semantics, encoding edge types can be important for the downstream task. Therefore,
we add the edge type information to the edge-wise message ml

ij = hl−1
j + WP · ϕ(pij), where

WP ∈ Rdl−1×P is a linear transformation for edge type, and ϕ is the one-hot encoding.

Edge Time. In addition, temporal information is critical in time series applications [17]. When edge
time is available, we are also able to encode the timestamp to the edge-wise message with temporal
embedding: ml

ij = hl−1
j +WT · TE(tij , ·), where WT ∈ Rdl−1×dl−1

is the linear transformation
for edge time, and TE is the trigonometric temporal embedding [18].

By stacking multiple layers, GNNs are capable of encoding both node features and neighborhood
graph structures into independent and identically distributed (i.i.d.) node embedding Z, which can be
further leveraged by Latent Diffusion Model. To ease the generation for Latent Diffusion Model, we
use Variational Encoder, which outputs two different matrixes:

µ = GNNµ(GNNshared(G)), logσ = GNNσ(GNNshared(G)), (2)

where µ is the matrix of mean and log σ is the matrix of log standard deviation. While GNNshared is
the shared GNN head, GNNµ and GNNσ are specifically for µ and σ, respectively. Then, the latent
space embedding Z can be obtained via the parameterization trick:

Z = µ+ σ · ε, ε ∼ N (0, I), (3)

where N (0, I) refers to a multivariate normal (or Gaussian) distribution with a mean of 0 and a
covariance of I , where 0 denotes a zero vector, and I represents a identity matrix.

3.3 Graph Generator

Graph Generator G : Ẑ → Ĝ take the opposite process of Variational Encoder, generating
Ĝ = (V̂, Ê , X̂, ŷ, t̂, p̂) given the latent space embedding Ẑ. Each row ẑi in the embedding Ẑ

is corresponding to a generated node v̂i in V̂ .

Class Label. Recall that our goal is exclusively generating outliers with positive labels. Consequently,
rather than generating class labels, we take the desired labels as an input for conditional graph
generation. Specifically, the class label is added to the embedding: ẑCi = ẑi +wC

G · ŷi, where ẑi is
the i-th row of Ẑ and ẑCi is embedding with class condition. wC

G ∈ RdL

is the linear transformation
for the class label, and dL is the output dimension of the L-th layer of the encoder, i.e., the latent
embedding dimension of ẑi.

Node Feature. To generate the node feature X̂ from the latent space embedding, for the i-th row of
X̂, we take the embedding with class condition ẑCi as input:

x̂i = WF
G · ẑCi , (4)

4

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

where WF
G ∈ Rd×dL

is a learnable linear transformation matrix for node feature generation.

Graph Structure. The generation of graph structures denoted by the set of inferred edges Ê requires
link prediction between all pairwise combinations of nodes within the graph. The predicted edge score
êij can be formulated as: êij = sigmoid(wE

G ·CAT(ẑCi , ẑ
C
j)),∀(v̂i, v̂j) ∈ V̂ × V̂ , where wE

G ∈ R2dL

is the linearn transformation for the edge generation. The generated edges are determined as follows:

Ê = {(v̂i, v̂j) | êij ≥ 0.5} (5)

Edge Type. With the generated edges in hand, we can predict the type of every generated edge:

p̂ij = softmax(WP
G · CAT(ẑCi , ẑ

C
j)),∀(v̂i, v̂j) ∈ Ê , (6)

where WP
G ∈ RP×2dL

is the learnable linear transformation weight for the edge type prediction.

Edge Time. Similarly, the timestamp of generated edges can be predicted as follows:

t̂ij = wT
G · CAT(ẑCi , ẑ

C
j),∀(v̂i, v̂j) ∈ Ê , (7)

where wT
G ∈ R2dL

is the weight for the edge timestamp regression.

3.4 Latent Diffusion Model

Utilizing Variational Encoder and Graph Generator, synthetic graph generation is already feasible.
Nonetheless, the inherent complexity and heterogeneity of graph data pose a significant challenge
when attempting a one-step estimation from a simple prior distribution, such as a Gaussian distribution,
to the intricate target distribution. This challenge often leads to compromised generation quality and
results in a marginal effect on the downstream graph outlier detection. Therefore, we integrate Latent
Diffusion Model [9] to break down the estimation into a sequence of incremental steps. In each step,
Latent Diffusion Model incrementally refines the distribution estimated, bridging the divergence
between the simple prior and the intricate target distribution.

Latent Diffusion Model consists of a pair of processes. A fixed forward diffusion process {Z(s)}Ss=0,
where s ∈ [0, S] is a continuous diffusion step, which perturbs the original data Z(0) = Z by
the gradually adding Gaussian noise to obtain Z(S) ∼ N (0, I), and a reverse denoising process
{Ẑ(s)}Ss=0 employs a learned denoising function ϵθ to iteratively denoise the sampled noise from
a simple prior distribution Ẑ(S) to obtain Ẑ = Ẑ(0). In order to speed up the generation process,
we adopt EDM [12] as our diffusion model. For the detailed design of forward process and reverse
process, please refer to Appendix B.1 and B.2, respectively.

3.5 Training

Conventional graph generative models are highly constrained in scalability. Typical graph generative
models are working molecular graphs that are at hundreds node scale [19]. However, outlier detection
graphs are usually much larger, scaling to millions, even billions. Efficient training of generative
models on large graphs requires special designs. We propose to apply negative sampling and graph
clustering to improve the scalability of GODM.

Negative Sampling. In the graph structure generation, if the training of the generator includes every
pair of nodes, this leads to a computational complexity of O(n2). This parabolic complexity is
catastrophic for large graphs (e.g., millions scale). Furthermore, it will result in a high imbalance in
the training of the edge predictor itself. Negative sampling emerges as a crucial technique to reduce
computational cost and alleviate the imbalance. To form a concise training set Ē for edge generator,
apart from adding the positive edge, i.e., {ēij = 1 | eij ∈ E}, we randomly select a negative edge (a
pair of nodes that is not connected) corresponding to every positive edge, {ēĩj̃ = 0 | eĩj̃ /∈ E}. By
this means, we reduce the complexity from O(n2) to O(|E|).
Graph Clustering. When the graph scales to millions of nodes, full-batch training becomes im-
practical, even with negative sampling. In addition, traditional neighbor sampling methods are
well-suited in our case, as we need to reconstruct both the node feature and graph structure (i.e.,

5

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

edges). Specifically, node sampling cannot gather complete information for edge prediction, while
edge sampling favors the nodes with a high degree. To address these challenges, we resort to graph
clustering inspired by [20]. We first apply graph clustering algorithms (e.g., Metis [21]) to divide the
large graph into small partitions. Then, we form mini-batches with partitioned subgraphs and train
GODM on each mini-batch instead of the whole large graph.

Leveraging these two techniques, we are able to efficiently train GODM in two steps. We first train
Variational Encoder and Graph Generator to bridge the graph space and latent space. Then, we train
the diffusion model in the latent space.

Variational Encoder and Graph Generator. By integrating Variational Encoder and Graph Gener-
ator, we are able to train both of them in a variational autoencoder (VAE) fashion. We reconstruct
the node feature with MSE (mean squared error): ℓX = 1

|V|
∑

vi∈V ∥xi − x̂i∥22, where ∥ · ∥2
denotes the L2 norm. Then, we predict the edges in the training edge set Ē with binary cross
entropy loss: ℓE = − 1

|Ē|
∑

ēij∈Ē(ēij log(êij) + (1 − ēij log(1 − êij))). Similarly, we reconstruct

the timestamp with MSE loss: ℓt = 1
|E|

∑
eij∈E(tij − t̂ij)

2, and edge type with cross-entropy loss:
ℓp = − 1

|E|
∑

eij∈E pij log(p̂ij). We can obtain the total loss by the sum up of all reconstruction loss
and the KL divergence loss:

LVAE = ωXℓX + ωEℓE + ωtℓt + ωpℓp + βℓkl, (8)

where ωX, ωE , ωt, and ωp are the weights adjusting the values of each term in the reconstruction loss
to a comparable scale. The ℓkl is the KL divergence loss between the latent space embedding and prior
distribution (e.g., Gaussian distribution). However, as we have an additional Latent Diffusion Model,
we loosen this regularization on the latent embedding. Consequently, we use a small hyperparameter
weight β < 1 to encourage the model to minimize reconstruction error while ensuring that the
resultant embedding shape remains within the desired shape. The training of the VAE, consisting of
Variational Encoder and Graph Generator, is presented in Algorithm 1 in Appendix C.

Latent Diffusion Model. Once obtain the well-trained Variational Encoder and Graph Generator, we
start to train Latent Diffusion Model via denoising score matching. We train a multi-layer perceptron
(MLP) as the denoising function ϵθ for denoising score matching:

minEZ0∼p(Z0)EZs∼p(Zs|Z0)∥ϵθ(Zs
C , s)− ε∥22, (9)

where Zs
C = Zs + yWC ,WC ∈ R1×dL

, encoding class label for conditional generation, and ε is
the noise. More details about the training of Latent Diffusion Model are available in Appendix B.3.
The entire training process of Latent Diffusion Model is summarized in Algorithm 2 in Appendix C.

3.6 Inference

The well-trained GODM is utilized in the inference process, augmenting real organic data by generated
data. We first sample ẐS from Gaussian distribution. Then, we iteratively denoise Ẑsi to obtain
Ẑsi−1 conditioned on ŷ = 1 via denoising function ϵθ. The estimated Ẑ0 is fed into Graph Generator
along with ŷ to generate synthetic graph Ĝ. Finally, the augmented graph Gsub, which integrates the
synthetic graph Ĝ and the real organic graph G, is used for training the downstream outlier detector
D. Algorithm 3 in Appendix C presents the whole procedure of inference.

3.7 Complexity Analysis

To provide insights for handling large graphs which are common in real-world applications of graph
outlier detection, we analyze the time efficiency and memory scalability of GODM in Appendix D.

4 Experiments

In this section, we systematically delineate the experiments to evaluate GODM. The code implemen-
tation of GODM is publicly available at: https://github.com/kayzliu/godm.

6

https://github.com/kayzliu/godm

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Table 1: Performance in AUC, AP, and Rec (%) on four datasets.

Dataset Weibo Tolokers Questions Elliptic
Metric AUC AP Rec AUC AP Rec AUC AP Rec AUC AP Rec

GCN [22] 98.11 93.48 89.34 74.69 42.88 42.06 69.81 12.54 16.99 82.68 22.23 27.61
SGC [23] 98.66 92.46 87.90 70.67 38.03 35.98 69.88 10.13 15.62 73.02 11.44 9.14
GIN [24] 97.47 92.67 87.90 74.05 36.57 36.76 67.76 12.30 18.36 84.38 29.66 35.64
GraphSAGE [14] 96.54 89.25 86.17 79.42 48.65 46.42 71.69 17.63 21.10 85.31 37.52 36.20
GAT [25] 94.08 90.25 86.74 77.26 43.14 43.30 70.33 14.51 17.26 84.42 23.43 27.42
GT [26] 97.06 91.44 87.03 79.24 46.22 46.57 70.83 16.14 20.27 87.14 29.91 38.97
GAS [27] 94.88 90.70 86.74 76.91 47.35 45.02 64.50 13.61 17.53 87.81 40.03 44.78
DCI [28] 93.90 87.78 83.86 75.98 39.85 40.19 67.95 14.58 19.18 81.93 27.63 33.15
PCGNN [29] 90.89 84.57 79.83 72.18 37.52 36.76 68.38 14.79 16.99 86.50 42.66 43.77
GATSep [30] 96.72 91.55 89.05 79.63 46.08 46.73 69.96 15.98 19.18 83.89 21.46 21.15
BernNet [31] 93.85 88.00 85.30 76.20 42.20 42.21 70.80 16.04 17.53 82.01 20.52 23.55
AMNet [32] 95.88 89.74 85.59 75.83 42.66 41.90 69.71 17.02 19.18 80.06 16.73 17.17
BWGNN [33] 98.29 92.72 84.73 80.15 49.65 47.35 69.47 16.24 18.63 84.32 22.56 26.50
GHRN [34] 97.21 92.67 88.18 79.80 49.50 48.29 68.24 16.24 18.63 85.36 24.01 30.29
DAGAD [35] 98.54 83.36 90.78 77.69 33.94 44.39 71.21 6.88 20.55 85.62 26.18 40.54
GOVAE (ours) 99.46 96.84 93.08 83.42 53.85 52.49 75.73 19.13 23.84 83.93 36.66 42.66
GODM (ours) 99.57 97.54 93.08 83.46 52.95 52.96 76.84 20.48 24.66 89.77 43.92 53.92

4.1 Experimental Setups

To benchmark GODM and contemporary methods, we conduct experiments in a unified environment
partially adapted from GADBench [3]. The implementation details are described in Appendix E.

4.1.1 Datasets

We use five different datasets from GADBench. Table 4 in Appendix F provides the statistics of
the datasets. Weibo, Elliptic, Tolokers, and Questions are homogeneous static graphs. DGraph is a
heterogeneous temporal graph with different types of edges. The graphs vary in scale, ranging from
thousands to millions of nodes. Detailed descriptions of datasets are available in Appendix F.

4.1.2 Baselines

In our experiments, we evaluate GODM against different types of baseline methods. We have three
types of baseline methods. For general graph neural networks, we choose: GCN [22], SGC
[23], GIN [24], GraphSAGE [14], GAT [25], and GT [26]. For heterogeneous graphs, despite the
rich literature, limited heterogeneous GNNs can cope with temporal information. As one of the
representatives, we chose HGT [18] for our baseline. In addition to general GNNs, we also include
eight graph outlier detectors: GAS [27], DCI [28], PCGNN [29], BernNet [31], GATSep [30],
AMNet [32], and GHRN [34]. Because the data augmentation for graph outlier detection is a
relatively new research topic, there are limited baselines. We compare with DAGAD [35], which is
for homogeneous graphs. In addition, we introduce GOVAE, a variational autoencoder-only variant
of GODM, that can work on both homogeneous datasets and heterogeneous datasets. We drop Latent
Diffusion Model and form a variational autoencoder with Variational Encoder and Graph Generator.
The inference process is a direct one-step estimation from prior Gaussian distribution. Detailed
descriptions of each baseline are available in Appendix G. Along with GODM, we compare these
three data augmentation methods for graph outlier detection in Table 5 in Appendix G.

4.1.3 Metrics

We follow the extensive literature in graph outlier detection [2, 3] to comprehensively evaluate
the performance of graph outlier detectors with three metrics robust to class imbalance: Receiver
Operating Characteristic-Area Under Curve (AUC), Average Precision (AP), and Recall@k (Rec),
where the value of k is set to the number of actual outliers present in the dataset. Appendix H provides
more details about the metrics used in the experiments.

4.1.4 Open-Source Package

To enhance accessibility, we encapsulate our data augmentation into user-friendly API and make
our code a plug-and-play package. This package is built upon PyTorch and PyTorch Geometric
(PyG) frameworks. It accepts a PyG data object as input and returns the augmented graph as output.

7

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Table 2: GODM’s performance improvements on graph
oultier detection in AUC, AP, and Recall (%) on Tolokers.

AUC AP Rec
GCN [22] 75.45 (+0.76) 44.17 (+1.29) 44.24 (+2.18)
SGC [23] 72.73 (+2.06) 39.75 (+1.72) 38.01 (+2.02)
GIN [24] 74.83 (+0.78) 38.54 (+1.96) 38.32 (+1.56)
GraphSAGE [14] 81.65 (+2.23) 52.53 (+3.87) 50.93 (+4.52)
GAT [25] 82.18 (+4.91) 51.13 (+7.99) 50.78 (+7.48)
GT [26] 82.73 (+3.49) 51.73 (+5.51) 50.93 (+4.36)
GAS [27] 76.96 (+0.05) 45.48 (-1.87) 43.15 (-1.87)
DCI [28] 73.75 (-2.23) 37.52 (-2.33) 37.54 (-2.65)
PCGNN [29] 73.65 (+1.47) 38.42 (+0.90) 38.01 (+1.25)
GATSep [30] 83.46 (+3.83) 52.95 (+6.87) 52.80 (+6.07)
BernNet [31] 76.53 (+0.33) 44.04 (+1.83) 42.21 (+0.00)
AMNet [32] 76.67 (+0.84) 44.31 (+1.65) 43.30 (+1.40)
BWGNN [33] 82.10 (+1.95) 51.94 (+2.29) 51.25 (+3.89)
GHRN [34] 82.05 (+2.25) 51.84 (+2.34) 51.56 (+3.27)

Table 3: Performance in AUC, AP,
and Rec (%) on DGraph.

AUC AP Rec
HGT [18] 72.89 3.13 5.20
w/o Feature 75.10 3.64 5.59
w/o Edge 74.36 3.52 5.76
w/o Time 74.23 3.29 4.73
w/o Type 75.09 3.62 5.98
GOVAE 75.36 3.58 5.54
GODM 75.80 3.66 6.19

By inheriting the transforms.BaseTransform in PyG, we enable users to apply GODM just like
any other transformations supported in PyG, e.g., ToUndirected. We are also able to customize
hyperparameters during initialization. Code Demo 1 in Appendix I gives an example of API usage.
For distribution, we release our package on Python Package Index: https://pypi.org/project/
godm/. Users can easily install GODM in a command line by executing $ pip install godm.

4.2 Performamce on Graph Outlier Detection

We start by examining how effective GODM is in the task of graph outlier detection on homogeneous
graphs. We report graph outlier detection performance on four homogeneous datasets in terms
of AUC, AP, and Rec of different algorithms in Table 1. In the table, the highest score in each
metric is marked in bold, while the second-highest score is underlined. For DAGAD, we report the
optimal performance of its two implementations with GCN and GAT. Although DAGAD shows
superior performance compared to the standalone GCN and GAT, it fails to surpass more sophisticated
detectors. On the other hand, GODM and GOVAE together demonstrate significant enhancements in
graph outlier detection performance across all datasets and metrics. Notably, on the Weibo dataset,
where the performance metric is already relatively high (AUC of 98.66 for SGC), GODM further
elevates the performance, achieving an AUC of 99.57. A particularly noteworthy improvement is
observed on Elliptic, where GODM enhances the Rec by over 20% (an increase of 9.14) compared
to GAS, which is the second-best performing algorithm. Although GOVAE exhibits competitive
performance, its limited generation ability results in generally weaker performance compared to
GODM, especially on Elliptic.

Further investigations were carried out to understand the extent of improvement GODM could bring
to various graph outlier detection algorithms, specifically on Tolokers. We integrate GODM on
the top of all graph outlier detection algorithms and report the performance changes in terms of
AUC, AP, and Rec in Table 2. The absolute performance is reported out of brackets, and the relative
change is reported in the brackets. We can observe that GODM enhances graph outlier detection
performance for most of the algorithms. GODM increases the AP of GAT by 7.99. For DCI and GAS,
the only two algorithms that minorly decrease the performance, this could be attributed to suboptimal
hyperparameter settings for these specific algorithms or the dataset. We believe the performance can
be improved by careful hyperparameter tuning.

Moreover, in Table 3, we benchmark the graph outlier detector performance on DGraph, a large-scale
dataset with different types of edges and temporal information. We include HGT along with variants
of GODM. For the w/o Feature, we randomly sample the node feature from the Gaussian distribution
to replace the generated node feature in the synthetic graph. For the w/o Edge, all generated edges are
substituted with random edges. For w/o Time, we give uniformly sampled timestamps to replace the
generated timestamps. For the w/o Type, we use a random type sampled from a uniform distribution
for all generated edges. According to Table 3, GODM demonstrates enhanced performance across
all metrics when compared to HGT. Furthermore, masking any generated information leads to a
notable decline in performance, which underscores the significance of each aspect of the generated
data. While GOVAE achieves commendable results, its performance still falls short of GODM’s,
highlighting the superior effectiveness of Latent Diffusion Model.

8

https://pypi.org/project/godm/
https://pypi.org/project/godm/

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

5 0 5 10 15 20
(a) Feature 1

0.0

0.5

1.0

1.5

2.0
De

ns
ity

4 2 0 2
(b) Feature 2

0.0

0.5

1.0

1.5

2.0

De
ns

ity
0 2 4 6 8 10

(c) Edge Type

101

102

103

104

105

Fr
eq

ue
nc

y

Real GOVAE GODM

Figure 3: Visualization of single node feature density and edge
type frequency of real data and synthetic data on DGraph.

Weibo Elliptic DGraph
100

101

102

Ru
nn

in
g

Ti
m

e
(s

)

Weibo Elliptic DGraph
0

2

4

6

8

10

GP
U

M
em

or
y

(G
B)

GODM
w/o GC

w/o NS
w/o EDM

Figure 4: Running time and GPU
memory consumption.

4.3 Generation Quality

To assess the quality of generated data, we conduct a case study on DGraph to compare real data and
synthetic data from both GOVAE and GODM, in Figure 3. Specifically, Figure 3 (a) and (b) illustrate
the distribution density of a single dimension in node features. From the figures, we can see that the
distributions of GODM generated node features are close to the complex distributions of real data,
while GOVAE can only generate Gaussian distributions, showcasing the generation ability of Latent
Diffusion Model. In addition, to evaluate generated edges, Figure 3 (c) shows the frequency across
eleven different edge types. The edge type generated by GODM has a more similar distribution to
real data compared to GOVAE, particularly on the edge type 10. It further underscores the superiority
of GODM over GOVAE.

4.4 Efficiency Study

We further evaluate the efficiency of GODM and its variants in terms of time and memory on graphs
of various sizes, including Weibo, Elliptic, and DGraph. In order to demonstrate the efficiency of
GODM, we remove graph clustering (w/o GC), negative sampling (w/o NS), and EDM (w/o EDM)
for evaluation. To simulate the real-world application, we measure the running time of unit epoch
training for VAE and Latent Diffusion Model plus the inference process. For memory, we present
the maximum active GPU memory usage within the whole data augmentation, as the GPU memory
constraint is usually the bottleneck for machine learning systems. The results are shown in Figure 4.

From Figure 4, we can observe that employing a graph clustering algorithm significantly diminishes
GPU memory utilization. Specifically, on DGraph, w/o GC results in a memory usage that is over
30× higher than GODM. On the other hand, graph clustering turns full-batch training into mini-batch
training, leading to an anticipated increase in running time. Additionally, negative sampling reduces
both the running time and the memory usage, as the number of edges in the training set reduces from
O(n2) to O(|E|). While EDM maintains consistent memory consumption, it saves running time by
minimizing the number of sampling steps.

5 Conclusion
In this paper, we introduce GODM, a novel method for data augmentation in supervised graph outlier
detection. GODM is designed to address the significant challenge of class imbalance, a pervasive
issue in graph outlier detection. GODM leverages the power of latent diffusion models to synthesize
high-fidelity graph data that is statistically similar to real outliers. Note that GODM is model agnostic,
which means it can be flexibly integrated with different downstream graph outlier detectors. We
encapsulate GODM into a plug-and-play package, making it accessible to the community. For future
research, we list several promising directions in Appendix J.

9

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Acknowledgement
This work is supported in part by NSF under grants III-2106758, and POSE-2346158.

References
[1] Kay Liu, Yingtong Dou, Xueying Ding, Xiyang Hu, Ruitong Zhang, Hao Peng, Lichao Sun,

and S Yu Philip. PyGOD: A Python library for graph outlier detection. Journal of Machine
Learning Research, 25(141):1–9, 2024. 1, 13, 17

[2] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding,
Canyu Chen, et al. BOND: Benchmarking unsupervised outlier node detection on static
attributed graphs. Advances in Neural Information Processing Systems, 35:27021–27035, 2022.
7

[3] Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. GADBench: Revisiting and
benchmarking supervised graph anomaly detection. Advances in Neural Information Processing
Systems, 36:29628–29653, 2023. 1, 7, 14, 16

[4] Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei
Chen, and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly
detection. Advances in Neural Information Processing Systems, 35:22765–22777, 2022. 1, 18

[5] Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. User preference-aware
fake news detection. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 2051–2055, 2021. 1

[6] Yingtong Dou, Guixiang Ma, Philip S Yu, and Sihong Xie. Robust spammer detection by nash
reinforcement learning. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 924–933, 2020. 1

[7] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom
Robinson, and Charles Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019. 1, 18

[8] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pages 315–324,
2020. 1, 13, 14

[9] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022. 2, 5

[10] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs
via the system of stochastic differential equations. In International Conference on Machine
Learning, pages 10362–10383. PMLR, 2022. 2, 14

[11] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh
International Conference on Learning Representations, 2022. 2, 14

[12] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022. 2, 5, 15

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020. 2, 15

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30, 2017. 4, 7, 8, 18

[15] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A survey of heterogeneous
information network analysis. IEEE Transactions on Knowledge and Data Engineering, 29(1):
17–37, 2016. 4

[16] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. Network schema preserving
heterogeneous information network embedding. In International Joint Conference on Artificial
Intelligence, 2020. 4

10

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

[17] Leyan Deng, Defu Lian, Zhenya Huang, and Enhong Chen. Graph convolutional adversarial
networks for spatiotemporal anomaly detection. IEEE Transactions on Neural Networks and
Learning Systems, 33(6):2416–2428, 2022. 4

[18] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the Web Conference 2020, pages 2704–2710, 2020. 4, 7, 8, 18

[19] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018. 5

[20] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 257–266, 2019. 6

[21] George Karypis and Vipin Kumar. Metis: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices.
http://glaros. dtc. umn. edu/gkhome/metis/metis/download, 1997. 6

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016. 7, 8, 18

[23] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International Conference on Machine Learning,
pages 6861–6871. PMLR, 2019. 7, 8, 18

[24] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018. 7, 8, 18

[25] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 7, 8, 18

[26] Yunsheng Shi, Huang Zhengjie, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. In In-
ternational Joint Conference on Artificial Intelligence, pages 1548–1554, 08 2021. doi:
10.24963/ijcai.2021/214. 7, 8, 18

[27] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph con-
volutional networks. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 2703–2711, 2019. 7, 8, 13, 18

[28] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and Hong Chen. Decoupling
representation learning and classification for gnn-based anomaly detection. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1239–1248, 2021. 7, 8, 13, 18

[29] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for fraud detection. In Proceedings of the
Web Conference 2021, pages 3168–3177, 2021. 7, 8, 13, 14, 18

[30] Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. Ensembles for unsupervised outlier
detection: challenges and research questions a position paper. ACM SIGKDD Explorations
Newsletter, 15(1):11–22, 2014. 7, 8, 19

[31] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. Advances in Neural Information Processing Systems, 34:
14239–14251, 2021. 7, 8, 13, 19

[32] Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang.
Can abnormality be detected by graph neural networks. In International Joint Conference on
Artificial Intelligence, pages 23–29, 2022. 7, 8, 13, 19

[33] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning, pages 21076–21089. PMLR,
2022. 7, 8, 13, 19

[34] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Addressing heterophily in graph anomaly detection: A perspective of graph spectrum. In
Proceedings of the ACM Web Conference 2023, pages 1528–1538, 2023. 7, 8, 13, 19

11

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

[35] Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Chuan Zhou, Hao
Peng, Quan Z Sheng, and Charu C Aggarwal. Dagad: Data augmentation for graph anomaly
detection. In 2022 IEEE International Conference on Data Mining (ICDM), pages 259–268,
2022. 7, 14, 19

[36] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages
594–602. SIAM, 2019. 13

[37] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed
network anomaly detection with data augmentation. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 444–457. Springer, 2022.

[38] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly
detection on attributed networks via contrastive self-supervised learning. IEEE Transactions on
Neural Networks and Learning Systems, 33(6):2378–2392, 2021. 13

[39] Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsis-
tency problem of applying graph neural network to fraud detection. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1569–1572, 2020. 13

[40] Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Jiawei Han.
Universal graph convolutional networks. Advances in Neural Information Processing Systems,
34:10654–10664, 2021. 13

[41] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020. 13

[42] Wenjing Chang, Kay Liu, Kaize Ding, Philip S Yu, and Jianjun Yu. Multitask active learning
for graph anomaly detection. arXiv preprint arXiv:2401.13210, 2024. 13

[43] Haoyan Xu, Kay Liu, Zhengtao Yao, Philip S Yu, Kaize Ding, and Yue Zhao. Lego-learn:
Label-efficient graph open-set learning. arXiv preprint arXiv:2410.16386, 2024. 13

[44] Fangxin Wang, Yuqing Liu, Kay Liu, Yibo Wang, Sourav Medya, and Philip S. Yu. Uncertainty
in graph neural networks: A survey. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=0e1Kn76HM1. 13

[45] Wenjing Chang, Kay Liu, Philip S Yu, and Jianjun Yu. Enhancing fairness in unsupervised
graph anomaly detection through disentanglement. arXiv preprint arXiv:2406.00987, 2024. 13

[46] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification
on graphs with graph neural networks. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 833–841, 2021. 14

[47] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016. 14

[48] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning, pages 5708–5717. PMLR, 2018. 14

[49] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. In International Conference on Machine Learning, pages
610–619. PMLR, 2018. 14

[50] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. In International Conference on Machine Learning, pages 7192–7203. PMLR,
2021. 14

[51] Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The Twelfth International Conference on Learning
Representations, 2024. 14, 17

[52] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020. 14, 15

12

https://openreview.net/forum?id=0e1Kn76HM1

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 2019. 17

[54] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 17

[55] Minjie Wang, Lingfan Yu, Quan Gan Da Zheng, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, et al. Deep graph library: Towards efficient and scalable
deep learning on graphs. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019. 17

[56] Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, and Meng Jiang.
Error-bounded graph anomaly loss for gnns. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pages 1873–1882, 2020. 17, 20

[57] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: Are we really
making progress? In The International Conference on Learning Representations, 2022. 17

[58] Mufei Li, Eleonora Kreačić, Vamsi K Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? arXiv preprint arXiv:2310.13833, 2023. 20

[59] Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, and Jun Zhou. Confidence
may cheat: Self-training on graph neural networks under distribution shift. In Proceedings of
the ACM Web Conference 2022, pages 1248–1258, 2022. 20

[60] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the International Conference on Computer Vision, pages 4195–4205, 2023. 20

[61] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016. 20

[62] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538. PMLR, 2015. 20

A Detailed Related Work
This section summarizes the previous related works in three key areas, including graph outlier
detection, class imbalance, and graph generative models.

A.1 Graph Outlier Detection

Graph outlier detection is a vital task in data mining and machine learning, aiming to identify
anomalous structures (e.g., nodes, edges, subgraphs) in graphs. Due to its structural simplicity and
broader applications, most research focuses on node-level graph outlier detection and can easily
convert to edge level and graph level task [1]. Many studies focus on unsupervised settings, detecting
outliers in the graph only based on the graph data itself without any ground truth labels [36–38].
However, such unsupervised approaches may not align well with scenarios necessitating the detection
of specific outlier types containing domain-specific knowledge. In this case, (semi-)supervised
graph outlier detectors, which can learn ground truth labels, are better options. [27] apply attention
mechanism to detect spam review. [8, 39] alleviate the camouflage issue in fraud detection by message
passing in selected neighborhoods. [29] further improves the neighbor selection in fraud detection.
[40] builds the outlier detection graph via the KNN algorithm. [28] decouples the representation
learning and anomaly detection, and [41] focuses on heterophily in graph outlier detection. Some
other works detect outliers from a spectral perspective. [31] learns arbitrary graph spectral filters via
Bernstein approximation, and [32] is capable of discerning both low-frequency and high-frequency
signals, thereby adaptively integrating signals across a spectrum of frequencies. In [33], the Beta
kernel is employed to detect anomalies at higher frequencies using flexible and localized band-pass
filters. [34] addresses heterophily in graph outlier detection from a graph spectrum perspective.
[42, 43] alleviates the problem of limited supervision. [44] summarizes uncertainty-based detection
methods. [45] focuses on fair graph outlier detection. Despite the fruitful literature on graph outlier
detection, most methods underrate a pivotal challenge of class imbalance.

13

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

A.2 Class Imbalance

Conventional methods typically mitigate class imbalance by primitive techniques. GADBench
uses reweighting [3], assigning a higher weight to outliers in the loss function. Some works adopt
upsampling to replicate outliers, which is mathematically equivalent to reweighting. [8] applies
downsampling, reducing the number of normal instances and losing a large amount of valuable
supervision information from normal instances. However, these tricks may not sufficiently address
the underlying complexities associated with imbalanced datasets. Consequently, there is a compelling
need for more sophisticated techniques that can effectively address this class imbalance to ensure the
quality of graph outlier detection. [29] balances the neighborhood distribution by reducing edges
between different classes and adding edges between the same classes but does not change the overall
number of positive and negative nodes. [35] adopts random perturbation for data augmentation to
generate more samples. Other general graph machine learning studies apply interpolation-based data
augmentation methods in latent space [46]. However, these methods are not specifically designed for
graph outlier detection, and interpolation is too naive to generate helpful instances. This paper seeks
to build upon these foundational works, proposing a novel graph data augmentation algorithm via
latent diffusion models that not only mitigate class imbalance effectively but are also scalable and
efficient on large graphs, ensuring broader applicability in graph outlier detection.

A.3 Graph Generative Models

Recent advances in graph generative models have catalyzed a significant body of research, focusing
primarily on the synthesis of realistic and structurally coherent graphs. [47] proposes VGAE,
leveraging variational autoencoder frameworks to learn latent representations of graph structures
for generation purposes. [48] introduces GraphRNN, generating nodes and edges autoregressively
with two recurrent neural networks. [49] applies a generative adversarial networks framework to
generate graphs via random walks. [50] introduces the normalizing flow method for molecular graph
generation. With the recent proliferation of works in image generation with diffusion models, some
efforts have extended the generation power of diffusion models to graph-structured data. [10] proposes
a score-based generative modeling of graphs via the system of stochastic differential equations, while
[11] uses a discrete diffusion model to generate graphs. However, the potential of graph generative
models to address the class imbalance in graph outlier detection remains largely underexplored. We
propose to generate some synthetic outliers to mitigate this class imbalance.

B Detailed Design of Latent Diffusion Model
We follow [51] for the detailed design of Latent Diffusion Model.

B.1 Forward Diffusion Process

We construct a forward diffusion process {Z(s)}Ss=0, where s ∈ [0, S] is a continuous diffusion
step. In the diffusion process, Z(0) = Z is the embedding from Variational Encoder, while Z(S) ∼
N (0, I) is sampled from the prior distribution. According to [52], the forward diffusion process can
be written in stochastic differential equation (SDE) as:

dZ = f(Z, s)ds+ g(s)dωt, (10)

where ωt is the standard Wiener process (i.e., Brownian motion). f(·, s) and g(·) are the drift
coefficient and the diffusion coefficient, respectively. The selection of f(·, s) and g(·) vary between
different diffusion models. f(·) is usually of the form f(Z, s) = f(s)Z. Thus, Equation 10 can be
written as:

dZ = f(s)Zds+ g(s)dωt. (11)

Let Z be a function of diffusion step s, i.e., Zs = Z(s). The diffusion kernel of Equation 11 can be
represented in the conditional distribution of Zs given Z0:

p(Zs|Z0) = N (a(s)Z0, a2(s)σ2(s)I), (12)

where a(s) and σ(s) can be derived as:

a(s) = exp

∫ s

0

f(ξ)dξ, σ(s) =

√∫ s

0

g2(ξ)/a2(ξ)dξ. (13)

14

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Consequently, the formulation of the forward diffusion process is equivalent to the definition of
diffusion kernels characterized by both a(s) and σ(s).

Denoising diffusion probabilistic models (DDPM) [13] can be seen as discretizations of the variance
preserving SDE with a(s) =

√
1− β(s) and σ(s) =

√
β(s)/(1− β(s)), as a2(s)+a2(s)σ2(s) = 1.

However, in order to achieve more efficient generation in GODM, we adopt EDM [12], which belongs
to variance exploding SDE. Variance exploding SDE set a(s) = 1, which implies that noise is directly
added to the data instead of being blended through weighting. In this case, the variance of the noise
(the noise level) is exclusively determined by σ(s). In EDM, a linear noise level σ(s) = s is applied.
Therefore, the diffusion kernel can be written as:

p(Zs|Z0) = N (0, σ2(s)I), (14)

and the forward diffusion process can be formulated as:

Zs = Z0 + σ(s)ε, ε ∼ N (0, I). (15)

B.2 Reverse Denoising Process

As derived in [52], the reverse denoising process is formulated as the reverse SDE of Equation 10:

dZ = [f(Z, s)− g2(s)∇Z log ps(Z)]ds+ g(s)dωs, (16)

where ∇Z log ps(Z) is the score function of Z. In EDM, given a(s) = 1 and Equation 13,

f(Z, s) = f(s)Z = 0, g(s) =
√
2σ(s)σ̇(s), (17)

where σ̇ denotes the first order derivative of σ. With f(Z, s) and g(s), we are able to obtain:

dZ = −2σ̇(s)σ(s)∇Z log ps(Z)ds+
√

2σ̇(s)σ(s)dωs, (18)

where the noise level σ(s) = s.

B.3 Training of Latent Diffusion Models

To solve the SDE in Equation 18, we need to obtain the score function ∇Z log ps(Z), which is as
intractable as ps(Z) = p(Zs). However, the conditional distribution p(Zs|Z0) is tractable. From
Equation 12, we obtain its analytical solution:

∇Z log p(Zs|Z0) = − ε

a(s)σ(s)
. (19)

C Algorithms
In this section, we provide algorithms used in GODM. Algorithm 1 gives the training process of
VAE. Algorithm 2 shows the training process of Latent DIffusion Model. Algorithm 3 presents the
inference process.

Algorithm 1 GODM: Training of VAE

Input: Input graph G = (V, E ,X,y, t,p)
Output: Node representation Z, well-trained Variational Encoder E and Graph Generator G

1: Partition graph G into a set of subgraphs {Gsub}
2: for each Gsub do
3: Get µ and logσ via Equation 2
4: Reparameterization of Z via Equation 3
5: Generate X̂, Ê , t̂, p̂ via Equation 4, 5, 7, 6
6: Calculate loss via Equation 8
7: Update Variational Encoder and Graph Generator parameters via the Adam optimizer
8: end for

15

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Algorithm 2 GODM: Training of Latent Diffusion Model

Input: Node representation Z
Output: Well-trained denoising function ϵθ

1: Sample the embedding Z0 from p(Z) = p(µ)
2: Sample diffusion steps s from p(s) then get σ(s)
3: Sample noise vectors ε ∼ N (0, σ2(s)I)
4: Get perturbed data Zs = Z0 + ε
5: Calculate loss ℓ(θ) = ∥ϵθ(Zs

C , s)− ε∥22
6: Update the network parameter θ via Adam optimizer

Algorithm 3 GODM: Inference

Input: Graph generator G and denoising function ϵθ
Output: Augmented graph Gaug

1: Sample ẐS ∼ N (0, σ2(S)I)
2: for i = max, · · · , 1 do
3: ∇Ẑsi log p(Ẑ

si) = −ϵθ(Ẑ
si
C , si)/σ(si)

4: get Ẑsi−1 via solving the SDE in Equation 18
5: end for
6: Generate Ĝ = G(Ẑ0, ŷ)

7: Gaug = batch(G, Ĝ)

D Complexity Analysis
In this section, we meticulously analyze and elucidate the time efficiency and memory scalability
of GODM in training and inference for both VAE (Variational Encoder and Graph Generator) and
Latent Diffusion Model.

D.1 Time Efficiency

In the training of VAE, the major bottleneck comes from the graph structure generation in Graph
Generator. This generation originally requires link prediction for every pair of nodes in the graphs,
which is O(n2). By graph clustering, we divide the large graph into relatively small partitions for
mini-batch training. We denote the average partition size (i.e., batch size) by b, so the number of
partitions is n

b . Then, the complexity is reduced to O(nb b
2) = O(nb), as only node pairs within each

partition are predicted. We apply the negative sampling to further reduce the complexity to O(|E|), as
we only sample a negative edge for each positive edge. For Latent Diffusion Model, we only sample
a fixed number of diffusion steps to train the denoising function. As a result, assuming the number
of latent dimensions is a constant, the complexity is O(n). Thus, the total training complexity is
O(n+ |E|). For the inference, we first take S steps sampling in Latent Diffusion Model, which is
O(nS), and predict edges between node pairs in each partition, which is O(nb). Therefore, the total
inference complexity is O(nS + nb).

D.2 Memory Scalability

The vanilla VAE requires memory consumption of O(n2), which is infeasible for large graphs. To
reduce memory consumption, we adopt mini-batch training on graph partitions and negative sampling
for link prediction. The complexity of VAE training can be obtained by the number of edges divided
by the number of partitions O(|E|/n

b) = O(|E|bn). Latent Diffusion Model only requires a memory of
O(b). In the inference process, the VAE performs link prediction for all node pairs in a batch, leading
to a memory complexity of O(b2), and Latent Diffusion Model only demands O(b) for each batch.
Therefore, the total inference process needs O(b2) of memory.

E Implementation Details
We modified GADBench [3] to benchmark graph outlier detection performance.

16

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Environment. The key libraries and their versions used in experiments are as follows: Python 3.9,
CUDA 11.8, PyTorch 2.0.1 [53], PyG 2.4.0 [54], DGL 1.1.2 [55], and PyGOD 1.0.0 [1].

Hardware. All of our experiments were performed on a Linux server with an AMD EPYC 7763
64-core CPU, 192GB RAM, and an NVIDIA RTX A40 GPU with 48GB memory.

Hyperparameters. GODM is implemented with default hyperparameters. For Variational Encoder,
we use one layer GraphSAGE for GNNshared, GNNµ, and GNNσ, respectively. We set the hidden
dimension to the largest power of 2 that is no greater than the feature dimension of the dataset divided
by 2. To avoid extensive hyperparameter search, we set the weights of reconstruction loss ωX, ωE ,
ωt, and ωp to roughly balance their absolute value only, which are 1, 0.5, 1, and 0.3, respectively.
The weight for KL-divergence β is 0.001. For the diffusion model, we use the dimension twice as the
hidden dimension in VAE. We use five layers of MLP as the denoising function following the detailed
design in [51]. For training, we adopt the Adam optimizer with a learning rate of 0.001 without
weight decay to train the VAE and the diffusion model for 100 epochs, respectively, and apply early
stopping with a patience of 50. The negative sampling ratio is 1, and the approximate graph partition
size is 2048. For inference, we use 50 steps of diffusion and generate the same amount of synthetic
outliers as the number of real organic outliers in the training set. For all the hyperparameters in graph
outlier detection, we apply the default setting in GADBench. We report the graph outlier detection
performance of GODM with the optimal downstream graph outlier detector.

F Description of Datasets

Table 4: Statistics of datasets (*: with multiple edge types and temporal infomation).

Dataset #Nodes #Edges #Features Outlier
Weibo 8,405 407,963 400 10.3%
Tolokers 11,758 519,000 10 21.8%
Questions 48,921 153,540 301 3.0%
Elliptic 203,769 234,355 166 9.8%
DGraph∗ 3,700,550 4,300,999 17 1.3%

This section describes the datasets used in the experiments. Table 4 provides the statistics of the
datasets. In the table, #Nodes stands for the number of nodes, and #Edges stands for the number of
edges. #Feature denotes the raw feature dimension, i.e., the number of node attributes. The Outlier
column represents the outlier ratio in the label, indicating the extent of class imbalance. The detailed
descriptions for each dataset used in the experiments are as follows:

Weibo [56]: This dataset involves a graph delineating the associations between users and their
corresponding hashtags from the Tecent-Weibo platform, consisting of 8,405 users and a collection
of 61,964 hashtags. Activities within this dataset are regarded as suspicious (i.e., outliers) if they
consist of a pair of posts occurring within narrowly defined temporal intervals (e.g., 60 seconds).
Users engaging in at least five incidents of such behavior are classified under the suspicious category,
in contrast to the remainder designated as benign. Following this classification criterion, the dataset
contains 868 users identified as suspicious and 7,537 as benign. The primary feature vector includes
geolocation data for each micro-blog entry and a representation utilizing the bag-of-words model.

Tolokers [57]: The dataset is obtained from the Toloka crowdsourcing platform. It is composed of
nodes corresponding to individual workers who have engaged in at least one out of thirteen specified
projects. Edges are established between pairs of workers who have concurrently contributed to an
identical task. The primary objective is to predict the likelihood of a worker having received a ban in
any one of the projects. The features attributed to each node are constructed utilizing the worker’s
personal profile information in conjunction with their task-related metrics.

Questions [57]: The dataset is derived from Yandex Q, a question-answering platform. The nodes
represent users, and an edge is established between two nodes to denote the scenario wherein one user
has responded to another’s inquiry within the temporal bounds of one year, stretching from September
2021 to August 2022. This dataset is specifically curated to encapsulate the engagement of users who
exhibit interest in the medical topic. The target for this dataset is to predict the likelihood of users’
continued activity on the platform by the conclusion of the observed period. The average FastText
embeddings of the lexical content present in the users’ descriptions are used for node features.

17

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

Elliptic [7]: The dataset comprises a graph of 203,769 nodes representing Bitcoin transactions,
connected through 234,355 edges representing payment flows, along with 166 distinctive node
attributes. It correlates Bitcoin transactional data with corresponding real-world entities that are
categorized as lawful, including exchanges, wallet services, mining operations, and legitimate services,
as well as unlawful categories, including scams, malicious software, terrorist-related organizations,
ransomware operations, and fraudulent investment activities known as Ponzi schemes.

DGraph [4]: DGraph is a large-scale graph with different edge types and temporal information
supplied by Finvolution Group. It includes around 3 million nodes, 4 million dynamic edges, and
1 million node labels. The nodes represent user accounts within a financial organization offering
personal loan services, while an edge between two nodes indicates that one account has designated the
other as an emergency contact. Nodes classified as fraud correspond to users displaying delinquent
financial conduct. For those accounts with borrowing records, outliers are identified as accounts with
a history of overdue payments, while inliers are those without such a history. Additionally, the dataset
includes 17 node features derived from user profile information.

G Description of Baselines
This section provides detailed descriptions of the baselines in the experiments.

G.1 General Graph Neural Network

GCN (Graph Convolutional Networks) [22]: GCN is the seminal work that applies convolution
operation on graph data. It propagates the information of a node to its neighbors, thus enabling the
network to develop a representation for each node that reflects its local neighborhood context.

SGC (Simplified Graph Convolution) [23]: This variant of GCN leverages Chebyshev polynomials
to approximate the spectral graph convolution operator. This strategy allows the model to encompass
both local and global graph structures, enhancing its scalability for handling larger graphs.

GIN (Graph Isomorphism Network) [24]: GIN is a form of GNN that effectively captures graph
structures while maintaining graph isomorphism. It achieves this by generating consistent embeddings
for structurally identical graphs, which is permutation invariant.

GraphSAGE (Graph Sample and Aggregate) [14]: GraphSAGE presents a general inductive learning
approach where node embeddings are generated through the sampling and aggregation of features
from a node’s immediate neighborhood.

GAT (Graph Attention Networks) [25]: GAT incorporates the attention mechanism within the GNN
framework. It dynamically assigns varying importance to different nodes during the information
aggregation process, focusing the model’s learning on the most relevant parts of the neighborhood.

GT (Graph Transformer) [26]: Drawing inspiration from the Transformer model in neural networks,
GT adapts these principles for graph-structured data. It utilizes masks in the self-attention mechanism
to capitalize on the inherent structure of graphs, thus boosting the model’s efficiency.

HGT (Heterogeneous Graph Transformer) [18]: HGT is designed to address the challenges of model-
ing heterogeneous graphs. It introduces node- and edge-type dependent parameters for heterogeneous
attention mechanisms for each type of edge.

G.2 Graph Outlier Detector

GAS (GCN-based Anti-Spam) [27]: GAS is an attention-based spam review detector, extending the
capabilities of GCN to process heterogeneous and heterophilic graphs. It employs the KNN algorithm
to align with the structure of each graph.

DCI (Deep Cluster Infomax) [28]: DCI is a self-supervised learning strategy that separates the
learning of node representations from outlier detection. It addresses discrepancies between node
behavioral patterns and their label semantics by clustering, thus capturing intrinsic graph properties
in focused feature spaces.

PCGNN (Pick and Choose Graph Neural Network) [29]: Tailored for imbalanced GNN learning in
fraud detection scenarios, PCGNN uses a label-balanced sampler for node and edge selection during
training. This results in a more balanced label distribution within the induced subgraph.

18

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

BernNet [31]: BernNet is a GNN variant offering a robust approach to designing and learning arbitrary
graph spectral filters. It utilizes an order-K Bernstein polynomial approximation for estimating filters
over the normalized Laplacian spectrum, catering to a variety of graph structures.

GATSep [30]: Designed to optimize learning on heterophily graphs, GAT-sep merges key design
elements like ego- and neighbor-embedding separation, higher-order neighborhood processing, and
combinations of intermediate representations.

AMNet (Adaptive Multi-frequency GNN) [32]: AMNet is structured to capture signals across both
low and high frequencies by stacking multiple BernNets and adaptively integrating signals from
different frequency bands.

BWGNN (Beta Wavelet Graph Neural Network) [33]: BWGNN addresses the "right-shift" phe-
nomenon on outliers. It uses the Beta kernel to address higher frequency anomalies through spatial-
ly/spectrally localized band-pass filters.

GHRN (Graph Heterophily Reduction Network) [34]: GHRN tackles the issue of heterophily in the
spectral domain for graph outlier detection. This approach focuses on pruning inter-class edges to
enhance the representation of high-frequency components in the graph spectrum.

G.3 Data Augmentation

DAGAD (Data Augmentation for Graph Anomaly Detection) [35]: DAGAD incorporates three
modules to augment the graph, including an information fusion module for representation learning, a
data augmentation module to enrich the training set with synthetic samples, and an imbalance-tailored
learning module to distinguish between minority anomalous class and majority normal class.

GOVAE: In this variant, we drop Latent Diffusion Model and form a variational autoencoder with
Variational Encoder and Graph Generator. The inference process is a direct one-step estimation from
prior Gaussian distribution.

Along with GODM, we compare three data augmentation methods in Table 5, where the flexibility
represents whether the data augmentation is model agnostic. Heterogeneous and time indicate whether
the method supports these two types of information. The diffusion column indicates whether the
method adopts diffusion models.

Table 5: Comparison of data augmentation methods.

Flexibility Heterogeneous Time Diffusion
DAGAD ✗ ✗ ✗ ✗
GOVAE ✓ ✓ ✓ ✗
GODM ✓ ✓ ✓ ✓

H Description of Metrics
AUC (Receiver Operating Characteristic-Area Under Curve): AUC quantifies the area beneath the
Receiver Operating Characteristic Curve, which is constructed by plotting the true positive rate
against the false positive rate across varied determined threshold levels. An AUC of 1 indicates
flawless predictive accuracy, whereas an AUC of 0.5 indicates an absence of discriminative power,
equivalent to random guessing. This metric is favored over accuracy for evaluating outlier detection
models due to its robustness against class imbalance prevalent within the class distributions.

AP (Average Precision): AP offers a comprehensive summary of the precision-recall curve, repre-
sented as the weighted average of precision values attained at each threshold, utilizing the increment
in recall from the preceding threshold as the weight. This metric offers a balance between recall and
precision, with a higher AP signifying a lower rate of both false-positive rate (FPR) and false-negative
rate (FNR). For outlier detection applications, e.g., fraud detection, both FPR and FNR are critical, as
misclassification could either cause financial loss or harm normal user experience.

Rec (Recall@k): Considering the minority of outliers relative to the abundance of normal instances in
datasets, Recall@k is proposed as a measure of how well the detectors rank outliers over the normal
samples. The value of k is set to the number of actual outliers present in the dataset. Recall@k is

19

Data Augmentation for Supervised Graph Outlier Detection via Latent Diffusion Models

then determined by the ratio of the true outliers within the top k-ranked samples to k. A maximal
Recall@k value of 1 means a model perfectly ranks all outliers over normal samples, while minimal
value of 0 means none of the outliers is ranked at top k.

I API Demo

1 from pygod.utils import load_data # import data
2 data = load_data(’weibo’) # load weibo data
3

4 from godm import GODM # import GODM
5 godm = GODM(lr=0.004) # initialize GODM
6 aug_data = godm(data) # augment data
7

8 detector(aug_data) # train on data

Code Demo 1: Using GODM on Weibo dataset [56].

J Future Directions
For future research, here are several promising directions we may explore to further enhance GODM
and expand its applicability in the domain of graph outlier detection:

• Diffusion in graph sapce. Considering the heterogeneity and scalability of the graphs for outlier
detection applications, GODM currently employs a diffusion model in latent space. [58] starts
to generate large graphs directly in graph space. Future research could explore the application
of diffusion models on heterogeneous information directly in graph space, potentially enhancing
the model’s ability to capture complex graph structures.

• Collaboration with outlier detection. Currently, GODM is model agnostic, meaning the
training of GODM and downstream outlier detection tasks are asynchronous. On the other hand,
integrating the supervision signals from both the generation task and the downstream outlier
detection in a unified training framework could be mutually beneficial. Self-training offers a
promising paradigm for this integration of the supervision signals [59].

• Enhancing generative models. Although the current diffusion model in GODM has shown
impressive capabilities, there are opportunities for further improvement. This could be achieved
by employing more expressive denoising functions, such as transformers [60], or by exploring
alternative generative models like energy-based models [61] and or normalizing flows [62],
which might offer different advantages over diffusion models.

20

	1 Introduction
	2 Preliminary
	2.1 Notation
	2.2 Problem Formulation

	3 Methodology
	3.1 Overview
	3.2 Variational Encoder
	3.3 Graph Generator
	3.4 Latent Diffusion Model
	3.5 Training
	3.6 Inference
	3.7 Complexity Analysis

	4 Experiments
	4.1 Experimental Setups
	4.1.1 Datasets
	4.1.2 Baselines
	4.1.3 Metrics
	4.1.4 Open-Source Package

	4.2 Performamce on Graph Outlier Detection
	4.3 Generation Quality
	4.4 Efficiency Study

	5 Conclusion
	A Detailed Related Work
	A.1 Graph Outlier Detection
	A.2 Class Imbalance
	A.3 Graph Generative Models

	B Detailed Design of Latent Diffusion Model
	B.1 Forward Diffusion Process
	B.2 Reverse Denoising Process
	B.3 Training of Latent Diffusion Models

	C Algorithms
	D Complexity Analysis
	D.1 Time Efficiency
	D.2 Memory Scalability

	E Implementation Details
	F Description of Datasets
	G Description of Baselines
	G.1 General Graph Neural Network
	G.2 Graph Outlier Detector
	G.3 Data Augmentation

	H Description of Metrics
	I API Demo
	J Future Directions

