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Abstract

Reinforcement learning with verifiable rewards (RLVR) has emerged as a predom-1

inant paradigm for mathematical reasoning tasks, offering stable improvements2

in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are3

too coarse-grained to distinguish flawed reasoning within correct answers or valid4

reasoning within incorrect answers. This lack of granularity introduces noisy and5

misleading gradients significantly and hinders further progress in reasoning process6

quality. While Process Reward Models (PRMs) offer fine-grained guidance for7

intermediate steps, they frequently suffer from inaccuracies and are susceptible to8

reward hacking.9

To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an10

effective data process curation method that harmonizes noisy, fine-grained pro-11

cess rewards with accurate, coarse-grained outcome rewards. Rather than naively12

blending PRM and ORM in the objective function (Zou et al., 2025), PROF lever-13

ages their complementary strengths through consistency-driven sample selection.14

Our approach retains correct responses with higher averaged process values and15

incorrect responses with lower averaged process values, while maintaining posi-16

tive/negative training sample balance. Extensive experiments demonstrate that our17

method not only consistently improves final accuracy over 4% compared to the18

blending approaches, but also strengthens quality of intermediate reasoning steps.19

1 Introduction20

Verifiable rewards have spurred the widest attention recently because they reliably improve the21

performance on reasoning tasks with easily verifiable outcomes, such as mathematical and coding22

problems (Cobbe et al., 2021; Jaech et al., 2024; Shao et al., 2024; Xiong et al., 2025b). However,23

since the verifiers can only verify the outcome results, the rewards are too sparse and coarse to measure24

and supervise the reasoning quality in intermediate steps. For instance, if a correct answer contains25

flawed logic, Outcome Reward Models (ORMs) cannot distinguish it from a completely correct26

response. We present a classic example from the training data in Table 5, which has invalid reasoning27

but happens to obtain the correct answer. Incorporating such flawed examples into training process28

introduces unreliable gradients, leading to significant instability and misguided learning. Moreover,29

the quality and interpretability of Chain of Thought (CoT) are crucial for practical reasoning ability30

of a model, not just the accuracy of final answers (Zhu et al., 2025; Lyu et al., 2023; Yeo et al., 2024).31

The lack of faithfulness during CoT is also observed by (Baker et al., 2025; Chen et al., 2025b),32

limiting applications in areas such as LLM safety monitoring and interpretation.33

Hence, the limitation of ORMs can be partially addressed by using LLM-as-a-judge or Monte-Carlo34

(MC) estimation to provide step-wise judgments or values (Wang et al., 2023; Zheng et al., 2024).35

However, the cost of inferring LLM step-wise judgments or MC estimation at each iteration during36
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online training is so high. Hence, it is inefficient and expensive to infer the step-wise scores or37

values for online training. Alternatively, an efficient solution is to use the pre-trained Process Reward38

Models (PRMs) (Lightman et al., 2023; Zhang et al., 2025). However, applying these models to the39

online training process often suffers from misspecification and distribution shift due to the limitations40

of offline training data. Especially in boundary cases where the policy encounters difficult problems41

and produces rarely seen responses, PRMs often fail to judge them correctly, thus leading to severe42

reward hacking (Michaud et al., 2020; Tien et al., 2022). Even if some works (Zha et al., 2025; Cui43

et al., 2025) attempt to co-train the policy and PRMs online, they can only train in implicit ways such44

as using implicit generative reward or aligning process rewards with outcomes.45

Although numerous works have made enormous efforts to train PRMs offline or online, the problem46

of effectively coordinating PRMs with outcome-verifiable rewards remains largely underexplored.47

Existing approaches typically combine process and outcome rewards in a simple weighted manner48

(Zha et al., 2025; Cui et al., 2025; Zou et al., 2025), which is vulnerable for reward hacking due to49

the noises and misspecification in PRMs. Therefore, in this paper, instead of developing another50

PRM, we focus on how to robustly integrate a pre-trained PRM into the online training process, i.e.,51

how to harmonize the accurate but coarse-grained ORMs with fine-grained but noisy Process Reward52

Models (PRMs) in Reinforcement Learning (RL)?53

In this work, instead of fine-tuning another PRM, we answer this question with a PRocess cOnsistency54

Filtering (PROF) framework, a data curation strategy based on process-outcome consistency. PROF55

oversamples more responses at training time, and then, ranks and filters the responses by the56

consistency between their PRMs and ORMs. Specifically, it removes samples where the process57

and outcome signals conflict—such as correct responses derived from flawed reasoning, or incorrect58

responses that contain sound reasoning steps. By filtering out these inconsistent samples, PROF59

eliminates conflicting and noisy gradients. Furthermore, observing that correct and incorrect responses60

have different consistency distributions, we rank each group separately to maintain a balanced training61

ratio. PROF is a modular framework that can be combined with RL algorithms like Group Relative62

Policy Optimization (GRPO) for online training.63

We conduct extensive experiments to validate the improvement of PROF-GRPO on both outcome64

accuracy and process reasoning quality at diverse math reasoning benchmarks using both Qwen65

(Yang et al., 2024) and LLaMA (Dubey et al., 2024) models. To summarize, we highlight our key66

contributions as follows:67

• We propose PRocess cOnsistency Filtering (PROF) to robustly integrate noisy Process68

Reward Models (PRMs) with Outcome Reward Models (ORMs). Compared to the GRPO-69

type algorithms that only leverage outcome rewards, our implementation PROF-GRPO70

effectively distinguishes the inconsistent trajectories, such as correct answers with flawed71

reasoning steps or incorrect answers with mostly valid steps. Moreover, unlike prior72

approaches that simply blend PRMs and PRMs, our method only relies on PRMs to rank73

and filter rather than directly involving them into gradients. This separation avoids reward74

hacking and entropy collapse, thus achieving stable performance gains throughout training.75

• We conduct extensive studies to demonstrate that PROF-GRPO not only increases the final76

outcome accuracy but also shapes the intermediate reasoning steps and improves the process77

reasoning quality. Various metrics such as Monte-Carlo estimation, LLM-as-a judge are used78

to validate that our method enable models to segment reasoning trajectories into detailed79

and easy-to-verify steps.80

• We conduct a series of ablation studies to illustrate the importance of separating the correct81

and incorrect responses during the filtration. Meanwhile, we investigate various ways of cal-82

culating the consistency and filtering, and ablate on LLaMA base models for generalization.83

2 Method84

LLM is a policy distribution such that given a prompt x, it provides density π(a|x) of generating each85

response a. For mathematical reasoning tasks with binary verifiable rewards, there exists a verifier86

mapping prompt-response pairs (x, a) to a scalar reward ro(x, a) ∈ {−1, 1}. For each prompt, we87

can generate a group of responses and their corresponding responses with the verifier {(ai, ro,i)}Gi=1.88
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GRPO. (Shao et al., 2024) proposes this policy gradient algorithm that simplifies the Proximal89

Policy Optimization (PPO) (Schulman et al., 2017) by only computing the advantage based on the90

outcome rewards in a group. Instead of maintaining and updating another value network, GRPO91

computes the advantage by standardizing the outcome rewards within a group:92

Ai =
r(x, ai)− mean

(
{r(x, aj)}nj=1

)
std

(
{r(x, aj)}nj=1

)
+ δ

, i = 1, . . . , n,

where r(x, ai) is the reward for a given response and δ > 0 is a small constant for numerical stability.93

Let at denote the t-th token of response a and a<t denotes (a1, . . . , at−1). This advantage is then94

incorporated into a clipped surrogate objective function, which is optimized to update the policy from95

πθold to πθ:96

JGRPO(θ) = Ex∼D

 1

n

n∑
i=1

1

|ai|

|ai|∑
t=1

min

(
πθ(ai,<t|x)
πθold(ai,<t|x)

Ai, clip
(

πθ(ai,<t|x)
πθold(ai,<t|x)

, 1− ϵ, 1 + ϵ

)
Ai

) .

Although this approach stabilizes the online policy optimization and is efficient, the sparse reward97

signal limits further improvement on the intermediate reasoning steps.98

Process Reward Model (PRM). For a response a composed of multiple reasoning steps a =99

(a1, . . . , aH), we follow previous works (Zheng et al., 2024; Zhang et al., 2025; Zou et al., 2025) to100

use a newline as a sign for a new step. For each step ah, the PRM rh maps it, the previous steps and the101

prompt (x, a≤h) to a scalar rh(x, a≤h), where we use the short-hand notation a≤h = (a1, . . . , ah).102

Our Method PROF: Process Consistency Filter Framework We propose PROF in Algorithm 1103

to incorporate the consistency of PRMs and ORMs robustly after the rollout phase, and also present a104

visualization in Figure 2. First, we generate G samples and get the outcome reward. Then, we call105

the PRM to generate step-wise rewards for each rollout and compute the trajectory-wise consistency106

score rpro by taking the mean over the step-wise rewards and adding a step length regularization107

in equation 1, where λ is the regularization parameter and Hλ is the threshold for the penalized108

step number. This regularization is to ensure that samples with no step segments or over-long steps109

are discarded in the correct group. The samples are divided into two subgroups: G+ contains the110

correct samples with ro = 1, and G− contains the incorrect samples with ro = −1. Inspired by111

(Xu et al., 2025), the numbers to discard in each subgroup k+, k− are calculated to maximize the112

outcome-reward variance of the final kept samples k+k−/(k+ + k−)
2. Since k+ + k− = m is fixed,113

k+k− = k+(m−k+) should be maximized and the maximum is obtained when k+ is closest to m/2114

under the constraint k+ ≤ n+, k− ≤ n−. This implies that the ratio of correct and incorrect responses115

should be balanced. After that, we use rpro to rank and filter the correct group and randomly filter116

the incorrect group. Finally, we collect the kept m trajectories for policy update.117

3 Experiments118

Setup We focus on mathematical reasoning tasks in this work. For online training, we use the119

prompt set Numina-Math (Beeching et al., 2024) containing nearly 860k math problems with ground-120

truth answers ranging from Chinese high school math exercises to US and international mathematics121

Olympiad competition problems. We choose Qwen2.5-Math-1.5B-base, Qwen2.5-Math-7B-base122

(Yang et al., 2024) as the training base models. For the PRM, we use Qwen2.5-Math-PRM-7B123

(Zhang et al., 2025) to generate process rewards. More details are provided in Appendix B. The124

models’ performance is evaluated on 5 benchmarks: Math500 (Hendrycks et al., 2021), Minerva125

Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024), AMC20231 and AIME20242. We126

mainly use average@16 for evaluation, i.e., the accuracy is averaged over 16 responses per prompt127

under temperature 1.0. The models are allowed to generate 4096 tokens.128

Main Results We summarize our main results in Table 1, where Blend denotes a common way that129

mixes the PRM with outcome rewards (Zha et al., 2025; Cui et al., 2025; Zou et al., 2025). Following130

(Zou et al., 2025), the PRMs are averaged over steps for each response, weighted by a parameter131

β, and added to outcome rewards. We use parameter β = 0.8 according to Table 5 of (Zou et al.,132

1https://huggingface.co/datasets/math-ai/amc23
2https://huggingface.co/datasets/math-ai/aime24
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Model Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average

Qwen2.5-Math-
1.5B-base

Base 39.9 11.4 19.1 3.5 23.6 19.5
GRPO 70.3 29.1 33.0 9.0 44.5 37.2
Blend 67.6 27.8 31.1 7.7 42.5 35.3

PROF-GRPO 73.2 30.0 36.1 9.6 49.1 39.6

Qwen2.5-Math-
7B-base

Base 42.0 12.8 19.2 12.9 30.0 23.4
GRPO 81.6 37.2 45.5 20.6 64.4 49.9
Blend 81.7 36.7 45.0 15.2 58.0 47.3

PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7
Table 1: Performance of different algorithms across five benchmarks including Math500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024), AMC2023
and AIME2024. We denote Blend-PRM-GRPO by Blend for short. We tune all the algorithms to
their best performance. The reported accuracy is average@16 under temperature 1.0.

Figure 1: The learning dynamics of PROF-GRPO initialized from Qwen2.5-Math-1.5B-base (upper
left) and Qwen2.5-Math-7B-base (upper right) in comparison of GRPO and Blend-PRM-GRPO. The
y-axis is the average@16 accuracy and is further averaged on Math500, Minerva Math and Olympiad
Bench. Entropy loss (lower left) and response length (lower right) of the models initialized from
Qwen2.5-Math-7B-base.

2025). Our main findings are as follows. As shown in Table 1, our proposed method, PROF-GRPO,133

consistently outperforms GRPO and Blend-PRM-GRPO over various benchmarks. 3 The learning134

dynamics in Figure 1 corroborate these findings, illustrating that PROF-GRPO steadily maintains a135

consistent performance advantage over GRPO and Blend-PRM-GRPO throughout training process.136

4 Conclusion and Future Work137

This work introduces Process Consistency Filter (PROF), a novel data curation technique that filters138

generated responses by the data PRM-ORM consistency, and maintains the balance of correct-139

incorrect ratios. We demonstrate its effectiveness in both consistently improving the accuracy of140

obtaining correct final answers and shaping the policy model to generate more detailed and fine-141

grained segmented intermediate reasoning steps. Particularly, PROF is a general filtration framework142

without reliance on specific PRMs or the RL algorithms. Thus, the use of Qwen2.5-Math-PRM-7B143

as the PRM in our experiments is not a limitation. Exploring the integration of PROF with more144

accurate or diverse PRMs remains an interesting direction for future work. Additionally, how to145

extend our method to other reasoning tasks, such as coding (Jimenez et al., 2023) and web navigation146

(Zhou et al., 2023) deserves to be explored.147

3Although PROF-GRPO underperformed GRPO on AIME24 for Qwen2.5-Math-7B-base, given the dataset’s
small size of only 30 samples, the performance difference may not be statistically significant.
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A Related Works269

Sample Filtering in Reinforcement Learning for LLM. A key challenge in applying reinforce-270

ment learning to LLM applications is the imperfection of reward signals. These signals stem from271

a learned reward model, such as Reinforcement Learning from Human Feedback (RLHF), or are272

sparse, delivered only at the end of a trajectory (e.g. RLVR). In RLHF, the reward model is trained on273

human-annotated pairwise comparisons, typically using a Bradley-Terry model (Bradley and Terry,274

1952). Due to inherent human disagreement and finite training data, the model develops shortcuts275

that RL algorithms can exploit (Lin et al., 2023; Eisenstein et al., 2023) to chase for a fake high276

reward. Consequently, these rewards may not fully align with the underlying intended goals, leading277

to reward hacking.278

Data filtering, a data curation technique, has proven effective in mitigating this issue across various279

LLM applications with RL. A prominent line of work proposes filtering training pairs based on the280

reward gap between the chosen and rejected responses (Yuan et al., 2024; Dong et al., 2024; Xiong281

et al., 2024a; Zhang et al., 2024). The high-level intuition is that a larger reward gap indicates higher282

model confidence, making these pairs less noisy and more reliable for training when the reward283

model is well-calibrated. Moreover, Kim et al. (2024); Yu et al. (2025a) further rank and filter the284

samples by combining their rewards and responses length during the preference learning process.285

In RLVR, where rewards are sparse and only for the outcome, filtering is also helpful. For instance,286

the simple rejection sampling fine-tuning (Dong et al., 2023; Chen et al., 2025a), which discards287

all incorrect trajectories, often approaches the performance of more complex algorithms like GRPO288

(Dong et al., 2023; Chen et al., 2025a; Xiong et al., 2025a). Other methods like (Yang et al., 2024)289

filter prompts by difficulty prior to the RL training. Yu et al. (2025b) removes prompts that yield zero290

gradients during training and dynamically regenerates samples. This technique is known as dynamic291

sampling and has been rather widely accepted. Xiong et al. (2025a) demonstrates that prompts where292

all generated responses are incorrect can significantly hurt the performance of the vanilla Reinforce293

algorithm. They propose an online data filtering strategy based on the correctness reward, showing294

that a modified Reinforce with filtering (Reinforce-rej) can match or exceed GRPO’s performance.295

Their results suggest that the advantage of GRPO compared to Reinforce is due to the implicit data296

filtering mechanism from the reward shaping. Finally, Xu et al. (2025) proposes to over-sample and297

keep a subset such that the variance of the rewards in the subset is maximized, which implies that298

they try to balance the ratio of correct and incorrect responses for reasoning tasks.299

In contrast to these methods, which primarily rely on coarse, outcome-based metrics (e.g., final300

answer correctness, trajectory-level rewards), our approach introduces a more fine-grained filtering301

mechanism. We leverage process-supervised reward models (PRMs) (Lightman et al., 2023) to302

evaluate and filter based on the quality of intermediate reasoning steps, and their consistency with303

ORMs.304

Process-Supervised Reward Models for Fine-Grained Feedback. The RLHF focuses on the305

trajectory-level comparison under the Bradley-Terry model. For reasoning-related task, Yang et al.306

(2024) uses the correctness of the final answer to construct the preference pairs and trains Bradley-307

Terry reward models for mathematical reasoning. A more widely used approach, termed Outcome308

Reward Models (ORMs) trains a classifier to predict whether the final answer is correct or not based309

on the reasoning history. However, Lightman et al. (2023) have shown that Process-Supervised310

Reward Models (PRMs), which evaluate each intermediate step of a reasoning chain, significantly311

outperform ORMs, especially for data selection tasks like best-of-n sampling (Lightman et al., 2023).312

But their approach requires human annotators to label each intermediate steps of the reasoning. Wang313

et al. (2023) proposes to use Monte-Carlo estimation of the Q value to automatically decide the314

label. After this, a long line of works proposes to improve the PRMs by generative reward modeling,315

advanced training technique like RL, and refined engineering practices (Xiong et al., 2024b; Zhang316

et al., 2025; Khalifa et al., 2025; Zhao et al., 2025; Xiong et al., 2025c). Our work does not focus on317

improving PRMs but uses the PRMs to supervise the intermediate steps of CoT trajectories for data318

filtering. We mainly use the Qwen2.5-Math-PRM-7B from Zhang et al. (2025) as it is trained on the319

distribution of Qwen model and achieves superior performance on ProcessBench (Zheng et al., 2024).320

B Additional Experimental Details and Results321
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Figure 2: Left: Visualization of PROF Algorithm 1, where the length of each rectangle represents
values of process rewards averaged over steps for each rollout. After generating n rollouts and process
rewards, PROF ranks the correct and incorrect group separately according to PRM-ORM consistency,
so for the correct group, the longer items are kept; for the incorrect group, the shorter items are kept.
The number to remove is to balance correct and incorrect ratio. Right: Fraction of flawed-reasoning
responses judged by LLM among the filtered-out correct responses.

Algorithm 1 Process Consistency Filter (PROF)

1: Input: Number of rollouts n, policy update size m, rollout {a1, . . . , an}, outcome rewards {ro,1, . . . , ro,n},
step number regularization parameter λ,Hλ > 0.

2: Obtain process rewards for each rollout ai with Hi steps: (r1i , . . . , r
Hi
i ) and compute trajectory-wise

consistency

rproi =
[ 1

Hi

Hi∑
h=1

rhi − λI(Hi = 1 or Hi ≥ Hλ)
]
· ro,i. (1)

3: Divide rollouts into correct group G+ = {a+
1 , . . . , a

+
n+

} with ro,i = 1 and incorrect group G− =

{a−
1 , . . . , a

−
n−} with ro,i = −1, where n+ + n− = n.

4: Compute kept number k+ ∈ [n+], k− ∈ [n−] in each group such that K+ + k− = m and k+k− is
maximized.

5: Rank G+ and G− by rpro separately, and keep the samples

K+ = {a+
i |rank(a

+
i ) ≥ n+ − k+}, K− = {a−

i |rank(a
−
i ) ≥ n− − k−}.

6: Output: The kept trajectories K+ ∪ K− with final kept size m.

B.1 Main Experiments322

The implementations are based on the verl framework (Sheng et al., 2025), and we follow most323

of the parameter settings in verl. Detailedly, we apply the AdamW optimizer with learning rate324

1× 10−6. We adopt the clip higher trick (Yu et al., 2025b) that clips the sampling ratio πθ/πold to an325

asymmetric range (1− ϵlow, 1+ ϵhigh). Specifically, we set ϵlow = 0.2, ϵhigh = 0.28 for models started326

from Qwen2.5-Math-1.5B-base and maintain ϵhigh = ϵlow = 0.2 for other cases. In each iteration,327

we sample 1024 prompts, rollout n = 4 responses per prompt for GRPO and n = 8 responses for328

PROF-GRPO. Note that the policy update number for all algorithms is m = 4. For the regularization329

of step numbers in Algorithm 1, we take λ = 10 and Hλ = 30. For the rollout stage, we use a330

temperature of 1.0 and a top-p value of 1.0. We set the KL loss coefficient to 0.001 and entropy loss331

coefficient to 0.001. All the models are trained with 8 H100 GPUs. We set the training mini-batch332

size as 256 and allow the models to generate 4096 tokens per prompt.333

B.2 Prompt Template334

We present the template used for LLM to compare step-level reasoning.335
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Prompt for Finding Reasoning Flaws in Correct Response via LLM-as-a-judge

Here is the problem and the assistant’s solution, which has been broken down into {step}
steps.

Problem:

Assistant’s Solution:

Your task is to review each step of the solution in sequence, analyzing, verifying, and critiquing
the reasoning in detail. You need to provide the analyses and the conclusion in the following
format:
<step>Step 1 Analysis</step>
<step>Step 2 Analysis</step>
... [CONTINUE FOR ALL step steps in the Assistant’s Solution] ...
<conclusion>Correct/Incorrect</conclusion>

• When you analyze each step, you should use proper verification, recalculation,
or reflection to indicate whether it is logically and mathematically valid. Please
elaborate on the analysis process carefully.

• If an error is detected in any step, you should describe the nature and cause of the
error in detail, and suggest how to correct the error or the correct approach. Once
a step is found to contain any error, stop further analysis of subsequent steps (as
they may depend on the identified error) and directly provide the conclusion of
“Incorrect.”

For instance, given a solution of five steps, if an error or flaw is found in the third step, you
should reply in the following format:
<step>Step 1 Analysis</step>
<step>Step 2 Analysis</step>
<step>Step 3 Analysis; since an error or flaw is found here, also provide detailed critique and
correction guideline)</step>
<conclusion>Incorrect</conclusion>
Respond with your analyses and conclusion directly.

336

Prompt for Responses Comparison via LLM-as-a-judge

System You are a meticulous, comparison engine. Your ONLY function is to compare the
intermediate reasoning steps of the two responses provided to you.
User Here is the problem and assistants’ two solutions, which have been chunked into steps.
You MUST provide preference over the two solutions.
Problem: <prompt>
Assistant’s Solution 1: <solution1>
Assistant’s Solution 2: <solution2>

Both solutions are correct. You MUST compare them based on the following criteria:
• The reasoning process is more correct, and logical.
• The reasoning process does not skip any reasoning steps.
• The reasoning process does not skip any reasoning steps.

You MUST follow this exact format:
Your detailed verification reasoning goes here. Conclude with the number of the preferred
solution: 1 or 2 .
If you prefer solution 1, you MUST output 1 .
If you prefer solution 2, you MUST output 2 .

Your preference:
337
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C Additional Experiment Results338

C.1 How PROF shapes Intermediate Reasoning Steps339

Effectiveness of Consistency Filtration. To demonstrate that our algorithm effectively differenti-340

ates the inconsistent trajectories, especially those correct answers with flawed reasoning steps, we341

prompt Qwen2.5-Math-7B-base (Yang et al., 2024) to generate rollouts for 500 problems randomly342

selected from the training set, and implement the filtration in Algorithm 1. Then, the filtered-out343

correct responses are judged by Claude-3-7-sonnet from Anthropic to verify whether they contain344

flawed steps. We use the prompt in Zhang et al. (2025) and provide the details in Appendix B.345

From Figure 2, 30.1% responses among the filtered-out correct responses are judged to possess346

flawed reasoning. This indicates that our methods can efficiently distinguish a number of flawed347

responses and reach consensus with LLM. Furthermore, with human checking those filtered-out348

correct responses, there are many responses with invalid or even completely wrong reasoning steps349

but luckily reaching the correct answer. A typical example is presented in Table 5. However, such350

flawed reasoning processes would be entirely missed by a standard ORM.351

Improved Step-wise Value. To evaluate the quality of intermediate steps, we adopt Monte Carlo352

(MC) estimation, a common way to estimate probability of getting to correct final answers (Wang353

et al., 2023; Xiong et al., 2024a; Luo et al., 2024). For this analysis, we select problem-response354

pairs from the test prompts where our method (PROF-GRPO) and GRPO both produced the correct355

final answer. Both models were initialized from Qwen2.5-Math-7B-base. To estimate the value of356

each reasoning step, we generate eight independent completions from that point using a temperature357

of 1.0, and the resulting empirical success rate serves as the MC value. Our primary finding is that358

PROF-GRPO achieves significant improvement in step-wise values compared to GRPO. In Figure 3,359

the average MC estimations across all five benchmarks are consistently higher for our model. The360

specific improvement gaps are 9.2% on Math500, 37.4% on Minerval Math, 15.9% on Olympiad361

Bench, 9.2% on AMC2023, and 11.1% on AIME2024, which are much larger than the outcome362

accuracy gap in Table 1. Hence, in addition to improving the outcome accuracy, our PROF method363

substantially improves the quality and consistency of intermediate steps.

Figure 3: Reasoning intermediate-steps performance of PROF-GRPO in comparison with GRPO.
The most left plot is the Monte Carlo (MC) estimation scores across five benchmarks. The other three
are on Math500 under metrics of number of steps (2nd left), the averaged process rewards generated
by Qwen2.5-Math-PRM-7B (3rd left), and LLM’s preference between two modes’ responses (most
right).

364

Deeper Analysis on Math500. We further compare responses where both models were correct on365

Math500 in Figure 3. In the second left figure, PROF-GRPO exhibits more reasoning steps. In the366

third left figure, the PRM used for training assigns higher rewards for PROF-GRPO’s responses. In367

the rightmost figure, we use Claude to judge which one’s reasoning process has more complete and368

detailed steps, and PROF-GRPO’s responses are significantly preferred. The prompt for LLM-as-a-369

judge is presented in Table B.2. The key takeaway is that our PROF method reshapes the model’s CoT370

process from unfaithful reasoning into detailed and easy-to-verify steps. This is further validated by371

two examples in Figure 7, 8.372
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D Ablations373

D.1 Separation of Correct and Incorrect Group374

Figure 4: Left two: averaged accuracy over Math500, Minerva Math and Olympiad Bench for
PROF-GRPO and its variants initialized from Qwen2.5-Math-1.5B-base and Qwen2.5-Math-7B-base.
Most right: the gap between the training rewards after and before the filtering for PROF-GRPO in
comparison with not separating correct and incorrect groups (w/o separation).

We conduct an ablation experiment on the necessity of separating correct and incorrect samples,375

named as PROF-GRPO w/o separation, where the rollouts are ranked and filtered together. To376

mitigate bias in PRM, each step’s PRM is subtracted by the averaged PRM of the batch. Even after377

centering, the rightmost plot in Figure 4 shows that PROF-GRPO w/o Separation has over 2% gap378

between the training reward after and before the filtration. This indicates that a disproportionate379

number of negative samples are removed. One explanation is that incorrect responses often contain380

several correct intermediate steps, thus increasing the averaged PRM over steps and leading to lower381

consistency. Consequently, incorrect responses exhibit lower consistency than correct ones, especially382

as the policy model improves over training. In contrast, PROF-GRPO successfully balances the bias383

by separating the correct and incorrect groups.384

To further disentangle the contributions of filtering correct versus incorrect samples, we design the385

following variants of PROF: (1) Filter-Correct: use PRM consistency to filter the correct group386

and randomly filter the incorrect group; (2) Filter-Incorrect: only use PRM consistency to filter387

the incorrect group; (3) Filter-Random: randomly filter both correct and incorrect samples Xu388

et al. (2025). In Figure 4, Filter-Correct and PROF-GRPO (Filter-both) achieve comparably best389

performances among the variants across the 1.5B and 7B models. While Filter-both converges390

more efficiently because it leverages the consistency filtration for both correct and incorrect groups.391

Filter-incorrect is less efficient and has slightly poorer performance. In contrast, Filter-Random only392

performs slightly better than GRPO, and w/o Separation performs the worst.393

We find that separating the correct and incorrect groups is essential to prevent the over-removal394

of valuable incorrect samples during training. While both Filter-both and Filter-Correct are top-395

performing strategies, with the former being more efficient, the trade-offs between them will be396

discussed in the following section. Furthermore, the comparable performance of Filter-both and Filter-397

Correct indicates that the process quality for correct samples is more crucial than the consistency for398

incorrect samples during the training process.399

D.2 Ablation Study on Base Model400

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
Base 30.0 8.8 6.1 2.3 10.6 11.6

GRPO 50.5 18.8 17.9 5.0 25.6 23.6
Blend-PRM-GRPO 37.2 13.1 9.9 1.0 17.2 15.7
PROF-GRPO (Both) 50.4 19.1 18.7 3.5 27.8 23.9

PROF-GRPO (Correct) 52.4 19.5 19.8 6.7 28.6 25.4
PROF-GRPO (Incorrect) 49.0 18.0 17.3 5.4 23.9 22.7

Table 2: The test accuracy of different methods initialized from LLaMA-3.2-3B-instruct that is
average@16 under temperature 1.0 and further averaged across all the five benchmarks.

To showcase the generalization of our algorithm, we conduct experiments on LLaMA-3.2-3B-instruct401

(Dubey et al., 2024) that has weaker math-reasoning abilities and more distribution shift since402

Qwen2.5-Math-PRM-7B is trained on the distribution of Qwen’s family. As provided in Table 2,403
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PROF-GRPO with PRM consistency filtering both correct and incorrect groups (Both) achieves404

23.9%, marginally outperforming the GRPO baseline (23.6%), while only applying PRM consistency405

to filter the correct group (Correct) exhibits the strongest (25.4%) performance. Conversely, applying406

the filter solely to the incorrect group (PROF-GRPO (Incorrect)) is counterproductive, causing407

accuracy to drop to 22.7%. Blend-PRM-GRPO still scores the worst (15.7%) among all the methods.408

These results suggest that our PROF methods can consistently outperform baselines across various409

base models.410

For the trade-off between the Both and Correct, we conclude that when the PRM is less reliable or411

prone to reward hacking (as in this cross-model scenario), the “Correct” method offers more robust412

improvements by safely constraining the PRM’s influence. However, when the PRM is highly reliable413

and training efficiency is a priority, the “Both” method is recommended. Due to the space limit, more414

ablations such as rollout numbers and various filtration methods are provided in Appendix D.415

D.3 Effect of Rollout Numbers416

Figure 5: The averaged accuracy across all five benchmarks over rollout sizes n = 4, 8, 12, 16 for
filtering both correct and incorrect groups with PRM consistency (Both) and only the correct group
with PRM consistency (Correct).

We study the scale of rollout numbers n with fixed policy-update number m = 4 by varying417

n = 4, 8, 12, 16. The lower-right plot in Figure 5 presents the test accuracy averaged over all five418

benchmarks for PROF-GRPO (Both) and Filter-Correct (Correct) started from Qwen2.5-Math-7B-419

base. We observe the performance first increases then decreases as n increases, revealing a trade-off420

between enhancing process reasoning quality and avoiding reward hacking. Notably, Filter-Correct421

decreases later (after n = 12) because it only leverages the influence of PRM only in the correct422

group, indicating that Filter-Correct is more robust when the PRM’s influence is higher, like when423

increasing the scale of ranking and filtering.424

D.4 Variants of Filtration Methods425

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
Mean 83.1 39.0 47.8 17.5 70.9 51.7

Minimum 82.9 38.3 46.7 20.8 65.9 50.9
Sum 82.4 38.1 47.4 17.7 67.5 50.6
Ratio 81.4 36.6 45.0 24.8 65.2 50.6

Table 3: Performance of different filtration ways in PROF starting from Qwen2.5-Math-7B-base.

In this subsection, we investigate the influence of different computation methods of consistency426

score rpro in addition to the mean of PRMs over steps, where Mean denotes averaging over steps427

in Algorithm 1, Minimum and Sum denotes taking the minimum and sum summation over steps,428

Ratio denotes filtering while preserving the original positive–negative sample distribution, instead429
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of balancing. As shown in Table 3, the performances of Minimum (50.9%), Sum (50.6%), and430

Ratio (50.6%) are inferior to the mean. This suggests that the mean provides a more stable estimate431

of reasoning consistency: unlike the minimum, it is less sensitive to a single poorly scored step,432

and unlike the summation, it avoids bias towards longer trajectories. Additionally, balancing the433

correct-incorrect ratio can use data consistency to select the group with more sufficient samples434

without breaking their balance.435

D.5 Effect of Step Number436

To prove that PROF effect not by simply increasing the step number, We conduct the Filter-Nstep:437

Ranking and filtering out the samples with smaller number of steps instead of lower PRM-ORM438

consistency.439

From Table 4, we find that Ratio scores 51.7% on average and cannot compete with balancing440

the proportion (PROF-GRPO), which also corroborates the conclusion that maintaining a balanced441

correct-incorrect proportion is essential. Additionally, since we observe that PROF boosts the number442

of intermediate reasoning steps, to verify that PROF does not simply increase the step length, but443

more importantly, enhances the quality of reasoning steps, we simply use the step length as the444

filtering criterion for comparison. As shown in Figure 6 and Table 4, Filter-Nstep manipulates the445

step length, which exhibits an unreasonable increase followed by a sudden drop, and its average446

accuracy is inferior.447

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7
Filter-Nstep 81.5 35.5 45.9 16.3 58.6 47.6

Table 4: Performance of variants of filtering methods besides PROF-GRPO starting from Qwen2.5-
Math-7B-base averaged on all five benchmarks, where Ratio denotes filtering while preserving the
original correct/incorrect proportion, Filter-Nstep denotes ranking and filtering based on the number
of step segments.

Figure 6: The number of reasoning steps during training time for PROF-GRPO and Filter-Nstep
initialized from Qwen2.5-Math-7B-base.

E Additional Examples448
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Problem: There are 4 coins of 1, 2, 3, 5 cruzeiros, which weigh 1, 2, 3, 5 grams respectively. One of
them is counterfeit, differing in weight (but not known whether it is heavier or lighter). How can the
counterfeit coin be identified with the minimum number of weighings using a balance scale without
weights?

Step 1: Introduction. We need to identify a counterfeit coin with an unknown weight difference from
...
Step 2 - 6: The Flawed Weighing Logic and Code.
1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5 grams. 2. Based on the result
of the first weighing: - If the left side is heavier, then the counterfeit coin is either 1 gram or 3 grams. -
If the right side is heavier, then the counterfeit coin is either 2 gram or 5 grams. - If both sides are equal,
then the counterfeit coin is either 2 gram or 5 grams. 3. For the second weighing, ...
Let’s illustrate this with code and ensure that the steps are correct ... output: (1, ’heavier’).
Step 7, 8, 9: Summary and Final Answer.
Here is a summary of the steps: 1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5
grams... 2. For the second weighing, weigh the 1 gram coin against a known genuine coin (3 grams)...
Thus, the minimum number of weighings required to identify the counterfeit coin is 2 .

Table 5: An Example of Reaching a Correct Result Through Flawed Reasoning. The proposed first
weighing of {1g, 2g} (total 3g) against {3g, 5g} (total 8g) is fundamentally invalid. A balance
scale requires comparing groups of equal nominal weight. Because this weighing is unbalanced, all
conclusions drawn from it are baseless. The final answer is correct but is completely unsupported by
the fallacious reasoning.

Figure 7: A Minerval-Math example to compare distinct intermediate reasoning patterns of PROF-
GRPO, vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction
steps. GRPO’s solution skips detailed deduction steps and there are flaws in the calculation precision
and the final rounding. Blend-PRM-GRPO has long-winded steps and makes a big mistake in
calculating the power.
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Figure 8: A Math500 example to compare distinct intermediate reasoning patterns of PROF-GRPO,
vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps.
PROF-GRPO’s solution shows how to find the divisors and summation in detail, and is easy to follow.
GRPO skips all core reasoning. Blend-PRM-GRPO has inefficient and excessively tedious steps.
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