© ©® N O O~ W N =

21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36

Beyond Correctness: Harmonizing Process and
Outcome Rewards through RL Training

Anonymous Author(s)
Affiliation
Address

email

Abstract

Reinforcement learning with verifiable rewards (RLVR) has emerged as a predom-
inant paradigm for mathematical reasoning tasks, offering stable improvements
in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are
too coarse-grained to distinguish flawed reasoning within correct answers or valid
reasoning within incorrect answers. This lack of granularity introduces noisy and
misleading gradients significantly and hinders further progress in reasoning process
quality. While Process Reward Models (PRMs) offer fine-grained guidance for
intermediate steps, they frequently suffer from inaccuracies and are susceptible to
reward hacking.

To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an
effective data process curation method that harmonizes noisy, fine-grained pro-
cess rewards with accurate, coarse-grained outcome rewards. Rather than naively
blending PRM and ORM in the objective function (Zou et al.,2025), PROF lever-
ages their complementary strengths through consistency-driven sample selection.
Our approach retains correct responses with higher averaged process values and
incorrect responses with lower averaged process values, while maintaining posi-
tive/negative training sample balance. Extensive experiments demonstrate that our
method not only consistently improves final accuracy over 4% compared to the
blending approaches, but also strengthens quality of intermediate reasoning steps.

1 Introduction

Verifiable rewards have spurred the widest attention recently because they reliably improve the
performance on reasoning tasks with easily verifiable outcomes, such as mathematical and coding
problems (Cobbe et al., 2021} Jaech et al.,[2024; Shao et al.,[2024} [Xiong et al.,|2025b). However,
since the verifiers can only verify the outcome results, the rewards are too sparse and coarse to measure
and supervise the reasoning quality in intermediate steps. For instance, if a correct answer contains
flawed logic, Outcome Reward Models (ORMs) cannot distinguish it from a completely correct
response. We present a classic example from the training data in Table 5] which has invalid reasoning
but happens to obtain the correct answer. Incorporating such flawed examples into training process
introduces unreliable gradients, leading to significant instability and misguided learning. Moreover,
the quality and interpretability of Chain of Thought (CoT) are crucial for practical reasoning ability
of a model, not just the accuracy of final answers (Zhu et al.,|2025; [Lyu et al., [2023; Yeo et al., [2024).
The lack of faithfulness during CoT is also observed by (Baker et al.l [2025} |Chen et al., |2025b),
limiting applications in areas such as LLLM safety monitoring and interpretation.

Hence, the limitation of ORMs can be partially addressed by using LLM-as-a-judge or Monte-Carlo
(MC) estimation to provide step-wise judgments or values (Wang et al.|, 2023} Zheng et al.,2024).
However, the cost of inferring LLM step-wise judgments or MC estimation at each iteration during

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63

64
65
66
67

68
69
70
71
72
73
74
75

76
7
78
79
80

81
82
83

85
86
87
88

online training is so high. Hence, it is inefficient and expensive to infer the step-wise scores or
values for online training. Alternatively, an efficient solution is to use the pre-trained Process Reward
Models (PRMs) (Lightman et al.,|2023;|Zhang et al.,[2025). However, applying these models to the
online training process often suffers from misspecification and distribution shift due to the limitations
of offline training data. Especially in boundary cases where the policy encounters difficult problems
and produces rarely seen responses, PRMs often fail to judge them correctly, thus leading to severe
reward hacking (Michaud et al., [2020; |Tien et al.,|2022). Even if some works (Zha et al., [2025}; |Cui
et al.,[2025)) attempt to co-train the policy and PRMs online, they can only train in implicit ways such
as using implicit generative reward or aligning process rewards with outcomes.

Although numerous works have made enormous efforts to train PRMs offline or online, the problem
of effectively coordinating PRMs with outcome-verifiable rewards remains largely underexplored.
Existing approaches typically combine process and outcome rewards in a simple weighted manner
(Zha et al., 2025} |Cui et al., 2025} Zou et al., 2025)), which is vulnerable for reward hacking due to
the noises and misspecification in PRMs. Therefore, in this paper, instead of developing another
PRM, we focus on how to robustly integrate a pre-trained PRM into the online training process, i.e.,
how to harmonize the accurate but coarse-grained ORMs with fine-grained but noisy Process Reward
Models (PRMs) in Reinforcement Learning (RL)?

In this work, instead of fine-tuning another PRM, we answer this question with a PRocess cOnsistency
Filtering (PROF) framework, a data curation strategy based on process-outcome consistency. PROF
oversamples more responses at training time, and then, ranks and filters the responses by the
consistency between their PRMs and ORMs. Specifically, it removes samples where the process
and outcome signals conflict—such as correct responses derived from flawed reasoning, or incorrect
responses that contain sound reasoning steps. By filtering out these inconsistent samples, PROF
eliminates conflicting and noisy gradients. Furthermore, observing that correct and incorrect responses
have different consistency distributions, we rank each group separately to maintain a balanced training
ratio. PROF is a modular framework that can be combined with RL algorithms like Group Relative
Policy Optimization (GRPO) for online training.

We conduct extensive experiments to validate the improvement of PROF-GRPO on both outcome
accuracy and process reasoning quality at diverse math reasoning benchmarks using both Qwen
(Yang et al., [2024) and LLaMA (Dubey et al.,[2024) models. To summarize, we highlight our key
contributions as follows:

* We propose PRocess cOnsistency Filtering (PROF) to robustly integrate noisy Process
Reward Models (PRMs) with Outcome Reward Models (ORMs). Compared to the GRPO-
type algorithms that only leverage outcome rewards, our implementation PROF-GRPO
effectively distinguishes the inconsistent trajectories, such as correct answers with flawed
reasoning steps or incorrect answers with mostly valid steps. Moreover, unlike prior
approaches that simply blend PRMs and PRMs, our method only relies on PRMs to rank
and filter rather than directly involving them into gradients. This separation avoids reward
hacking and entropy collapse, thus achieving stable performance gains throughout training.

* We conduct extensive studies to demonstrate that PROF-GRPO not only increases the final
outcome accuracy but also shapes the intermediate reasoning steps and improves the process
reasoning quality. Various metrics such as Monte-Carlo estimation, LLM-as-a judge are used
to validate that our method enable models to segment reasoning trajectories into detailed
and easy-to-verify steps.

* We conduct a series of ablation studies to illustrate the importance of separating the correct
and incorrect responses during the filtration. Meanwhile, we investigate various ways of cal-
culating the consistency and filtering, and ablate on LLaMA base models for generalization.

2 Method

LLM is a policy distribution such that given a prompt z, it provides density 7(a|x) of generating each
response a. For mathematical reasoning tasks with binary verifiable rewards, there exists a verifier
mapping prompt-response pairs (z, a) to a scalar reward r,(x, a) € {—1, 1}. For each prompt, we
can generate a group of responses and their corresponding responses with the verifier {(a;, r(,7i)}iG:1.

89
90
91
92

93
94
95
96

97
98

99

101
102

103
104

106
107
108
109
110
111
112
113
114
115
116
117

118

119
120
121
122
123
124
125
126
127
128

129
130
131
132

GRPO. (Shao et al., 2024) proposes this policy gradient algorithm that simplifies the Proximal
Policy Optimization (PPO) (Schulman et al.|[2017) by only computing the advantage based on the
outcome rewards in a group. Instead of maintaining and updating another value network, GRPO
computes the advantage by standardizing the outcome rewards within a group:

- T(Iaai) — mean ({T(I7aj)}?:1) i=1 n

std ({r(x, aj)}?zl) +6
where r(z, a;) is the reward for a given response and § > 0 is a small constant for numerical stability.
Let a; denote the ¢-th token of response a and a; denotes (a1, ..., a;—1). This advantage is then

incorporated into a clipped surrogate objective function, which is optimized to update the policy from
o, tO To:

n la;|
Jareo(0) = Exnp [1 > |L min (Tt il - A;, clip (WG(““<t|$)) -1+ 6) AZ)] '

n< — Ty (@i <tT) o (@i, <t|T

Although this approach stabilizes the online policy optimization and is efficient, the sparse reward
signal limits further improvement on the intermediate reasoning steps.

Process Reward Model (PRM). For a response a composed of multiple reasoning steps a =
(al, e aH), we follow previous works (Zheng et al., 2024; Zhang et al., 2025 Zou et al., [2025)) to
use a newline as a sign for a new step. For each step a”, the PRM 7 maps it, the previous steps and the
prompt (z,a=") to a scalar 7" (z,a="), where we use the short-hand notation a=" = (a', ..., a").

Our Method PROF: Process Consistency Filter Framework We propose PROF in Algorithm T]
to incorporate the consistency of PRMs and ORM:s robustly after the rollout phase, and also present a
visualization in Figure 2] First, we generate G samples and get the outcome reward. Then, we call
the PRM to generate step-wise rewards for each rollout and compute the trajectory-wise consistency
score P by taking the mean over the step-wise rewards and adding a step length regularization
in equation |1} where A is the regularization parameter and H is the threshold for the penalized
step number. This regularization is to ensure that samples with no step segments or over-long steps
are discarded in the correct group. The samples are divided into two subgroups: G contains the
correct samples with r, = 1, and G_ contains the incorrect samples with r, = —1. Inspired by
(Xu et al., [2025)), the numbers to discard in each subgroup k., k_ are calculated to maximize the
outcome-reward variance of the final kept samples k4 k_ /(ky + k_)?. Since ky + k_ = m is fixed,
kyk_ = k4 (m —k4) should be maximized and the maximum is obtained when k. is closest to m/2
under the constraint k. < ny,k_ < n_. This implies that the ratio of correct and incorrect responses
should be balanced. After that, we use r™ to rank and filter the correct group and randomly filter
the incorrect group. Finally, we collect the kept m trajectories for policy update.

3 Experiments

Setup We focus on mathematical reasoning tasks in this work. For online training, we use the
prompt set Numina-Math (Beeching et al.,[2024)) containing nearly 860k math problems with ground-
truth answers ranging from Chinese high school math exercises to US and international mathematics
Olympiad competition problems. We choose Qwen2.5-Math-1.5B-base, Qwen2.5-Math-7B-base
(Yang et al.| [2024) as the training base models. For the PRM, we use Qwen2.5-Math-PRM-7B
(Zhang et al., [2025) to generate process rewards. More details are provided in Appendix |B| The
models’ performance is evaluated on 5 benchmarks: Math500 (Hendrycks et al., 2021)), Minerva
Math (Lewkowycz et al.} 2022), Olympiad Bench (He et al.| 2024)), AMC202 and AIME2024H We
mainly use average @16 for evaluation, i.e., the accuracy is averaged over 16 responses per prompt
under temperature 1.0. The models are allowed to generate 4096 tokens.

Main Results We summarize our main results in Table[I] where Blend denotes a common way that
mixes the PRM with outcome rewards (Zha et al.| [2025; |Cui et al.| 2025} Zou et al.| [2025)). Following
(Zou et al.| 2025), the PRMs are averaged over steps for each response, weighted by a parameter
5, and added to outcome rewards. We use parameter 3 = 0.8 according to Table 5 of (Zou et al.}

"https://huggingface.co/datasets/math-ai/amc23
“https://huggingface.co/datasets/math-ai/aime24

Model Algorithm | Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average

Base 39.9 11.4 19.1 35 23.6 19.5

Qwen2.5-Math- GRPO 70.3 29.1 33.0 9.0 44.5 37.2
1.5B-base Blend 67.6 27.8 31.1 7.7 42.5 353
PROF-GRPO 73.2 30.0 36.1 9.6 49.1 39.6

Base 42.0 12.8 19.2 12.9 30.0 234

Qwen2.5-Math- GRPO 81.6 37.2 455 20.6 64.4 49.9
7B-base Blend 81.7 36.7 45.0 15.2 58.0 473
PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7

Table 1: Performance of different algorithms across five benchmarks including Math500 (Hendrycks|
et al., [2021), Minerva Math (Lewkowycz et al.,[2022)), Olympiad Bench (He et al.| 2024), AMC2023
and AIME2024. We denote Blend-PRM-GRPO by Blend for short. We tune all the algorithms to
their best performance. The reported accuracy is average @ 16 under temperature 1.0.

0.46 T 056 S R e
0.44 — | —
> — = >0.54 > ——
g L g I
5042 A < //
>
g T Jo52
< 0.40 < //
[9] /
0.50
2038 g ”
] [
[
[el g
<036 —— GRPO 048 / —— GRPO
—— PROF-GRPO —— PROF-GRPO
0.34 Blend-PRM-GRPO 046 Blend-PRM-GRPO
50 100 150 200 250 50 100 150 200 250
Training Steps Training Steps
0.30
—— GRPO — GRPO
0.25 Blend-PRM-GRPO 1200 Blend-PRM-GRPO
) —— PROF-GRPO - —— PROF-GRPO
‘611100
£ 0.20 e
S 9]
S —1000 |
20.15 @ \
£ §_ 900
Go1o 2 “\1
j) \
& 800 | f’\'
0.05 Wit Vo
700 “NWWW\MWM sl
0.00
0 50 100 150 200 250 0 50 100 150 200 250
Training Step Training Step

Figure 1: The learning dynamics of PROF-GRPO initialized from Qwen2.5-Math-1.5B-base (upper
left) and Qwen2.5-Math-7B-base (upper right) in comparison of GRPO and Blend-PRM-GRPO. The
y-axis is the average @16 accuracy and is further averaged on Math500, Minerva Math and Olympiad
Bench. Entropy loss (lower left) and response length (lower right) of the models initialized from
Qwen2.5-Math-7B-base.

133 |2025). Our main findings are as follows. As shown in Table our proposed method, PROF-GRPO,
134 consistently outperforms GRPO and Blend-PRM-GRPO over various benchmarks. EI The learning
135 dynamics in Figure[I|corroborate these findings, illustrating that PROF-GRPO steadily maintains a
136 consistent performance advantage over GRPO and Blend-PRM-GRPO throughout training process.

137 4 Conclusion and Future Work

138 This work introduces Process Consistency Filter (PROF), a novel data curation technique that filters
139 generated responses by the data PRM-ORM consistency, and maintains the balance of correct-
140 incorrect ratios. We demonstrate its effectiveness in both consistently improving the accuracy of
141 obtaining correct final answers and shaping the policy model to generate more detailed and fine-
142 grained segmented intermediate reasoning steps. Particularly, PROF is a general filtration framework
143 without reliance on specific PRMs or the RL algorithms. Thus, the use of Qwen2.5-Math-PRM-7B
144 as the PRM in our experiments is not a limitation. Exploring the integration of PROF with more
145 accurate or diverse PRMs remains an interesting direction for future work. Additionally, how to
146 extend our method to other reasoning tasks, such as coding (Jimenez et al.,[2023) and web navigation
147 (Zhou et al.| [2023)) deserves to be explored.

3 Although PROF-GRPO underperformed GRPO on AIME24 for Qwen2.5-Math-7B-base, given the dataset’s
small size of only 30 samples, the performance difference may not be statistically significant.

148

149
150
151

152
153
154

156

157
158
159

160
161
162

163
164
165

166
167

168
169
170

171
172
173

174
175

176
177
178

179
180
181

182
183
184

185
186

187
188

189
190

191
192
193
194

References

Baker, B., Huizinga, J., Gao, L., Dou, Z., Guan, M. Y., Madry, A., Zaremba, W., Pachocki, J.,
and Farhi, D. (2025). Monitoring reasoning models for misbehavior and the risks of promoting
obfuscation. arXiv preprint arXiv:2503.11926.

Beeching, E., Huang, S. C., Jiang, A., Li, J., Lipkin, B., Qina, Z., Rasul, K., Shen, Z., Solet-
skyi, R., and Tunstall, L. (2024). Numinamath 7b cot. https://huggingface.co/AI-M0/
NuminaMath-7B-CoT.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324-345.

Chen, H., Zheng, K., Zhang, Q., Cui, G., Cui, Y., Ye, H., Lin, T.-Y., Liu, M.-Y., Zhu, J., and Wang,
H. (2025a). Bridging supervised learning and reinforcement learning in math reasoning. arXiv
preprint arXiv:2505.18116.

Chen, Y., Benton, J., Radhakrishnan, A., Uesato, J., Denison, C., Schulman, J., Somani, A., Hase, P.,
Wagner, M., Roger, F., et al. (2025b). Reasoning models don’t always say what they think. arXiv
preprint arXiv:2505.05410.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton,
J., Nakano, R., et al. (2021). Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Cui, G., Yuan, L., Wang, Z., Wang, H., Li, W., He, B., Fan, Y., Yu, T., Xu, Q., Chen, W., et al. (2025).
Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., Shum, K., and
Zhang, T. (2023). Raft: Reward ranked finetuning for generative foundation model alignment.
arXiv preprint arXiv:2304.06767.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H., Zhou, Y., Jiang, N., Sahoo, D., Xiong, C.,
and Zhang, T. (2024). Rlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Yang, A., Fan, A., et al. (2024). The llama 3 herd of models. arXiv e-prints, pages arXiv—2407.

Eisenstein, J., Nagpal, C., Agarwal, A., Beirami, A., D’Amour, A., Dvijotham, D., Fisch, A., Heller,
K., Pfohl, S., Ramachandran, D., et al. (2023). Helping or herding? reward model ensembles
mitigate but do not eliminate reward hacking. arXiv preprint arXiv:2312.09244.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J., Han, X., Huang, Y., Zhang, Y., et al.
(2024). Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems. arXiv preprint arXiv:2402.14008.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt,
J. (2021). Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky, A., Low, A., Helyar, A., Madry, A., Beutel,
A., Carney, A., et al. (2024). Openai ol system card. arXiv preprint arXiv:2412.16720.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. (2023). Swe-
bench: Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770.

Khalifa, M., Agarwal, R., Logeswaran, L., Kim, J., Peng, H., Lee, M., Lee, H., and Wang, L. (2025).
Process reward models that think. arXiv preprint arXiv:2504.16828.

Kim, S. S., Liao, Q. V., Vorvoreanu, M., Ballard, S., and Vaughan, J. W. (2024). " i’m not sure, but...":
Examining the impact of large language models’ uncertainty expression on user reliance and trust.
In Proceedings of the 2024 ACM conference on fairness, accountability, and transparency, pages
822-835.

https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT

195
196
197

198
199
200

201
202

203
204
205

206
207
208
209

210
211

212
213

214
215
216

217
218
219

220
221

222
223
224

225
226
227

228
229
230

231

232
233

234
235

236
237

239
240

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A.,
Anil, C., Schlag, I., Gutman-Solo, T., et al. (2022). Solving quantitative reasoning problems with
language models. Advances in neural information processing systems, 35:3843-3857.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J.,
Sutskever, 1., and Cobbe, K. (2023). Let’s verify step by step. In The Twelfth International
Conference on Learning Representations.

Lin, Y., Lin, H., Xiong, W., Diao, S., Liu, J., Zhang, J., Pan, R., Wang, H., Hu, W., Zhang, H., et al.
(2023). Mitigating the alignment tax of rlhf. arXiv preprint arXiv:2309.06256.

Luo, L., Liu, Y., Liu, R., Phatale, S., Guo, M., Lara, H., Li, Y., Shu, L., Zhu, Y., Meng, L., Sun,
J., and Rastogi, A. (2024). Improve mathematical reasoning in language models by automated
process supervision.

Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong, E., Apidianaki, M., and Callison-Burch, C.
(2023). Faithful chain-of-thought reasoning. In The 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (IJCNLP-AACL 2023).

Michaud, E. J., Gleave, A., and Russell, S. (2020). Understanding learned reward functions. arXiv
preprint arXiv:2012.05862.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y., Wu, Y., et al.
(2024). Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang, R., Peng, Y., Lin, H., and Wu, C. (2025).
Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth European
Conference on Computer Systems, pages 1279-1297.

Tien, J., He, J. Z.-Y., Erickson, Z., Dragan, A. D., and Brown, D. S. (2022). Causal confusion and
reward misidentification in preference-based reward learning. arXiv preprint arXiv:2204.06601.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D., Wu, Y., and Sui, Z. (2023). Math-
shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935.

Xiong, W., Shi, C., Shen, J., Rosenberg, A., Qin, Z., Calandriello, D., Khalman, M., Joshi, R., Piot,
B., Saleh, M., et al. (2024a). Building math agents with multi-turn iterative preference learning.
arXiv preprint arXiv:2409.02392.

Xiong, W., Yao, J., Xu, Y., Pang, B., Wang, L., Sahoo, D., Li, J., Jiang, N., Zhang, T., Xiong, C., et al.
(2025a). A minimalist approach to 1lm reasoning: from rejection sampling to reinforce. arXiv
preprint arXiv:2504.11343.

Xiong, W., Zhang, H., Jiang, N., and Zhang, T. (2024b). An implementation of generative prm.

Xiong, W., Zhang, H., Ye, C., Chen, L., Jiang, N., and Zhang, T. (2025b). Self-rewarding correction
for mathematical reasoning. arXiv preprint arXiv:2502.19613.

Xiong, W., Zhao, W., Yuan, W., Golovneva, O., Zhang, T., Weston, J., and Sukhbaatar, S. (2025c).
Stepwiser: Stepwise generative judges for wiser reasoning.

Xu, Y. E., Savani, Y., Fang, F., and Kolter, Z. (2025). Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D., Tu, J., Zhou, J., Lin, J., et al. (2024).
Qwen?2. 5-math technical report: Toward mathematical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

241
242

243
244

245
246
247

248
249

250
251

252
253

254
255
256

257
258

259
260

261
262

264
265
266

267

Yeo, W. J., Satapathy, R., Goh, R. S. M., and Cambria, E. (2024). How interpretable are reasoning
explanations from prompting large language models? arXiv preprint arXiv:2402.11863.

Yu, P, Yuan, W., Golovneva, O., Wu, T., Sukhbaatar, S., Weston, J., and Xu, J. (2025a). Rip: Better
models by survival of the fittest prompts. arXiv preprint arXiv:2501.18578.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Dai, W., Fan, T., Liu, G., Liu, L., et al.
(2025b). Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476.

Yuan, W., Pang, R. Y., Cho, K., Sukhbaatar, S., Xu, J., and Weston, J. (2024). Self-rewarding
language models. arXiv preprint arXiv:2401.10020, 3.

Zha, K., Gao, Z., Shen, M., Hong, Z.-W., Boning, D. S., and Katabi, D. (2025). Rl tango: Reinforcing
generator and verifier together for language reasoning. arXiv preprint arXiv:2505.15034.

Zhang, C., Shen, W., Zhao, L., Zhang, X., Qi, L., Dou, W., and Bian, J. (2024). Policy filtration in
rlhf to fine-tune 1lm for code generation.

Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R., Yu, B., Liu, D., Zhou, J., and Lin, J. (2025).
The lessons of developing process reward models in mathematical reasoning. arXiv preprint
arXiv:2501.07301.

Zhao, J., Liu, R., Zhang, K., Zhou, Z., Gao, J., Li, D., Lyu, J., Qian, Z., Qi, B., Li, X., and Zhou, B.
(2025). Genprm: Scaling test-time compute of process reward models via generative reasoning.

Zheng, C., Zhang, Z., Zhang, B., Lin, R., Lu, K., Yu, B., Liu, D., Zhou, J., and Lin, J. (2024). Process-
bench: Identifying process errors in mathematical reasoning. arXiv preprint arXiv:2412.06559.

Zhou, S., Xu, F. F, Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Ou, T., Bisk, Y., Fried, D., et al.
(2023). Webarena: A realistic web environment for building autonomous agents. arXiv preprint
arXiv:2307.13854.

Zhu, D., Wei, X., Zhao, G., Wu, W., Zou, H., Ran, J., Wang, X., Sun, L., Zhang, X., and Li, S.
(2025). Chain-of-thought matters: improving long-context language models with reasoning path
supervision. arXiv preprint arXiv:2502.20790.

Zou, J., Yang, L., Gu, J., Qiu, J., Shen, K., He, J., and Wang, M. (2025). Reasonflux-prm: Trajectory-
aware prms for long chain-of-thought reasoning in llms. arXiv preprint arXiv:2506.18896.

269

270
271
272
273
274
275
276
277
278

279
280
281
282
283
284

286
287

289
290
291
292
293
294

296
297
298
299

300
301
302
303
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321

A Related Works

Sample Filtering in Reinforcement Learning for LLM. A key challenge in applying reinforce-
ment learning to LLM applications is the imperfection of reward signals. These signals stem from
a learned reward model, such as Reinforcement Learning from Human Feedback (RLHF), or are
sparse, delivered only at the end of a trajectory (e.g. RLVR). In RLHF, the reward model is trained on
human-annotated pairwise comparisons, typically using a Bradley-Terry model (Bradley and Terry,
1952). Due to inherent human disagreement and finite training data, the model develops shortcuts
that RL algorithms can exploit (Lin et al., 2023} [Eisenstein et al.| [2023) to chase for a fake high
reward. Consequently, these rewards may not fully align with the underlying intended goals, leading
to reward hacking.

Data filtering, a data curation technique, has proven effective in mitigating this issue across various
LLM applications with RL. A prominent line of work proposes filtering training pairs based on the
reward gap between the chosen and rejected responses (Yuan et al., 2024; Dong et al., 2024; Xiong
et al., [2024a}; Zhang et al.|[2024). The high-level intuition is that a larger reward gap indicates higher
model confidence, making these pairs less noisy and more reliable for training when the reward
model is well-calibrated. Moreover, Kim et al.| (2024);[Yu et al.| (2025a) further rank and filter the
samples by combining their rewards and responses length during the preference learning process.

In RLVR, where rewards are sparse and only for the outcome, filtering is also helpful. For instance,
the simple rejection sampling fine-tuning (Dong et al., [2023; |Chen et al., 2025al), which discards
all incorrect trajectories, often approaches the performance of more complex algorithms like GRPO
(Dong et al.,|2023; |Chen et al.| |2025a} | Xiong et al., [2025a). Other methods like (Yang et al.,2024)
filter prompts by difficulty prior to the RL training. | Yu et al.| (2025b) removes prompts that yield zero
gradients during training and dynamically regenerates samples. This technique is known as dynamic
sampling and has been rather widely accepted. [Xiong et al.|(2025a)) demonstrates that prompts where
all generated responses are incorrect can significantly hurt the performance of the vanilla Reinforce
algorithm. They propose an online data filtering strategy based on the correctness reward, showing
that a modified Reinforce with filtering (Reinforce-rej) can match or exceed GRPO’s performance.
Their results suggest that the advantage of GRPO compared to Reinforce is due to the implicit data
filtering mechanism from the reward shaping. Finally, |Xu et al.| (2025)) proposes to over-sample and
keep a subset such that the variance of the rewards in the subset is maximized, which implies that
they try to balance the ratio of correct and incorrect responses for reasoning tasks.

In contrast to these methods, which primarily rely on coarse, outcome-based metrics (e.g., final
answer correctness, trajectory-level rewards), our approach introduces a more fine-grained filtering
mechanism. We leverage process-supervised reward models (PRMs) (Lightman et al.l 2023) to
evaluate and filter based on the quality of intermediate reasoning steps, and their consistency with
ORMs.

Process-Supervised Reward Models for Fine-Grained Feedback. The RLHF focuses on the
trajectory-level comparison under the Bradley-Terry model. For reasoning-related task, |Yang et al.
(2024)) uses the correctness of the final answer to construct the preference pairs and trains Bradley-
Terry reward models for mathematical reasoning. A more widely used approach, termed Outcome
Reward Models (ORMs) trains a classifier to predict whether the final answer is correct or not based
on the reasoning history. However, |[Lightman et al.| (2023)) have shown that Process-Supervised
Reward Models (PRMs), which evaluate each intermediate step of a reasoning chain, significantly
outperform ORMs, especially for data selection tasks like best-of-n sampling (Lightman et al., 2023)).
But their approach requires human annotators to label each intermediate steps of the reasoning. [Wang
et al.| (2023)) proposes to use Monte-Carlo estimation of the Q value to automatically decide the
label. After this, a long line of works proposes to improve the PRMs by generative reward modeling,
advanced training technique like RL, and refined engineering practices (Xiong et al., 2024b; |Zhang
et al., 2025} [Khalifa et al., 2025} Zhao et al., 2025}, |Xiong et al., 2025c). Our work does not focus on
improving PRMs but uses the PRMs to supervise the intermediate steps of CoT trajectories for data
filtering. We mainly use the Qwen2.5-Math-PRM-7B from Zhang et al.|(2025)) as it is trained on the
distribution of Qwen model and achieves superior performance on ProcessBench (Zheng et al., [2024)).

B Additional Experimental Details and Results

322

323
324
325
326
327
328
329
330
331

333

334

335

Initial Rollouts PROF
n=3_§

(\ (Correct Grolh POliCy Update Filtered-Out Correct Response

n, =3 m=4

With Flaw
Remove k, =3
30.1%

Incorrect Group
n_= 3 69.9%

Correct Incorrect !

\ J k Remove k_ :) Removed rollouts |

Figure 2: Left: Visualization of PROF Algorithm where the length of each rectangle represents
values of process rewards averaged over steps for each rollout. After generating n rollouts and process
rewards, PROF ranks the correct and incorrect group separately according to PRM-ORM consistency,
so for the correct group, the longer items are kept; for the incorrect group, the shorter items are kept.
The number to remove is to balance correct and incorrect ratio. Right: Fraction of flawed-reasoning
responses judged by LLM among the filtered-out correct responses.

Algorithm 1 Process Consistency Filter (PROF)

1: Input: Number of rollouts n, policy update size m, rollout {a1, . . ., an }, outcome rewards {ro.1, ..., To,n },
step number regularization parameter A, Hy > 0.
2: Obtain process rewards for each rollout a; with H; steps: (r,-l, cey TZH) and compute trajectory-wise
consistency
1 &
w0 = [Do vt = M(H: =1 or Hi 2 Hy)| 1o (1)
h=1
3: Divide rollouts into correct group G+ = {af,...,a} +} with 7, ; = 1 and incorrect group G_ =
{a7,...,a,_ }withr,; = —1, where n4 + n_ = n.
4: Compute kept number k4 € [n4],k— € [n_] in each group such that K| + k- = m and ki k_ is
maximized.

5: Rank G and G_ by rP™ separately, and keep the samples

KT = {af [rank(a]) > ny —ky}, K~ = {a; |rank(a]) > n_ —k_}.

6: Output: The kept trajectories Kt U K~ with final kept size m.

B.1 Main Experiments

The implementations are based on the verl framework (Sheng et al., 2025), and we follow most
of the parameter settings in verl. Detailedly, we apply the AdamW optimizer with learning rate
1 x 1075, We adopt the clip higher trick (Yu et al., 2025b) that clips the sampling ratio 7 /Tlq to an
asymmetric range (1 — €jow, 1 + €nign). Specifically, we set €10 = 0.2, enign = 0.28 for models started
from Qwen2.5-Math-1.5B-base and maintain epjop = €jow = 0.2 for other cases. In each iteration,
we sample 1024 prompts, rollout n = 4 responses per prompt for GRPO and n = 8 responses for
PROF-GRPO. Note that the policy update number for all algorithms is m = 4. For the regularization
of step numbers in Algorithm [I} we take A = 10 and H) = 30. For the rollout stage, we use a
temperature of 1.0 and a top-p value of 1.0. We set the KL loss coefficient to 0.001 and entropy loss
coefficient to 0.001. All the models are trained with 8 H100 GPUs. We set the training mini-batch
size as 256 and allow the models to generate 4096 tokens per prompt.

B.2 Prompt Template

We present the template used for LLM to compare step-level reasoning.

336

337

Prompt for Finding Reasoning Flaws in Correct Response via LLM-as-a-judge

Here is the problem and the assistant’s solution, which has been broken down into {step}
steps.

Problem:
Assistant’s Solution:

Your task is to review each step of the solution in sequence, analyzing, verifying, and critiquing
the reasoning in detail. You need to provide the analyses and the conclusion in the following
format:

<step>Step 1 Analysis</step>

<step>Step 2 Analysis</step>

... [CONTINUE FOR ALL step steps in the Assistant’s Solution] ...
<conclusion>Correct/Incorrect</conclusion>

* When you analyze each step, you should use proper verification, recalculation,
or reflection to indicate whether it is logically and mathematically valid. Please
elaborate on the analysis process carefully.

« If an error is detected in any step, you should describe the nature and cause of the
error in detail, and suggest how to correct the error or the correct approach. Once
a step is found to contain any error, stop further analysis of subsequent steps (as
they may depend on the identified error) and directly provide the conclusion of
“Incorrect.”

For instance, given a solution of five steps, if an error or flaw is found in the third step, you
should reply in the following format:

<step>Step 1 Analysis</step>

<step>Step 2 Analysis</step>

<step>Step 3 Analysis; since an error or flaw is found here, also provide detailed critique and
correction guideline)</step>

<conclusion>Incorrect</conclusion>

Respond with your analyses and conclusion directly.

Prompt for Responses Comparison via LL.M-as-a-judge

System You are a meticulous, comparison engine. Your ONLY function is to compare the
intermediate reasoning steps of the two responses provided to you.

User Here is the problem and assistants’ two solutions, which have been chunked into steps.
You MUST provide preference over the two solutions.

Problem: <prompt>

Assistant’s Solution 1: <solution1>

Assistant’s Solution 2: <solution2>

Both solutions are correct. You MUST compare them based on the following criteria:
* The reasoning process is more correct, and logical.
* The reasoning process does not skip any reasoning steps.
* The reasoning process does not skip any reasoning steps.

You MUST follow this exact format:
Your detailed verification reasoning goes here. Conclude with the number of the preferred

solution: or .

If you prefer solution 1, you MUST output .
If you prefer solution 2, you MUST output .

Your preference:

10

338

339

340
341
342
343
344
345
346
347
348
349
350

352
353
354
355
356
357
358
359
360
361

363

364

365
366
367
368
369

371
372

C Additional Experiment Results

C.1 How PROF shapes Intermediate Reasoning Steps

Effectiveness of Consistency Filtration. To demonstrate that our algorithm effectively differenti-
ates the inconsistent trajectories, especially those correct answers with flawed reasoning steps, we
prompt Qwen2.5-Math-7B-base (Yang et al., 2024)) to generate rollouts for 500 problems randomly
selected from the training set, and implement the filtration in Algorithm|[I] Then, the filtered-out
correct responses are judged by Claude-3-7-sonnet from Anthropic to verify whether they contain
flawed steps. We use the prompt in [Zhang et al] (2023) and provide the details in Appendix [B]
From Figure [2} 30.1% responses among the filtered-out correct responses are judged to possess
flawed reasoning. This indicates that our methods can efficiently distinguish a number of flawed
responses and reach consensus with LLM. Furthermore, with human checking those filtered-out
correct responses, there are many responses with invalid or even completely wrong reasoning steps
but luckily reaching the correct answer. A typical example is presented in Table[5] However, such
flawed reasoning processes would be entirely missed by a standard ORM.

Improved Step-wise Value. To evaluate the quality of intermediate steps, we adopt Monte Carlo
(MC) estimation, a common way to estimate probability of getting to correct final answers (Wang
et al., 2023} Xiong et al.l|2024a; [Luo et al., 2024). For this analysis, we select problem-response
pairs from the test prompts where our method (PROF-GRPO) and GRPO both produced the correct
final answer. Both models were initialized from Qwen2.5-Math-7B-base. To estimate the value of
each reasoning step, we generate eight independent completions from that point using a temperature
of 1.0, and the resulting empirical success rate serves as the MC value. Our primary finding is that
PROF-GRPO achieves significant improvement in step-wise values compared to GRPO. In Figure 3]
the average MC estimations across all five benchmarks are consistently higher for our model. The
specific improvement gaps are 9.2% on Math500, 37.4% on Minerval Math, 15.9% on Olympiad
Bench, 9.2% on AMC2023, and 11.1% on AIME2024, which are much larger than the outcome
accuracy gap in Table[I] Hence, in addition to improving the outcome accuracy, our PROF method
substantially improves the quality and consistency of intermediate steps.

PROF-GRPO
== GRPO

H
)
)

4
©
©

- o -
350
5
< 300

77.0
67.9
63.1 63.4
531 54.2 .
50 80 H
< .
S40 372 o
2 60 . : o 250
ﬁ 30 25.8 26.2 : 2 200
¢, 40 X ; 150
15.1 o 8 =
. 20 i 4 . -
0 50 2
I
I
° 0 0.95

. 0
MATH-500 Minerva Math OlympiadBench ~ AMC2023 AIME2024 PROF-GRPO GRPO PROF-GRPO GRPO PROF-GRPO GRPO

o o
© ©
NI

Step Number
Process Rewards
fi

o
©
3

Figure 3: Reasoning intermediate-steps performance of PROF-GRPO in comparison with GRPO.
The most left plot is the Monte Carlo (MC) estimation scores across five benchmarks. The other three
are on Math500 under metrics of number of steps (2nd left), the averaged process rewards generated
by Qwen2.5-Math-PRM-7B (3rd left), and LLM’s preference between two modes’ responses (most
right).

Deeper Analysis on Math500. We further compare responses where both models were correct on
Math500 in Figure[3] In the second left figure, PROF-GRPO exhibits more reasoning steps. In the
third left figure, the PRM used for training assigns higher rewards for PROF-GRPO’s responses. In
the rightmost figure, we use Claude to judge which one’s reasoning process has more complete and
detailed steps, and PROF-GRPO’s responses are significantly preferred. The prompt for LLM-as-a-
judge is presented in Table[B.2] The key takeaway is that our PROF method reshapes the model’s CoT
process from unfaithful reasoning into detailed and easy-to-verify steps. This is further validated by
two examples in Figure 7} [§]

11

szs D Ablations

374 D.1 Separation of Correct and Incorrect Group

046 o

&

PROF-GRPO (w Separation)
wlo Separation

,.044

o /.
oa ///
g .
—— Filter-Correct

— "
Soao o _ y
&o0.38 —— PROF-GRPO -
3 —— Filter-Correct .
T036 7 - Filter-Incorrect -
2 Filter-Random / Filter-Random
034 PROF-GRPO w/o Separation ! wjo Separation

Fiter-Incorrect
1
032 7 GRPO - GRPO Wy

Average Accuracy
S 2 G
5 5 8

°

°

—— PROF-GRPO

°
8

Reward Gap of Filtering

b

b3

I
°

200 250 0 50 100 150 200 250

200 250 50 150
Training Steps Training Step

50 100 150
Training Steps

Figure 4: Left two: averaged accuracy over Math500, Minerva Math and Olympiad Bench for
PROF-GRPO and its variants initialized from Qwen2.5-Math-1.5B-base and Qwen2.5-Math-7B-base.
Most right: the gap between the training rewards after and before the filtering for PROF-GRPO in
comparison with not separating correct and incorrect groups (w/o separation).

375 We conduct an ablation experiment on the necessity of separating correct and incorrect samples,
s76 named as PROF-GRPO w/o separation, where the rollouts are ranked and filtered together. To
377 mitigate bias in PRM, each step’s PRM is subtracted by the averaged PRM of the batch. Even after
a7e centering, the rightmost plot in Figure shows that PROF-GRPO w/o Separation has over 2% gap
379 between the training reward after and before the filtration. This indicates that a disproportionate
sso number of negative samples are removed. One explanation is that incorrect responses often contain
381 several correct intermediate steps, thus increasing the averaged PRM over steps and leading to lower
ss2 consistency. Consequently, incorrect responses exhibit lower consistency than correct ones, especially
383 as the policy model improves over training. In contrast, PROF-GRPO successfully balances the bias
384 by separating the correct and incorrect groups.

385 To further disentangle the contributions of filtering correct versus incorrect samples, we design the
sss following variants of PROF: (1) Filter-Correct: use PRM consistency to filter the correct group
ss7 and randomly filter the incorrect group; (2) Filter-Incorrect: only use PRM consistency to filter
sse the incorrect group; (3) Filter-Random: randomly filter both correct and incorrect samples Xu
sso let al](2025). In Figure[d] Filter-Correct and PROF-GRPO (Filter-both) achieve comparably best
390 performances among the variants across the 1.5B and 7B models. While Filter-both converges
391 more efficiently because it leverages the consistency filtration for both correct and incorrect groups.
392 Filter-incorrect is less efficient and has slightly poorer performance. In contrast, Filter-Random only
393 performs slightly better than GRPO, and w/o Separation performs the worst.

394 We find that separating the correct and incorrect groups is essential to prevent the over-removal
395 of valuable incorrect samples during training. While both Filter-both and Filter-Correct are top-
396 performing strategies, with the former being more efficient, the trade-offs between them will be
397 discussed in the following section. Furthermore, the comparable performance of Filter-both and Filter-
s9s Correct indicates that the process quality for correct samples is more crucial than the consistency for
399 incorrect samples during the training process.

400 D.2 Ablation Study on Base Model

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
Base 30.0 8.8 6.1 2.3 10.6 11.6
GRPO 50.5 18.8 17.9 5.0 25.6 23.6
Blend-PRM-GRPO 37.2 13.1 9.9 1.0 17.2 15.7
PROF-GRPO (Both) 50.4 19.1 18.7 3.5 27.8 239
PROF-GRPO (Correct) 524 19.5 19.8 6.7 28.6 254
PROF-GRPO (Incorrect) 49.0 18.0 17.3 5.4 239 22.7

Table 2: The test accuracy of different methods initialized from LLaMA-3.2-3B-instruct that is
average @16 under temperature 1.0 and further averaged across all the five benchmarks.

401 To showcase the generalization of our algorithm, we conduct experiments on LLaMA-3.2-3B-instruct
402 (Dubey et al.| 2024) that has weaker math-reasoning abilities and more distribution shift since
403 Qwen2.5-Math-PRM-7B is trained on the distribution of Qwen’s family. As provided in Table

12

404
405
406
407
408
409
410

411
412
413
414
415

416

417
418
419
420
421
422
423
424

425

426
427
428
429

PROF-GRPO with PRM consistency filtering both correct and incorrect groups (Both) achieves
23.9%, marginally outperforming the GRPO baseline (23.6%), while only applying PRM consistency
to filter the correct group (Correct) exhibits the strongest (25.4%) performance. Conversely, applying
the filter solely to the incorrect group (PROF-GRPO (Incorrect)) is counterproductive, causing
accuracy to drop to 22.7%. Blend-PRM-GRPO still scores the worst (15.7%) among all the methods.
These results suggest that our PROF methods can consistently outperform baselines across various
base models.

For the trade-off between the Both and Correct, we conclude that when the PRM is less reliable or
prone to reward hacking (as in this cross-model scenario), the “Correct” method offers more robust
improvements by safely constraining the PRM’s influence. However, when the PRM is highly reliable
and training efficiency is a priority, the “Both” method is recommended. Due to the space limit, more
ablations such as rollout numbers and various filtration methods are provided in Appendix

D.3 Effect of Rollout Numbers

0.52

0.51

ot
53
s}

Average Accuracy
o
D
(]

0.48

047 Category
—e— Both

0.46 Correct i
4 8 12 16

Rollout Size (n)

Figure 5: The averaged accuracy across all five benchmarks over rollout sizes n = 4, 8,12, 16 for
filtering both correct and incorrect groups with PRM consistency (Both) and only the correct group
with PRM consistency (Correct).

We study the scale of rollout numbers n with fixed policy-update number m = 4 by varying
n = 4,8,12,16. The lower-right plot in Figure [5| presents the test accuracy averaged over all five
benchmarks for PROF-GRPO (Both) and Filter-Correct (Correct) started from Qwen2.5-Math-7B-
base. We observe the performance first increases then decreases as n increases, revealing a trade-off
between enhancing process reasoning quality and avoiding reward hacking. Notably, Filter-Correct
decreases later (after n = 12) because it only leverages the influence of PRM only in the correct
group, indicating that Filter-Correct is more robust when the PRM’s influence is higher, like when
increasing the scale of ranking and filtering.

D.4 Variants of Filtration Methods

Algorithm | Math500 Minerva Math ~ Olympiad Bench AIME24 AMC23 Average
Mean 83.1 39.0 47.8 17.5 70.9 51.7

Minimum 82.9 383 46.7 20.8 65.9 50.9
Sum 824 38.1 474 17.7 67.5 50.6
Ratio 81.4 36.6 45.0 24.8 65.2 50.6

Table 3: Performance of different filtration ways in PROF starting from Qwen2.5-Math-7B-base.

In this subsection, we investigate the influence of different computation methods of consistency
score rP’° in addition to the mean of PRMs over steps, where Mean denotes averaging over steps
in Algorithm [T} Minimum and Sum denotes taking the minimum and sum summation over steps,
Ratio denotes filtering while preserving the original positive—negative sample distribution, instead

13

430
431
432
433
434
435

436

437
438
439

440
441
442
443
444
445
446
447

448

of balancing. As shown in Table [3} the performances of Minimum (50.9%), Sum (50.6%), and
Ratio (50.6%) are inferior to the mean. This suggests that the mean provides a more stable estimate
of reasoning consistency: unlike the minimum, it is less sensitive to a single poorly scored step,
and unlike the summation, it avoids bias towards longer trajectories. Additionally, balancing the
correct-incorrect ratio can use data consistency to select the group with more sufficient samples
without breaking their balance.

D.5 Effect of Step Number

To prove that PROF effect not by simply increasing the step number, We conduct the Filter-Nstep:
Ranking and filtering out the samples with smaller number of steps instead of lower PRM-ORM
consistency.

From Table [4] we find that Ratio scores 51.7% on average and cannot compete with balancing
the proportion (PROF-GRPO), which also corroborates the conclusion that maintaining a balanced
correct-incorrect proportion is essential. Additionally, since we observe that PROF boosts the number
of intermediate reasoning steps, to verify that PROF does not simply increase the step length, but
more importantly, enhances the quality of reasoning steps, we simply use the step length as the
filtering criterion for comparison. As shown in Figure[6|and Table 4] Filter-Nstep manipulates the
step length, which exhibits an unreasonable increase followed by a sudden drop, and its average
accuracy is inferior.

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7
Filter-Nstep 81.5 35.5 459 16.3 58.6 47.6

Table 4: Performance of variants of filtering methods besides PROF-GRPO starting from Qwen2.5-
Math-7B-base averaged on all five benchmarks, where Ratio denotes filtering while preserving the
original correct/incorrect proportion, Filter-Nstep denotes ranking and filtering based on the number
of step segments.

©
o

v —— PROF-GRPO A\
280 — Filter-Nstep A \
) / &,
0,70 / \A
g / v\
<60 / | mwin
2 v | /
® 50 A \H/
: - MM
%5 40 //
9]
330
€
€20
=2

10

0 50 100 150 200 250

Training Step

Figure 6: The number of reasoning steps during training time for PROF-GRPO and Filter-Nstep
initialized from Qwen2.5-Math-7B-base.

E Additional Examples

14

Problem: There are 4 coins of 1, 2, 3, 5 cruzeiros, which weigh 1, 2, 3, 5 grams respectively. One of
them is counterfeit, differing in weight (but not known whether it is heavier or lighter). How can the
counterfeit coin be identified with the minimum number of weighings using a balance scale without
weights?

Step 1: Introduction. We need to identify a counterfeit coin with an unknown weight difference from

Step 2 - 6: The Flawed Weighing Logic and Code.

1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and S grams. 2. Based on the result
of the first weighing: - If the left side is heavier, then the counterfeit coin is either 1 gram or 3 grams. -
If the right side is heavier, then the counterfeit coin is either 2 gram or 5 grams. - If both sides are equal,
then the counterfeit coin is either 2 gram or 5 grams. 3. For the second weighing, ...

Let’s illustrate this with code and ensure that the steps are correct ... output: (1, *heavier’).

Step 7, 8, 9: Summary and Final Answer.

Here is a summary of the steps: 1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5
grams... 2. For the second weighing, weigh the 1 gram coin against a known genuine coin (3 grams)...

Thus, the minimum number of weighings required to identify the counterfeit coin is .

& J

Table 5: An Example of Reaching a Correct Result Through Flawed Reasoning. The proposed first
weighing of {1g, 2g} (total 3g) against {3g, 5g} (total 8g) is fundamentally invalid. A balance
scale requires comparing groups of equal nominal weight. Because this weighing is unbalanced, all
conclusions drawn from it are baseless. The final answer is correct but is completely unsupported by
the fallacious reasoning.

Problem: A white dwarf star has an effective temperature, 7, = 50,000 degrees Kelvin, but its radius Ry, is comparable to that of the
Earth. Take Ry,p = 10*%m(107m or 10° cm). Compute the luminosity (power output) of the white dwarf. Treat the white dwarf as a
blackbody radiator. Give your answer in units of ergs per second, to two significant figures.

PROF-GRPO Solution: GRPO Solution: Blend-PRM-GRPO Solution:
First, let's recall the formula for the luminosity of | To compute the luminosity of the white The luminosity L of a blackbody can be
a blackbody. dwarf, we can use the Stefan-Boltzmann law | calculated using the Stefan-Boltzmann law:
The luminosity L of a blackbody is given by the | ... o L = 4zR%6T?, where o is approximately
Stefan-Boltzmann law: L = 47R%cT? The formulz.a f°‘r the luminosity $L2$ ofa 5.67 X 107 ergs per square centimeter per
We are given: 7, = 50,000K... The Stefan- He ey IR LS 4“7? : second per Kelvin to the fourth power.
Boltzmann constant & is approximately whereo = 5.67 X 10~ Wm ™K s Ryp = 10%m.
5.67 x 10 Wm =K. Given: 7, = 5 X 10K, Ryp, = 10%m. First, we need to convert the radius from
Next, let's substitute the values into the Stefan- | First; we need to calculate kilometers to centimeters.
Boltzmann law. T# = (5 x 10%)* = 625 x 10'6 = 6.25 x 10'*k*|First, we calculate
L = 47(107)> x 5.67 x 10~ x (50000K)* Next, we calculate the surface area of the R&,D = (10%m)? = 10'%cm?
Let's calculate the value step by step. white ;:Iwarf: - - Next, we calculate...T7 = 6.25 x 10'8«*
(1072 = 10", (S0000K)* = - = 6.25 x 1018, | 47Rwp = 4a(10°cm)” = 4z X 107em?. | Now we can substitute these values into the
Now, substitute these values back into the Now we can compute the luminosity: Stefan-Boltzmann law:
equation..., calculate the numerical part L =47 x 10"cm2 x 5.67 x L = 4r x 10"cm2 x 5.67 x 10~ ergs/om?/s/K* x 6.25 x 10'* K’}
47 ~ 4 % 3.14159 = 12.56636, lO‘Sergs—‘cm-ZK"' X 6.25 X 1018? We can separate the constants and the
~ L=47%5.67x6.25x 10" x 107 x 10'%ergs-1 | POWers of 10:
12.56636 X 5.67 ~ 71.148 a3 X567 U 4 5.67 X 6.25 x 10-5+18
71.148 X 6.25 ~ 444.675 Rounde b o 4-.42.? 10‘ S 1Sth‘
N 6 ounded to two significant figures, the
Lrm445x10°wW luminosity of the white dwarf is So, 444.51875 x 10"
Since 1 W=1J/s and 1 erg=10""J g
N f}a = T 4.4 x 107%ergs-1). Therefore, L ~ 4.45 x 10" ergs/s x
Lx445x 10 erg/s . " . So the luminosity of the white dwarf is
Therefore, the luminosity of the white dwarf is: 4.45 x 107 ergs/s
\ 45 % 107 orgls) / J

Figure 7: A Minerval-Math example to compare distinct intermediate reasoning patterns of PROF-
GRPO, vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction
steps. GRPO’s solution skips detailed deduction steps and there are flaws in the calculation precision
and the final rounding. Blend-PRM-GRPO has long-winded steps and makes a big mistake in
calculating the power.

15

Problem: The proper divisors of 12 are 1, 2, 3, 4 and 6. A proper divisor of an integer N is a positive divisor of N that is less

than N. What is the sum of the proper divisors of the sum of the proper divisors of 284?

PROF-GRPO Solution:

First, we need to find the proper divisors of
284 ...
Let's start by finding the divisors of 284. We
can start by checking the obvious small
divisors.
Let's check if 2 is a divisor of 284.

284 +2 =142
Since the result is an integer, 2 is a divisor.
Next, let's check if 4 is a divisor of 284...
The proper divisors of 284 are 1, 2, 4, 71,
and 142.
Next, we need to find the sum of these
proper divisors. Let's add these step by step

1+24+44+71+142=220
Now, we need to find the proper divisors of
220. ...
The proper divisors of 220 are 1, 2, 4, 5, 10,
11, 20, 22, 44, 55, and 110. The sum is:

14+2+...+110 =284

Therefore, the sum of the proper divisors of
the sum of the proper divisors of 284 is[284].

GRPO Solution:

First, we need to find the proper divisors of
284. The proper divisors of 284 are the

positive divisors of 284 that are less than 284.

The divisors of 284 are 1, 2, 4, 71, and 142.
The sum of these proper divisors is:
1+2+4+4+71+142 =220

Next, we need to find the proper divisors of
220. The divisors of 220 are 1, 2, 4, 5, 10, 11,
20, 22, 44, 55, and 110. The sum of these
proper divisors is:

1+2+...+110 =[284
So the sum of the proper divisors of the sum
of the proper divisors of 284 is 284 .

Blend-PRM-GRPO Solution:

First, we need to find the proper divisors of 284.
Let's start by finding all the divisors of 284.
We'll start with 1, which is always a divisor.
We check if 2 is a divisor.

284 +2 =142
So, 2 is a divisor.
Next, we check if 3 is a divisor.

284 =3 ~ 94.67

So, 3 is not a divisor ...
We continue this process until we reach 142.
The divisors of 284 are 1, 2, 4, 71, 142.
Now, we need to find the sum of these proper
divisors: 1 + 2 +4 + 71 + 142
First, weadd1and2: 1 +2 = 3.
So, the sum of the proper divisors of 284 is 220.

Now, we need to find the proper divisors of 220.
We'll check each number from 1 to 219 to see if
it divides 220 without leaving a remainder ...
The proper divisors of 220 are 1, 2, 4, 5, 10, 11,
20, 22, 44, 55, and 110....

So, the sum of the proper divisors of 220 iy

Figure 8: A Math500 example to compare distinct intermediate reasoning patterns of PROF-GRPO,
vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps.
PROF-GRPO’s solution shows how to find the divisors and summation in detail, and is easy to follow.
GRPO skips all core reasoning. Blend-PRM-GRPO has inefficient and excessively tedious steps.

16

	Introduction
	Method
	Experiments
	Conclusion and Future Work
	Related Works
	Additional Experimental Details and Results
	Main Experiments
	Prompt Template

	Additional Experiment Results
	How PROF shapes Intermediate Reasoning Steps

	Ablations
	Separation of Correct and Incorrect Group
	Ablation Study on Base Model
	Effect of Rollout Numbers
	Variants of Filtration Methods
	Effect of Step Number

	Additional Examples

