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ABSTRACT

Multi-token prediction (MTP) is a prominent strategy to significantly speed up
generation in large language models (LLMs), including byte-level LLMs, which
are tokeniser-free but prohibitively slow. However, existing MTP methods often
sacrifice expressiveness by assuming independence between future tokens. In this
work, we investigate the trade-off between expressiveness and latency in MTP
within the framework of probabilistic circuits (PCs). Our framework, named MTPC,
allows one to explore different ways to encode the joint distributions over future
tokens by selecting different circuit architectures, generalising classical models
such as (hierarchical) mixture models, hidden Markov models and tensor networks.
We show the efficacy of MTPC by retrofitting existing byte-level LLMs, such as
EvaByte. Our experiments show that, when combined with speculative decoding,
MTPC significantly speeds up generation compared to MTP with independence
assumptions, while guaranteeing to retain the performance of the original verifier
LLM. We also rigorously study the optimal trade-off between expressiveness and
latency when exploring the possible parameterisations of MTPC, such as PC
architectures and partial layer sharing between the verifier and draft LLMs.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) can only perform single-token prediction (STP)
as they generate one token at a time, incurring significantly high latency, energy demand, and
deployment costs. This affects not only subword models, but even more so the byte-level ones (

, ; , , inter alia). Among possible alternatives to speed up generatlon
( ; ;

, ), multl token prediction (MTP) stands out as it promlses to predict a w1nd0w of multiple
tokens all at once, may they be subwords ( , ) or bytes (

, ). As such, MTP LLMs can ach1eve a significantly higher throughput

than STP ones, as they decrease the number of forward passes required through the LLM.

Nevertheless, modelling the joint distribution over all future tokens in a window is challenging,
as it requires balancing expressiveness, i.e., representing all the dependencies between tokens,
and efficiency, i.e., minimising latency. Existing MTP approaches favour the latter by making an
unrealistic assumptlon namely, considering all future tokens to be independent ( , ;
, ; , ). This clearly comes at the expense of expressiveness (
s ), as the choice of a token for a position within the window cannot
1nﬂuence the probability of the others.

For example, consider the prompt: “Name a capital of South Africa”, where Cape Town and Pretoria
are equally likely completions. A byte-level MTP model with independence assumptions over an
8-token window could return Cretoria as an argmax, because replacing P with C cannot change the
probability of other tokens. More concerningly, an exponential number of “byte-salad” continuations,
such as Crptoria, Crpt ria and Crpt roa, are then also equally likely, despite having almost zero
probability under the STP model. Recently, ( ) introduced dependencies into MTP
with a mixture over the future token probabilities. However, a single mixture can only add limited
expressiveness. Crucially, understanding how to increase expressiveness while optimally trading off
efficiency in a systematic way is still an open question.
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In this paper, we ﬁll this gap by proposing an MTP framework based on probabilistic circuits (PCs;
; s ), which we name MTPC. MTPC uses PCs to parameterise the
joint dlstrlbutlon over future tokens into tractable computational graphs that can encode hierarchical
mixture models. As such, MTPC offers a way to systematically nav1gate the spectrum of MTP archi-
tectural variants, encompassing fully factorised models ( , ;
R ) and shallow mixtures ( , ) but also more expresswe parameterisations:
hidden Markov models (HMMs) and binary tree factorisations (BTrees) which are novel for MTP.

Moreover, in contrast to previous work on MTP ( ; s ), MTPC
guarantees we match the quality of an AR LLM via speculative decodlng ( , ;
, )—exactly for greedy decoding or in expectation
for samphng—showmg that the throughput sacrificed for the guarantee is not as large as alluded to
previously. We do so by sharing the LLM backbone for the draft and verifier models for different
numbers of layers, highlighting how this creates a second dimension to trade-off expressiveness (as
hidden representations between draft and verifier can diverge) and latency (as each non-shared layer
requires separate forward passes). We illustrate the two trade-offs at the core of MTPC in Fig. 1.

In summary, we make the following contributions: C1) we introduce MTPC, a fast MTP framework
based on PCs that overcomes the independence assumptions of previous work and generalises tensor
decomposition methods ( , ); C2) we rigorously identify trade-offs between
acceptance rates in speculative decoding and latency of generation, based on different choices of
probabilistic circuit (PC) architectures and partial layer sharing; C3) we empirically demonstrate
the effectiveness of MTPC by repurposing EvaByte ( , ), a byte-level LLM, into
our framework. The choice of this use case is motivated by the fact that existing byte-level LLMs
( ; , ) obviate the limitations of sub-word tokenisers—including
uneven efﬁ01ency( s ; , ) lack of 1nteroperab1hty ( s
), and vulnerabilities ( ;
, )—at the cost of 51gn1ﬁcantly slowmg down generatlon We find that MTPC
increases the throughput of EvaByte by 5.47 x with respect to AR generation and 1.22x with respect
to MTP with independence assumptions.

2 SPEEDING UP GENERATION WITH MTP AND SPECULATIVE DECODING

Given our goal of speeding up LLM generation with MTP while guaranteeing that the STP quality is
fully retained through speculative decoding, we introduce these frameworks below.'

MTP. A classical STP LLM encodes a distribution over sequences of tokens {x;} defined over a
vocabulary V as [ [, p(z¢41 | X<t) where x<; is the context, i.e. the observed tokens at timestep
t. MTP ( , ) aims to extend an STP LLM that predicts a single token at a time
through p(z44+1 | x<¢), to an MTP model, gg, that models the joint probability of a window of n
future tokens and generates them simultaneously, i.e.,

40 (Tt 41, Teg2, - Tegn | X<t). (1)

'We adapt notation from the tensor and circuit literature ( , ), see Appendix A.
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where 0 denotes a given parameterisation for the joint.” The first dimension to trade-off expressiveness
and efficiency in MTP pertains to compactly representing gg. Unlike for p(x;41 | x<;), we would
need to store more than a vector of logits a € R of a single univariate categorical distribution for a
vocabulary size v = |V| for every timestep ¢. The most expressive, but least efficient way to do so,

. . &) (n) . . . .
would be to store an n-dimensional tensor A € RY" " %X of logits having v™ entries, but this

scales exponentially in n. Next, we review past attempts to avoid storing .4 explicitly.

Fully factorised. The most commonly used way to boost efficiency is to assume all n future tokens
are independent ( , ; s ; , ), that is, gg factorizes as

n
I aoiCori | x<0). (FF)

This comes with the benefit that one needs to store only n v-dimensional vectors of probabilities ¢; to
represent the joint distribution in Eq. (1). At the same time, as already discussed in the introduction,
this severely limits model expressweness ( s ; s ).

Canonical polyadic (CP) factorisation. Dependencies between future tokens can be recovered by
introducing explicit latent variables ( s ). To this end, ( ) propose to
factorise Eq. (1) via an r-rank CP decomposition. A CP decomposition introduces one discrete latent
variable, Z, that encodes a mixture of r fully-factorised components, rewriting Eq. (1) as:

T . n .
Zj:1 a(Z = j | x<¢) Hi:l Qs ; (Teti | Jy X<t)- (CP)

where ¢(j | x<;) = w; are the mixture coefficients and ¢; ; are the parameters of the categorical
distribution for mixture component j at position 4 in the MTP window. * Before showing how we can
generalize both FFF and CP MTP with PCs, we review how to ensure MTP models match the quality
of a given STP model.

Speculative decoding ( , ; ; ; s )
can be combined with MTP to speed up generatmn Whlle guaranteelng no loss in quality. Given a
target STP LLM that we wish to accelerate, speculative decoding involves two steps: 1) drafting,
where a cheaper MTP draft model generates n future tokens, and 2) verification, where the target
STP model accepts or rejects the generated tokens in parallel according to a pre-defined consistency
criterion. The closer the distributions of the draft and verifier are, the more often ‘speculated’ tokens
are accepted, speeding up generation. With speculative decoding we can quantify the trade-off
between expressivenss and efficiency in MTP models as their throughput, i.e.

throughput (tok/s) = acceptance rate (toks per eval)/latency (secs per eval) 2)

where acceptance rates are a function of the total variation distance between the two distributions
( , ) and latency measures how computationally expensive an
MTP model is durmg generatlon While previous work, such as ( ), focused only
on measuring acceptance rates, we highlight how both sides of the ratio in Eq. (2) are important, as
they create a spectrum. MTPCs provide a systematic way to navigate such a spectrum (see Fig. 1).

3  PROBABILISTIC CIRCUITS FOR MULTI-TOKEN PREDICTION

The idea behind MTPC:s is to further decompose the joint distribution in Eq. (1) into a deep com-
putational graph encoding a hierarchical mixture model, called a probabilistic circuit (Sections 3.1
and 3.2), and to parameterise it with LLM embeddings (Section 3.3).

3.1 PROBABILISTIC CIRCUITS

A circuit ( , ; ; s ), ¢, is a parameterised directed
acyclic computational graph4 over Varlables X encodlng a function, ¢(X), and comprises three kinds

These parameters depend on ¢, we drop the subscript when not needed to avoid clutter.

3 ( ) calls CP a mixture of experts (MoE), but we note this is incorrect as the weights w;
do not depend on future tokens, but only on past ones. As such, they realise a simple conditional mixture. They
argue that training CP is challenging and requires insights from the MoE literature, while we are able to train
them as well as deeper mixture variants easily without MoE-tailored losses (see Section 4).

*In Fig. 2, edges directionality is removed for readability, but it is assumed to be from inputs to outputs.
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Figure 2: PCs allow for modelling a spectrum of dependency structures over sequences of tokens,
as shown for the known FF and CP and the novel HMM and BTree MTP variants. Input units are
grouped in coloured layers, one for each token, while sum and product layers encoding (hierarchies
of) latent variable distributions are in grey. The output unit of each circuit (in blue) computes
qo(T141, - - - s Ti4n | X<¢). In the figure we omit the dependency on the context x<, for readability.

of computational units: input, product, and sum units. Each product or sum unit n receives the outputs
of other units as inputs, denoted with the set in(n). Each unit n encodes a function, ¢,,, defined as: (i)
cn(sc(n); @) if n is an input unit, where ¢, is a function parameterised by ¢ over variables sc(n) C X,
called its scope; (ii) [ ] ;in(n) ¢5(sc(4)) if n is a product unit; and (iii) 3 ;o) wjc;(sc(d)) if nis a
sum unit, withw; € R denotmg the sum parameters. The scope of a product or sum unit n is the
union of the scopes of its inputs, i.e., sc(n) = Ujgin(n) 5c(j)- Fig. 2 shows examples of circuits,
where units of the same scope are grouped into (coloured) layers belonging to a hierarchy that can be
easily parallelised on a GPU ( s ; s

For MTPCs, we use probabilistic circuits (PCs), i.e., circuits modelling a joint distribution over
random variables, in our case tokens X = {X1,..., X,,}. PCs encode Eq. (1) as

40 (Ttq1y- o Togn | X<t) = Zg_tl (Tig1s- s Tegn; 01) 3)

where ; = {w;, ¢:} denote the set of circuit parameters, i.e., all sum unit parameters w; and input
unit parametensatlons ¢, which depend on the context x<;; and Zg, denotes the partition function

of ¢, ie., Zg, = Zztﬂ,-. enEVn c(Tts1,- -+, Teyn; 0¢). Note that the PC architectures we are
interested in are already normalised or always allow computing the partition function in a single
feedforward step (see ( ) and Appendix B.1). At the same time, we can easily sample

from PCs in a single feedforward pass, as discussed in Appendix B.2. Crucially, within the framework
of PCs, we can recover the FI" and CP parameterisations for MTP and several other architectures that
generalise tensor factorisations ( s ) that can be used as novel MTP models, each
offering a different expressiveness-efficiency trade-off. We do so while abstracting away from each
model’s original formulation and obtain a unified way to parameterise MTP LLMs, as discussed next.

3.2 PC ARCHITECTURES FOR MTP

MTPC-FF. Representing the commonly used FFF MTP parameterisation as a PC is simple: we
introduce n input units, each parameterised by ¢;, its corresponding token probabilities, and connect
them all to a single product unit, as shown in Fig. 2 for a distribution over n = 4 tokens.

MTPC-cCP. Similarly, we can easily encode a CP factorisation in a shallow PC by i) introducing r
input units for each token (each parameterised by their own probabilities ¢;;), then ii) multiplying
them to retrieve the r factorised mixture components, which we then iii) aggregate in a sum unit
with weights w; = q(z; | x<¢) (see also Proposition 1 in ( )). Fig. 2 shows
this construction for n = 4 and » = 2. This basic construction suggests that we can create
deeper architectures by interleaving sum and product layers, while overparameterising each layer by
increasing the number of units in it (r). Furthermore, by implementing CP as a PC unlocks a faster
sampling routine (Appendix B.2) than the one used in ( ).
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MTPC-HMM. As a further example of the expressiveness increase we get by generalising our
approach to deeper PCs, we introduce a factorisation that realises a hidden Markov model (HMM),
which better captures distant dependencies in the sequence by introducing a sequence of latent
variables, in contrast to the single one present in CP. More precisely, we define an HMM with
r hidden states and truncate its prediction window to n steps into the future. We resort to an
inhomogeneous HMM, i.e., we do not make the transition matrices time-invariant, as this setup is
more expressive and worked better in our experiments, see Appendix F. This simplifies Eq. (1) into:

Z Z q(z1 | xX<t)qg(zeg1 | 21, %x<t) Hq(zi | Zic1,X<t)qg(Tiqi | 25, X<¢).  (HMM)

z1=1  z,=1 i=2

Fig. 2 illustrates the HMM parameterisation above represented as a circuit, comprising n = 4 pairs of
sum and product layers stacked, where the parameters w; of the former are the transition probabilities
q(zi | zi-1, th)- Similarly to CP, we can increase r to overparameterise the circuit with more input
units per token and sum units overall, and hence increase expressiveness.

MTPC-BTREE. One drawback of the HMM parameterisation is the asymmetry of its computational
graph, which i) provides fewer latent variables for the early tokens, and ii) increases latency when
predicting the last tokens due to its autoregressive token dependencies. To solve this, we build a
PC whose structure resembles that of a binary tree (BTree), effectlvely encodlng a hierarchy of
latent variables or a tree tensor factorisation (

). This is done recursively: at each step h of the h1erarchy, given a sequence of n tokens to

split, and a parent latent variable Z;, we split it into two sub-sequences (x¢,1, - - . s Tty |n /2 J,l) and
(xt+\_n/2ja ..., Trin), then factorise Eq. (1) as a mixture:
T
Zz’ 1 q(zn | Zl,th)qa($t+1, s Tig|n/2)—1 | Zh7zlaX§t)q9($t+[n/2J7 <o Ttgn | Zhyszgt)
(BTree)

which corresponds to creating a sum unit whose weights are ¢(zj, | 2, x<;) followed by products.
We repeat the process while caching intermediate units until we reach the base case for n = 1, for
which we create a layer of input units for the corresponding token. Fig. 2 illustrates the BTree circuit
built in this way. Our experiments (Section 4.2) show that the BTree parameterisation obtains the
optimal throughput by lowering the latency of HMM, as it samples more latent variables and tokens
in parallel, while achieving similar acceptance rates.

3.3 PARAMETERISING PCs wiTH LLMsS

Parameterising MTPCs requires two functions: an LLM that maps the context x<; € V! into
contextual features, and a neural network head that maps the contextual features to the parameters of

the circuit 6, realising a neural conditional circuit ( s ). To
extract the contextual features e, € R%, we use e, = LLMLoRA( k) (X<t) where LLMpora (k) : Vi
R? is the STP backbone with LoRA ( , ) applied to the last £ > 0 layers. As we

will discuss in Section 4.4, the number of LoRA layers can impact throughput significantly. Given
e, we realise Eq. (3) by computing 8; = g. (e;), where g.. is a neural network head that outputs
both the input unit parameters, ¢;, and the sum unit parameters, w; (Section 3.1). Note that our
parameterisation in MTPCs allows us to abstract from the actual structure of the circuit (i.e., FF, CP,
HMM or BTree) and just focus on these two sets of tensorised parameters, as we discuss next.

Input unit distributions. All MTPCs produce joint distributions over token windows by combining
categorical distributions over individual tokens (Fig. 2). We follow EvaByte ( R )
and learn n separate unembedding layers, one per window position. For models with mixture
coefficients, we also learn one unembedding layer per mixture coefficient.” As such, instead of a
single unembedding matrix mapping R¢ — R", we have an unembedding tensor YW € R"*7xvxd,
and compute the input distributions with the usual unembedding operation followed by softmax, i.e.,
¢+i; = softmax (W,je;), where i and j index the position in the MTP window and the rank r.

Sum unit parameters. For sum units, instead of mapping embeddings to the vocabulary via W, we
map to the rank of the sum unit via R € R#*7*d_where z is the number of sum units, r is its rank,
and d the dimensionality of e;. We compute wy; = softmax (R;e;), where 4 indexes the sum unit.

>This is efficient even for PCs with high rank due to the small vocabulary size of byte-level LLMs.
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3.4 SPECULATIVE DECODING WITH MTPC

For MTPCs, we design an architecture that is self-drafting ( , ; ),
i.e. where the draft and verifier models share the same LLM backbone. We use an MTP head (

, ) augmented with our circuits to efficiently sample a draft, and an
autoregresswe STP head as the verifier. Optionally, we also explore keeping a few final transformer
layers separate in the two models by fine-tuning LoRA adaptors for the draft model’s backbone.

Unlike previous self-drafting MTP works ( ; , ), we guarantee that
the generated tokens are the same as those the autoregresswe LLM would generate in expectation
by using speculative decoding ( ), i.e., we only generate the

subset of drafted tokens accepted by our verlﬁer To keep latency low we make only a single LLM
call per speculative decoding cycle by re-using the LLM backbone state computed by the verifier for
the draft model, where possible. We achieve this by modifying the speculative decoding algorithm
slightly, as we detail in Algorithm 2.

Next we report results for sampling, but we also experimented with greedy speculative decoding
( , ) which guarantees argmax consistency. Both are suitable for MTPCs.

4 MTPCS IN ACTION: RETROFITTING A BYTE-LEVEL LLM

We evaluate MTPC on the challenging tasks of speeding up byte-level LLMs. MTP is crucial for
byte-level LLMs as they require more tokens than sub-word LLMs to generate text with the same
length. Furthermore, byte-level LLMs allow us to explore large window sizes and more mixtures
components due to their small vocabulary size. We implement our MTPCs variants in the cirkit
library ( , ) and provide it in our supplementary materials.

Target model. We work with EvaByte ( s ) as our byte-level LLM, because it is
open source, publicly available, and obtains results that are competitive to subword-level LLMs
on benchmarks ( , ), see Appendix C. EvaByte is a 6.5B byte-level model with an
embedding size of 4096, a vocabulary of 320 byte tokens and a maximum context window of 32k
bytes. EvaByte has been pre-trained as an MTP model with a prediction window of n = 8 bytes.
In our experiments, we retrofit the released fine-tuned version of EvaByte, EvaByte-SFT (

, ). EvaByte-SFT has been fine-tuned on a data mix of Tiilu 3 ( , ),
OpenCoder ( , ) stages one and two, and OpenHermes 2.5.° We note that EvaByte’s
solid performance on benchmarks is obtained via Medusa-style lossy speculative decoding with the
MTP head, which in the case of sampling comes with a loss in quality compared to EvaByte-STP
(n = 1). We therefore set EvaByte-STP as the target model for speculative decoding to accelerate
generation without sacrificing generation quality.

Draft models. We use EvaByte-MTP to refer to EvaByte’s released fully-factorised (FF) MTP head.
Speculative decoding results have not been reported in the EvaByte release ( ),
so we include them here as our baseline. We also further fine-tune EvaByte-MTP to hlghhght that
the model cannot be improved further. On top of that, we replace the MTP head with our MTPCs
heads, including our CP implementation and novel HMM and BTree heads to relax the independence
assumptions of the FFF model and increase expressiveness. We note that EvaByte-MTP-CP with r = 1
is equivalent to EvaByte-MTP, as can be seen from Eq. (CP).

4.1 TRAINING

In order to improve throughput via speculative decoding, we need to make our MTP model’s
distribution as similar as possible to EvaByte-STP’s. We achieve this in the simplest way by
instruction fine-tuning our models on a similar data mix to that used for EvaByte-SFT. As the full
details of the data mix are not known and are hard to replicate, we focus on Tiilu 3.

Training data. We fine-tune on the Tiilu 3 SFT mix dataset ( , ) which contains
939,344 examples of user/assistant interactions on 18 tasks. We split the Tiilu 3 dataset into training
and validation so that we can check throughput on the unseen validation examples. In order to make
sure all tasks are sampled, we shuffle the training data before splitting. Because we want training to be

5The information above is from personal communication with the authors.
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possible on 2 x 80 Gb GPUs, we limit the context length to 8192 bytes and filter out 34,067 examples
which are longer. We split the remaining 905,277 examples into 99% train and 1% validation.

Initialisation. We initialise our MTP heads from EvaByte-SFT in a way that guarantees that our
EvaByte-MTP-CP is equivalent to EvaByte-MTP. This guarantees that we leverage previous training:
all models start from the same loss and we smoothly move in parameter space from EvaByte-MTP to
our more expressive EvaByte-MTP-CP, EvaByte-MTP-HMM and EvaByte-MTP-BTree.

Loss. We train our MTP models on the packed train split of Tiilu 3 with a batch size of 256 sequences,
or ~ 2m tokens, which is what EvaByte used. We first train our MTP heads for 1 epoch (Section 4.3).
Then we load the models and continue training for an additional epoch with LoRA (Section 4.4).
We apply EvaByte’s chat template and only train on the assistant’s answers. We use overlapping
prediction windows, as we need to be able to begin speculative decoding from any position during
generation. We minimise the negative log-likelihood of the observed assistant outputs Eq. (4), where
N is the number of training sequences and L is the sequence length for each token in the window.’

noo N L i i o
=3 Py L= > (ompp(aly | xEy )/ (Nvalid(i. ) @)

This involves locally normalising the loss by the number of valid tokens for example ¢ and output j
in the MTP window, valid(z, j). As in ( ), we apply exponential discounting for future
tokens in the window, but use v = 0.9 instead of v = 0.8 to account for n > 8. We use the Adam
optimiser ( , ) with a fixed learning rate of 3 x 10~%.

4.2 METRICS

To speed up LLMs generation with speculative decoding, we need to balance speed and expressive-
ness. We measure speed using mean latency (1) and expressiveness via the mean acceptance
rate (facc; s ), as defined below. Our goal is to increase throughput. We obtain a relative
throughput speed-up of one method over another by measuring their wall-time speedup ratio (

, ). We assume a batch size of 1 for all evaluations. We report our metrics
on two GPUs the server-grade NVIDIA L40S GPU and the desktop-grade NVIDIA RTX 3090.

Mean Latency 1y, is the average time taken for each speculative decoding step, i.e., the time needed
for the draft model to generate a candidate sequence and the verifier to choose which tokens to accept.
fuae 1s higher for less efficient LLMs and MTP heads, and lower for more powerful GPUs, e.g. for
EvaByte-MTP the L40S (Tables 1 to 3) has half the latency of the RTX 3090 (Tables 5 to 7).

Mean acceptance rate /i, is the percentage of drafted tokens that are accepted by the target model.
More expressive draft models will have higher accepance rate as they will better approximate the
target distribution. i, depends on the size of the MTP window, n, as we have .. € [0, n].

Mean throughput i/is measured as in Eq. (2), i.e., as the ratio fiec/ fhar-

Wall-time speed-up ratio is the relative speed-up of a proposed model compared to a baseline model,
measured as the ratio of their throughputs. As baselines, we use autoregressive generation from the
STP model, EvaByte-STP, and MTP with independence assumptions, EvaByte-MTP FF.

4.3 MTPCS WITHOUT ADAPTERS

RQ1: Can we increase throughput by increasing the number of mixture components?

We begin with the simplest PC from our framework, MTPC-CP, which relaxes the independence
assumption of the widely used MTPC-FF (r = 1) by increasing the number of mixture coefficients, 7.
MTPC-CP can increase throughput because it is more expressive yet still very efficient.

Table | highlights MTPC-CP’s efficiency; the py, introduced by MTPC-CP remains relatively
unchanged as we increase 7, because the forward pass cost of the output layer is dominated by the
expensive LLM calls. At the same time, MTPC-CP increases the expressiveness of our MTP head by
relaxing the unrealistic independence assumptions. As a result, MTPC-CP with r = 128 achieves
Mace = 5.94, an increase of .82 tokens over MTPC-FF. However, the best throughput is obtained for
r = 32, where MTPC-CP produces 20.8 more tok/s than MTPC-FF. In the last column, we show

Our loss over overlapping windows is a composite log-likelihood ( , ).
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Table 1: Increasing the mixture com-
ponents () increases the throughput
(teokss) as seen for MTPC-CP (n = 8)
FF 1 5.14 006 0.0290 +0.0002 180.1 £28 297.50 over our baseline, EvaByte-MTP (FF)
8 5.65+002 0.0296 00001 194.5+16 291.61 (in gray) where we report the mean
16 5.76 +003 0.0299 +o00002 196.1 £19 29594 4+ std over three sets of 250 prompts.
CpP 32 5.84 o001 0.0297 00002 2009 +16 29233 MTPC-CP increases throughput: it has
1% g gz +0.09 882% = 0.0001 iggé +23 %2;‘% a larger acceptance rate (f,.c) while la-

Ja 004 U -+ 0.0001 O+ : tency (pac) is almost constant in r.

model T Macc T Mae 4 Hrokss T maXiok/s

Table 2: More expressive archi-

n r model fraec t it 4 ks 7 speed-up ¢+ tectures such as MTPC-BTREE
1 1 STP — 0.0251 40.03 100 outperform MTPC-CP in terms
of throughput for n = 8 and n =
35 IFIT\IM g;;‘ +0.06 g-gggg +0.0002 12(2)4]1 +28 j-gg 16 windows on an L40S GPU. For

/ . +0.05 . =+ 0.0001 4 +09 . . . .
8 30 BTrce 5.97 1o 0.0310 <0004 196.6 = 38 491 thlsdei‘%endme‘(“’ "]Vf gi‘meld Onli
32 CP 5844001 0.0297 £00002 2009 = 156 502 model heads (n0 LOKRAS 1aycrs).

The shaded baselines are EvaByte-

1 FF 5.38 £0.08 0.0307 +0.0004 179.6 +338 4.49 STP and the EvaByte-MTP (FF)

32 HMM 6.82 +004 0.0397 +00001 174.5 +07 4.36 :
1635 P 6.10<005 00322 z0000 1934 + 18 4g3 models, trained for the same num-
ber of steps as our circuits for a

32 BTree 6.71 £001 0.0337 +0.0000 203.5 +0.1 5.08 A .
fair comparison.

the maximum attainable throughput (maxss), i.e., we disable speculative decoding and accept all
tokens. The price paid in throughput for guaranteeing no loss in generation quality is ~ 90 tok/s for
r = 32. While MTPC-CP performs well for n = 8, the margin for further improving throughput is
small. This is because for n = 8, we can at best achieve u,.. = 8, and we have already achieved
Hace = 9.94 and have hit diminishing returns. To obtain substantial boosts in throughput, we need
to extend our model to longer window sizes. Since r = 32 worked best, we keep this fixed for the
remaining experiments.

RQ2: Do we benefit from more expressive circuit architectures for longer sequences?

We now consider more expressive circuits, such as MTPC-HMM and MTPC-BTREE, and show that
they outperform MTPC-CP for longer MTP windows, highlighting the importance of our extension
to general PCs. We fix » = 32 and explore the different PC architectures for both n = 8 and
the longer window, n = 16. Table 2 shows that MTPC-HMM obtains the best pi,c. in both cases,
however, it strikes an unfavourable balance in the expressiveness—latency trade-off: Due to being
AR, MTPC-HMM has the largest i, and yields poor throughput as a result. On the other hand,
MTPC-BTREE almost matches the pi,c of MTPC-HMM and has a smaller 1, footprint. Nevertheless,
for n = 8, MTPC-CP still obtains the best ji0ks. However, when we move to n = 16, MTPC-BTREE
substantially increases the gap in piye. from MTPC-cCP. This in turn leads to MTPC-BTREE having the
best throughput, with 203.5 tok/s, a speed-up of x5.08 over EvaByte-STP. While the gains already
obtained by MTPC-BTREE are solid, fine-tuning the output layer alone can only get us so far. This
is because EvaByte has not been trained to produce representations that are good for predicting 16
tokens ahead, as we discuss next.

TAKEAWAY 1: While increasing the mixture components r in CP is initially beneficial, it soon
hits diminishing returns. Increasing the window size of future tokens n and adopting more
expressive PC architectures unlocks further gains in throughput. Furthermore, while HMM
achieves the highest acceptance rates, it incurs high latency. Instead, non-autoregressive
variants such as BTREE strike a better balance and hence should be preferred.

4.4 MTPCS WITH ADAPTERS

RQ3: Can we further increase throughput by adapting the draft LLM using LoRA?



Under review as a conference paper at ICLR 2026

Table 3: Fine-tuning sep-
arate layers in the draft
1 EvaByte-STP 0 = 0.0251 40.03 1.00 model with LoRA adapters

n model #LoRA  flace T Mat & htokss T speed-up 1

0  5.15+004 0.0327 +00013 163.7 +105 4,09 can increase the acceptance
MTPC-FE 1 5.16 £ 002 0.0308 +0.0003 171.3 £12 428 rate and speed up BTree
2 5.14 +006 0.0336 +0.0036 157.2 + 174 393  MTPCs for n. = 16 and two
8 4 5.19 £003 0.0330 +0.0001 160.3 +1.4 4.01 LoRA layers by 5.47 over
0 6.04 002 0.0326 £00027 190.5 £ 1438 476 STP on an L40s GPU. Nev-
. 1 6.15 + 002 0.0344 +0.0038 185.1 +203 4.62 :
MTPC-Eliee 2 6.20 005 0.0330 +0.0000 193.0 + 1.4 4.82 ertheless, the increased a.w_
4 620004 0.0348 10000 183.1+10 457 Ceptance rate comes at in-
0 5.40 006 0.0305 +0.0001 180.3 £23 4.50 creased latency, making fu.r-
MTPC I 553:om 00311 tomn 1823525 455 DT tlﬁrolgihi’”t boosts R
2 5.63+007 0.0321 00002 179.5 420 4.4g Mmore Lo ayers unviable
16 4 560+005 0035600034 1622+1s0 405 for EvaByte. We shade the
0 6864003 0034000 206.1 09 515 SLP baseline in gray and
Mrpestee L 7322005 00346 o000 2180+0s 545 ablated models trained for
2 7.53 010 0.0354 £o00001 219.1 +30 547 the additional epoch without
4 7.58 +0.14 0.0373 £0.0003 210.2 +£50 5.25 LoRA in brown.

We now consider increasing the expressiveness by adding LoRA layers, as shown in Table 3. We
show that while we can improve throughput, we need to be strategic when choosing the number of
layers, as very quickly the latency introduced outweighs the expressiveness gained.

The key here is that we need to balance the expressiveness obtained by adding LoRA layers and the
latency we introduce because the additional layers are not shared between the draft and the verifier.
For example, if we train adapters for the last 16 (out of 32) layers, we can improve the acceptance rate
by 37%, but we introduce a latency of 1.5x the cost of a forward pass of the LLM.® The FF model
for n = 8 has plateaued, highlighting its limited expressiveness. We highlight that the improvements
of MTPC are consistent across GPUs. While throughput is ~ x2 times larger for the server-grade
GPU, the relative speed-ups are similar, see Appendix E. Interestingly, due to the different balance
between the LLM and MTPC latency across GPUs, on the RTX 3090 we hit diminishing returns after
adding a single LoRA layer rather than two on the L40s.

TAKEAWAY 2: Fine-tuning a few layers of the draft model with LoRA increases the accep-
tance rate but also increases latency. The optimal trade-off is device-specific, but adding
LoRAs is always beneficial compared with a fully shared LLM trunk. Retrofitting models to
longer MTP windows yields an even larger increase in throughput when paired with LoRAs.

5 CONCLUSION

Overall, our results show, for the first time, that throughput in MTP LLMs can be increased by 5.47 %
w.r.t. AR and 1.22x w.r.t. MTP with independence assumptions, while simultaneously guaranteeing
the retention of an AR LLM’s quality. We achieved this goal by identifying key trade-offs between
acceptance rates and latency within our framework, MTPC. We enhanced the expressiveness of
MTP by getting rid of the independence assumption ( , , ),
introducing an explicit probabilistic model for 1nter-t0ken dependencies that fac111tates performance
guarantees ( s ; , ), and generalising mixture-
based methods ( , ) mto the PC framework. Moreover, we decreased latency by
modulating the number of layers shared between draft and verifier model branches. We showcase the
throughput gains of MTPC LLMs at scale by retrofitting EvaByte ( , ), a state-of-the-
art 6.5B byte-level LLM into our framework.” In future work, our framework can be extended by
integrating constraints during generation ( , ) or speculative decoding (

, ) via methods such as Gelato ( , ) and Ctrl-G ( , ). Unlike
those, we would not need to train an auxiliary HMM in MTPCs and we can integrate constraints

8We found that training more than 16 layers of EvaByte does not lead to improvements in acceptance rates.
“More in-depth commentary on related work is available in Appendix 1.
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directly into our PC head. Moreover, we can further boost expressiveness by leveraging other PCs

architectures such as subtractive mixtures ( , ; ) and continuous latent variable
circuits ( , ;b), while reducing latency through recent advancements in scaling up PCs
( , ; ; )-

REPRODUCIBILITY STATEMENT

To ensure reproducibility for our research, we have attached the codebase for implementing all model
variants and running their training and evaluation to our submission. In addition, we have provided
full details on sampling in circuits in Appendix B and on our algorithms for speculative decoding in
Appendix D.
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A NOTATION

We adapt notation and nomenclature from the tensor factorisation ( , ) and circuit
( , ) literature.

We denote ordered sets of random variables with X, Y and Z, and we use [n] to express the set
{1,2,...,n} with n > 0. The domain of a variable X is denoted as dom(X), and we denoted as
dom(X) = dom(X;) x -+ x dom(X,,) the joint domain of variables X = {X;}" ;. We denote
scalars with lower-case letters (e.g., a € R), vectors with boldface lower-case letters (e.g., a € RM),
matrices with boldface upper-case letters (excluding those used for variables, e.g., A € RM*NY and
tensors with boldface calligraphic letters (e.g., A € RI1*12XIs) Moreover, we use subscripts to
denote entries of tensors (e.g., a;;i is the (4, j, k)-th entry in .A).

B BACKGROUND ON CIRCUITS

Circuits have a long history in theoretical computer science ( , ) and
probabilistic reasoning ( s ; ). In their more modern definition and application
to machine learning ( ; R ), circuits are introduced as structured

computational graphs, simplified neural networks where one is allowed to use units from a restricted
set of neurons (sum, product and input units) and whose connections need to abide certain structural
properties to guarantee tractability ( s ; s ), as discussed next.

B.1 STRUCTURAL PROPERTIES

Tractability is to be intended as the ability to exactly compute a given function (operation) over the
circuit in time that is polynomial in its size, denoted as |c| for a circuit ¢, and representing the number
of edges between the computational units. For example, a circuit ¢ can exactly integrate any subset of
variables in time O(|c|) if (i) its input functions can be integrated efficiently and (ii) it is smooth and
decomposable ( s ; s ).

Definition 1 (Smoothness and decomposability ( ; , ).
A circuit is smooth if for every sum unit n, all its input units depend on the same variables, i.e.,
Vi, j € in(n): sc(i) = sc(j). A circuit is decomposable if the distinct inputs of every product unit n
depend on disjoint sets of variables, i.e., Vi, j € in(n) i # j: sc(i) Nsc(j) = @.

Note that all the PC architectures we have discussed in this paper, FFF, CP, HMM and BTree, are
smooth and decomposable circuits. The reader is encouraged to check this by themselves for the
architectures in Fig. 2.

Exactly integrating variables out is relevant to compute marginals such as the normalisation constant
of the distribution encoded by the circuit (Eq. (3)). Note that in our implementation, circuits are
normalised by design ( , ), as we assume that input distributions are normalised
categoricals and all sum units form a convex combination as their weights are parameterised with a
softmax function (see Section 3.3).

More importantly for our MTPCs, we can draw samples efficiently from the distribution of a circuit
that is both smooth and decomposable, as we discuss in the next sub-section.

B.2 SAMPLING A CIRCUIT

A smooth and decomposable PC can use ancestral sampling to generate a complete sample for all
n tokens in a window. In a nutshell, we can iteratively sample each latent variable in the hierarchy
encoded by the PC, and then sample the selected input distributions, in the same way one sample one
(hierarchical) mixture model by first sampling one component and then drawing a sample from that
component.

Operationally, Algorithm 1 details the procedure. We have to sample one input branch for each sum
unit we encounter when performing a backward traversal of the circuit computational graph (from
the circuit output back to the input distributions). Such a branch is sampled proportionally to the sum
unit weights w;, which encode the mixture components (or equivalently the transition probabilities in
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Algorithm 1 SAMPLE(c)

Input: A smooth, decomposable and normalised PC ¢ encoding a joint distribution ¢ over the next n
tokens X = {X7,..., X,,} Output: a sample x ~ ¢(X).

1: x « zeroes(n) > init empty sample
2: ¢,  output(c)
3: N« queue({c,}) > traverse the computational graph from outputs to inputs
4: while A not empty do
5: ¢n < pop(N)
6: ifc, = Z;:1 wjc; then > ¢y, is @ sum unit
7: k < sampleCategorical(w, . .. ,w;) > sample from a categorical with r states
8: N <« push(W, ¢x)
9: elseif ¢, = H?Zl c; then > ¢, is a product unit with d inputs
10: fork=1...ddo
11: N « push(WN, ci) > visit all inputs of ¢,
12: else if ¢,, is an input unit over variable X; and parameters ¢, then
13: x; < sampleCategorical(¢;) > sample from a categorical with v = |V] states

14: return x

an HMM). Then, when we traverse a product unit, we follow all its input branches. When we reach
an input unit, we sample a token proportionally to the parameters ¢;; of the categorical distributions
encoded in the unit.

If the circuit is smooth and decomposable, by this process we are guaranteed to end up in a set of
input units whose scope is the full set of tokens X and in which only one input unit is selected per
token position ¢ (line 13 of Algorithm 1). This procedure can be tensorized as to efficiently generate
a batch of samples in a single pass over the computational graph of the circuit ( , ;

b} S bl 5 s

Lastly, we remark that this routine is potentially computationally more efficient than the one imple-
mented in ( ), as the latter is based on autoregressive inverse transform sampling
(see ( ) for a discussion) and requires sampling one token at a time.

C EVABYTE DETAILS

Model BBH GSM8k IFEval MATH MMLU HumanEval* TruthQA
Gemma-2-9B-it 20.0 79.7 69.9 29.8 69.1 71.7 61.4
Ministral-8B-Instruct 56.2 80.0 56.4 40.0 68.5 91.0 55.5
Qwen-2.5-7B-Instruct 25.3 83.8 74.7 69.9 76.6 93.1 63.1
Llama-3.1-8B-Instruct 69.7 83.4 80.6 42.5 71.3 86.3 55.1
Tiilu 3 8B 66.0 87.6 82.4 43.7 68.2 83.9 55.0
OLMo-7B-Instruct 35.3 14.3 322 2.1 46.3 28.71 44.5
OLMo-v1.7-7B-Instruct 34.4 232 39.2 5.2 48.9 4971 55.2
OLMOoE-1B-7B-0924-Instruct ~ 37.2 472 46.2 8.4 51.6 54.8 49.1
MAP-Neo-7B-Instruct 26.4 69.4 359 31.5 56.5 72.1F 51.6
OLMo-2-7B-SFT 50.7 71.2 68.0 25.1 62.0 67.0f 47.8
OLMo-2-7B-1124-Instruct 48.5 85.2 75.6 31.3 63.9 67.61 56.3
EvaByte-SFT 34.6 52.9 60.2 29.8 49.5 73.7 46.3

Table 4: Downstream benchmark performance of EvaByte-SFT, table taken verbatim from

( ). Entries with § were computed by the EvaByte authors. All numbers were computed
with Medusa-style tree-based greedy decoding using the multi-token head, apart from HumanEval*,
which used typical sampling. The authors of EvaByte followed Tulu 3, and evaluated the Pass@10
rate for HumanEval with 20 samples at temperature 0.8.

In Table 4 we provide a copy of the benchmark results of fine-tuned version of EvaByte, EvaByte-SFT,
which we retrofit in the paper. The model card can be found at https://huggingface.co/
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EvaByte/EvaByte—-SFT, see also ( ) for more details. The numbers in the
table above were produced by Medusa-style ( ) tree-based typical decoding. For all
benchmarks apart from HumanEval, the results were produced via greedy decoding, i.e., similar
to ( , ) with the exception of producing the last “free” token. As such, the produced
tokens are equivalent to what EvaByte-STP would produce, and the authors found that the metrics
were the same with EvaByte-STP up to some small rounding errors. For HumanEval the authors used
tree-based typical decoding, which in this case does not maintain the quality of the EvaByte-STP
model. The details above were shared with us by Lin Zheng, the author of EvaByte.

D SPECULATIVE DECODING

We give pseudocode for our self-speculative decoding algorithm below. The algorithm accepts
between 0 and n tokens, but always generates between 1 and n tokens, where n is the MTP window
size. The algorithm is very similar to vanilla speculative decoding ( , ), but
our algorithm includes a modification that reduces latency for the self-speculative scenario, and
for this it needs to sacrifice the last “free” token typically obtained from the verifier. The gain
in latency is possible because we can evaluate the shared LLM once per draft/verify cycle, while
a naive implementation of ( ) for self-speculative decoding would need two,
approximately halving the possible throughput.

In our self-speculative setup, the verifier and draft LLMs share some layers of the backbone. Impor-
tantly, the verifier is always computing LLM states ahead of the draft. As such, we can get away
with a single forward pass through the shared LLM, similar to Medusa ( , ), by re-using
the LLM backbone state computed by the verifier for the draft model. For this to work, we cannot
accept a “last sample for free” from the verifier (lines 23-30) Algorithm 3), as we would not have the
backbone state for this new token and it is not worth paying an extra LLM evaluation for it. Therefore,
in our algorithm we only sample the “free” token from the verifier in the rare case that no tokens
are accepted. This is necessary because the model can get caught in successive no-accept states in
the sampling case, or get stuck in an infinite loop if we used greedy decoding. If any tokens were
accepted, we use the last state of the shared backbone computed during the verify phase to seed the
draft phase. In what follows, if we have no LoRA layers, the algorithm is modified to have a single
component: the shared encoder.
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Algorithm 2 SHAREDSTATESELFSPECULATIVEDECODING

Architecture Components:
Three components: Shared Encoder (S), Verifier (V'), Draft (D)
Each with their own KV-cache

Given: A prompt of length L

Initialisation:

Prefill Vto L — 1,and D and Sto L

Set .S and D state

Switch to draft/verify cycle:
while true do
Draft stage:
if S state is not set then
Compute .S by conditioning on the additional token
Use S state to compute D state
Parameterize MTPC with D state
Draft n tokens

Verify stage:
Compute S state on n + 1 tokens (draft + predecessor)
Compute V state using .S state
Obtain up to n + 1 tokens from speculative decoding
if O tokens accepted then
Keep “free” token sampled from last valid logits
Unset S state (stale)
else
Accept n tokens (drop “free” token)
Set S state (hidden state for last accepted token)
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Algorithm 3 SELFSPECULATIVEDECODING (X<¢, f, h, ¢, g)

Input: A prefix x<; of length ¢, an LLM backbone f: V* — R%, an LLM head h: R? — ©
parameterising a PC ¢ encoding a joint distribution g over the next n tokens, and an LLM head
g: R4 — AY computing the next token probabilities.

Output: A sentence (X<t || X¢t1:445) € V' where 1 < s < n + 1. Moreover, we have that

Xit1i4s ~ P(Tey1, ..., Tets | X<¢) as equivalently encoded by the autoregressive single token
prediction model consisting of f and g only ( , ).
1: e + f(x<t) > Compute the last embedding
2: 0 < h(e) > Compute the circuit parameters
3:
4: Let (X 14n | X<t) = 75¢(Xig1:04n | 0)
50 Xegtit4n ~ ((XKit1:4n | X<t) > Sample 7 tokens from ¢ in time O(|c|)
6: X < X<t || Xiq1:44n > Concatenate the prefix with the n tokens
T
8: Compute in parallel for 1 < i < n: > Compute marginals in time O(|c|)
9: q(Xeg1:04i | th) = th+'i+1s---7xt+nev q(Xet1:t4n | th)
10:
11: Compute in parallel for 1 <7 < n + 1: > Compute target model conditionals
12: P(Xii | X<tqi—1) = g(€44i—1), where e,4,_1 = f(X<t4i-1)
13:
14: s+ 0 > Determine the number of accepted tokens 5,0 < s <n

15: while s < n do
16: a~U(0,1)
17: if s > 0 then

18: Q(Teyst1 | X<trs) & q(Xegriepsir | X<e)/q(Xer 1045 | X<t)

19: if a > p(xt+s+1 ‘ Xt+s)/q($t+s+1 ‘ Xt+s) then

20: exit loop

21: s—s+1

22:

23: > Sample one last token from the autoregressive LLM model
24: if s < n then > Adjust the distribution first, if we accept fewer tokens

25: Lets(Xiysi1) = q(Xigst1 | X<tts)
26: Let m(Xpysq1) = max (0, p(Xeysi1 | X<tts) = $(Xiqst1))
27: T(Xt+s+1 | Xt+5) = m(Xt+s+1)/Z, with Z = ZI’GV m(x/)

28: Tipspr ~ 1(Xepsrr | X<tys)
29: else
30: Tipsy1 ~ P(Xigst1 | X<tys)

31: return X<t4s || Ti4s+1
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E ADDITIONAL RESULTS ON AN RTX 3090

Table 5: Increasing the mixture com-

ponents (r) increases the throughput

circuit 7 pace 1 Hiat 4 Hiokss T maXwoks  (fokss) as seen for MTPC-CP (n = 8)
FF 1 5.12+005 0.0519 +00003 101.2 £01 167.69 Over our baseline on an RTX 3090,
8 5.65+005 0.0545 £ooo0s 106.3 o4 161.49 EvaByte'tl\th P (FF) j(;n tﬁray) “;ﬂere
16 5.78 +006 0.0530 £o0002 1122 +10 15922 W€ report the mean = std over three
CP 32 584+004 00532<0004 113.1+0s 158,55 Sets of 250 prompts. MTPC-CP in-
64 588005 0.0532+00001 113.8 +08 15504 creases throughput as it has a larger ac-
128 5.94 003 0.0533 +00001 114.8 +04 153.24 ceptance rate ({ac) and a latency (i)
that is constant in 7.
Table 6: More expressive archi-
n 1 model  pacc t a4 Hokss T speed-up t tectures such as MTPC-BTREE
1 1 STP _ 0.047 214 1.00 outperform MTPC-CP on longer
I FF 5.02+0m 00519 om0 1012201  x 473 indows in terms of throughput
g 32 HMM 597 1oos 0.0594 tooor 1033+10 x 483 forn = 8andn = 16 for no
32 BTREE 5.94 +o0m 0.0546 +0000s 111911  x 523 LORA models on an RTX 3090
32 CP 5.84 +004 0.0532 to004 1131 x05 x 529 GPU. We shade the baselines in
1 FF 538 2003 0.0530 200 1043212 x 487 Sray, these are EvaByte-STP and
|6 32 HMM 681007 00701 too 99.7 05  x 466 the fully factorised (FF) models
32 CP 6.13 £003 0.0547 00003 1154+13  x 539 trained for the same steps as our
32 BTREE 6.67 +0.07 0.0578 +0.0005 118.9 +25 x 5.56 circuits.

n  model #LORA  flace T Mt 4 Lokss T speed-upt

1 STP 0 — 0.047 21.40 1.00

8 FF 0 511  0.0538 972 4.54

8 FF 1 5.09 0.0564 92.6 4.33

8 FF 2 5.11 0.0567 92.6 4.33

8 FF 4 511  0.0601 87.1 4.07

8 BTREE 0 6.08 0.0568 110.0 5.14

8 BTREE 1 6.15 0.0581 1094 5.11

8 BTREE 2 6.17  0.0604 105.7 4.94

8 BTREE 4 6.18 0.0625 102.3 4.78

16 FF 0 548  0.0546 102.8 4.81

16 FF 1 5.55 0.0559 102.1 4.77

16 FF 2 5.51 0.0584 97.2 4.54

16 FF 4 563 0.0613 945 4.42

16 BTREE 0 6.92 0.0587 1214 5.67

16 BTREE 1 7.26 0.0617 122.0 5.70

16 BTREE 2 730 0.0627 1209 5.65

16 BTREE 4 7.47 0.0669 116.2 5.43

Table 7: Fine-tuning separate layers in the draft model with LoRA can increase the acceptance
rate and speed up BTree MTPCs for n = 16 and one LoRA layer by 5.70 over STP on an RTX
3090 GPU. Nevertheless, the increased acceptance rate comes at increased latency, making further
throughput boosts via more LoRA layers unviable for EvaByte. We shade the STP baseline in gray
and ablated models trained for the additional epoch without LoRA in brown. Interestingly, for the
L40S in Table 3, we still got improvements with two LoRA layers, which highlights the importance
of carrying out such an analysis across devices.
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Table 8: Most Successful HMM Configuration

Parameterisation Transition Type Initialisation
Contextual Non-Contextual Homogeneous Inhomogeneous Identity Init. Uniform Init.
v X X v v X

F HIDDEN MARKOV MODELS SETUP

In our experiments we use contextual, inhomogeneous hidden Markov models (HMMs) with
identity initialisation (see Table 8). We chose the above after preliminary experiments where we
assessed the following configuration choices for training our HMMs.

Parameterisation We can parameterise HMMs to either be contextual, i.e. we can make the transition
probabilities depend on the input, or we can make the transition probabilities be independent of the
input (non-contextual).

Transition Type The transition matrix can be the same at each time step (homogeneous) or it can
be different (inhomogeneous). The former would correspond to additional parameter sharing across
sum layers in the circuit representation. We note that inhomogeneous HMMs subsume homogeneous
HMMs. This is because inhomogeneous HMMs could in theory learn parameters that do not vary
from timestep to timestep, thus becoming equivalent to a homogeneous HMM.

Initialisation A crucial setup is to initialise the HMM with transition matrices that are identity
matrices, which make the HMM equivalent to CP at the beginning of training. We achieve this by
adding a bias term to allow the HMM model to be initialised to identity matrices. This setting in
combination with extending to larger token windows, i.e. n = 16 lead to a scenario where HMMs
outperform CP. The other alternative is to initialise the transition matrices uniformly at random
(before softmax), but this complicates learning and yields performance that is lower than CP models.

G FURTHER EXPERIMENTAL DETAILS

To make the comparison between methods fair, we: a) constrained the models to not produce end-
of-sequence symbols during generation, as the latency of retrieving KV cache items from memory
increases with sequence length ( , ) and b) we filtered the validation set of the models
to only include examples with both prompts and responses in English, as acceptance rates may vary
dramatically based on the language chosen for the response.

We compute throughput by generating answers to 250 prompts and report the mean and std of 3 runs
with different prompts.

H ALTERNATIVE LOSSES

In early versions of this work we also experimented using a Kullback-Leibler divergence (KL) loss as
recommended by ( ). However, we found that training with the KL loss doubled
the training time while requiring a lot more memory, and the benefits in acceptance rate did not
outweigh the additional complexity. For completeness we include the loss below. KL Loss £

n v & fa (polald, 150, ) ol 158,))

L= Lyl ;=) Nvalid(i, 5) ©

j=1 i=1 t=1

In the above we condition both the draft model, ¢4-, and the target model, pg, on the gold data. The
above is equivalent to the KL term from the word-level distillation loss in ( R ).10

While performing sequence-level distillation, i.e., conditioning on data sampled from the teacher model
may improve distillation ( , ), we did not explore this.

23



Under review as a conference paper at ICLR 2026

I FURTHER RELATED WORK

MTP for byte-level LLMs ( ) and ( ) both pretrain byte-level
LLMs which predict n = 8 future bytes. This window size was found to be optimal for downstream
performance in ( ). Both make conditional independence assumptions, but the
approaches are architecturally different. ( ) uses a transformer head per token
to provide different feature vectors to each head and uses a shared unembedding matrix. On the
other hand, ( ) uses a shared feature vector across heads with different unembedding
matrices per token.'' However, they only focus on greedy self-speculative decoding, while in our
work, we also explore speculative sampling.

Speculative Decoding with MTP drafts Previous MTP work either ignores speculative sampling
and only focuses on greedy self-speculative decoding ( , ), or abandons guarantees
altogether (possibly at the expense of quality): specifically, ( ) and ( )
use a tree decoding mechanism to consider multiple candidates at each speculative decoding step.
Since their approach may accept multiple continuations but only generate the longest accepted one,
they bias the distribution and break the guarantees. ( ) use a subword-level draft model
to speed up their byte-level STP model via speculative decoding. Most prior work has introduced
sequential dependencies in the draft model through architecture modifications. Hydra (

) modifies the Medusa heads such that the predicted probabilities are also a function of the mput
embeddings of predicted draft tokens. Eagle ( , ) introduces sequential dependencies by
autoregressively predicting future feature representations. While these works relax the independence
assumption, they have no explicit probabilistic model for the dependencies introduced.

An exception is ( ), who study the effect of relaxing the conditional independence
assumption by using a CP factorisation. While they obtain some first promising results, showing that
increasing the rank can increase the acceptance rate of tokens for speculative decoding, they focus
on subword-level models which have very large vocabulary sizes (e.g. v > 100k). This makes CP
very expensive, both in terms of the number of parameters needed, and the GPU memory required.
Moreover, they evaluate their models on unrealistic scenarios, i.e. datasets used for pre-training
LLMs rather than instruction fine-tuning. Finally, despite the fact that a lot of previous work exists on
MTP for subword-level LLMs, they use different models from those widely used for benchmarking
speculative decoding methods, despite the existence of a benchmark, Spec-Bench ( , )
and common models (e.g. Vicuna). In our case, since there is a limited amount of work on MTP for
byte-level LLMs ( s ; s ), we directly compare with the results of
the EvaByte model.

There has been increasing interest in multi-token prediction not only for generation speed-up, but
also for improved model performance on tasks due to the lookahead offered by MTP. For exam-
ple, ( , Table 4) show that MTP for a token window of 2 tokens leads to
improvements in benchmark metrics even when MTP is not used at inference time. Furthermore, they
report an increase in the throughput of the model by x 1.8 when using speculative decoding.

Token granularity In MTP a token can vary in granularity from bytes ( , ) to subword
tokens provided by tokenisers ( ,

In addition to the choice of token granularity, there are generally 3 axes related works differ on:

* Training from scratch vs distilling an existing STP model into a MTP model
* Neural network architectures for the token heads (e.g. Linear, MLP, Transformer)

* Probabilistic modelling assumptions (conditional independence vs more expressive models)

1.1 DIFFERENCES IN SCENARIO

Training from Scratch Evabyte ( , ) train a MTP byte-level model from scratch
using n = 8.
Tt is worth noting that ( ) also do an ablation in the appendix and find that linear heads

were competitive.
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Retrofitting STP to MTP Some works explore both training from scratch and retrofitting an STP
model into an MTP one ( s ; , ). In our work, we focus on the second
setting.

1.2 DIFFERENCES IN ARCHITECTURES

Linear Heads ( ) use a linear parameterisation for each token head in their

distillation experiments.

MLP Heads ( ) use a MLP with a single hidden layer for each output token head.
( ) extend this to multiple layers of MLPs per output token. ( )

make the heads context-aware by including a transformer head in each token head.

Autoregressive Head While the main point of having future token heads is to avoid the expensive
autoregression of the target model, current state of the art speculative decoding models rely on “cheap”

autoregression. Eagle ( , ), which is the best performing on the speculative decoding
benchmark, Spec-bench ( , ), fits an autoregressive model to predict future feature
vectors of the model (i.e. the inputs to the softmax layer). A similar architecture was also used for
the DeepSeekV3 model ( , ).

MLP Heads ( ) propose the Medusa model which uses a MLP with a residual connection
for each token head. While in theory they could use many MLP layers, they choose to use MLPs
with single hidden layer. ( ) explore using deeper MLPs for each token head.
Transformer Heads ( ) use a shared unembedding matrix and use a separate

transformer for each token head. More precisely, in order to predict the token at offset s, i.e. x4 s,
they compute softmax (Wzy), where z; is produced by a separate transformer head for each s, i.e.
z, = Hy(x<y).

Sharing the Unembedding layer. While the decoding of ( ) is based on Medusa,
instead of using a MLP for each token head, they use a different unembedding matrix per token head.'”
This modelling choice is possible due to the small vocabulary size of byte-level models, i.e. |V| = 320.

In their training from scratch scenario, ( ) use different unembedding layers W((f)
in order to predict x4 ¢ for the mixture component with index a. As such, they parameterise s x |a|
unembedding matrices. This seems non-ideal, since the last layer in LLMs can have a large number
of parameters, i.e. (V' X d). In their distillation scenario they use a shared unembedding matrix.

J LLAMA MODEL RESULTS

Llama3.2 3B We also retrofit a Llama3.2 3B model ( , ) to show that our results
generalise and are useful for popular models and models of smaller size. Since we focus on byte-level
LLMs, we retrofit the byte-level version that has been distilled from the original in (

) while retaining most of Llama’s downstream performance.'* The byte-fied Llama3.2 3B model
was fine-tuned on Tiilu 3 with a context length of 2048.

Below we corroborate our EvaByte findings for RQ1 and RQ2 by showing that our results for the
byte-fied version of Llama 3.2 3B lead to the same conclusions: i) increasing the number of mixture
coefficients increases the acceptance rate and therefore the throughput, and ii) more expressive
circuits like MTPC-BTREE further improve throughput over MTPC-CP. As with our main EvaByte
results, we use n = 8 and do not use LoRA layers. We run all speculative decoding experiments on
an NVIDIA L40s GPU.

RQ1: Can we increase throughput by increasing the number of mixture components?

As can be seen in Table 9, similarly to our EvaByte results, increasing the rank leads to increased
acceptance rates and throughput for Llama3.2.

RQ2: Do we benefit from more expressive circuit architectures (for longer sequences)?

]zhttps ://github.com/OpenEvaByte/evabyte/blob/98d5£48d32197b803e7560a798da35c7adbdcf4d/
evabyte_hf/modeling_evabyte.py#L753
Bhttps://huggingface.co/benjamin/Llama3-2-3B-IT-Byte
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As can be seen in Table 10, for the Llama model we get the best performance using MTPC-BTREE
even for n = 8, while for EvaByte, MTPC-CP had superior throughput. Although we get smaller
relative speed-ups over STP (2.07x) when compared to EvaByte, we still get substantial boosts in
throughput by relaxing the independence assumptions, with MTPC-CP increasing throughput by
1.14x and MTPC-BTREE by 1.23x over MTPC-FF. We note that EvaByte has been pretrained with
an MTP head, so it is reasonable that it is hard to match its throughput while keeping the Llama
encoder frozen (no-lora). We also note that for the Llama model the generation quality of the STP
model degrades after 500 tokens or so when using ancestral sampling. We believe this is why the
greedy decoding results in Tables 11 and 12 are even better compared to the sampling results.

J.1 SPECULATIVE SAMPLING

model T Macc T Hat 4 Hrokss T
FF 1 1.73 o002 0.0516 +o00006 36.1 +06
8 1.92+007 0.0529 +00018 393 +05

CP 16 198 +002 0.0550 +00011 38.9 +038
32 2.08 +004 0.0543 +00012 41.1 +07

Table 9: Speculative sampling results while varying the CP rank for the byte-fied version of Llama
3.2 3B. As can be seen, increasing r steadily increases the acceptance rate and the best throughput is
obtained for r = 32.

n 7 model Hace T Mat & Hrok/s T speed-up 1
1 1 STP — 0.049 21.5 1.00
1 FF 1.73 £ 002 0.0516 +0.0006 36.1 +06 1.68

8 32 CP 2.08 £004 0.0543 +o00012 41.1 +07 1.92
32 BTree 2.26 £002 0.0549 +00013 443 +12 2.07

Table 10: Speculative sampling results with r = 32 for the byte-fied version of Llama 3.2 3B. As can
be seen, MTPC-BTREE outperforms all other models in throughput, supporting our EvaByte results.

J.2 GREEDY SPECULATIVE DECODING

model T Macc T Hat 4 Hrok/s T
FF 1 270 +to001 0.0463 £o00018 59.8 +25
8 3.25+002 0.0490 £00022 69.4 +32

CP 16 3.42 +o004 0.0502 £o00018 71.3 +24
32 3.47 +006 0.0507 +00015 71.9 +30

Table 11: Greedy speculative decoding results while varying the CP rank for the byte-fied version of
Llama 3.2 3B.

n 7 model Hace T Mat & Hrok/s T speed-up 1
1 1 STP — 0.049 21.5 1.00
1 FF 270 £001 0.0463 +0.0018 59.8 £25 2.79

8 32 CP 3.47 £006 0.0507 £o0.0015 71.9 £30 3.35
32 BTree 3.72 +009 0.0507 +0.0017 76.8 +4.1 3.58

Table 12: Greedy speculative decoding results with » = 32 for the byte-fied version of Llama 3.2 3B.
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