
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST AND EXPRESSIVE MULTI-TOKEN PREDICTION
WITH PROBABILISTIC CIRCUITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-token prediction (MTP) is a prominent strategy to significantly speed up
generation in large language models (LLMs), including byte-level LLMs, which
are tokeniser-free but prohibitively slow. However, existing MTP methods often
sacrifice expressiveness by assuming independence between future tokens. In this
work, we investigate the trade-off between expressiveness and latency in MTP
within the framework of probabilistic circuits (PCs). Our framework, named MTPC,
allows one to explore different ways to encode the joint distributions over future
tokens by selecting different circuit architectures, generalising classical models
such as (hierarchical) mixture models, hidden Markov models and tensor networks.
We show the efficacy of MTPC by retrofitting existing byte-level LLMs, such as
EvaByte. Our experiments show that, when combined with speculative decoding,
MTPC significantly speeds up generation compared to MTP with independence
assumptions, while guaranteeing to retain the performance of the original verifier
LLM. We also rigorously study the optimal trade-off between expressiveness and
latency when exploring the possible parameterisations of MTPC, such as PC
architectures and partial layer sharing between the verifier and draft LLMs.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) can only perform single-token prediction (STP)
as they generate one token at a time, incurring significantly high latency, energy demand, and
deployment costs. This affects not only subword models, but even more so the byte-level ones (Yu
et al., 2023; Wang et al., 2024, inter alia). Among possible alternatives to speed up generation
(Ankner et al., 2024; DeepSeek-AI et al., 2024; Nawrot et al., 2023; Pagnoni et al., 2024; Łańcucki
et al., 2025), multi-token prediction (MTP) stands out as it promises to predict a window of multiple
tokens all at once, may they be subwords (Gloeckle et al., 2024; Cai et al., 2024) or bytes (Gloeckle
et al., 2024; Zheng et al., 2025). As such, MTP LLMs can achieve a significantly higher throughput
than STP ones, as they decrease the number of forward passes required through the LLM.

Nevertheless, modelling the joint distribution over all future tokens in a window is challenging,
as it requires balancing expressiveness, i.e., representing all the dependencies between tokens,
and efficiency, i.e., minimising latency. Existing MTP approaches favour the latter by making an
unrealistic assumption: namely, considering all future tokens to be independent (Zheng et al., 2025;
Cai et al., 2024; Gloeckle et al., 2024). This clearly comes at the expense of expressiveness (Ankner
et al., 2024; Wertheimer et al., 2024), as the choice of a token for a position within the window cannot
influence the probability of the others.

For example, consider the prompt: “Name a capital of South Africa”, where Cape Town and Pretoria
are equally likely completions. A byte-level MTP model with independence assumptions over an
8-token window could return Cretoria as an argmax, because replacing P with C cannot change the
probability of other tokens. More concerningly, an exponential number of “byte-salad” continuations,
such as Crptoria, Crpt ria and Crpt roa, are then also equally likely, despite having almost zero
probability under the STP model. Recently, Basharin et al. (2025) introduced dependencies into MTP
with a mixture over the future token probabilities. However, a single mixture can only add limited
expressiveness. Crucially, understanding how to increase expressiveness while optimally trading off
efficiency in a systematic way is still an open question.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

5.5 6.0 6.5 7.0 7.5

Accepted tokens

0.030

0.032

0.034

0.036

0.038

0.040

 L
at

en
cy

 (m
s)

FF 8

HMM 8

BTree 8

CP 8

BTree 8

FF 8

FF 16

HMM 16

CP 16

BTree 16

BTree 16

FF 16

Model
FF
HMM
BTree
CP
LoRA Layers
0
1
2

Figure 1: MTPC allows for exploring the
trade-off between efficiency (latency) and ex-
pressiveness (token acceptance) with different
MTP designs in terms of 1) choice of PC ar-
chitecture (FF, CP, HMM, BTree); 2) choice of
layers shared between draft and verifier models
in self-speculative decoding. Dotted lines indi-
cate iso-throughput (tokens generated per sec-
ond) regions, highlighting configurations such as
BTree for n = 16 tokens and 2 LoRA layers that
achieve the best throughput.

In this paper, we fill this gap by proposing an MTP framework based on probabilistic circuits (PCs;
Choi et al., 2020; Vergari et al., 2021), which we name MTPC. MTPC uses PCs to parameterise the
joint distribution over future tokens into tractable computational graphs that can encode hierarchical
mixture models. As such, MTPC offers a way to systematically navigate the spectrum of MTP archi-
tectural variants, encompassing fully factorised models (Zheng et al., 2025; Cai et al., 2024; Gloeckle
et al., 2024) and shallow mixtures (Basharin et al., 2025) but also more expressive parameterisations:
hidden Markov models (HMMs) and binary tree factorisations (BTrees) which are novel for MTP.

Moreover, in contrast to previous work on MTP (Zheng et al., 2025; Cai et al., 2024), MTPC
guarantees we match the quality of an AR LLM via speculative decoding (Leviathan et al., 2022;
Chen et al., 2023; Stern et al., 2018; Xia et al., 2024)—exactly for greedy decoding or in expectation
for sampling—showing that the throughput sacrificed for the guarantee is not as large as alluded to
previously. We do so by sharing the LLM backbone for the draft and verifier models for different
numbers of layers, highlighting how this creates a second dimension to trade-off expressiveness (as
hidden representations between draft and verifier can diverge) and latency (as each non-shared layer
requires separate forward passes). We illustrate the two trade-offs at the core of MTPC in Fig. 1.

In summary, we make the following contributions: C1) we introduce MTPC, a fast MTP framework
based on PCs that overcomes the independence assumptions of previous work and generalises tensor
decomposition methods (Basharin et al., 2025); C2) we rigorously identify trade-offs between
acceptance rates in speculative decoding and latency of generation, based on different choices of
probabilistic circuit (PC) architectures and partial layer sharing; C3) we empirically demonstrate
the effectiveness of MTPC by repurposing EvaByte (Zheng et al., 2025), a byte-level LLM, into
our framework. The choice of this use case is motivated by the fact that existing byte-level LLMs
(Pagnoni et al., 2024; Wang et al., 2024) obviate the limitations of sub-word tokenisers—including
uneven efficiency (Ahia et al., 2023; Dagan et al., 2024), lack of interoperability (Minixhofer et al.,
2025), and vulnerabilities (Rumbelow & Watkins, 2023; Land & Bartolo, 2024; Geiping et al., 2024;
Salesky et al., 2021)—at the cost of significantly slowing down generation. We find that MTPC
increases the throughput of EvaByte by 5.47× with respect to AR generation and 1.22× with respect
to MTP with independence assumptions.

2 SPEEDING UP GENERATION WITH MTP AND SPECULATIVE DECODING

Given our goal of speeding up LLM generation with MTP while guaranteeing that the STP quality is
fully retained through speculative decoding, we introduce these frameworks below.1

MTP. A classical STP LLM encodes a distribution over sequences of tokens {xt} defined over a
vocabulary V as

∏
t p(xt+1 | x≤t), where x≤t is the context, i.e. the observed tokens at timestep

t. MTP (Gloeckle et al., 2024) aims to extend an STP LLM that predicts a single token at a time
through p(xt+1 | x≤t), to an MTP model, qθ , that models the joint probability of a window of n
future tokens and generates them simultaneously, i.e.,

qθ (xt+1, xt+2, . . . , xt+n | x≤t). (1)

1We adapt notation from the tensor and circuit literature (Loconte et al., 2025a), see Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where θ denotes a given parameterisation for the joint.2 The first dimension to trade-off expressiveness
and efficiency in MTP pertains to compactly representing qθ . Unlike for p(xt+1 | x≤t), we would
need to store more than a vector of logits a ∈ Rv of a single univariate categorical distribution for a
vocabulary size v = |V| for every timestep t. The most expressive, but least efficient way to do so,
would be to store an n-dimensional tensor A ∈ Rv(1)×...×v(n)

of logits having vn entries, but this
scales exponentially in n. Next, we review past attempts to avoid storing A explicitly.

Fully factorised. The most commonly used way to boost efficiency is to assume all n future tokens
are independent (Zheng et al., 2025; Cai et al., 2024; Gloeckle et al., 2024), that is, qθ factorizes as∏n

i=1
qϕi

(xt+i | x≤t). (FF)

This comes with the benefit that one needs to store only n v-dimensional vectors of probabilities ϕi to
represent the joint distribution in Eq. (1). At the same time, as already discussed in the introduction,
this severely limits model expressiveness (Ankner et al., 2024; Wertheimer et al., 2024).

Canonical polyadic (CP) factorisation. Dependencies between future tokens can be recovered by
introducing explicit latent variables (Lee et al., 2018). To this end, Basharin et al. (2025) propose to
factorise Eq. (1) via an r-rank CP decomposition. A CP decomposition introduces one discrete latent
variable, Z, that encodes a mixture of r fully-factorised components, rewriting Eq. (1) as:∑r

j=1
q(Z = j | x≤t)

∏n

i=1
qϕi,j (xt+i | j, x≤t). (CP)

where q(j | x≤t) = ωj are the mixture coefficients and ϕi,j are the parameters of the categorical
distribution for mixture component j at position i in the MTP window. 3 Before showing how we can
generalize both FF and CP MTP with PCs, we review how to ensure MTP models match the quality
of a given STP model.

Speculative decoding (Stern et al., 2018; Leviathan et al., 2022; Chen et al., 2023; Xia et al., 2024)
can be combined with MTP to speed up generation while guaranteeing no loss in quality. Given a
target STP LLM that we wish to accelerate, speculative decoding involves two steps: 1) drafting,
where a cheaper MTP draft model generates n future tokens, and 2) verification, where the target
STP model accepts or rejects the generated tokens in parallel according to a pre-defined consistency
criterion. The closer the distributions of the draft and verifier are, the more often ‘speculated’ tokens
are accepted, speeding up generation. With speculative decoding we can quantify the trade-off
between expressivenss and efficiency in MTP models as their throughput, i.e.

throughput (tok/s) = acceptance rate (toks per eval)/latency (secs per eval) (2)

where acceptance rates are a function of the total variation distance between the two distributions
(Leviathan et al., 2022; Sun et al., 2023) and latency measures how computationally expensive an
MTP model is during generation. While previous work, such as Basharin et al. (2025), focused only
on measuring acceptance rates, we highlight how both sides of the ratio in Eq. (2) are important, as
they create a spectrum. MTPCs provide a systematic way to navigate such a spectrum (see Fig. 1).

3 PROBABILISTIC CIRCUITS FOR MULTI-TOKEN PREDICTION

The idea behind MTPCs is to further decompose the joint distribution in Eq. (1) into a deep com-
putational graph encoding a hierarchical mixture model, called a probabilistic circuit (Sections 3.1
and 3.2), and to parameterise it with LLM embeddings (Section 3.3).

3.1 PROBABILISTIC CIRCUITS

A circuit (Darwiche, 2003; Choi et al., 2020; Vergari et al., 2021), c, is a parameterised directed
acyclic computational graph4 over variables X encoding a function, c(X), and comprises three kinds

2These parameters depend on t, we drop the subscript when not needed to avoid clutter.
3Basharin et al. (2025) calls CP a mixture of experts (MoE), but we note this is incorrect as the weights ωj

do not depend on future tokens, but only on past ones. As such, they realise a simple conditional mixture. They
argue that training CP is challenging and requires insights from the MoE literature, while we are able to train
them as well as deeper mixture variants easily without MoE-tailored losses (see Section 4).

4In Fig. 2, edges directionality is removed for readability, but it is assumed to be from inputs to outputs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(CP)

q(z)

q(xt+1 | z)

q(xt+2 | z)

q(xt+3 | z)

q(xt+4 | z)

(HMM)

q(z1)

q(z3 | z2)

q(z2 | z1)

q(z4 | z3)

q(xt+4 | z4)

q(xt+3 | z3)

q(xt+2 | z2)

q(xt+1 | z1)

(FF)

q(xt+1) q(xt+2) q(xt+3) q(xt+4)

(BTree)

q(z3)

q(z1 | z3) q(z2 | z3)

q(xt+1 | z1) q(xt+2 | z1) q(xt+3 | z2) q(xt+4 | z2)

Figure 2: PCs allow for modelling a spectrum of dependency structures over sequences of tokens,
as shown for the known FF and CP and the novel HMM and BTree MTP variants. Input units are
grouped in coloured layers, one for each token, while sum and product layers encoding (hierarchies
of) latent variable distributions are in grey. The output unit of each circuit (in blue) computes
qθ(xt+1, . . . , xt+n | x≤t). In the figure we omit the dependency on the context x≤t for readability.

of computational units: input, product, and sum units. Each product or sum unit n receives the outputs
of other units as inputs, denoted with the set in(n). Each unit n encodes a function, cn, defined as: (i)
cn(sc(n);ϕ) if n is an input unit, where cn is a function parameterised by ϕ over variables sc(n) ⊆ X,
called its scope; (ii)

∏
j∈in(n) cj(sc(j)) if n is a product unit; and (iii)

∑
j∈in(n) ωjcj(sc(j)) if n is a

sum unit, with ωj ∈ R denoting the sum parameters. The scope of a product or sum unit n is the
union of the scopes of its inputs, i.e., sc(n) =

⋃
j∈in(n) sc(j). Fig. 2 shows examples of circuits,

where units of the same scope are grouped into (coloured) layers belonging to a hierarchy that can be
easily parallelised on a GPU (Mari et al., 2023; Loconte et al., 2025a).

For MTPCs, we use probabilistic circuits (PCs), i.e., circuits modelling a joint distribution over
random variables, in our case tokens X = {X1, . . . , Xn}. PCs encode Eq. (1) as

qθ (xt+1, . . . , xt+n | x≤t) = Z−1
θt

c(xt+1, . . . , xt+n;θt) (3)

where θt = {ωt,ϕt} denote the set of circuit parameters, i.e., all sum unit parameters ωt and input
unit parameterisations ϕt which depend on the context x≤t; and Zθt

denotes the partition function
of c, i.e., Zθt

=
∑

xt+1,...,xt+n∈Vn c(xt+1, . . . , xt+n;θt). Note that the PC architectures we are
interested in are already normalised or always allow computing the partition function in a single
feedforward step (see Choi et al. (2020) and Appendix B.1). At the same time, we can easily sample
from PCs in a single feedforward pass, as discussed in Appendix B.2. Crucially, within the framework
of PCs, we can recover the FF and CP parameterisations for MTP and several other architectures that
generalise tensor factorisations (Loconte et al., 2025a) that can be used as novel MTP models, each
offering a different expressiveness-efficiency trade-off. We do so while abstracting away from each
model’s original formulation and obtain a unified way to parameterise MTP LLMs, as discussed next.

3.2 PC ARCHITECTURES FOR MTP

MTPC-FF. Representing the commonly used FF MTP parameterisation as a PC is simple: we
introduce n input units, each parameterised by ϕi, its corresponding token probabilities, and connect
them all to a single product unit, as shown in Fig. 2 for a distribution over n = 4 tokens.

MTPC-CP. Similarly, we can easily encode a CP factorisation in a shallow PC by i) introducing r
input units for each token (each parameterised by their own probabilities ϕij), then ii) multiplying
them to retrieve the r factorised mixture components, which we then iii) aggregate in a sum unit
with weights ωj = q(zj | x≤t) (see also Proposition 1 in Loconte et al. (2025a)). Fig. 2 shows
this construction for n = 4 and r = 2. This basic construction suggests that we can create
deeper architectures by interleaving sum and product layers, while overparameterising each layer by
increasing the number of units in it (r). Furthermore, by implementing CP as a PC unlocks a faster
sampling routine (Appendix B.2) than the one used in Basharin et al. (2025).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

MTPC-HMM. As a further example of the expressiveness increase we get by generalising our
approach to deeper PCs, we introduce a factorisation that realises a hidden Markov model (HMM),
which better captures distant dependencies in the sequence by introducing a sequence of latent
variables, in contrast to the single one present in CP. More precisely, we define an HMM with
r hidden states and truncate its prediction window to n steps into the future. We resort to an
inhomogeneous HMM, i.e., we do not make the transition matrices time-invariant, as this setup is
more expressive and worked better in our experiments, see Appendix F. This simplifies Eq. (1) into:

r∑
z1=1

· · ·
r∑

zn=1

q(z1 | x≤t)qϕ(xt+1 | z1,x≤t)

n∏
i=2

q(zi | zi−1,x≤t)qϕ(xt+i | zi, x≤t). (HMM)

Fig. 2 illustrates the HMM parameterisation above represented as a circuit, comprising n = 4 pairs of
sum and product layers stacked, where the parameters ωi of the former are the transition probabilities
q(zi | zi−1,x≤t). Similarly to CP, we can increase r to overparameterise the circuit with more input
units per token and sum units overall, and hence increase expressiveness.

MTPC-BTREE. One drawback of the HMM parameterisation is the asymmetry of its computational
graph, which i) provides fewer latent variables for the early tokens, and ii) increases latency when
predicting the last tokens due to its autoregressive token dependencies. To solve this, we build a
PC whose structure resembles that of a binary tree (BTree), effectively encoding a hierarchy of
latent variables or a tree tensor factorisation (Grasedyck, 2010; Cheng et al., 2019; Loconte et al.,
2025a). This is done recursively: at each step h of the hierarchy, given a sequence of n tokens to
split, and a parent latent variable Zl, we split it into two sub-sequences (xt+1, . . . , xt+⌊n/2⌋−1) and
(xt+⌊n/2⌋, . . . , xt+n), then factorise Eq. (1) as a mixture:∑r

zh=1
q(zh | zl,x≤t)qθ (xt+1, . . . , xt+⌊n/2⌋−1 | zh, zl,x≤t)qθ (xt+⌊n/2⌋, . . . , xt+n | zh, zl,x≤t)

(BTree)
which corresponds to creating a sum unit whose weights are q(zh | zl,x≤t) followed by products.
We repeat the process while caching intermediate units until we reach the base case for n = 1, for
which we create a layer of input units for the corresponding token. Fig. 2 illustrates the BTree circuit
built in this way. Our experiments (Section 4.2) show that the BTree parameterisation obtains the
optimal throughput by lowering the latency of HMM, as it samples more latent variables and tokens
in parallel, while achieving similar acceptance rates.

3.3 PARAMETERISING PCS WITH LLMS

Parameterising MTPCs requires two functions: an LLM that maps the context x≤t ∈ Vt into
contextual features, and a neural network head that maps the contextual features to the parameters of
the circuit θt, realising a neural conditional circuit (Shao et al., 2020; 2022; Ahmed et al., 2022). To
extract the contextual features et ∈ Rd, we use et = LLMLoRA(k) (x≤t) where LLMLoRA(k) : Vt →
Rd is the STP backbone with LoRA (Hu et al., 2022) applied to the last k ≥ 0 layers. As we
will discuss in Section 4.4, the number of LoRA layers can impact throughput significantly. Given
et, we realise Eq. (3) by computing θt = gc (et), where gc is a neural network head that outputs
both the input unit parameters, ϕt, and the sum unit parameters, ωt (Section 3.1). Note that our
parameterisation in MTPCs allows us to abstract from the actual structure of the circuit (i.e., FF, CP,
HMM or BTree) and just focus on these two sets of tensorised parameters, as we discuss next.

Input unit distributions. All MTPCs produce joint distributions over token windows by combining
categorical distributions over individual tokens (Fig. 2). We follow EvaByte (Zheng et al., 2025)
and learn n separate unembedding layers, one per window position. For models with mixture
coefficients, we also learn one unembedding layer per mixture coefficient.5 As such, instead of a
single unembedding matrix mapping Rd → Rv, we have an unembedding tensor W ∈ Rn×r×v×d,
and compute the input distributions with the usual unembedding operation followed by softmax, i.e.,
ϕtij = softmax (Wijet), where i and j index the position in the MTP window and the rank r.

Sum unit parameters. For sum units, instead of mapping embeddings to the vocabulary via W , we
map to the rank of the sum unit via R ∈ Rz×r×d, where z is the number of sum units, r is its rank,
and d the dimensionality of et. We compute ωti = softmax (Riet), where i indexes the sum unit.

5This is efficient even for PCs with high rank due to the small vocabulary size of byte-level LLMs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 SPECULATIVE DECODING WITH MTPC

For MTPCs, we design an architecture that is self-drafting (Zhang et al., 2024b; Cai et al., 2024),
i.e. where the draft and verifier models share the same LLM backbone. We use an MTP head (Cai
et al., 2024; Ankner et al., 2024) augmented with our circuits to efficiently sample a draft, and an
autoregressive STP head as the verifier. Optionally, we also explore keeping a few final transformer
layers separate in the two models by fine-tuning LoRA adaptors for the draft model’s backbone.

Unlike previous self-drafting MTP works (Cai et al., 2024; Ankner et al., 2024), we guarantee that
the generated tokens are the same as those the autoregressive LLM would generate in expectation
by using speculative decoding (Leviathan et al., 2022; Chen et al., 2023), i.e., we only generate the
subset of drafted tokens accepted by our verifier. To keep latency low, we make only a single LLM
call per speculative decoding cycle by re-using the LLM backbone state computed by the verifier for
the draft model, where possible. We achieve this by modifying the speculative decoding algorithm
slightly, as we detail in Algorithm 2.

Next we report results for sampling, but we also experimented with greedy speculative decoding
(Stern et al., 2018) which guarantees argmax consistency. Both are suitable for MTPCs.

4 MTPCS IN ACTION: RETROFITTING A BYTE-LEVEL LLM

We evaluate MTPC on the challenging tasks of speeding up byte-level LLMs. MTP is crucial for
byte-level LLMs as they require more tokens than sub-word LLMs to generate text with the same
length. Furthermore, byte-level LLMs allow us to explore large window sizes and more mixtures
components due to their small vocabulary size. We implement our MTPCs variants in the cirkit
library (The april Lab, 2024) and provide it in our supplementary materials.

Target model. We work with EvaByte (Zheng et al., 2025) as our byte-level LLM, because it is
open source, publicly available, and obtains results that are competitive to subword-level LLMs
on benchmarks (Zheng et al., 2025), see Appendix C. EvaByte is a 6.5B byte-level model with an
embedding size of 4096, a vocabulary of 320 byte tokens and a maximum context window of 32k
bytes. EvaByte has been pre-trained as an MTP model with a prediction window of n = 8 bytes.
In our experiments, we retrofit the released fine-tuned version of EvaByte, EvaByte-SFT (Zheng
et al., 2025). EvaByte-SFT has been fine-tuned on a data mix of Tülu 3 (Lambert et al., 2024),
OpenCoder (Huang et al., 2024) stages one and two, and OpenHermes 2.5.6 We note that EvaByte’s
solid performance on benchmarks is obtained via Medusa-style lossy speculative decoding with the
MTP head, which in the case of sampling comes with a loss in quality compared to EvaByte-STP
(n = 1). We therefore set EvaByte-STP as the target model for speculative decoding to accelerate
generation without sacrificing generation quality.

Draft models. We use EvaByte-MTP to refer to EvaByte’s released fully-factorised (FF) MTP head.
Speculative decoding results have not been reported in the EvaByte release (Zheng et al., 2025),
so we include them here as our baseline. We also further fine-tune EvaByte-MTP to highlight that
the model cannot be improved further. On top of that, we replace the MTP head with our MTPCs
heads, including our CP implementation and novel HMM and BTree heads to relax the independence
assumptions of the FF model and increase expressiveness. We note that EvaByte-MTP-CP with r = 1
is equivalent to EvaByte-MTP, as can be seen from Eq. (CP).

4.1 TRAINING

In order to improve throughput via speculative decoding, we need to make our MTP model’s
distribution as similar as possible to EvaByte-STP’s. We achieve this in the simplest way by
instruction fine-tuning our models on a similar data mix to that used for EvaByte-SFT. As the full
details of the data mix are not known and are hard to replicate, we focus on Tülu 3.

Training data. We fine-tune on the Tülu 3 SFT mix dataset (Lambert et al., 2024) which contains
939,344 examples of user/assistant interactions on 18 tasks. We split the Tülu 3 dataset into training
and validation so that we can check throughput on the unseen validation examples. In order to make
sure all tasks are sampled, we shuffle the training data before splitting. Because we want training to be

6The information above is from personal communication with the authors.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

possible on 2× 80 Gb GPUs, we limit the context length to 8192 bytes and filter out 34,067 examples
which are longer. We split the remaining 905,277 examples into 99% train and 1% validation.

Initialisation. We initialise our MTP heads from EvaByte-SFT in a way that guarantees that our
EvaByte-MTP-CP is equivalent to EvaByte-MTP. This guarantees that we leverage previous training:
all models start from the same loss and we smoothly move in parameter space from EvaByte-MTP to
our more expressive EvaByte-MTP-CP, EvaByte-MTP-HMM and EvaByte-MTP-BTree.

Loss. We train our MTP models on the packed train split of Tülu 3 with a batch size of 256 sequences,
or ≈ 2m tokens, which is what EvaByte used. We first train our MTP heads for 1 epoch (Section 4.3).
Then we load the models and continue training for an additional epoch with LoRA (Section 4.4).
We apply EvaByte’s chat template and only train on the assistant’s answers. We use overlapping
prediction windows, as we need to be able to begin speculative decoding from any position during
generation. We minimise the negative log-likelihood of the observed assistant outputs Eq. (4), where
N is the number of training sequences and L is the sequence length for each token in the window.7

L =
∑n

j=1
γj−1Lj , Lj = −

∑N

i=1

∑L

t=1
(log pθ(x

(i)
t+j | x

(i)
<t+j))/(Nvalid(i, j)) (4)

This involves locally normalising the loss by the number of valid tokens for example i and output j
in the MTP window, valid(i, j). As in Cai et al. (2024), we apply exponential discounting for future
tokens in the window, but use γ = 0.9 instead of γ = 0.8 to account for n > 8. We use the Adam
optimiser (Kingma & Ba, 2015) with a fixed learning rate of 3× 10−4.

4.2 METRICS

To speed up LLMs generation with speculative decoding, we need to balance speed and expressive-
ness. We measure speed using mean latency (µlat) and expressiveness via the mean acceptance
rate (µacc; Li et al., 2024), as defined below. Our goal is to increase throughput. We obtain a relative
throughput speed-up of one method over another by measuring their wall-time speedup ratio (Li
et al., 2024; Cai et al., 2024). We assume a batch size of 1 for all evaluations. We report our metrics
on two GPUs, the server-grade NVIDIA L40S GPU and the desktop-grade NVIDIA RTX 3090.

Mean Latency µlat is the average time taken for each speculative decoding step, i.e., the time needed
for the draft model to generate a candidate sequence and the verifier to choose which tokens to accept.
µlat is higher for less efficient LLMs and MTP heads, and lower for more powerful GPUs, e.g. for
EvaByte-MTP the L40S (Tables 1 to 3) has half the latency of the RTX 3090 (Tables 5 to 7).

Mean acceptance rate µacc is the percentage of drafted tokens that are accepted by the target model.
More expressive draft models will have higher accepance rate as they will better approximate the
target distribution. µacc depends on the size of the MTP window, n, as we have µacc ∈ [0, n].

Mean throughput µtok/sis measured as in Eq. (2), i.e., as the ratio µacc/µlat.

Wall-time speed-up ratio is the relative speed-up of a proposed model compared to a baseline model,
measured as the ratio of their throughputs. As baselines, we use autoregressive generation from the
STP model, EvaByte-STP, and MTP with independence assumptions, EvaByte-MTP FF.

4.3 MTPCS WITHOUT ADAPTERS

RQ1: Can we increase throughput by increasing the number of mixture components?

We begin with the simplest PC from our framework, MTPC-CP, which relaxes the independence
assumption of the widely used MTPC-FF (r = 1) by increasing the number of mixture coefficients, r.
MTPC-CP can increase throughput because it is more expressive yet still very efficient.

Table 1 highlights MTPC-CP’s efficiency; the µlat introduced by MTPC-CP remains relatively
unchanged as we increase r, because the forward pass cost of the output layer is dominated by the
expensive LLM calls. At the same time, MTPC-CP increases the expressiveness of our MTP head by
relaxing the unrealistic independence assumptions. As a result, MTPC-CP with r = 128 achieves
µacc = 5.94, an increase of .82 tokens over MTPC-FF. However, the best throughput is obtained for
r = 32, where MTPC-CP produces 20.8 more tok/s than MTPC-FF. In the last column, we show

7Our loss over overlapping windows is a composite log-likelihood (Varin et al., 2011).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

model r µacc ↑ µlat ↓ µtok/s ↑ maxtok/s

FF 1 5.14 ± 0.06 0.0290 ± 0.0002 180.1 ± 2.8 297.50

CP

8 5.65 ± 0.02 0.0296 ± 0.0001 194.5 ± 1.6 291.61
16 5.76 ± 0.03 0.0299 ± 0.0002 196.1 ± 1.9 295.94
32 5.84 ± 0.01 0.0297 ± 0.0002 200.9 ± 1.6 292.33
64 5.87 ± 0.09 0.0304 ± 0.0001 197.2 ± 2.3 278.42

128 5.94 ± 0.04 0.0320 ± 0.0001 188.6 ± 1.1 265.51

Table 1: Increasing the mixture com-
ponents (r) increases the throughput
(µtok/s) as seen for MTPC-CP (n = 8)
over our baseline, EvaByte-MTP (FF)
(in gray) where we report the mean
± std over three sets of 250 prompts.
MTPC-CP increases throughput: it has
a larger acceptance rate (µacc) while la-
tency (µlat) is almost constant in r.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.0251 40.03 1.00

8

1 FF 5.14 ± 0.06 0.0290 ± 0.0002 180.1 ± 2.8 4.50
32 HMM 5.95 ± 0.05 0.0332 ± 0.0001 182.4 ± 0.9 4.56
32 BTree 5.97 ± 0.06 0.0310 ± 0.0004 196.6 ± 3.8 4.91
32 CP 5.84 ± 0.01 0.0297 ± 0.0002 200.9 ± 1.6 5.02

16

1 FF 5.38 ± 0.08 0.0307 ± 0.0004 179.6 ± 3.8 4.49
32 HMM 6.82 ± 0.04 0.0397 ± 0.0001 174.5 ± 0.7 4.36
32 CP 6.10 ± 0.05 0.0322 ± 0.0001 193.4 ± 1.8 4.83
32 BTree 6.71 ± 0.01 0.0337 ± 0.0000 203.5 ± 0.1 5.08

Table 2: More expressive archi-
tectures such as MTPC-BTREE
outperform MTPC-CP in terms
of throughput for n = 8 and n =
16 windows on an L40S GPU. For
this experiment, we trained only
model heads (no LoRAs layers).
The shaded baselines are EvaByte-
STP and the EvaByte-MTP (FF)
models, trained for the same num-
ber of steps as our circuits for a
fair comparison.

the maximum attainable throughput (maxtok/s), i.e., we disable speculative decoding and accept all
tokens. The price paid in throughput for guaranteeing no loss in generation quality is ≈ 90 tok/s for
r = 32. While MTPC-CP performs well for n = 8, the margin for further improving throughput is
small. This is because for n = 8, we can at best achieve µacc = 8, and we have already achieved
µacc = 5.94 and have hit diminishing returns. To obtain substantial boosts in throughput, we need
to extend our model to longer window sizes. Since r = 32 worked best, we keep this fixed for the
remaining experiments.

RQ2: Do we benefit from more expressive circuit architectures for longer sequences?

We now consider more expressive circuits, such as MTPC-HMM and MTPC-BTREE, and show that
they outperform MTPC-CP for longer MTP windows, highlighting the importance of our extension
to general PCs. We fix r = 32 and explore the different PC architectures for both n = 8 and
the longer window, n = 16. Table 2 shows that MTPC-HMM obtains the best µacc in both cases,
however, it strikes an unfavourable balance in the expressiveness–latency trade-off: Due to being
AR, MTPC-HMM has the largest µlat, and yields poor throughput as a result. On the other hand,
MTPC-BTREE almost matches the µacc of MTPC-HMM and has a smaller µlat footprint. Nevertheless,
for n = 8, MTPC-CP still obtains the best µtok/s. However, when we move to n = 16, MTPC-BTREE
substantially increases the gap in µacc from MTPC-CP. This in turn leads to MTPC-BTREE having the
best throughput, with 203.5 tok/s, a speed-up of ×5.08 over EvaByte-STP. While the gains already
obtained by MTPC-BTREE are solid, fine-tuning the output layer alone can only get us so far. This
is because EvaByte has not been trained to produce representations that are good for predicting 16
tokens ahead, as we discuss next.

TAKEAWAY 1: While increasing the mixture components r in CP is initially beneficial, it soon
hits diminishing returns. Increasing the window size of future tokens n and adopting more
expressive PC architectures unlocks further gains in throughput. Furthermore, while HMM
achieves the highest acceptance rates, it incurs high latency. Instead, non-autoregressive
variants such as BTREE strike a better balance and hence should be preferred.

4.4 MTPCS WITH ADAPTERS

RQ3: Can we further increase throughput by adapting the draft LLM using LoRA?

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

n model # LoRA µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 EvaByte-STP 0 — 0.0251 40.03 1.00

8

MTPC-FF

0 5.15 ± 0.04 0.0327 ± 0.0013 163.7 ± 10.5 4.09
1 5.16 ± 0.02 0.0308 ± 0.0003 171.3 ± 1.2 4.28
2 5.14 ± 0.06 0.0336 ± 0.0036 157.2 ± 17.4 3.93
4 5.19 ± 0.03 0.0330 ± 0.0001 160.3 ± 1.4 4.01

MTPC-BTree

0 6.04 ± 0.02 0.0326 ± 0.0027 190.5 ± 14.8 4.76
1 6.15 ± 0.02 0.0344 ± 0.0038 185.1 ± 20.3 4.62
2 6.20 ± 0.05 0.0330 ± 0.0000 193.0 ± 1.4 4.82
4 6.20 ± 0.04 0.0348 ± 0.0001 183.1 ± 1.0 4.57

16

MTPC-FF

0 5.40 ± 0.06 0.0305 ± 0.0001 180.3 ± 2.3 4.50
1 5.53 ± 0.08 0.0311 ± 0.0001 182.3 ± 2.5 4.55
2 5.63 ± 0.07 0.0321 ± 0.0002 179.5 ± 2.0 4.48
4 5.60 ± 0.03 0.0356 ± 0.0034 162.2 ± 14.9 4.05

MTPC-BTree

0 6.86 ± 0.03 0.0340 ± 0.0001 206.1 ± 0.9 5.15
1 7.32 ± 0.03 0.0346 ± 0.0000 218.0 ± 0.6 5.45
2 7.53 ± 0.10 0.0354 ± 0.0001 219.1 ± 3.0 5.47
4 7.58 ± 0.14 0.0373 ± 0.0003 210.2 ± 5.0 5.25

Table 3: Fine-tuning sep-
arate layers in the draft
model with LoRA adapters
can increase the acceptance
rate and speed up BTree
MTPCs for n = 16 and two
LoRA layers by 5.47 over
STP on an L40s GPU. Nev-
ertheless, the increased ac-
ceptance rate comes at in-
creased latency, making fur-
ther throughput boosts via
more LoRA layers unviable
for EvaByte. We shade the
STP baseline in gray and
ablated models trained for
the additional epoch without
LoRA in brown.

We now consider increasing the expressiveness by adding LoRA layers, as shown in Table 3. We
show that while we can improve throughput, we need to be strategic when choosing the number of
layers, as very quickly the latency introduced outweighs the expressiveness gained.

The key here is that we need to balance the expressiveness obtained by adding LoRA layers and the
latency we introduce because the additional layers are not shared between the draft and the verifier.
For example, if we train adapters for the last 16 (out of 32) layers, we can improve the acceptance rate
by 37%, but we introduce a latency of 1.5× the cost of a forward pass of the LLM.8 The FF model
for n = 8 has plateaued, highlighting its limited expressiveness. We highlight that the improvements
of MTPC are consistent across GPUs. While throughput is ≈ ×2 times larger for the server-grade
GPU, the relative speed-ups are similar, see Appendix E. Interestingly, due to the different balance
between the LLM and MTPC latency across GPUs, on the RTX 3090 we hit diminishing returns after
adding a single LoRA layer rather than two on the L40s.

TAKEAWAY 2: Fine-tuning a few layers of the draft model with LoRA increases the accep-
tance rate but also increases latency. The optimal trade-off is device-specific, but adding
LoRAs is always beneficial compared with a fully shared LLM trunk. Retrofitting models to
longer MTP windows yields an even larger increase in throughput when paired with LoRAs.

5 CONCLUSION

Overall, our results show, for the first time, that throughput in MTP LLMs can be increased by 5.47×
w.r.t. AR and 1.22× w.r.t. MTP with independence assumptions, while simultaneously guaranteeing
the retention of an AR LLM’s quality. We achieved this goal by identifying key trade-offs between
acceptance rates and latency within our framework, MTPC. We enhanced the expressiveness of
MTP by getting rid of the independence assumption (Gloeckle et al., 2024; Zheng et al., 2025),
introducing an explicit probabilistic model for inter-token dependencies that facilitates performance
guarantees (Ankner et al., 2024; Li et al., 2024; DeepSeek-AI et al., 2024), and generalising mixture-
based methods (Basharin et al., 2025) into the PC framework. Moreover, we decreased latency by
modulating the number of layers shared between draft and verifier model branches. We showcase the
throughput gains of MTPC LLMs at scale by retrofitting EvaByte (Zheng et al., 2025), a state-of-the-
art 6.5B byte-level LLM into our framework.9 In future work, our framework can be extended by
integrating constraints during generation (Ahmed et al., 2025) or speculative decoding (Nakshatri
et al., 2025) via methods such as Gelato (Zhang et al., 2023) and Ctrl-G (Zhang et al., 2024a). Unlike
those, we would not need to train an auxiliary HMM in MTPCs and we can integrate constraints

8We found that training more than 16 layers of EvaByte does not lead to improvements in acceptance rates.
9More in-depth commentary on related work is available in Appendix I.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

directly into our PC head. Moreover, we can further boost expressiveness by leveraging other PCs
architectures such as subtractive mixtures (Loconte et al., 2024; 2025b) and continuous latent variable
circuits (Gala et al., 2024a;b), while reducing latency through recent advancements in scaling up PCs
(Liu et al., 2024; Zhang et al., 2025).

REPRODUCIBILITY STATEMENT

To ensure reproducibility for our research, we have attached the codebase for implementing all model
variants and running their training and evaluation to our submission. In addition, we have provided
full details on sampling in circuits in Appendix B and on our algorithms for speculative decoding in
Appendix D.

REFERENCES

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and
Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9904–9923, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614. URL
https://aclanthology.org/2023.emnlp-main.614.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic
probabilistic layers for neuro-symbolic learning. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. Controllable generation via locally
constrained resampling. In Proceedings of the 13th International Conference on Learning Repre-
sentations (ICLR), 4 2025. URL https://arxiv.org/pdf/2410.13111.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=FbhjirzvJG.

Artem Basharin, Andrei Chertkov, and Ivan Oseledets. Faster language models with better multi-token
prediction using tensor decomposition. arXiv preprint arXiv:2410.17765, 2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, L. Sifre, and John M.
Jumper. Accelerating large language model decoding with speculative sampling. ArXiv,
abs/2302.01318, 2023.

Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative modeling.
Physical Review B, 99(15):155131, 2019.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic modeling. Technical report, University of California, Los
Angeles (UCLA), 2020.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Rozière. Getting the most out of your tokenizer for
pre-training and domain adaptation, 2024.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50:280–305, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

10

https://aclanthology.org/2023.emnlp-main.614
https://arxiv.org/pdf/2410.13111
https://openreview.net/forum?id=FbhjirzvJG
https://openreview.net/forum?id=FbhjirzvJG

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research (JAIR), 17:229–264, 2002.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.19437.

Gennaro Gala, Cassio de Campos, Robert Peharz, Antonio Vergari, and Erik Quaeghebeur. Proba-
bilistic integral circuits. In AISTATS 2024, 2024a.

Gennaro Gala, Cassio de Campos, Antonio Vergari, and Erik Quaeghebeur. Scaling continuous latent
variable models as probabilistic integral circuits. arXiv preprint arXiv:2406.06494, 2024b.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein. Coercing
LLMs to do and reveal (almost) anything. In ICLR 2024 Workshop on Secure and Trustworthy Large
Language Models, 2024. URL https://openreview.net/forum?id=Y5inHAjMu0.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on matrix
analysis and applications, 31(4):2029–2054, 2010.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan

11

https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=Y5inHAjMu0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Kevin
Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1317–1327, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1139. URL https://aclanthology.
org/D16-1139/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations (ICLR), 2015.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. 2024.

Adrian Łańcucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M Ponti. Inference-time hyper-
scaling with KV cache compression, 2025.

Sander Land and Max Bartolo. Fishing for magikarp: Automatically detecting under-trained tokens
in large language models, 2024.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. In Ellen Riloff, David Chiang, Julia Hocken-
maier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1173–1182, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1149. URL https:
//aclanthology.org/D18-1149/.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/pdf/2411.04905
https://aclanthology.org/D16-1139/
https://aclanthology.org/D16-1139/
https://aclanthology.org/D18-1149/
https://aclanthology.org/D18-1149/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning (ICML), 2022.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A
systems perspective. arXiv preprint arXiv:2406.00766, 2024.

Lorenzo Loconte, M. Sladek Aleksanteri, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas Gillis,
and Antonio Vergari. Subtractive mixture models via squaring: Representation and learning. In
The Twelfth International Conference on Learning Representations (ICLR), 2024.

Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik Quaeghebeur,
Gennaro Vessio, and Antonio Vergari. What is the Relationship between Tensor Factorizations
and Circuits (and How Can We Exploit it)? Transactions on Machine Learning Research, 2025a.
ISSN 2835-8856. Featured Certification.

Lorenzo Loconte, Stefan Mengel, and Antonio Vergari. Sum of Squares Circuits. In The 39th Annual
AAAI Conference on Artificial Intelligence (AAAI), 2025b.

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding overparameter-
ized circuit representations via low-rank tensor decompositions. In 6th Workshop on Tractable
Probabilistic Modeling, 2023.

Benjamin Minixhofer, Ivan Vulić, and Edoardo Maria Ponti. Cross-tokenizer distillation via approxi-
mate likelihood matching, 2025. URL https://arxiv.org/abs/2503.20083.

Nishanth Sridhar Nakshatri, Shamik Roy, Rajarshi Das, Suthee Chaidaroon, Leonid Boytsov, and
Rashmi Gangadharaiah. Constrained decoding with speculative lookaheads. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Ameri-
cas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 4681–4700, Albuquerque, New Mexico, April 2025. Association
for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.239.
URL https://aclanthology.org/2025.naacl-long.239/.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403–6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/
2023.acl-long.353.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo Ponti. Dynamic
memory compression: Retrofitting LLMs for accelerated inference. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
tDRYrAkOB7.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret
Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari
Holtzman, and Srinivasan Iyer. Byte latent transformer: Patches scale better than tokens, 2024.
URL https://arxiv.org/abs/2412.09871.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro M. Domingos. On Theoretical
Properties of Sum-Product Networks. In International Conference on Artificial Intelligence and
Statistics, 2015.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning, pp.
7563–7574. PMLR, 2020a.

14

https://arxiv.org/abs/2503.20083
https://aclanthology.org/2025.naacl-long.239/
https://aclanthology.org/2023.acl-long.353
https://aclanthology.org/2023.acl-long.353
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://arxiv.org/abs/2412.09871

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In 35th Conference on Uncertainty in Artificial Intelligence
(UAI), volume 115 of Proceedings of Machine Learning Research, pp. 334–344. PMLR, 2020b.

Jessica Rumbelow and Matthew Watkins. Solidgoldmagikarp (plus, prompt genera-
tion), 2023. https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation.

Elizabeth Salesky, David Etter, and Matt Post. Robust open-vocabulary translation from visual text
representations. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 7235–7252, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.576. URL https:
//aclanthology.org/2021.emnlp-main.576.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and
Kristian Kersting. Conditional sum-product networks: Imposing structure on deep probabilistic
architectures. In International Conference on Probabilistic Graphical Models, pp. 401–412. PMLR,
2020.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig,
and Kristian Kersting. Conditional sum-product networks: Modular probabilistic circuits via gate
functions. International Journal of Approximate Reasoning, 140:298–313, 2022.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.

Mitchell Stern, Noam M. Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. In Neural Information Processing Systems (NeurIPS), 2018.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=SdYHLTCC5J.

The april Lab. cirkit, October 2024. URL https://github.com/april-tools/cirkit.

Cristiano Varin, Nancy Reid, and David Firth. An overview of composite likelihood methods.
Statistica Sinica, 21, 01 2011.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-product
networks. Machine Learning, 108(4):551–573, 2019a.

Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models:
Representations, algorithms, learning, and applications. Tutorial at the 35th Conference on
Uncertainty in Artificial Intelligence (UAI), 2019b.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information
Processing Systems 34 (NeurIPS), pp. 13189–13201. Curran Associates, Inc., 2021.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush. Mambabyte: Token-
free selective state space model, 2024. URL https://arxiv.org/abs/2401.13660.

Davis Wertheimer, Joshua Rosenkranz, Thomas Parnell, Sahil Suneja, Pavithra Ranganathan, Raghu
Ganti, and Mudhakar Srivatsa. Accelerating production llms with combined token/embedding
speculators, 2024. URL https://arxiv.org/abs/2404.19124.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics ACL 2024, pp. 7655–7671, Bangkok, Thailand and
virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.456. URL https://aclanthology.org/2024.findings-acl.456.

15

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://aclanthology.org/2021.emnlp-main.576
https://aclanthology.org/2021.emnlp-main.576
https://openreview.net/forum?id=SdYHLTCC5J
https://openreview.net/forum?id=SdYHLTCC5J
https://github.com/april-tools/cirkit
https://arxiv.org/abs/2401.13660
https://arxiv.org/abs/2404.19124
https://aclanthology.org/2024.findings-acl.456

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike
Lewis. Megabyte: Predicting million-byte sequences with multiscale transformers. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 78808–78823. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van Den Broeck. Tractable control for
autoregressive language generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
40932–40945. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
zhang23g.html.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng.
Adaptable logical control for large language models. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 115563–115587. Curran Associates, Inc.,
2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf.

Honghua Zhang, Meihua Dang, Benjie Wang, Stefano Ermon, Nanyun Peng, and Guy Van den
Broeck. Scaling probabilistic circuits via monarch matrices. arXiv preprint arXiv:2506.12383,
2025.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft
& verify: Lossless large language model acceleration via self-speculative decoding. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11263–11282, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.607. URL https://aclanthology.org/2024.acl-long.607/.

Lin Zheng, Xueliang Zhao, Guangtao Wang, Chen Wu, David Dong, Angela Wang, Mingran Wang,
Yun Du, Haige Bo, Amol Sharma, Bo Li, Kejie Zhang, Changran Hu, Urmish Thakker, and
Lingpeng Kong. Evabyte: Efficient byte-level language models at scale, 2025. URL https:
//hkunlp.github.io/blog/2025/evabyte.

16

https://proceedings.neurips.cc/paper_files/paper/2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf
https://proceedings.mlr.press/v202/zhang23g.html
https://proceedings.mlr.press/v202/zhang23g.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d15c16cf5619a2b1606da5fc88e3f1a9-Paper-Conference.pdf
https://aclanthology.org/2024.acl-long.607/
https://hkunlp.github.io/blog/2025/evabyte
https://hkunlp.github.io/blog/2025/evabyte

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A NOTATION

We adapt notation and nomenclature from the tensor factorisation (Kolda & Bader, 2009) and circuit
(Loconte et al., 2025a) literature.

We denote ordered sets of random variables with X, Y and Z, and we use [n] to express the set
{1, 2, . . . , n} with n > 0. The domain of a variable X is denoted as dom(X), and we denoted as
dom(X) = dom(X1) × · · · × dom(Xn) the joint domain of variables X = {Xi}ni=1. We denote
scalars with lower-case letters (e.g., a ∈ R), vectors with boldface lower-case letters (e.g., a ∈ RN),
matrices with boldface upper-case letters (excluding those used for variables, e.g., A ∈ RM×N), and
tensors with boldface calligraphic letters (e.g., A ∈ RI1×I2×I3). Moreover, we use subscripts to
denote entries of tensors (e.g., aijk is the (i, j, k)-th entry in A).

B BACKGROUND ON CIRCUITS

Circuits have a long history in theoretical computer science (Shpilka & Yehudayoff, 2010) and
probabilistic reasoning (Darwiche, 2003; 2009). In their more modern definition and application
to machine learning (Vergari et al., 2019b; Choi et al., 2020), circuits are introduced as structured
computational graphs, simplified neural networks where one is allowed to use units from a restricted
set of neurons (sum, product and input units) and whose connections need to abide certain structural
properties to guarantee tractability (Choi et al., 2020; Vergari et al., 2021), as discussed next.

B.1 STRUCTURAL PROPERTIES

Tractability is to be intended as the ability to exactly compute a given function (operation) over the
circuit in time that is polynomial in its size, denoted as |c| for a circuit c, and representing the number
of edges between the computational units. For example, a circuit c can exactly integrate any subset of
variables in time O(|c|) if (i) its input functions can be integrated efficiently and (ii) it is smooth and
decomposable (Darwiche & Marquis, 2002; Choi et al., 2020).

Definition 1 (Smoothness and decomposability (Darwiche & Marquis, 2002; Choi et al., 2020)).
A circuit is smooth if for every sum unit n, all its input units depend on the same variables, i.e.,
∀i, j ∈ in(n) : sc(i) = sc(j). A circuit is decomposable if the distinct inputs of every product unit n
depend on disjoint sets of variables, i.e., ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.

Note that all the PC architectures we have discussed in this paper, FF, CP, HMM and BTree, are
smooth and decomposable circuits. The reader is encouraged to check this by themselves for the
architectures in Fig. 2.

Exactly integrating variables out is relevant to compute marginals such as the normalisation constant
of the distribution encoded by the circuit (Eq. (3)). Note that in our implementation, circuits are
normalised by design (Peharz et al., 2015), as we assume that input distributions are normalised
categoricals and all sum units form a convex combination as their weights are parameterised with a
softmax function (see Section 3.3).

More importantly for our MTPCs, we can draw samples efficiently from the distribution of a circuit
that is both smooth and decomposable, as we discuss in the next sub-section.

B.2 SAMPLING A CIRCUIT

A smooth and decomposable PC can use ancestral sampling to generate a complete sample for all
n tokens in a window. In a nutshell, we can iteratively sample each latent variable in the hierarchy
encoded by the PC, and then sample the selected input distributions, in the same way one sample one
(hierarchical) mixture model by first sampling one component and then drawing a sample from that
component.

Operationally, Algorithm 1 details the procedure. We have to sample one input branch for each sum
unit we encounter when performing a backward traversal of the circuit computational graph (from
the circuit output back to the input distributions). Such a branch is sampled proportionally to the sum
unit weights ωj , which encode the mixture components (or equivalently the transition probabilities in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 SAMPLE(c)

Input: A smooth, decomposable and normalised PC c encoding a joint distribution q over the next n
tokens X = {X1, . . . , Xn} Output: a sample x ∼ q(X).

1: x← zeroes(n) ▷ init empty sample
2: cn ← output(c)
3: N ← queue({cn}) ▷ traverse the computational graph from outputs to inputs
4: while N not empty do
5: cn ← pop(N)
6: if cn =

∑r
j=1 ωjcj then ▷ cn is a sum unit

7: k ← sampleCategorical(ω1, . . . , ωr) ▷ sample from a categorical with r states
8: N ← push(N , ck)

9: else if cn =
∏d

j=1 cj then ▷ cn is a product unit with d inputs
10: for k = 1 . . . d do
11: N ← push(N , ck) ▷ visit all inputs of cn
12: else if cn is an input unit over variable Xi and parameters ϕi then
13: xi ← sampleCategorical(ϕi) ▷ sample from a categorical with v = |V| states
14: return x

an HMM). Then, when we traverse a product unit, we follow all its input branches. When we reach
an input unit, we sample a token proportionally to the parameters ϕij of the categorical distributions
encoded in the unit.

If the circuit is smooth and decomposable, by this process we are guaranteed to end up in a set of
input units whose scope is the full set of tokens X and in which only one input unit is selected per
token position i (line 13 of Algorithm 1). This procedure can be tensorized as to efficiently generate
a batch of samples in a single pass over the computational graph of the circuit (Vergari et al., 2019a;
Peharz et al., 2020b;a; Loconte et al., 2025a; Liu et al., 2024).

Lastly, we remark that this routine is potentially computationally more efficient than the one imple-
mented in Basharin et al. (2025), as the latter is based on autoregressive inverse transform sampling
(see Loconte et al. (2024) for a discussion) and requires sampling one token at a time.

C EVABYTE DETAILS

Model BBH GSM8k IFEval MATH MMLU HumanEval∗ TruthQA
Gemma-2-9B-it 20.0 79.7 69.9 29.8 69.1 71.7 61.4
Ministral-8B-Instruct 56.2 80.0 56.4 40.0 68.5 91.0 55.5
Qwen-2.5-7B-Instruct 25.3 83.8 74.7 69.9 76.6 93.1 63.1
Llama-3.1-8B-Instruct 69.7 83.4 80.6 42.5 71.3 86.3 55.1
Tülu 3 8B 66.0 87.6 82.4 43.7 68.2 83.9 55.0
OLMo-7B-Instruct 35.3 14.3 32.2 2.1 46.3 28.7† 44.5
OLMo-v1.7-7B-Instruct 34.4 23.2 39.2 5.2 48.9 49.7† 55.2
OLMoE-1B-7B-0924-Instruct 37.2 47.2 46.2 8.4 51.6 54.8 49.1
MAP-Neo-7B-Instruct 26.4 69.4 35.9 31.5 56.5 72.1† 51.6
OLMo-2-7B-SFT 50.7 71.2 68.0 25.1 62.0 67.0† 47.8
OLMo-2-7B-1124-Instruct 48.5 85.2 75.6 31.3 63.9 67.6† 56.3

EvaByte-SFT 34.6 52.9 60.2 29.8 49.5 73.7 46.3

Table 4: Downstream benchmark performance of EvaByte-SFT, table taken verbatim from Zheng
et al. (2025). Entries with † were computed by the EvaByte authors. All numbers were computed
with Medusa-style tree-based greedy decoding using the multi-token head, apart from HumanEval∗,
which used typical sampling. The authors of EvaByte followed Tulu 3, and evaluated the Pass@10
rate for HumanEval with 20 samples at temperature 0.8.

In Table 4 we provide a copy of the benchmark results of fine-tuned version of EvaByte, EvaByte-SFT,
which we retrofit in the paper. The model card can be found at https://huggingface.co/

18

https://huggingface.co/EvaByte/EvaByte-SFT
https://huggingface.co/EvaByte/EvaByte-SFT
https://huggingface.co/EvaByte/EvaByte-SFT

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

EvaByte/EvaByte-SFT, see also Zheng et al. (2025) for more details. The numbers in the
table above were produced by Medusa-style Cai et al. (2024) tree-based typical decoding. For all
benchmarks apart from HumanEval, the results were produced via greedy decoding, i.e., similar
to (Stern et al., 2018) with the exception of producing the last “free” token. As such, the produced
tokens are equivalent to what EvaByte-STP would produce, and the authors found that the metrics
were the same with EvaByte-STP up to some small rounding errors. For HumanEval the authors used
tree-based typical decoding, which in this case does not maintain the quality of the EvaByte-STP
model. The details above were shared with us by Lin Zheng, the author of EvaByte.

D SPECULATIVE DECODING

We give pseudocode for our self-speculative decoding algorithm below. The algorithm accepts
between 0 and n tokens, but always generates between 1 and n tokens, where n is the MTP window
size. The algorithm is very similar to vanilla speculative decoding (Leviathan et al., 2022), but
our algorithm includes a modification that reduces latency for the self-speculative scenario, and
for this it needs to sacrifice the last “free” token typically obtained from the verifier. The gain
in latency is possible because we can evaluate the shared LLM once per draft/verify cycle, while
a naive implementation of Leviathan et al. (2022) for self-speculative decoding would need two,
approximately halving the possible throughput.

In our self-speculative setup, the verifier and draft LLMs share some layers of the backbone. Impor-
tantly, the verifier is always computing LLM states ahead of the draft. As such, we can get away
with a single forward pass through the shared LLM, similar to Medusa (Cai et al., 2024), by re-using
the LLM backbone state computed by the verifier for the draft model. For this to work, we cannot
accept a “last sample for free” from the verifier (lines 23-30) Algorithm 3), as we would not have the
backbone state for this new token and it is not worth paying an extra LLM evaluation for it. Therefore,
in our algorithm we only sample the “free” token from the verifier in the rare case that no tokens
are accepted. This is necessary because the model can get caught in successive no-accept states in
the sampling case, or get stuck in an infinite loop if we used greedy decoding. If any tokens were
accepted, we use the last state of the shared backbone computed during the verify phase to seed the
draft phase. In what follows, if we have no LoRA layers, the algorithm is modified to have a single
component: the shared encoder.

19

https://huggingface.co/EvaByte/EvaByte-SFT
https://huggingface.co/EvaByte/EvaByte-SFT
https://huggingface.co/EvaByte/EvaByte-SFT
https://huggingface.co/EvaByte/EvaByte-SFT

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 SHAREDSTATESELFSPECULATIVEDECODING

Architecture Components:
Three components: Shared Encoder (S), Verifier (V), Draft (D)
Each with their own KV-cache

Given: A prompt of length L
Initialisation:
Prefill V to L− 1, and D and S to L
Set S and D state

Switch to draft/verify cycle:
while true do

Draft stage:
if S state is not set then

Compute S by conditioning on the additional token
Use S state to compute D state
Parameterize MTPC with D state
Draft n tokens

Verify stage:
Compute S state on n+ 1 tokens (draft + predecessor)
Compute V state using S state
Obtain up to n+ 1 tokens from speculative decoding
if 0 tokens accepted then

Keep “free” token sampled from last valid logits
Unset S state (stale)

else
Accept n tokens (drop “free” token)
Set S state (hidden state for last accepted token)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 SELFSPECULATIVEDECODING(x≤t, f, h, c, g)

Input: A prefix x≤t of length t, an LLM backbone f : V∗ → Rd, an LLM head h : Rd → Θ
parameterising a PC c encoding a joint distribution q over the next n tokens, and an LLM head
g : Rd → ∆v computing the next token probabilities.
Output: A sentence (x≤t || xt+1:t+s) ∈ Vt+s where 1 ≤ s ≤ n + 1. Moreover, we have that
xt+1:t+s ∼ p(xt+1, . . . , xt+s | x≤t) as equivalently encoded by the autoregressive single token
prediction model consisting of f and g only (Leviathan et al., 2022).

1: et ← f(x≤t) ▷ Compute the last embedding
2: θ ← h(et) ▷ Compute the circuit parameters
3:
4: Let q(Xt+1:t+n | x≤t) =

1
Zθ

c(Xt+1:t+n | θ)
5: xt+1:t+n ∼ q(Xt+1:t+n | x≤t) ▷ Sample n tokens from c in time O(|c|)
6: x← x≤t || xt+1:t+n ▷ Concatenate the prefix with the n tokens
7:
8: Compute in parallel for 1 ≤ i ≤ n: ▷ Compute marginals in time O(|c|)
9: q(xt+1:t+i | x≤t) =

∑
xt+i+1,...,xt+n∈V q(xt+1:t+n | x≤t)

10:
11: Compute in parallel for 1 ≤ i ≤ n+ 1: ▷ Compute target model conditionals
12: p(Xt+i | x≤t+i−1) = g(et+i−1), where et+i−1 = f(x≤t+i−1)
13:
14: s← 0 ▷ Determine the number of accepted tokens s, 0 ≤ s ≤ n
15: while s < n do
16: α ∼ U(0, 1)
17: if s > 0 then
18: q(xt+s+1 | x≤t+s)← q(xt+1:t+s+1 | x≤t)/q(xt+1:t+s | x≤t)

19: if α > p(xt+s+1 | xt+s)/q(xt+s+1 | xt+s) then
20: exit loop
21: s← s+ 1
22:
23: ▷ Sample one last token from the autoregressive LLM model
24: if s < n then ▷ Adjust the distribution first, if we accept fewer tokens
25: Let s(Xt+s+1) = q(Xt+s+1 | x≤t+s)
26: Let m(Xt+s+1) = max (0, p(Xt+s+1 | x≤t+s)− s(Xt+s+1))
27: r(Xt+s+1 | xt+s) = m(Xt+s+1)/Z, with Z =

∑
x′∈V m(x′)

28: xt+s+1 ∼ r(Xt+s+1 | x≤t+s)
29: else
30: xt+s+1 ∼ p(Xt+s+1 | x≤t+s)

31: return x≤t+s || xt+s+1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS ON AN RTX 3090

circuit r µacc ↑ µlat ↓ µtok/s ↑ maxtok/s

FF 1 5.12 ± 0.03 0.0519 ± 0.0003 101.2 ± 0.1 167.69

CP

8 5.65 ± 0.03 0.0545 ± 0.0003 106.3 ± 0.4 161.49
16 5.78 ± 0.06 0.0530 ± 0.0002 112.2 ± 1.0 159.22
32 5.84 ± 0.04 0.0532 ± 0.0004 113.1 ± 0.5 158.55
64 5.88 ± 0.03 0.0532 ± 0.0001 113.8 ± 0.8 155.04

128 5.94 ± 0.03 0.0533 ± 0.0001 114.8 ± 0.4 153.24

Table 5: Increasing the mixture com-
ponents (r) increases the throughput
(µtok/s) as seen for MTPC-CP (n = 8)
over our baseline on an RTX 3090,
EvaByte-MTP (FF) (in gray) where
we report the mean ± std over three
sets of 250 prompts. MTPC-CP in-
creases throughput as it has a larger ac-
ceptance rate (µacc) and a latency (µlat)
that is constant in r.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.047 21.4 1.00

8

1 FF 5.12 ± 0.03 0.0519 ± 0.0003 101.2 ± 0.1 × 4.73
32 HMM 5.97 ± 0.05 0.0594 ± 0.0001 103.3 ± 1.0 × 4.83
32 BTREE 5.94 ± 0.02 0.0546 ± 0.0005 111.9 ± 1.1 × 5.23
32 CP 5.84 ± 0.04 0.0532 ± 0.0004 113.1 ± 0.5 × 5.29

16

1 FF 5.38 ± 0.03 0.0530 ± 0.0003 104.3 ± 1.2 × 4.87
32 HMM 6.81 ± 0.07 0.0701 ± 0.0002 99.7 ± 0.8 × 4.66
32 CP 6.13 ± 0.03 0.0547 ± 0.0003 115.4 ± 1.3 × 5.39
32 BTREE 6.67 ± 0.07 0.0578 ± 0.0005 118.9 ± 2.5 × 5.56

Table 6: More expressive archi-
tectures such as MTPC-BTREE
outperform MTPC-CP on longer
windows in terms of throughput
for n = 8 and n = 16 for no
LoRA models on an RTX 3090
GPU. We shade the baselines in
gray, these are EvaByte-STP and
the fully factorised (FF) models
trained for the same steps as our
circuits.

n model # LoRA µacc ↑ µlat ↓ µtok/s ↑ speed-up↑

1 STP 0 — 0.047 21.40 1.00
8 FF 0 5.11 0.0538 97.2 4.54
8 FF 1 5.09 0.0564 92.6 4.33
8 FF 2 5.11 0.0567 92.6 4.33
8 FF 4 5.11 0.0601 87.1 4.07
8 BTREE 0 6.08 0.0568 110.0 5.14
8 BTREE 1 6.15 0.0581 109.4 5.11
8 BTREE 2 6.17 0.0604 105.7 4.94
8 BTREE 4 6.18 0.0625 102.3 4.78

16 FF 0 5.48 0.0546 102.8 4.81
16 FF 1 5.55 0.0559 102.1 4.77
16 FF 2 5.51 0.0584 97.2 4.54
16 FF 4 5.63 0.0613 94.5 4.42
16 BTREE 0 6.92 0.0587 121.4 5.67
16 BTREE 1 7.26 0.0617 122.0 5.70
16 BTREE 2 7.30 0.0627 120.9 5.65
16 BTREE 4 7.47 0.0669 116.2 5.43

Table 7: Fine-tuning separate layers in the draft model with LoRA can increase the acceptance
rate and speed up BTree MTPCs for n = 16 and one LoRA layer by 5.70 over STP on an RTX
3090 GPU. Nevertheless, the increased acceptance rate comes at increased latency, making further
throughput boosts via more LoRA layers unviable for EvaByte. We shade the STP baseline in gray
and ablated models trained for the additional epoch without LoRA in brown. Interestingly, for the
L40S in Table 3, we still got improvements with two LoRA layers, which highlights the importance
of carrying out such an analysis across devices.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Most Successful HMM Configuration

Parameterisation Transition Type Initialisation
Contextual Non-Contextual Homogeneous Inhomogeneous Identity Init. Uniform Init.

✓ ✗ ✗ ✓ ✓ ✗

F HIDDEN MARKOV MODELS SETUP

In our experiments we use contextual, inhomogeneous hidden Markov models (HMMs) with
identity initialisation (see Table 8). We chose the above after preliminary experiments where we
assessed the following configuration choices for training our HMMs.

Parameterisation We can parameterise HMMs to either be contextual, i.e. we can make the transition
probabilities depend on the input, or we can make the transition probabilities be independent of the
input (non-contextual).

Transition Type The transition matrix can be the same at each time step (homogeneous) or it can
be different (inhomogeneous). The former would correspond to additional parameter sharing across
sum layers in the circuit representation. We note that inhomogeneous HMMs subsume homogeneous
HMMs. This is because inhomogeneous HMMs could in theory learn parameters that do not vary
from timestep to timestep, thus becoming equivalent to a homogeneous HMM.

Initialisation A crucial setup is to initialise the HMM with transition matrices that are identity
matrices, which make the HMM equivalent to CP at the beginning of training. We achieve this by
adding a bias term to allow the HMM model to be initialised to identity matrices. This setting in
combination with extending to larger token windows, i.e. n = 16 lead to a scenario where HMMs
outperform CP. The other alternative is to initialise the transition matrices uniformly at random
(before softmax), but this complicates learning and yields performance that is lower than CP models.

G FURTHER EXPERIMENTAL DETAILS

To make the comparison between methods fair, we: a) constrained the models to not produce end-
of-sequence symbols during generation, as the latency of retrieving KV cache items from memory
increases with sequence length (Nawrot et al., 2024) and b) we filtered the validation set of the models
to only include examples with both prompts and responses in English, as acceptance rates may vary
dramatically based on the language chosen for the response.

We compute throughput by generating answers to 250 prompts and report the mean and std of 3 runs
with different prompts.

H ALTERNATIVE LOSSES

In early versions of this work we also experimented using a Kullback-Leibler divergence (KL) loss as
recommended by Basharin et al. (2025). However, we found that training with the KL loss doubled
the training time while requiring a lot more memory, and the benefits in acceptance rate did not
outweigh the additional complexity. For completeness we include the loss below. KL Loss L

L =

n∑
j=1

Ljγ
j−1, Lj =

N∑
i=1

L∑
t=1

fKL

(
pθ(x

(i)
t+j | x

(i)
<t+j)

∥∥∥ qθ′(x
(i)
t+j | x

(i)
<t+j)

)
Nvalid(i, j)

(5)

In the above we condition both the draft model, qθ′ , and the target model, pθ, on the gold data. The
above is equivalent to the KL term from the word-level distillation loss in (Kim & Rush, 2016).10

10While performing sequence-level distillation, i.e., conditioning on data sampled from the teacher model
may improve distillation (Kim & Rush, 2016), we did not explore this.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I FURTHER RELATED WORK

MTP for byte-level LLMs Gloeckle et al. (2024) and Zheng et al. (2025) both pretrain byte-level
LLMs which predict n = 8 future bytes. This window size was found to be optimal for downstream
performance in Gloeckle et al. (2024). Both make conditional independence assumptions, but the
approaches are architecturally different. Gloeckle et al. (2024) uses a transformer head per token
to provide different feature vectors to each head and uses a shared unembedding matrix. On the
other hand, Zheng et al. (2025) uses a shared feature vector across heads with different unembedding
matrices per token.11 However, they only focus on greedy self-speculative decoding, while in our
work, we also explore speculative sampling.

Speculative Decoding with MTP drafts Previous MTP work either ignores speculative sampling
and only focuses on greedy self-speculative decoding (Gloeckle et al., 2024), or abandons guarantees
altogether (possibly at the expense of quality): specifically, Cai et al. (2024) and Zheng et al. (2025)
use a tree decoding mechanism to consider multiple candidates at each speculative decoding step.
Since their approach may accept multiple continuations but only generate the longest accepted one,
they bias the distribution and break the guarantees. Wang et al. (2024) use a subword-level draft model
to speed up their byte-level STP model via speculative decoding. Most prior work has introduced
sequential dependencies in the draft model through architecture modifications. Hydra (Ankner et al.,
2024) modifies the Medusa heads such that the predicted probabilities are also a function of the input
embeddings of predicted draft tokens. Eagle (Li et al., 2024) introduces sequential dependencies by
autoregressively predicting future feature representations. While these works relax the independence
assumption, they have no explicit probabilistic model for the dependencies introduced.

An exception is Basharin et al. (2025), who study the effect of relaxing the conditional independence
assumption by using a CP factorisation. While they obtain some first promising results, showing that
increasing the rank can increase the acceptance rate of tokens for speculative decoding, they focus
on subword-level models which have very large vocabulary sizes (e.g. v ≥ 100k). This makes CP
very expensive, both in terms of the number of parameters needed, and the GPU memory required.
Moreover, they evaluate their models on unrealistic scenarios, i.e. datasets used for pre-training
LLMs rather than instruction fine-tuning. Finally, despite the fact that a lot of previous work exists on
MTP for subword-level LLMs, they use different models from those widely used for benchmarking
speculative decoding methods, despite the existence of a benchmark, Spec-Bench (Xia et al., 2024)
and common models (e.g. Vicuna). In our case, since there is a limited amount of work on MTP for
byte-level LLMs (Gloeckle et al., 2024; Zheng et al., 2025), we directly compare with the results of
the EvaByte model.

There has been increasing interest in multi-token prediction not only for generation speed-up, but
also for improved model performance on tasks due to the lookahead offered by MTP. For exam-
ple, DeepSeek-AI et al. (2024, Table 4) show that MTP for a token window of 2 tokens leads to
improvements in benchmark metrics even when MTP is not used at inference time. Furthermore, they
report an increase in the throughput of the model by ×1.8 when using speculative decoding.

Token granularity In MTP a token can vary in granularity from bytes (Zheng et al., 2025) to subword
tokens provided by tokenisers (Basharin et al., 2025).

In addition to the choice of token granularity, there are generally 3 axes related works differ on:

• Training from scratch vs distilling an existing STP model into a MTP model

• Neural network architectures for the token heads (e.g. Linear, MLP, Transformer)

• Probabilistic modelling assumptions (conditional independence vs more expressive models)

I.1 DIFFERENCES IN SCENARIO

Training from Scratch Evabyte (Zheng et al., 2025) train a MTP byte-level model from scratch
using n = 8.

11It is worth noting that Gloeckle et al. (2024) also do an ablation in the appendix and find that linear heads
were competitive.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Retrofitting STP to MTP Some works explore both training from scratch and retrofitting an STP
model into an MTP one (Cai et al., 2024; Basharin et al., 2025). In our work, we focus on the second
setting.

I.2 DIFFERENCES IN ARCHITECTURES

Linear Heads Basharin et al. (2025) use a linear parameterisation for each token head in their
distillation experiments.

MLP Heads Cai et al. (2024) use a MLP with a single hidden layer for each output token head.
Ankner et al. (2024) extend this to multiple layers of MLPs per output token. Gloeckle et al. (2024)
make the heads context-aware by including a transformer head in each token head.

Autoregressive Head While the main point of having future token heads is to avoid the expensive
autoregression of the target model, current state of the art speculative decoding models rely on “cheap”
autoregression. Eagle (Li et al., 2024), which is the best performing on the speculative decoding
benchmark, Spec-bench (Xia et al., 2024), fits an autoregressive model to predict future feature
vectors of the model (i.e. the inputs to the softmax layer). A similar architecture was also used for
the DeepSeekV3 model (DeepSeek-AI et al., 2024).

MLP Heads Cai et al. (2024) propose the Medusa model which uses a MLP with a residual connection
for each token head. While in theory they could use many MLP layers, they choose to use MLPs
with single hidden layer. Ankner et al. (2024) explore using deeper MLPs for each token head.

Transformer Heads Gloeckle et al. (2024) use a shared unembedding matrix and use a separate
transformer for each token head. More precisely, in order to predict the token at offset s, i.e. xt+s,
they compute softmax (Wzs), where zs is produced by a separate transformer head for each s, i.e.
zs = Hs(x≤t).

Sharing the Unembedding layer. While the decoding of Zheng et al. (2025) is based on Medusa,
instead of using a MLP for each token head, they use a different unembedding matrix per token head.12

This modelling choice is possible due to the small vocabulary size of byte-level models, i.e. |V| = 320.
In their training from scratch scenario, Basharin et al. (2025) use different unembedding layers W(s)

a

in order to predict xt+s for the mixture component with index a. As such, they parameterise s× |a|
unembedding matrices. This seems non-ideal, since the last layer in LLMs can have a large number
of parameters, i.e. (V × d). In their distillation scenario they use a shared unembedding matrix.

J LLAMA MODEL RESULTS

Llama3.2 3B We also retrofit a Llama3.2 3B model (Grattafiori et al., 2024) to show that our results
generalise and are useful for popular models and models of smaller size. Since we focus on byte-level
LLMs, we retrofit the byte-level version that has been distilled from the original in (Minixhofer et al.,
2025) while retaining most of Llama’s downstream performance.13 The byte-fied Llama3.2 3B model
was fine-tuned on Tülu 3 with a context length of 2048.

Below we corroborate our EvaByte findings for RQ1 and RQ2 by showing that our results for the
byte-fied version of Llama 3.2 3B lead to the same conclusions: i) increasing the number of mixture
coefficients increases the acceptance rate and therefore the throughput, and ii) more expressive
circuits like MTPC-BTREE further improve throughput over MTPC-CP. As with our main EvaByte
results, we use n = 8 and do not use LoRA layers. We run all speculative decoding experiments on
an NVIDIA L40s GPU.

RQ1: Can we increase throughput by increasing the number of mixture components?
As can be seen in Table 9, similarly to our EvaByte results, increasing the rank leads to increased
acceptance rates and throughput for Llama3.2.

RQ2: Do we benefit from more expressive circuit architectures (for longer sequences)?

12https://github.com/OpenEvaByte/evabyte/blob/98d5f48d32197b803e7560a798da35c7a4bdcf4d/
evabyte_hf/modeling_evabyte.py#L753

13https://huggingface.co/benjamin/Llama3-2-3B-IT-Byte

25

https://github.com/OpenEvaByte/evabyte/blob/98d5f48d32197b803e7560a798da35c7a4bdcf4d/evabyte_hf/modeling_evabyte.py#L753
https://github.com/OpenEvaByte/evabyte/blob/98d5f48d32197b803e7560a798da35c7a4bdcf4d/evabyte_hf/modeling_evabyte.py#L753
https://huggingface.co/benjamin/Llama3-2-3B-IT-Byte

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

As can be seen in Table 10, for the Llama model we get the best performance using MTPC-BTREE
even for n = 8, while for EvaByte, MTPC-CP had superior throughput. Although we get smaller
relative speed-ups over STP (2.07×) when compared to EvaByte, we still get substantial boosts in
throughput by relaxing the independence assumptions, with MTPC-CP increasing throughput by
1.14× and MTPC-BTREE by 1.23× over MTPC-FF. We note that EvaByte has been pretrained with
an MTP head, so it is reasonable that it is hard to match its throughput while keeping the Llama
encoder frozen (no-lora). We also note that for the Llama model the generation quality of the STP
model degrades after 500 tokens or so when using ancestral sampling. We believe this is why the
greedy decoding results in Tables 11 and 12 are even better compared to the sampling results.

J.1 SPECULATIVE SAMPLING

model r µacc ↑ µlat ↓ µtok/s ↑

FF 1 1.73 ± 0.02 0.0516 ± 0.0006 36.1 ± 0.6

CP
8 1.92 ± 0.07 0.0529 ± 0.0018 39.3 ± 0.5

16 1.98 ± 0.02 0.0550 ± 0.0011 38.9 ± 0.8

32 2.08 ± 0.04 0.0543 ± 0.0012 41.1 ± 0.7

Table 9: Speculative sampling results while varying the CP rank for the byte-fied version of Llama
3.2 3B. As can be seen, increasing r steadily increases the acceptance rate and the best throughput is
obtained for r = 32.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.049 21.5 1.00

8
1 FF 1.73 ± 0.02 0.0516 ± 0.0006 36.1 ± 0.6 1.68

32 CP 2.08 ± 0.04 0.0543 ± 0.0012 41.1 ± 0.7 1.92
32 BTree 2.26 ± 0.02 0.0549 ± 0.0013 44.3 ± 1.2 2.07

Table 10: Speculative sampling results with r = 32 for the byte-fied version of Llama 3.2 3B. As can
be seen, MTPC-BTREE outperforms all other models in throughput, supporting our EvaByte results.

J.2 GREEDY SPECULATIVE DECODING

model r µacc ↑ µlat ↓ µtok/s ↑

FF 1 2.70 ± 0.01 0.0463 ± 0.0018 59.8 ± 2.5

CP
8 3.25 ± 0.02 0.0490 ± 0.0022 69.4 ± 3.2

16 3.42 ± 0.04 0.0502 ± 0.0018 71.3 ± 2.4

32 3.47 ± 0.06 0.0507 ± 0.0015 71.9 ± 3.0

Table 11: Greedy speculative decoding results while varying the CP rank for the byte-fied version of
Llama 3.2 3B.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.049 21.5 1.00

8
1 FF 2.70 ± 0.01 0.0463 ± 0.0018 59.8 ± 2.5 2.79

32 CP 3.47 ± 0.06 0.0507 ± 0.0015 71.9 ± 3.0 3.35
32 BTree 3.72 ± 0.09 0.0507 ± 0.0017 76.8 ± 4.1 3.58

Table 12: Greedy speculative decoding results with r = 32 for the byte-fied version of Llama 3.2 3B.

26

	Introduction
	Speeding up Generation with MTP and Speculative Decoding
	Probabilistic Circuits for Multi-Token Prediction
	Probabilistic Circuits
	PC Architectures for MTP
	Parameterising PCs with LLMs
	Speculative Decoding with MtPC

	MtPCs in Action: Retrofitting a Byte-Level llm
	Training
	Metrics
	MtPCs without Adapters
	MtPCs with Adapters

	Conclusion
	Notation
	Background on circuits
	Structural properties
	Sampling a circuit

	EvaByte Details
	Speculative Decoding
	Additional Results on an RTX 3090
	Hidden Markov Models Setup
	Further Experimental Details
	Alternative Losses
	Further Related Work
	Differences in Scenario
	Differences in Architectures

	Llama Model Results
	Speculative Sampling
	Greedy Speculative Decoding

