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ABSTRACT

Multi-token prediction (MTP) is a prominent strategy to significantly speed up
generation in large language models (LLMs), including byte-level LLMs, which
are tokeniser-free but prohibitively slow. However, existing MTP methods often
sacrifice expressiveness by assuming independence between future tokens. In this
work, we investigate the trade-off between expressiveness and latency in MTP
within the framework of probabilistic circuits (PCs). Our framework, named MTPC,
allows one to explore different ways to encode the joint distributions over future
tokens by selecting different circuit architectures, generalising classical models
such as (hierarchical) mixture models, hidden Markov models and tensor networks.
We show the efficacy of MTPC by retrofitting existing byte-level LLMs, such as
EvaByte. Our experiments show that, when combined with speculative decoding,
MTPC significantly speeds up generation compared to MTP with independence
assumptions, while guaranteeing to retain the performance of the original verifier
LLM. We also rigorously study the optimal trade-off between expressiveness and
latency when exploring the possible parameterisations of MTPC, such as PC
architectures and partial layer sharing between the verifier and draft LLMs.

1 INTRODUCTION

Autoregressive (AR) large language models (LLMs) can only perform single-token prediction (STP)
as they generate one token at a time, incurring significantly high latency, energy demand, and
deployment costs. This affects not only subword models, but even more so the byte-level ones (Yu
et al., 2023; Wang et al., 2024, inter alia). Among possible alternatives to speed up generation
(Ankner et al., 2024; DeepSeek-AI et al., 2024; Nawrot et al., 2023; Pagnoni et al., 2024; Łańcucki
et al., 2025), multi-token prediction (MTP) stands out as it promises to predict a window of multiple
tokens all at once, may they be subwords (Gloeckle et al., 2024; Cai et al., 2024) or bytes (Gloeckle
et al., 2024; Zheng et al., 2025). As such, MTP LLMs can achieve a significantly higher throughput
than STP ones, as they decrease the number of forward passes required through the LLM.

Nevertheless, modelling the joint distribution over all future tokens in a window is challenging,
as it requires balancing expressiveness, i.e., representing all the dependencies between tokens,
and efficiency, i.e., minimising latency. Existing MTP approaches favour the latter by making an
unrealistic assumption: namely, considering all future tokens to be independent (Zheng et al., 2025;
Cai et al., 2024; Gloeckle et al., 2024). This clearly comes at the expense of expressiveness (Ankner
et al., 2024; Wertheimer et al., 2024), as the choice of a token for a position within the window cannot
influence the probability of the others.

For example, consider the prompt: “Name a capital of South Africa”, where Cape Town and Pretoria
are equally likely completions. A byte-level MTP model with independence assumptions over an
8-token window could return Cretoria as an argmax, because replacing P with C cannot change the
probability of other tokens. More concerningly, an exponential number of “byte-salad” continuations,
such as Crptoria, Crpt ria and Crpt roa, are then also equally likely, despite having almost zero
probability under the STP model. Recently, Basharin et al. (2025) introduced dependencies into MTP
with a mixture over the future token probabilities. However, a single mixture can only add limited
expressiveness. Crucially, understanding how to increase expressiveness while optimally trading off
efficiency in a systematic way is still an open question.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

5.5 6.0 6.5 7.0 7.5

Accepted tokens 

0.030

0.032

0.034

0.036

0.038

0.040

 L
at

en
cy

 (m
s)

FF 8

HMM 8

BTree 8

CP 8

BTree 8

FF 8

FF 16

HMM 16

CP 16

BTree 16

BTree 16

FF 16

Model
FF
HMM
BTree
CP
LoRA Layers
0
1
2

Figure 1: MTPC allows for exploring the
trade-off between efficiency (latency) and ex-
pressiveness (token acceptance) with different
MTP designs in terms of 1) choice of PC ar-
chitecture (FF, CP, HMM, BTree); 2) choice of
layers shared between draft and verifier models
in self-speculative decoding. Dotted lines indi-
cate iso-throughput (tokens generated per sec-
ond) regions, highlighting configurations such as
BTree for n = 16 tokens and 2 LoRA layers that
achieve the best throughput.

In this paper, we fill this gap by proposing an MTP framework based on probabilistic circuits (PCs;
Choi et al., 2020; Vergari et al., 2021), which we name MTPC. MTPC uses PCs to parameterise the
joint distribution over future tokens into tractable computational graphs that can encode hierarchical
mixture models. As such, MTPC offers a way to systematically navigate the spectrum of MTP archi-
tectural variants, encompassing fully factorised models (Zheng et al., 2025; Cai et al., 2024; Gloeckle
et al., 2024) and shallow mixtures (Basharin et al., 2025) but also more expressive parameterisations:
hidden Markov models (HMMs) and binary tree factorisations (BTrees) which are novel for MTP.

Moreover, in contrast to previous work on MTP (Zheng et al., 2025; Cai et al., 2024), MTPC
guarantees we match the quality of an AR LLM via speculative decoding (Leviathan et al., 2022;
Chen et al., 2023; Stern et al., 2018; Xia et al., 2024)—exactly for greedy decoding or in expectation
for sampling—showing that the throughput sacrificed for the guarantee is not as large as alluded to
previously. We do so by sharing the LLM backbone for the draft and verifier models for different
numbers of layers, highlighting how this creates a second dimension to trade-off expressiveness (as
hidden representations between draft and verifier can diverge) and latency (as each non-shared layer
requires separate forward passes). We illustrate the two trade-offs at the core of MTPC in Fig. 1.

In summary, we make the following contributions: C1) we introduce MTPC, a fast MTP framework
based on PCs that overcomes the independence assumptions of previous work and generalises tensor
decomposition methods (Basharin et al., 2025); C2) we rigorously identify trade-offs between
acceptance rates in speculative decoding and latency of generation, based on different choices of
probabilistic circuit (PC) architectures and partial layer sharing; C3) we empirically demonstrate
the effectiveness of MTPC by repurposing EvaByte (Zheng et al., 2025), a byte-level LLM, into
our framework. The choice of this use case is motivated by the fact that existing byte-level LLMs
(Pagnoni et al., 2024; Wang et al., 2024) obviate the limitations of sub-word tokenisers—including
uneven efficiency (Ahia et al., 2023; Dagan et al., 2024), lack of interoperability (Minixhofer et al.,
2025), and vulnerabilities (Rumbelow & Watkins, 2023; Land & Bartolo, 2024; Geiping et al., 2024;
Salesky et al., 2021)—at the cost of significantly slowing down generation. We find that MTPC
increases the throughput of EvaByte by 5.47× with respect to AR generation and 1.22× with respect
to MTP with independence assumptions.

2 SPEEDING UP GENERATION WITH MTP AND SPECULATIVE DECODING

Given our goal of speeding up LLM generation with MTP while guaranteeing that the STP quality is
fully retained through speculative decoding, we introduce these frameworks below.1

MTP. A classical STP LLM encodes a distribution over sequences of tokens {xt} defined over a
vocabulary V as

∏
t p(xt+1 | x≤t), where x≤t is the context, i.e. the observed tokens at timestep

t. MTP (Gloeckle et al., 2024) aims to extend an STP LLM that predicts a single token at a time
through p(xt+1 | x≤t), to an MTP model, qθ , that models the joint probability of a window of n
future tokens and generates them simultaneously, i.e.,

qθ (xt+1, xt+2, . . . , xt+n | x≤t). (1)

1We adapt notation from the tensor and circuit literature (Loconte et al., 2025a), see Appendix A.
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where θ denotes a given parameterisation for the joint.2 The first dimension to trade-off expressiveness
and efficiency in MTP pertains to compactly representing qθ . Unlike for p(xt+1 | x≤t), we would
need to store more than a vector of logits a ∈ Rv of a single univariate categorical distribution for a
vocabulary size v = |V| for every timestep t. The most expressive, but least efficient way to do so,
would be to store an n-dimensional tensor A ∈ Rv(1)×...×v(n)

of logits having vn entries, but this
scales exponentially in n. Next, we review past attempts to avoid storing A explicitly.

Fully factorised. The most commonly used way to boost efficiency is to assume all n future tokens
are independent (Zheng et al., 2025; Cai et al., 2024; Gloeckle et al., 2024), that is, qθ factorizes as∏n

i=1
qϕi

(xt+i | x≤t). (FF)

This comes with the benefit that one needs to store only n v-dimensional vectors of probabilities ϕi to
represent the joint distribution in Eq. (1). At the same time, as already discussed in the introduction,
this severely limits model expressiveness (Ankner et al., 2024; Wertheimer et al., 2024).

Canonical polyadic (CP) factorisation. Dependencies between future tokens can be recovered by
introducing explicit latent variables (Lee et al., 2018). To this end, Basharin et al. (2025) propose to
factorise Eq. (1) via an r-rank CP decomposition. A CP decomposition introduces one discrete latent
variable, Z, that encodes a mixture of r fully-factorised components, rewriting Eq. (1) as:∑r

j=1
q(Z = j | x≤t)

∏n

i=1
qϕi,j (xt+i | j, x≤t). (CP)

where q(j | x≤t) = ωj are the mixture coefficients and ϕi,j are the parameters of the categorical
distribution for mixture component j at position i in the MTP window. 3 Before showing how we can
generalize both FF and CP MTP with PCs, we review how to ensure MTP models match the quality
of a given STP model.

Speculative decoding (Stern et al., 2018; Leviathan et al., 2022; Chen et al., 2023; Xia et al., 2024)
can be combined with MTP to speed up generation while guaranteeing no loss in quality. Given a
target STP LLM that we wish to accelerate, speculative decoding involves two steps: 1) drafting,
where a cheaper MTP draft model generates n future tokens, and 2) verification, where the target
STP model accepts or rejects the generated tokens in parallel according to a pre-defined consistency
criterion. The closer the distributions of the draft and verifier are, the more often ‘speculated’ tokens
are accepted, speeding up generation. With speculative decoding we can quantify the trade-off
between expressivenss and efficiency in MTP models as their throughput, i.e.

throughput (tok/s) = acceptance rate (toks per eval)/latency (secs per eval) (2)

where acceptance rates are a function of the total variation distance between the two distributions
(Leviathan et al., 2022; Sun et al., 2023) and latency measures how computationally expensive an
MTP model is during generation. While previous work, such as Basharin et al. (2025), focused only
on measuring acceptance rates, we highlight how both sides of the ratio in Eq. (2) are important, as
they create a spectrum. MTPCs provide a systematic way to navigate such a spectrum (see Fig. 1).

3 PROBABILISTIC CIRCUITS FOR MULTI-TOKEN PREDICTION

The idea behind MTPCs is to further decompose the joint distribution in Eq. (1) into a deep com-
putational graph encoding a hierarchical mixture model, called a probabilistic circuit (Sections 3.1
and 3.2), and to parameterise it with LLM embeddings (Section 3.3).

3.1 PROBABILISTIC CIRCUITS

A circuit (Darwiche, 2003; Choi et al., 2020; Vergari et al., 2021), c, is a parameterised directed
acyclic computational graph4 over variables X encoding a function, c(X), and comprises three kinds

2These parameters depend on t, we drop the subscript when not needed to avoid clutter.
3Basharin et al. (2025) calls CP a mixture of experts (MoE), but we note this is incorrect as the weights ωj

do not depend on future tokens, but only on past ones. As such, they realise a simple conditional mixture. They
argue that training CP is challenging and requires insights from the MoE literature, while we are able to train
them as well as deeper mixture variants easily without MoE-tailored losses (see Section 4).

4In Fig. 2, edges directionality is removed for readability, but it is assumed to be from inputs to outputs.
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Figure 2: PCs allow for modelling a spectrum of dependency structures over sequences of tokens,
as shown for the known FF and CP and the novel HMM and BTree MTP variants. Input units are
grouped in coloured layers, one for each token, while sum and product layers encoding (hierarchies
of) latent variable distributions are in grey. The output unit of each circuit (in blue) computes
qθ(xt+1, . . . , xt+n | x≤t). In the figure we omit the dependency on the context x≤t for readability.

of computational units: input, product, and sum units. Each product or sum unit n receives the outputs
of other units as inputs, denoted with the set in(n). Each unit n encodes a function, cn, defined as: (i)
cn(sc(n);ϕ) if n is an input unit, where cn is a function parameterised by ϕ over variables sc(n) ⊆ X,
called its scope; (ii)

∏
j∈in(n) cj(sc(j)) if n is a product unit; and (iii)

∑
j∈in(n) ωjcj(sc(j)) if n is a

sum unit, with ωj ∈ R denoting the sum parameters. The scope of a product or sum unit n is the
union of the scopes of its inputs, i.e., sc(n) =

⋃
j∈in(n) sc(j). Fig. 2 shows examples of circuits,

where units of the same scope are grouped into (coloured) layers belonging to a hierarchy that can be
easily parallelised on a GPU (Mari et al., 2023; Loconte et al., 2025a).

For MTPCs, we use probabilistic circuits (PCs), i.e., circuits modelling a joint distribution over
random variables, in our case tokens X = {X1, . . . , Xn}. PCs encode Eq. (1) as

qθ (xt+1, . . . , xt+n | x≤t) = Z−1
θt

c(xt+1, . . . , xt+n;θt) (3)

where θt = {ωt,ϕt} denote the set of circuit parameters, i.e., all sum unit parameters ωt and input
unit parameterisations ϕt which depend on the context x≤t; and Zθt

denotes the partition function
of c, i.e., Zθt

=
∑

xt+1,...,xt+n∈Vn c(xt+1, . . . , xt+n;θt). Note that the PC architectures we are
interested in are already normalised or always allow computing the partition function in a single
feedforward step (see Choi et al. (2020) and Appendix B.1). At the same time, we can easily sample
from PCs in a single feedforward pass, as discussed in Appendix B.2. Crucially, within the framework
of PCs, we can recover the FF and CP parameterisations for MTP and several other architectures that
generalise tensor factorisations (Loconte et al., 2025a) that can be used as novel MTP models, each
offering a different expressiveness-efficiency trade-off. We do so while abstracting away from each
model’s original formulation and obtain a unified way to parameterise MTP LLMs, as discussed next.

3.2 PC ARCHITECTURES FOR MTP

MTPC-FF. Representing the commonly used FF MTP parameterisation as a PC is simple: we
introduce n input units, each parameterised by ϕi, its corresponding token probabilities, and connect
them all to a single product unit, as shown in Fig. 2 for a distribution over n = 4 tokens.

MTPC-CP. Similarly, we can easily encode a CP factorisation in a shallow PC by i) introducing r
input units for each token (each parameterised by their own probabilities ϕij), then ii) multiplying
them to retrieve the r factorised mixture components, which we then iii) aggregate in a sum unit
with weights ωj = q(zj | x≤t) (see also Proposition 1 in Loconte et al. (2025a)). Fig. 2 shows
this construction for n = 4 and r = 2. This basic construction suggests that we can create
deeper architectures by interleaving sum and product layers, while overparameterising each layer by
increasing the number of units in it (r). Furthermore, by implementing CP as a PC unlocks a faster
sampling routine (Appendix B.2) than the one used in Basharin et al. (2025).
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MTPC-HMM. As a further example of the expressiveness increase we get by generalising our
approach to deeper PCs, we introduce a factorisation that realises a hidden Markov model (HMM),
which better captures distant dependencies in the sequence by introducing a sequence of latent
variables, in contrast to the single one present in CP. More precisely, we define an HMM with
r hidden states and truncate its prediction window to n steps into the future. We resort to an
inhomogeneous HMM, i.e., we do not make the transition matrices time-invariant, as this setup is
more expressive and worked better in our experiments, see Appendix F. This simplifies Eq. (1) into:

r∑
z1=1

· · ·
r∑

zn=1

q(z1 | x≤t)qϕ(xt+1 | z1,x≤t)

n∏
i=2

q(zi | zi−1,x≤t)qϕ(xt+i | zi, x≤t). (HMM)

Fig. 2 illustrates the HMM parameterisation above represented as a circuit, comprising n = 4 pairs of
sum and product layers stacked, where the parameters ωi of the former are the transition probabilities
q(zi | zi−1,x≤t). Similarly to CP, we can increase r to overparameterise the circuit with more input
units per token and sum units overall, and hence increase expressiveness.

MTPC-BTREE. One drawback of the HMM parameterisation is the asymmetry of its computational
graph, which i) provides fewer latent variables for the early tokens, and ii) increases latency when
predicting the last tokens due to its autoregressive token dependencies. To solve this, we build a
PC whose structure resembles that of a binary tree (BTree), effectively encoding a hierarchy of
latent variables or a tree tensor factorisation (Grasedyck, 2010; Cheng et al., 2019; Loconte et al.,
2025a). This is done recursively: at each step h of the hierarchy, given a sequence of n tokens to
split, and a parent latent variable Zl, we split it into two sub-sequences (xt+1, . . . , xt+⌊n/2⌋−1) and
(xt+⌊n/2⌋, . . . , xt+n), then factorise Eq. (1) as a mixture:∑r

zh=1
q(zh | zl,x≤t)qθ (xt+1, . . . , xt+⌊n/2⌋−1 | zh, zl,x≤t)qθ (xt+⌊n/2⌋, . . . , xt+n | zh, zl,x≤t)

(BTree)
which corresponds to creating a sum unit whose weights are q(zh | zl,x≤t) followed by products.
We repeat the process while caching intermediate units until we reach the base case for n = 1, for
which we create a layer of input units for the corresponding token. Fig. 2 illustrates the BTree circuit
built in this way. Our experiments (Section 4.2) show that the BTree parameterisation obtains the
optimal throughput by lowering the latency of HMM, as it samples more latent variables and tokens
in parallel, while achieving similar acceptance rates.

3.3 PARAMETERISING PCS WITH LLMS

Parameterising MTPCs requires two functions: an LLM that maps the context x≤t ∈ Vt into
contextual features, and a neural network head that maps the contextual features to the parameters of
the circuit θt, realising a neural conditional circuit (Shao et al., 2020; 2022; Ahmed et al., 2022). To
extract the contextual features et ∈ Rd, we use et = LLMLoRA(k) (x≤t) where LLMLoRA(k) : Vt →
Rd is the STP backbone with LoRA (Hu et al., 2022) applied to the last k ≥ 0 layers. As we
will discuss in Section 4.4, the number of LoRA layers can impact throughput significantly. Given
et, we realise Eq. (3) by computing θt = gc (et), where gc is a neural network head that outputs
both the input unit parameters, ϕt, and the sum unit parameters, ωt (Section 3.1). Note that our
parameterisation in MTPCs allows us to abstract from the actual structure of the circuit (i.e., FF, CP,
HMM or BTree) and just focus on these two sets of tensorised parameters, as we discuss next.

Input unit distributions. All MTPCs produce joint distributions over token windows by combining
categorical distributions over individual tokens (Fig. 2). We follow EvaByte (Zheng et al., 2025)
and learn n separate unembedding layers, one per window position. For models with mixture
coefficients, we also learn one unembedding layer per mixture coefficient.5 As such, instead of a
single unembedding matrix mapping Rd → Rv, we have an unembedding tensor W ∈ Rn×r×v×d,
and compute the input distributions with the usual unembedding operation followed by softmax, i.e.,
ϕtij = softmax (Wijet), where i and j index the position in the MTP window and the rank r.

Sum unit parameters. For sum units, instead of mapping embeddings to the vocabulary via W , we
map to the rank of the sum unit via R ∈ Rz×r×d, where z is the number of sum units, r is its rank,
and d the dimensionality of et. We compute ωti = softmax (Riet), where i indexes the sum unit.

5This is efficient even for PCs with high rank due to the small vocabulary size of byte-level LLMs.
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3.4 SPECULATIVE DECODING WITH MTPC

For MTPCs, we design an architecture that is self-drafting (Zhang et al., 2024b; Cai et al., 2024),
i.e. where the draft and verifier models share the same LLM backbone. We use an MTP head (Cai
et al., 2024; Ankner et al., 2024) augmented with our circuits to efficiently sample a draft, and an
autoregressive STP head as the verifier. Optionally, we also explore keeping a few final transformer
layers separate in the two models by fine-tuning LoRA adaptors for the draft model’s backbone.

Unlike previous self-drafting MTP works (Cai et al., 2024; Ankner et al., 2024), we guarantee that
the generated tokens are the same as those the autoregressive LLM would generate in expectation
by using speculative decoding (Leviathan et al., 2022; Chen et al., 2023), i.e., we only generate the
subset of drafted tokens accepted by our verifier. To keep latency low, we make only a single LLM
call per speculative decoding cycle by re-using the LLM backbone state computed by the verifier for
the draft model, where possible. We achieve this by modifying the speculative decoding algorithm
slightly, as we detail in Algorithm 2.

Next we report results for sampling, but we also experimented with greedy speculative decoding
(Stern et al., 2018) which guarantees argmax consistency. Both are suitable for MTPCs.

4 MTPCS IN ACTION: RETROFITTING A BYTE-LEVEL LLM

We evaluate MTPC on the challenging tasks of speeding up byte-level LLMs. MTP is crucial for
byte-level LLMs as they require more tokens than sub-word LLMs to generate text with the same
length. Furthermore, byte-level LLMs allow us to explore large window sizes and more mixtures
components due to their small vocabulary size. We implement our MTPCs variants in the cirkit
library (The april Lab, 2024) and provide it in our supplementary materials.

Target model. We work with EvaByte (Zheng et al., 2025) as our byte-level LLM, because it is
open source, publicly available, and obtains results that are competitive to subword-level LLMs
on benchmarks (Zheng et al., 2025), see Appendix C. EvaByte is a 6.5B byte-level model with an
embedding size of 4096, a vocabulary of 320 byte tokens and a maximum context window of 32k
bytes. EvaByte has been pre-trained as an MTP model with a prediction window of n = 8 bytes.
In our experiments, we retrofit the released fine-tuned version of EvaByte, EvaByte-SFT (Zheng
et al., 2025). EvaByte-SFT has been fine-tuned on a data mix of Tülu 3 (Lambert et al., 2024),
OpenCoder (Huang et al., 2024) stages one and two, and OpenHermes 2.5.6 We note that EvaByte’s
solid performance on benchmarks is obtained via Medusa-style lossy speculative decoding with the
MTP head, which in the case of sampling comes with a loss in quality compared to EvaByte-STP
(n = 1). We therefore set EvaByte-STP as the target model for speculative decoding to accelerate
generation without sacrificing generation quality.

Draft models. We use EvaByte-MTP to refer to EvaByte’s released fully-factorised (FF) MTP head.
Speculative decoding results have not been reported in the EvaByte release (Zheng et al., 2025),
so we include them here as our baseline. We also further fine-tune EvaByte-MTP to highlight that
the model cannot be improved further. On top of that, we replace the MTP head with our MTPCs
heads, including our CP implementation and novel HMM and BTree heads to relax the independence
assumptions of the FF model and increase expressiveness. We note that EvaByte-MTP-CP with r = 1
is equivalent to EvaByte-MTP, as can be seen from Eq. (CP).

4.1 TRAINING

In order to improve throughput via speculative decoding, we need to make our MTP model’s
distribution as similar as possible to EvaByte-STP’s. We achieve this in the simplest way by
instruction fine-tuning our models on a similar data mix to that used for EvaByte-SFT. As the full
details of the data mix are not known and are hard to replicate, we focus on Tülu 3.

Training data. We fine-tune on the Tülu 3 SFT mix dataset (Lambert et al., 2024) which contains
939,344 examples of user/assistant interactions on 18 tasks. We split the Tülu 3 dataset into training
and validation so that we can check throughput on the unseen validation examples. In order to make
sure all tasks are sampled, we shuffle the training data before splitting. Because we want training to be

6The information above is from personal communication with the authors.
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possible on 2× 80 Gb GPUs, we limit the context length to 8192 bytes and filter out 34,067 examples
which are longer. We split the remaining 905,277 examples into 99% train and 1% validation.

Initialisation. We initialise our MTP heads from EvaByte-SFT in a way that guarantees that our
EvaByte-MTP-CP is equivalent to EvaByte-MTP. This guarantees that we leverage previous training:
all models start from the same loss and we smoothly move in parameter space from EvaByte-MTP to
our more expressive EvaByte-MTP-CP, EvaByte-MTP-HMM and EvaByte-MTP-BTree.

Loss. We train our MTP models on the packed train split of Tülu 3 with a batch size of 256 sequences,
or ≈ 2m tokens, which is what EvaByte used. We first train our MTP heads for 1 epoch (Section 4.3).
Then we load the models and continue training for an additional epoch with LoRA (Section 4.4).
We apply EvaByte’s chat template and only train on the assistant’s answers. We use overlapping
prediction windows, as we need to be able to begin speculative decoding from any position during
generation. We minimise the negative log-likelihood of the observed assistant outputs Eq. (4), where
N is the number of training sequences and L is the sequence length for each token in the window.7

L =
∑n

j=1
γj−1Lj , Lj = −

∑N

i=1

∑L

t=1
(log pθ(x

(i)
t+j | x

(i)
<t+j))/(Nvalid(i, j)) (4)

This involves locally normalising the loss by the number of valid tokens for example i and output j
in the MTP window, valid(i, j). As in Cai et al. (2024), we apply exponential discounting for future
tokens in the window, but use γ = 0.9 instead of γ = 0.8 to account for n > 8. We use the Adam
optimiser (Kingma & Ba, 2015) with a fixed learning rate of 3× 10−4.

4.2 METRICS

To speed up LLMs generation with speculative decoding, we need to balance speed and expressive-
ness. We measure speed using mean latency (µlat) and expressiveness via the mean acceptance
rate (µacc; Li et al., 2024), as defined below. Our goal is to increase throughput. We obtain a relative
throughput speed-up of one method over another by measuring their wall-time speedup ratio (Li
et al., 2024; Cai et al., 2024). We assume a batch size of 1 for all evaluations. We report our metrics
on two GPUs, the server-grade NVIDIA L40S GPU and the desktop-grade NVIDIA RTX 3090.

Mean Latency µlat is the average time taken for each speculative decoding step, i.e., the time needed
for the draft model to generate a candidate sequence and the verifier to choose which tokens to accept.
µlat is higher for less efficient LLMs and MTP heads, and lower for more powerful GPUs, e.g. for
EvaByte-MTP the L40S (Tables 1 to 3) has half the latency of the RTX 3090 (Tables 5 to 7).

Mean acceptance rate µacc is the percentage of drafted tokens that are accepted by the target model.
More expressive draft models will have higher accepance rate as they will better approximate the
target distribution. µacc depends on the size of the MTP window, n, as we have µacc ∈ [0, n].

Mean throughput µtok/sis measured as in Eq. (2), i.e., as the ratio µacc/µlat.

Wall-time speed-up ratio is the relative speed-up of a proposed model compared to a baseline model,
measured as the ratio of their throughputs. As baselines, we use autoregressive generation from the
STP model, EvaByte-STP, and MTP with independence assumptions, EvaByte-MTP FF.

4.3 MTPCS WITHOUT ADAPTERS

RQ1: Can we increase throughput by increasing the number of mixture components?

We begin with the simplest PC from our framework, MTPC-CP, which relaxes the independence
assumption of the widely used MTPC-FF (r = 1) by increasing the number of mixture coefficients, r.
MTPC-CP can increase throughput because it is more expressive yet still very efficient.

Table 1 highlights MTPC-CP’s efficiency; the µlat introduced by MTPC-CP remains relatively
unchanged as we increase r, because the forward pass cost of the output layer is dominated by the
expensive LLM calls. At the same time, MTPC-CP increases the expressiveness of our MTP head by
relaxing the unrealistic independence assumptions. As a result, MTPC-CP with r = 128 achieves
µacc = 5.94, an increase of .82 tokens over MTPC-FF. However, the best throughput is obtained for
r = 32, where MTPC-CP produces 20.8 more tok/s than MTPC-FF. In the last column, we show

7Our loss over overlapping windows is a composite log-likelihood (Varin et al., 2011).
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model r µacc ↑ µlat ↓ µtok/s ↑ maxtok/s

FF 1 5.14 ± 0.06 0.0290 ± 0.0002 180.1 ± 2.8 297.50

CP

8 5.65 ± 0.02 0.0296 ± 0.0001 194.5 ± 1.6 291.61
16 5.76 ± 0.03 0.0299 ± 0.0002 196.1 ± 1.9 295.94
32 5.84 ± 0.01 0.0297 ± 0.0002 200.9 ± 1.6 292.33
64 5.87 ± 0.09 0.0304 ± 0.0001 197.2 ± 2.3 278.42

128 5.94 ± 0.04 0.0320 ± 0.0001 188.6 ± 1.1 265.51

Table 1: Increasing the mixture com-
ponents (r) increases the throughput
(µtok/s) as seen for MTPC-CP (n = 8)
over our baseline, EvaByte-MTP (FF)
(in gray) where we report the mean
± std over three sets of 250 prompts.
MTPC-CP increases throughput: it has
a larger acceptance rate (µacc) while la-
tency (µlat) is almost constant in r.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.0251 40.03 1.00

8

1 FF 5.14 ± 0.06 0.0290 ± 0.0002 180.1 ± 2.8 4.50
32 HMM 5.95 ± 0.05 0.0332 ± 0.0001 182.4 ± 0.9 4.56
32 BTree 5.97 ± 0.06 0.0310 ± 0.0004 196.6 ± 3.8 4.91
32 CP 5.84 ± 0.01 0.0297 ± 0.0002 200.9 ± 1.6 5.02

16

1 FF 5.38 ± 0.08 0.0307 ± 0.0004 179.6 ± 3.8 4.49
32 HMM 6.82 ± 0.04 0.0397 ± 0.0001 174.5 ± 0.7 4.36
32 CP 6.10 ± 0.05 0.0322 ± 0.0001 193.4 ± 1.8 4.83
32 BTree 6.71 ± 0.01 0.0337 ± 0.0000 203.5 ± 0.1 5.08

Table 2: More expressive archi-
tectures such as MTPC-BTREE
outperform MTPC-CP in terms
of throughput for n = 8 and n =
16 windows on an L40S GPU. For
this experiment, we trained only
model heads (no LoRAs layers).
The shaded baselines are EvaByte-
STP and the EvaByte-MTP (FF)
models, trained for the same num-
ber of steps as our circuits for a
fair comparison.

the maximum attainable throughput (maxtok/s), i.e., we disable speculative decoding and accept all
tokens. The price paid in throughput for guaranteeing no loss in generation quality is ≈ 90 tok/s for
r = 32. While MTPC-CP performs well for n = 8, the margin for further improving throughput is
small. This is because for n = 8, we can at best achieve µacc = 8, and we have already achieved
µacc = 5.94 and have hit diminishing returns. To obtain substantial boosts in throughput, we need
to extend our model to longer window sizes. Since r = 32 worked best, we keep this fixed for the
remaining experiments.

RQ2: Do we benefit from more expressive circuit architectures for longer sequences?

We now consider more expressive circuits, such as MTPC-HMM and MTPC-BTREE, and show that
they outperform MTPC-CP for longer MTP windows, highlighting the importance of our extension
to general PCs. We fix r = 32 and explore the different PC architectures for both n = 8 and
the longer window, n = 16. Table 2 shows that MTPC-HMM obtains the best µacc in both cases,
however, it strikes an unfavourable balance in the expressiveness–latency trade-off: Due to being
AR, MTPC-HMM has the largest µlat, and yields poor throughput as a result. On the other hand,
MTPC-BTREE almost matches the µacc of MTPC-HMM and has a smaller µlat footprint. Nevertheless,
for n = 8, MTPC-CP still obtains the best µtok/s. However, when we move to n = 16, MTPC-BTREE
substantially increases the gap in µacc from MTPC-CP. This in turn leads to MTPC-BTREE having the
best throughput, with 203.5 tok/s, a speed-up of ×5.08 over EvaByte-STP. While the gains already
obtained by MTPC-BTREE are solid, fine-tuning the output layer alone can only get us so far. This
is because EvaByte has not been trained to produce representations that are good for predicting 16
tokens ahead, as we discuss next.

TAKEAWAY 1: While increasing the mixture components r in CP is initially beneficial, it soon
hits diminishing returns. Increasing the window size of future tokens n and adopting more
expressive PC architectures unlocks further gains in throughput. Furthermore, while HMM
achieves the highest acceptance rates, it incurs high latency. Instead, non-autoregressive
variants such as BTREE strike a better balance and hence should be preferred.

4.4 MTPCS WITH ADAPTERS

RQ3: Can we further increase throughput by adapting the draft LLM using LoRA?

8
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n model # LoRA µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 EvaByte-STP 0 — 0.0251 40.03 1.00

8

MTPC-FF

0 5.15 ± 0.04 0.0327 ± 0.0013 163.7 ± 10.5 4.09
1 5.16 ± 0.02 0.0308 ± 0.0003 171.3 ± 1.2 4.28
2 5.14 ± 0.06 0.0336 ± 0.0036 157.2 ± 17.4 3.93
4 5.19 ± 0.03 0.0330 ± 0.0001 160.3 ± 1.4 4.01

MTPC-BTree

0 6.04 ± 0.02 0.0326 ± 0.0027 190.5 ± 14.8 4.76
1 6.15 ± 0.02 0.0344 ± 0.0038 185.1 ± 20.3 4.62
2 6.20 ± 0.05 0.0330 ± 0.0000 193.0 ± 1.4 4.82
4 6.20 ± 0.04 0.0348 ± 0.0001 183.1 ± 1.0 4.57

16

MTPC-FF

0 5.40 ± 0.06 0.0305 ± 0.0001 180.3 ± 2.3 4.50
1 5.53 ± 0.08 0.0311 ± 0.0001 182.3 ± 2.5 4.55
2 5.63 ± 0.07 0.0321 ± 0.0002 179.5 ± 2.0 4.48
4 5.60 ± 0.03 0.0356 ± 0.0034 162.2 ± 14.9 4.05

MTPC-BTree

0 6.86 ± 0.03 0.0340 ± 0.0001 206.1 ± 0.9 5.15
1 7.32 ± 0.03 0.0346 ± 0.0000 218.0 ± 0.6 5.45
2 7.53 ± 0.10 0.0354 ± 0.0001 219.1 ± 3.0 5.47
4 7.58 ± 0.14 0.0373 ± 0.0003 210.2 ± 5.0 5.25

Table 3: Fine-tuning sep-
arate layers in the draft
model with LoRA adapters
can increase the acceptance
rate and speed up BTree
MTPCs for n = 16 and two
LoRA layers by 5.47 over
STP on an L40s GPU. Nev-
ertheless, the increased ac-
ceptance rate comes at in-
creased latency, making fur-
ther throughput boosts via
more LoRA layers unviable
for EvaByte. We shade the
STP baseline in gray and
ablated models trained for
the additional epoch without
LoRA in brown.

We now consider increasing the expressiveness by adding LoRA layers, as shown in Table 3. We
show that while we can improve throughput, we need to be strategic when choosing the number of
layers, as very quickly the latency introduced outweighs the expressiveness gained.

The key here is that we need to balance the expressiveness obtained by adding LoRA layers and the
latency we introduce because the additional layers are not shared between the draft and the verifier.
For example, if we train adapters for the last 16 (out of 32) layers, we can improve the acceptance rate
by 37%, but we introduce a latency of 1.5× the cost of a forward pass of the LLM.8 The FF model
for n = 8 has plateaued, highlighting its limited expressiveness. We highlight that the improvements
of MTPC are consistent across GPUs. While throughput is ≈ ×2 times larger for the server-grade
GPU, the relative speed-ups are similar, see Appendix E. Interestingly, due to the different balance
between the LLM and MTPC latency across GPUs, on the RTX 3090 we hit diminishing returns after
adding a single LoRA layer rather than two on the L40s.

TAKEAWAY 2: Fine-tuning a few layers of the draft model with LoRA increases the accep-
tance rate but also increases latency. The optimal trade-off is device-specific, but adding
LoRAs is always beneficial compared with a fully shared LLM trunk. Retrofitting models to
longer MTP windows yields an even larger increase in throughput when paired with LoRAs.

5 CONCLUSION

Overall, our results show, for the first time, that throughput in MTP LLMs can be increased by 5.47×
w.r.t. AR and 1.22× w.r.t. MTP with independence assumptions, while simultaneously guaranteeing
the retention of an AR LLM’s quality. We achieved this goal by identifying key trade-offs between
acceptance rates and latency within our framework, MTPC. We enhanced the expressiveness of
MTP by getting rid of the independence assumption (Gloeckle et al., 2024; Zheng et al., 2025),
introducing an explicit probabilistic model for inter-token dependencies that facilitates performance
guarantees (Ankner et al., 2024; Li et al., 2024; DeepSeek-AI et al., 2024), and generalising mixture-
based methods (Basharin et al., 2025) into the PC framework. Moreover, we decreased latency by
modulating the number of layers shared between draft and verifier model branches. We showcase the
throughput gains of MTPC LLMs at scale by retrofitting EvaByte (Zheng et al., 2025), a state-of-the-
art 6.5B byte-level LLM into our framework.9 In future work, our framework can be extended by
integrating constraints during generation (Ahmed et al., 2025) or speculative decoding (Nakshatri
et al., 2025) via methods such as Gelato (Zhang et al., 2023) and Ctrl-G (Zhang et al., 2024a). Unlike
those, we would not need to train an auxiliary HMM in MTPCs and we can integrate constraints

8We found that training more than 16 layers of EvaByte does not lead to improvements in acceptance rates.
9More in-depth commentary on related work is available in Appendix I.
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directly into our PC head. Moreover, we can further boost expressiveness by leveraging other PCs
architectures such as subtractive mixtures (Loconte et al., 2024; 2025b) and continuous latent variable
circuits (Gala et al., 2024a;b), while reducing latency through recent advancements in scaling up PCs
(Liu et al., 2024; Zhang et al., 2025).

REPRODUCIBILITY STATEMENT

To ensure reproducibility for our research, we have attached the codebase for implementing all model
variants and running their training and evaluation to our submission. In addition, we have provided
full details on sampling in circuits in Appendix B and on our algorithms for speculative decoding in
Appendix D.
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A NOTATION

We adapt notation and nomenclature from the tensor factorisation (Kolda & Bader, 2009) and circuit
(Loconte et al., 2025a) literature.

We denote ordered sets of random variables with X, Y and Z, and we use [n] to express the set
{1, 2, . . . , n} with n > 0. The domain of a variable X is denoted as dom(X), and we denoted as
dom(X) = dom(X1) × · · · × dom(Xn) the joint domain of variables X = {Xi}ni=1. We denote
scalars with lower-case letters (e.g., a ∈ R), vectors with boldface lower-case letters (e.g., a ∈ RN ),
matrices with boldface upper-case letters (excluding those used for variables, e.g., A ∈ RM×N ), and
tensors with boldface calligraphic letters (e.g., A ∈ RI1×I2×I3). Moreover, we use subscripts to
denote entries of tensors (e.g., aijk is the (i, j, k)-th entry in A).

B BACKGROUND ON CIRCUITS

Circuits have a long history in theoretical computer science (Shpilka & Yehudayoff, 2010) and
probabilistic reasoning (Darwiche, 2003; 2009). In their more modern definition and application
to machine learning (Vergari et al., 2019b; Choi et al., 2020), circuits are introduced as structured
computational graphs, simplified neural networks where one is allowed to use units from a restricted
set of neurons (sum, product and input units) and whose connections need to abide certain structural
properties to guarantee tractability (Choi et al., 2020; Vergari et al., 2021), as discussed next.

B.1 STRUCTURAL PROPERTIES

Tractability is to be intended as the ability to exactly compute a given function (operation) over the
circuit in time that is polynomial in its size, denoted as |c| for a circuit c, and representing the number
of edges between the computational units. For example, a circuit c can exactly integrate any subset of
variables in time O(|c|) if (i) its input functions can be integrated efficiently and (ii) it is smooth and
decomposable (Darwiche & Marquis, 2002; Choi et al., 2020).

Definition 1 (Smoothness and decomposability (Darwiche & Marquis, 2002; Choi et al., 2020)).
A circuit is smooth if for every sum unit n, all its input units depend on the same variables, i.e.,
∀i, j ∈ in(n) : sc(i) = sc(j). A circuit is decomposable if the distinct inputs of every product unit n
depend on disjoint sets of variables, i.e., ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.

Note that all the PC architectures we have discussed in this paper, FF, CP, HMM and BTree, are
smooth and decomposable circuits. The reader is encouraged to check this by themselves for the
architectures in Fig. 2.

Exactly integrating variables out is relevant to compute marginals such as the normalisation constant
of the distribution encoded by the circuit (Eq. (3)). Note that in our implementation, circuits are
normalised by design (Peharz et al., 2015), as we assume that input distributions are normalised
categoricals and all sum units form a convex combination as their weights are parameterised with a
softmax function (see Section 3.3).

More importantly for our MTPCs, we can draw samples efficiently from the distribution of a circuit
that is both smooth and decomposable, as we discuss in the next sub-section.

B.2 SAMPLING A CIRCUIT

A smooth and decomposable PC can use ancestral sampling to generate a complete sample for all
n tokens in a window. In a nutshell, we can iteratively sample each latent variable in the hierarchy
encoded by the PC, and then sample the selected input distributions, in the same way one sample one
(hierarchical) mixture model by first sampling one component and then drawing a sample from that
component.

Operationally, Algorithm 1 details the procedure. We have to sample one input branch for each sum
unit we encounter when performing a backward traversal of the circuit computational graph (from
the circuit output back to the input distributions). Such a branch is sampled proportionally to the sum
unit weights ωj , which encode the mixture components (or equivalently the transition probabilities in
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Algorithm 1 SAMPLE(c)

Input: A smooth, decomposable and normalised PC c encoding a joint distribution q over the next n
tokens X = {X1, . . . , Xn} Output: a sample x ∼ q(X).

1: x← zeroes(n) ▷ init empty sample
2: cn ← output(c)
3: N ← queue({cn}) ▷ traverse the computational graph from outputs to inputs
4: while N not empty do
5: cn ← pop(N )
6: if cn =

∑r
j=1 ωjcj then ▷ cn is a sum unit

7: k ← sampleCategorical(ω1, . . . , ωr) ▷ sample from a categorical with r states
8: N ← push(N , ck)

9: else if cn =
∏d

j=1 cj then ▷ cn is a product unit with d inputs
10: for k = 1 . . . d do
11: N ← push(N , ck) ▷ visit all inputs of cn
12: else if cn is an input unit over variable Xi and parameters ϕi then
13: xi ← sampleCategorical(ϕi) ▷ sample from a categorical with v = |V| states
14: return x

an HMM). Then, when we traverse a product unit, we follow all its input branches. When we reach
an input unit, we sample a token proportionally to the parameters ϕij of the categorical distributions
encoded in the unit.

If the circuit is smooth and decomposable, by this process we are guaranteed to end up in a set of
input units whose scope is the full set of tokens X and in which only one input unit is selected per
token position i (line 13 of Algorithm 1). This procedure can be tensorized as to efficiently generate
a batch of samples in a single pass over the computational graph of the circuit (Vergari et al., 2019a;
Peharz et al., 2020b;a; Loconte et al., 2025a; Liu et al., 2024).

Lastly, we remark that this routine is potentially computationally more efficient than the one imple-
mented in Basharin et al. (2025), as the latter is based on autoregressive inverse transform sampling
(see Loconte et al. (2024) for a discussion) and requires sampling one token at a time.

C EVABYTE DETAILS

Model BBH GSM8k IFEval MATH MMLU HumanEval∗ TruthQA
Gemma-2-9B-it 20.0 79.7 69.9 29.8 69.1 71.7 61.4
Ministral-8B-Instruct 56.2 80.0 56.4 40.0 68.5 91.0 55.5
Qwen-2.5-7B-Instruct 25.3 83.8 74.7 69.9 76.6 93.1 63.1
Llama-3.1-8B-Instruct 69.7 83.4 80.6 42.5 71.3 86.3 55.1
Tülu 3 8B 66.0 87.6 82.4 43.7 68.2 83.9 55.0
OLMo-7B-Instruct 35.3 14.3 32.2 2.1 46.3 28.7† 44.5
OLMo-v1.7-7B-Instruct 34.4 23.2 39.2 5.2 48.9 49.7† 55.2
OLMoE-1B-7B-0924-Instruct 37.2 47.2 46.2 8.4 51.6 54.8 49.1
MAP-Neo-7B-Instruct 26.4 69.4 35.9 31.5 56.5 72.1† 51.6
OLMo-2-7B-SFT 50.7 71.2 68.0 25.1 62.0 67.0† 47.8
OLMo-2-7B-1124-Instruct 48.5 85.2 75.6 31.3 63.9 67.6† 56.3

EvaByte-SFT 34.6 52.9 60.2 29.8 49.5 73.7 46.3

Table 4: Downstream benchmark performance of EvaByte-SFT, table taken verbatim from Zheng
et al. (2025). Entries with † were computed by the EvaByte authors. All numbers were computed
with Medusa-style tree-based greedy decoding using the multi-token head, apart from HumanEval∗,
which used typical sampling. The authors of EvaByte followed Tulu 3, and evaluated the Pass@10
rate for HumanEval with 20 samples at temperature 0.8.

In Table 4 we provide a copy of the benchmark results of fine-tuned version of EvaByte, EvaByte-SFT,
which we retrofit in the paper. The model card can be found at https://huggingface.co/
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EvaByte/EvaByte-SFT, see also Zheng et al. (2025) for more details. The numbers in the
table above were produced by Medusa-style Cai et al. (2024) tree-based typical decoding. For all
benchmarks apart from HumanEval, the results were produced via greedy decoding, i.e., similar
to (Stern et al., 2018) with the exception of producing the last “free” token. As such, the produced
tokens are equivalent to what EvaByte-STP would produce, and the authors found that the metrics
were the same with EvaByte-STP up to some small rounding errors. For HumanEval the authors used
tree-based typical decoding, which in this case does not maintain the quality of the EvaByte-STP
model. The details above were shared with us by Lin Zheng, the author of EvaByte.

D SPECULATIVE DECODING

We give pseudocode for our self-speculative decoding algorithm below. The algorithm accepts
between 0 and n tokens, but always generates between 1 and n tokens, where n is the MTP window
size. The algorithm is very similar to vanilla speculative decoding (Leviathan et al., 2022), but
our algorithm includes a modification that reduces latency for the self-speculative scenario, and
for this it needs to sacrifice the last “free” token typically obtained from the verifier. The gain
in latency is possible because we can evaluate the shared LLM once per draft/verify cycle, while
a naive implementation of Leviathan et al. (2022) for self-speculative decoding would need two,
approximately halving the possible throughput.

In our self-speculative setup, the verifier and draft LLMs share some layers of the backbone. Impor-
tantly, the verifier is always computing LLM states ahead of the draft. As such, we can get away
with a single forward pass through the shared LLM, similar to Medusa (Cai et al., 2024), by re-using
the LLM backbone state computed by the verifier for the draft model. For this to work, we cannot
accept a “last sample for free” from the verifier (lines 23-30) Algorithm 3), as we would not have the
backbone state for this new token and it is not worth paying an extra LLM evaluation for it. Therefore,
in our algorithm we only sample the “free” token from the verifier in the rare case that no tokens
are accepted. This is necessary because the model can get caught in successive no-accept states in
the sampling case, or get stuck in an infinite loop if we used greedy decoding. If any tokens were
accepted, we use the last state of the shared backbone computed during the verify phase to seed the
draft phase. In what follows, if we have no LoRA layers, the algorithm is modified to have a single
component: the shared encoder.
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Algorithm 2 SHAREDSTATESELFSPECULATIVEDECODING

Architecture Components:
Three components: Shared Encoder (S), Verifier (V ), Draft (D)
Each with their own KV-cache

Given: A prompt of length L
Initialisation:
Prefill V to L− 1, and D and S to L
Set S and D state

Switch to draft/verify cycle:
while true do

Draft stage:
if S state is not set then

Compute S by conditioning on the additional token
Use S state to compute D state
Parameterize MTPC with D state
Draft n tokens

Verify stage:
Compute S state on n+ 1 tokens (draft + predecessor)
Compute V state using S state
Obtain up to n+ 1 tokens from speculative decoding
if 0 tokens accepted then

Keep “free” token sampled from last valid logits
Unset S state (stale)

else
Accept n tokens (drop “free” token)
Set S state (hidden state for last accepted token)
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Algorithm 3 SELFSPECULATIVEDECODING(x≤t, f, h, c, g)

Input: A prefix x≤t of length t, an LLM backbone f : V∗ → Rd, an LLM head h : Rd → Θ
parameterising a PC c encoding a joint distribution q over the next n tokens, and an LLM head
g : Rd → ∆v computing the next token probabilities.
Output: A sentence (x≤t || xt+1:t+s) ∈ Vt+s where 1 ≤ s ≤ n + 1. Moreover, we have that
xt+1:t+s ∼ p(xt+1, . . . , xt+s | x≤t) as equivalently encoded by the autoregressive single token
prediction model consisting of f and g only (Leviathan et al., 2022).

1: et ← f(x≤t) ▷ Compute the last embedding
2: θ ← h(et) ▷ Compute the circuit parameters
3:
4: Let q(Xt+1:t+n | x≤t) =

1
Zθ

c(Xt+1:t+n | θ)
5: xt+1:t+n ∼ q(Xt+1:t+n | x≤t) ▷ Sample n tokens from c in time O(|c|)
6: x← x≤t || xt+1:t+n ▷ Concatenate the prefix with the n tokens
7:
8: Compute in parallel for 1 ≤ i ≤ n: ▷ Compute marginals in time O(|c|)
9: q(xt+1:t+i | x≤t) =

∑
xt+i+1,...,xt+n∈V q(xt+1:t+n | x≤t)

10:
11: Compute in parallel for 1 ≤ i ≤ n+ 1: ▷ Compute target model conditionals
12: p(Xt+i | x≤t+i−1) = g(et+i−1), where et+i−1 = f(x≤t+i−1)
13:
14: s← 0 ▷ Determine the number of accepted tokens s, 0 ≤ s ≤ n
15: while s < n do
16: α ∼ U(0, 1)
17: if s > 0 then
18: q(xt+s+1 | x≤t+s)← q(xt+1:t+s+1 | x≤t)/q(xt+1:t+s | x≤t)

19: if α > p(xt+s+1 | xt+s)/q(xt+s+1 | xt+s) then
20: exit loop
21: s← s+ 1
22:
23: ▷ Sample one last token from the autoregressive LLM model
24: if s < n then ▷ Adjust the distribution first, if we accept fewer tokens
25: Let s(Xt+s+1) = q(Xt+s+1 | x≤t+s)
26: Let m(Xt+s+1) = max (0, p(Xt+s+1 | x≤t+s)− s(Xt+s+1))
27: r(Xt+s+1 | xt+s) = m(Xt+s+1)/Z, with Z =

∑
x′∈V m(x′)

28: xt+s+1 ∼ r(Xt+s+1 | x≤t+s)
29: else
30: xt+s+1 ∼ p(Xt+s+1 | x≤t+s)

31: return x≤t+s || xt+s+1
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E ADDITIONAL RESULTS ON AN RTX 3090

circuit r µacc ↑ µlat ↓ µtok/s ↑ maxtok/s

FF 1 5.12 ± 0.03 0.0519 ± 0.0003 101.2 ± 0.1 167.69

CP

8 5.65 ± 0.03 0.0545 ± 0.0003 106.3 ± 0.4 161.49
16 5.78 ± 0.06 0.0530 ± 0.0002 112.2 ± 1.0 159.22
32 5.84 ± 0.04 0.0532 ± 0.0004 113.1 ± 0.5 158.55
64 5.88 ± 0.03 0.0532 ± 0.0001 113.8 ± 0.8 155.04

128 5.94 ± 0.03 0.0533 ± 0.0001 114.8 ± 0.4 153.24

Table 5: Increasing the mixture com-
ponents (r) increases the throughput
(µtok/s) as seen for MTPC-CP (n = 8)
over our baseline on an RTX 3090,
EvaByte-MTP (FF) (in gray) where
we report the mean ± std over three
sets of 250 prompts. MTPC-CP in-
creases throughput as it has a larger ac-
ceptance rate (µacc) and a latency (µlat)
that is constant in r.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.047 21.4 1.00

8

1 FF 5.12 ± 0.03 0.0519 ± 0.0003 101.2 ± 0.1 × 4.73
32 HMM 5.97 ± 0.05 0.0594 ± 0.0001 103.3 ± 1.0 × 4.83
32 BTREE 5.94 ± 0.02 0.0546 ± 0.0005 111.9 ± 1.1 × 5.23
32 CP 5.84 ± 0.04 0.0532 ± 0.0004 113.1 ± 0.5 × 5.29

16

1 FF 5.38 ± 0.03 0.0530 ± 0.0003 104.3 ± 1.2 × 4.87
32 HMM 6.81 ± 0.07 0.0701 ± 0.0002 99.7 ± 0.8 × 4.66
32 CP 6.13 ± 0.03 0.0547 ± 0.0003 115.4 ± 1.3 × 5.39
32 BTREE 6.67 ± 0.07 0.0578 ± 0.0005 118.9 ± 2.5 × 5.56

Table 6: More expressive archi-
tectures such as MTPC-BTREE
outperform MTPC-CP on longer
windows in terms of throughput
for n = 8 and n = 16 for no
LoRA models on an RTX 3090
GPU. We shade the baselines in
gray, these are EvaByte-STP and
the fully factorised (FF) models
trained for the same steps as our
circuits.

n model # LoRA µacc ↑ µlat ↓ µtok/s ↑ speed-up↑

1 STP 0 — 0.047 21.40 1.00
8 FF 0 5.11 0.0538 97.2 4.54
8 FF 1 5.09 0.0564 92.6 4.33
8 FF 2 5.11 0.0567 92.6 4.33
8 FF 4 5.11 0.0601 87.1 4.07
8 BTREE 0 6.08 0.0568 110.0 5.14
8 BTREE 1 6.15 0.0581 109.4 5.11
8 BTREE 2 6.17 0.0604 105.7 4.94
8 BTREE 4 6.18 0.0625 102.3 4.78

16 FF 0 5.48 0.0546 102.8 4.81
16 FF 1 5.55 0.0559 102.1 4.77
16 FF 2 5.51 0.0584 97.2 4.54
16 FF 4 5.63 0.0613 94.5 4.42
16 BTREE 0 6.92 0.0587 121.4 5.67
16 BTREE 1 7.26 0.0617 122.0 5.70
16 BTREE 2 7.30 0.0627 120.9 5.65
16 BTREE 4 7.47 0.0669 116.2 5.43

Table 7: Fine-tuning separate layers in the draft model with LoRA can increase the acceptance
rate and speed up BTree MTPCs for n = 16 and one LoRA layer by 5.70 over STP on an RTX
3090 GPU. Nevertheless, the increased acceptance rate comes at increased latency, making further
throughput boosts via more LoRA layers unviable for EvaByte. We shade the STP baseline in gray
and ablated models trained for the additional epoch without LoRA in brown. Interestingly, for the
L40S in Table 3, we still got improvements with two LoRA layers, which highlights the importance
of carrying out such an analysis across devices.
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Table 8: Most Successful HMM Configuration

Parameterisation Transition Type Initialisation
Contextual Non-Contextual Homogeneous Inhomogeneous Identity Init. Uniform Init.

✓ ✗ ✗ ✓ ✓ ✗

F HIDDEN MARKOV MODELS SETUP

In our experiments we use contextual, inhomogeneous hidden Markov models (HMMs) with
identity initialisation (see Table 8). We chose the above after preliminary experiments where we
assessed the following configuration choices for training our HMMs.

Parameterisation We can parameterise HMMs to either be contextual, i.e. we can make the transition
probabilities depend on the input, or we can make the transition probabilities be independent of the
input (non-contextual).

Transition Type The transition matrix can be the same at each time step (homogeneous) or it can
be different (inhomogeneous). The former would correspond to additional parameter sharing across
sum layers in the circuit representation. We note that inhomogeneous HMMs subsume homogeneous
HMMs. This is because inhomogeneous HMMs could in theory learn parameters that do not vary
from timestep to timestep, thus becoming equivalent to a homogeneous HMM.

Initialisation A crucial setup is to initialise the HMM with transition matrices that are identity
matrices, which make the HMM equivalent to CP at the beginning of training. We achieve this by
adding a bias term to allow the HMM model to be initialised to identity matrices. This setting in
combination with extending to larger token windows, i.e. n = 16 lead to a scenario where HMMs
outperform CP. The other alternative is to initialise the transition matrices uniformly at random
(before softmax), but this complicates learning and yields performance that is lower than CP models.

G FURTHER EXPERIMENTAL DETAILS

To make the comparison between methods fair, we: a) constrained the models to not produce end-
of-sequence symbols during generation, as the latency of retrieving KV cache items from memory
increases with sequence length (Nawrot et al., 2024) and b) we filtered the validation set of the models
to only include examples with both prompts and responses in English, as acceptance rates may vary
dramatically based on the language chosen for the response.

We compute throughput by generating answers to 250 prompts and report the mean and std of 3 runs
with different prompts.

H ALTERNATIVE LOSSES

In early versions of this work we also experimented using a Kullback-Leibler divergence (KL) loss as
recommended by Basharin et al. (2025). However, we found that training with the KL loss doubled
the training time while requiring a lot more memory, and the benefits in acceptance rate did not
outweigh the additional complexity. For completeness we include the loss below. KL Loss L

L =

n∑
j=1

Ljγ
j−1, Lj =

N∑
i=1

L∑
t=1

fKL

(
pθ(x

(i)
t+j | x

(i)
<t+j)

∥∥∥ qθ′(x
(i)
t+j | x

(i)
<t+j)

)
Nvalid(i, j)

(5)

In the above we condition both the draft model, qθ′ , and the target model, pθ, on the gold data. The
above is equivalent to the KL term from the word-level distillation loss in (Kim & Rush, 2016).10

10While performing sequence-level distillation, i.e., conditioning on data sampled from the teacher model
may improve distillation (Kim & Rush, 2016), we did not explore this.
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I FURTHER RELATED WORK

MTP for byte-level LLMs Gloeckle et al. (2024) and Zheng et al. (2025) both pretrain byte-level
LLMs which predict n = 8 future bytes. This window size was found to be optimal for downstream
performance in Gloeckle et al. (2024). Both make conditional independence assumptions, but the
approaches are architecturally different. Gloeckle et al. (2024) uses a transformer head per token
to provide different feature vectors to each head and uses a shared unembedding matrix. On the
other hand, Zheng et al. (2025) uses a shared feature vector across heads with different unembedding
matrices per token.11 However, they only focus on greedy self-speculative decoding, while in our
work, we also explore speculative sampling.

Speculative Decoding with MTP drafts Previous MTP work either ignores speculative sampling
and only focuses on greedy self-speculative decoding (Gloeckle et al., 2024), or abandons guarantees
altogether (possibly at the expense of quality): specifically, Cai et al. (2024) and Zheng et al. (2025)
use a tree decoding mechanism to consider multiple candidates at each speculative decoding step.
Since their approach may accept multiple continuations but only generate the longest accepted one,
they bias the distribution and break the guarantees. Wang et al. (2024) use a subword-level draft model
to speed up their byte-level STP model via speculative decoding. Most prior work has introduced
sequential dependencies in the draft model through architecture modifications. Hydra (Ankner et al.,
2024) modifies the Medusa heads such that the predicted probabilities are also a function of the input
embeddings of predicted draft tokens. Eagle (Li et al., 2024) introduces sequential dependencies by
autoregressively predicting future feature representations. While these works relax the independence
assumption, they have no explicit probabilistic model for the dependencies introduced.

An exception is Basharin et al. (2025), who study the effect of relaxing the conditional independence
assumption by using a CP factorisation. While they obtain some first promising results, showing that
increasing the rank can increase the acceptance rate of tokens for speculative decoding, they focus
on subword-level models which have very large vocabulary sizes (e.g. v ≥ 100k). This makes CP
very expensive, both in terms of the number of parameters needed, and the GPU memory required.
Moreover, they evaluate their models on unrealistic scenarios, i.e. datasets used for pre-training
LLMs rather than instruction fine-tuning. Finally, despite the fact that a lot of previous work exists on
MTP for subword-level LLMs, they use different models from those widely used for benchmarking
speculative decoding methods, despite the existence of a benchmark, Spec-Bench (Xia et al., 2024)
and common models (e.g. Vicuna). In our case, since there is a limited amount of work on MTP for
byte-level LLMs (Gloeckle et al., 2024; Zheng et al., 2025), we directly compare with the results of
the EvaByte model.

There has been increasing interest in multi-token prediction not only for generation speed-up, but
also for improved model performance on tasks due to the lookahead offered by MTP. For exam-
ple, DeepSeek-AI et al. (2024, Table 4) show that MTP for a token window of 2 tokens leads to
improvements in benchmark metrics even when MTP is not used at inference time. Furthermore, they
report an increase in the throughput of the model by ×1.8 when using speculative decoding.

Token granularity In MTP a token can vary in granularity from bytes (Zheng et al., 2025) to subword
tokens provided by tokenisers (Basharin et al., 2025).

In addition to the choice of token granularity, there are generally 3 axes related works differ on:

• Training from scratch vs distilling an existing STP model into a MTP model

• Neural network architectures for the token heads (e.g. Linear, MLP, Transformer)

• Probabilistic modelling assumptions (conditional independence vs more expressive models)

I.1 DIFFERENCES IN SCENARIO

Training from Scratch Evabyte (Zheng et al., 2025) train a MTP byte-level model from scratch
using n = 8.

11It is worth noting that Gloeckle et al. (2024) also do an ablation in the appendix and find that linear heads
were competitive.
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Retrofitting STP to MTP Some works explore both training from scratch and retrofitting an STP
model into an MTP one (Cai et al., 2024; Basharin et al., 2025). In our work, we focus on the second
setting.

I.2 DIFFERENCES IN ARCHITECTURES

Linear Heads Basharin et al. (2025) use a linear parameterisation for each token head in their
distillation experiments.

MLP Heads Cai et al. (2024) use a MLP with a single hidden layer for each output token head.
Ankner et al. (2024) extend this to multiple layers of MLPs per output token. Gloeckle et al. (2024)
make the heads context-aware by including a transformer head in each token head.

Autoregressive Head While the main point of having future token heads is to avoid the expensive
autoregression of the target model, current state of the art speculative decoding models rely on “cheap”
autoregression. Eagle (Li et al., 2024), which is the best performing on the speculative decoding
benchmark, Spec-bench (Xia et al., 2024), fits an autoregressive model to predict future feature
vectors of the model (i.e. the inputs to the softmax layer). A similar architecture was also used for
the DeepSeekV3 model (DeepSeek-AI et al., 2024).

MLP Heads Cai et al. (2024) propose the Medusa model which uses a MLP with a residual connection
for each token head. While in theory they could use many MLP layers, they choose to use MLPs
with single hidden layer. Ankner et al. (2024) explore using deeper MLPs for each token head.

Transformer Heads Gloeckle et al. (2024) use a shared unembedding matrix and use a separate
transformer for each token head. More precisely, in order to predict the token at offset s, i.e. xt+s,
they compute softmax (Wzs), where zs is produced by a separate transformer head for each s, i.e.
zs = Hs(x≤t).

Sharing the Unembedding layer. While the decoding of Zheng et al. (2025) is based on Medusa,
instead of using a MLP for each token head, they use a different unembedding matrix per token head.12

This modelling choice is possible due to the small vocabulary size of byte-level models, i.e. |V| = 320.
In their training from scratch scenario, Basharin et al. (2025) use different unembedding layers W(s)

a

in order to predict xt+s for the mixture component with index a. As such, they parameterise s× |a|
unembedding matrices. This seems non-ideal, since the last layer in LLMs can have a large number
of parameters, i.e. (V × d). In their distillation scenario they use a shared unembedding matrix.

J LLAMA MODEL RESULTS

Llama3.2 3B We also retrofit a Llama3.2 3B model (Grattafiori et al., 2024) to show that our results
generalise and are useful for popular models and models of smaller size. Since we focus on byte-level
LLMs, we retrofit the byte-level version that has been distilled from the original in (Minixhofer et al.,
2025) while retaining most of Llama’s downstream performance.13 The byte-fied Llama3.2 3B model
was fine-tuned on Tülu 3 with a context length of 2048.

Below we corroborate our EvaByte findings for RQ1 and RQ2 by showing that our results for the
byte-fied version of Llama 3.2 3B lead to the same conclusions: i) increasing the number of mixture
coefficients increases the acceptance rate and therefore the throughput, and ii) more expressive
circuits like MTPC-BTREE further improve throughput over MTPC-CP. As with our main EvaByte
results, we use n = 8 and do not use LoRA layers. We run all speculative decoding experiments on
an NVIDIA L40s GPU.

RQ1: Can we increase throughput by increasing the number of mixture components?
As can be seen in Table 9, similarly to our EvaByte results, increasing the rank leads to increased
acceptance rates and throughput for Llama3.2.

RQ2: Do we benefit from more expressive circuit architectures (for longer sequences)?

12https://github.com/OpenEvaByte/evabyte/blob/98d5f48d32197b803e7560a798da35c7a4bdcf4d/
evabyte_hf/modeling_evabyte.py#L753

13https://huggingface.co/benjamin/Llama3-2-3B-IT-Byte
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As can be seen in Table 10, for the Llama model we get the best performance using MTPC-BTREE
even for n = 8, while for EvaByte, MTPC-CP had superior throughput. Although we get smaller
relative speed-ups over STP (2.07×) when compared to EvaByte, we still get substantial boosts in
throughput by relaxing the independence assumptions, with MTPC-CP increasing throughput by
1.14× and MTPC-BTREE by 1.23× over MTPC-FF. We note that EvaByte has been pretrained with
an MTP head, so it is reasonable that it is hard to match its throughput while keeping the Llama
encoder frozen (no-lora). We also note that for the Llama model the generation quality of the STP
model degrades after 500 tokens or so when using ancestral sampling. We believe this is why the
greedy decoding results in Tables 11 and 12 are even better compared to the sampling results.

J.1 SPECULATIVE SAMPLING

model r µacc ↑ µlat ↓ µtok/s ↑

FF 1 1.73 ± 0.02 0.0516 ± 0.0006 36.1 ± 0.6

CP
8 1.92 ± 0.07 0.0529 ± 0.0018 39.3 ± 0.5

16 1.98 ± 0.02 0.0550 ± 0.0011 38.9 ± 0.8

32 2.08 ± 0.04 0.0543 ± 0.0012 41.1 ± 0.7

Table 9: Speculative sampling results while varying the CP rank for the byte-fied version of Llama
3.2 3B. As can be seen, increasing r steadily increases the acceptance rate and the best throughput is
obtained for r = 32.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.049 21.5 1.00

8
1 FF 1.73 ± 0.02 0.0516 ± 0.0006 36.1 ± 0.6 1.68

32 CP 2.08 ± 0.04 0.0543 ± 0.0012 41.1 ± 0.7 1.92
32 BTree 2.26 ± 0.02 0.0549 ± 0.0013 44.3 ± 1.2 2.07

Table 10: Speculative sampling results with r = 32 for the byte-fied version of Llama 3.2 3B. As can
be seen, MTPC-BTREE outperforms all other models in throughput, supporting our EvaByte results.

J.2 GREEDY SPECULATIVE DECODING

model r µacc ↑ µlat ↓ µtok/s ↑

FF 1 2.70 ± 0.01 0.0463 ± 0.0018 59.8 ± 2.5

CP
8 3.25 ± 0.02 0.0490 ± 0.0022 69.4 ± 3.2

16 3.42 ± 0.04 0.0502 ± 0.0018 71.3 ± 2.4

32 3.47 ± 0.06 0.0507 ± 0.0015 71.9 ± 3.0

Table 11: Greedy speculative decoding results while varying the CP rank for the byte-fied version of
Llama 3.2 3B.

n r model µacc ↑ µlat ↓ µtok/s ↑ speed-up ↑

1 1 STP — 0.049 21.5 1.00

8
1 FF 2.70 ± 0.01 0.0463 ± 0.0018 59.8 ± 2.5 2.79

32 CP 3.47 ± 0.06 0.0507 ± 0.0015 71.9 ± 3.0 3.35
32 BTree 3.72 ± 0.09 0.0507 ± 0.0017 76.8 ± 4.1 3.58

Table 12: Greedy speculative decoding results with r = 32 for the byte-fied version of Llama 3.2 3B.
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