Robotic Task Generalization via
Hindsight Trajectory Sketches

Jiayuan Gu'2, Sean Kirmani', Paul Wohlhart', Yao Lu', Montserrat Gonzalez Arenas',
Kanishka Rao', Wenhao Yu', Chuyuan Fu', Keerthana Gopalakrishnan', Zhuo Xu!,

Priya Sundaresan', Peng Xu', Hao Su?, Karol Hausman', Chelsea Finn', Quan Vuong', Ted Xiao'

1Google DeepMind, ?University of California San Diego

Abstract: We propose a policy conditioning method using such rough trajectory
sketches, which we call RT-Trajectory, that is practical, easy to specify, and allows
the policy to effectively perform new tasks that would otherwise be challenging to
perform. We find that trajectory sketches strike a balance between being detailed
enough to express low-level motion-centric guidance while being coarse enough to
allow the learned policy to interpret the trajectory sketch in the context of situational
visual observations. In addition, we show how trajectory sketches can provide a useful
interface to communicate with robotic policies — they can be specified through simple
human inputs like drawings or videos, or through automated methods such as modern
image-generating or waypoint-generating methods. We evaluate RT-Trajectory at
scale on a variety of real-world robotic tasks, and find that RT-Trajectory is able to
perform a wider range of tasks compared to language-conditioned and goal-conditioned
policies, when provided the same training data. Evaluation videos can be found at
https://rt-trajectory.github.io/

1 Introduction

The pursuit of generalist robot policies has been a perennial challenge in robotics. The goal is to devise
policies that not only perform well on known tasks but can also generalize to novel objects, scenes, and
motions that are not represented in the training dataset. The generalization aspects of the policies are
particularly important because of how impractical and prohibitive it is to compile a robotic dataset covering
every conceivable object, scene, and motion. This begs a question: can we design a better conditioning
modality that is expressive, practical and, at the same time, leads to better generalization to new tasks?

To this end, we propose to use a coarse trajectory as a middle-ground solution between expressiveness
and ease of use. Specifically, we introduce the use of a 2D trajectory projected into the camera’s field
of view, assuming a calibrated camera setup. This approach offers several advantages. For example,
given a dataset of demonstrations, we can automatically extract hindsight 2D trajectory labels without
the need for manual annotation. In addition, trajectory labels allow us to explicitly reflect similarities
between different motions of the robot, which, as we show in the experiments, leads to better utilization
of the training dataset resulting in a wider range of tasks compared to language- and goal-conditioned
alternatives. Furthermore, humans or modern image-editing models can sketch these trajectories directly
onto an image, making it a simple yet expressive policy interface. The main contribution of this paper is a
novel policy conditioning framework RT-Trajectory that fosters task generalization. This approach employs
2D trajectories as a human-interpretable yet richly expressive conditioning signal for robot policies. Our
experimental setup involves a variety of object manipulation tasks with both known and novel objects.
Our experiments show that RT-Trajectory outperforms existing policy conditioning techniques, particularly
in terms of generalization to novel motions, an open challenge in robotics.

2 Method

In this section, we describe how we acquire training trajectory conditioning labels from the demonstration
dataset. We introduce three basic elements for constructing the trajectory representation format: 2D
Trajectories, Color Grading, and Interaction Markers.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://rt-trajectory.github.io/

Training Trajectory Sketches Policy Architecture

R Current Image
and
Hindsight Demonstration Proprioception End-effector Trajectory Recent History
Trajectory Episode
N~ v AV -V
Inference Trajectories Training Only
concat
Inference Only
A i =
Trajectory L=] EfficientNet
Drawings Graphical User Interface 3
ooDEEEE
[TokenLearner
e ooo
Human Videos
Hand Pose Extraction
OR . ‘ alal ‘ Transformer
i a “Generate the
trajectory to
| + put the chip
i —— bag in the
‘ middle drawer” mode _base clu)
Foundation D DDD DDDDDDD

Models Code as Policies via LLMs or Image Generation via VLMs

Action

Figure 1: We propose RT-Trajectory, a framework for utilizing coarse trajectory sketches for policy
conditioning. We train on hindsight trajectory sketches (top left) and evaluate on inference trajectories
(bottom left) produced via Trajectory Drawings, Human Videos, or Foundation Models. These trajectory
sketches are used as task specification for an RT-1 [1] policy backbone (right).

(a) Example Trajectory

Interaction Temporal Gripper RT-Trajectory RT-Trajectory
Markers Progress Height (2D) (2.5D)

Figure 2: Visualization of the two hindsight trajectory sketch representations we study. Given (a) an
example robot trajectory, we extract (b) gripper interaction markers, (c) temporal progress along the 2D end-
effector waypoints, and (d) end-effector height. Combining (b) and (c) results in (¢) RT-Trajectory (2D),
while combining (b), (c), and (d) results in (f) RT-Trajectory (2.5D).

2D Trajectory For each episode in the dataset of demonstrations, we extract a 2D trajectory of robot
end-effector center points. Concretely, given the proprioceptive information recorded in the episode,
we obtain the 3D position of the robot end-effector center defined in the robot base frame at each time
step, and project it to the camera space given the known camera extrinsic and intrinsic parameters. We
assume that the robot base and camera do not move within the episode, which is common for stationary
manipulation. Given a 2D trajectory (a sequence of pixel positions), we draw a curve on a blank image,
by connecting 2D robot end-effector center points at adjacent time steps through straight lines.

Color Grading To express relative temporal motion, which encodes such as velocity and direction, we

. 1
also explore using the red channel of the trajectory image to specify the normalized time step %, where

= RT-Traj (2D) = RT-Traj (2.5D) = RT-1 = RT-2 = RT-1-goal

Place Fruit Upright and Move within Restock Pick from Chair Fold Cloth Swivel Chair Overall
Move Drawer Drawer

Figure 3: Success rates for unseen tasks when conditioning with human-drawn sketches. Scenarios contain
a variety of difficult settings which require combining seen motions in novel ways or generalizing to new
motions. Each policy is evaluated for a total of 64 trials across 7 different scenarios.

T is the total episode length. Additionally, we propose incorporating height information into the trajectory
representation by utilizing the green channel of the trajectory image to encode normalized height relative
to the robot base :t“*ﬂ

maz—Rmin*

Interaction Markers For robot manipulation tasks, time steps when the end-effector interacts with the
environment are particularly important. Thus, we explore visual markers that explicitly highlight the
time steps when the gripper begins to grasp and release objects. Concretely, we first compute whether
the gripper has contact with objects by checking the difference d, = p; —p; between the sensed (p;) and
target (p;) gripper joint positions. If the difference d; > 0 and p; > €, where ¢ is a threshold of closing
action (p; increases as the gripper closes), it indicates that the gripper is closing and grasping certain object.
If the status change, e.g., §: <0V p; <e but §z11 >0AD:11 > €, we consider the time step ¢ as a key step
for the closing action. Similarly, we can find the key time steps for the opening action. We draw green
(or blue) circles at the 2D robot tool center points of all key time steps for closing (or opening) the gripper.

Trajectory Representations In this work, we propose two forms of trajectory representation from
different combinations of the basic elements. In the first one, RT-Trajectory (2D), we construct an RGB
image containing the 2D Trajectory with temporal information and Interaction Markers to indicate particular
robot interactions (Fig. 2 (e)). In the second representation, we introduce a more detailed trajectory
representation RT-Trajectory (2.5D), which includes the height information in the 2D trajectory (Fig. 2 (f)).

Policy Training and Inference We build upon the RT-1 [1] framework and introduce trajectory sketch
conditioning. At inference time, we generate trajectory sketches with various input modality sources.
These details are fully described in Appendix B.

3 Experiments

Our real robot experiments aim to study the following questions:

1. Can RT-Trajectory generalize to tasks beyond those contained in the training dataset?

2. Can RT-Trajectory trained on hindsight trajectory sketches generalize to different trajectory
generation methods at test time, including human-specified or automated methods?

3. Are evaluation rollouts of RT-Trajectory meaningfully different from training motions?

We describe our experimental setup in App. C and show what emergent capabilities and realistic case
studies that RT-Trajectory enable in App. G.

3.1 Unseen Task Generalization

In this section, we compare RT-Trajectory with other learning-based baselines (RT-1 [1], RT-2 [2], and
RT-1-goal) on generalization to unseen task scenarios. The results are shown in Fig. 3 and Table 4. We
find that language-conditioned policies struggle to generalize to the new tasks with semantically unseen
language instructions, even if motions to achieve these tasks were seen during training (see Sec. F),

compared to RT-Trajectory. RT-Trajectory (2.5D) outperforms RT-Trajectory (2D) on the tasks where
height information helps reduce ambiguity. For example, with 2D trajectories only, it is difficult for
RT-Trajectory (2D) to infer correct picking height, which is critical for Pick from Chair.

3.2 Automated Trajectory Conditioning

While RT-Trajectory is trained on trajectory sketches generated from hindsight end-effector poses from
demonstrations and evaluated on human drawing trajectories in Sec. 3.1, we aim to study whether
RT-Trajectory is able to generalize to trajectories from more automated and general processes at inference
time. Specifically, we evaluate quantitatively how RT-Trajectory performs when conditioned on coarse
trajectory sketches generated by human video demonstrations, LLMs via Prompting with Code as Policies,
and show qualitative results for image generating VLMs. Additionally, we compare RT-Trajectory against
a non-learning baseline (IK Planner) to follow the generated trajectories: an inverse-kinematic (IK) solver
is applied to convert the end-effector poses to joint positions, which are then executed by the robot.

Method Pick Fold Towel Method Pick Open Drawer
IK Planner 42% 25% IK Planner 83% 1%
Ours (2D) 94% 75% Ours (2D) 89% 60%
Ours (2.5D) 100% 75% Ours (2.5D) 89% 60%

(a) Trajectory from human video demonstrations. (b) Trajectory from LLM prompting.

Table 1: Success rate of different trajectory generation approaches across tasks.

Human Demonstration Videos with Hand-object Interaction We collect 18 and 4 first-person human
demonstration videos with hand-object interaction for Pick and Fold Towel. An example is shown in
Fig. 4. Details about video collection and how we derive trajectory sketches from videos are described
in App. D.3. Results are shown in Table 1a.

Prompting with Code as Policies We prompt an LLM [3] to write code to generate trajectories given
the task instructions and object labels for Pick and Open Drawer. After executing the code written by
the LLM, we get a sequence of target robot waypoints which can then be processed into a trajectory sketch.
In contrast with human video trajectories, LLM trajectories are designed to be executed by an IK planner
and are therefore precise and linear as seen in Fig. 14. Results are shown in Table 1b.

Image Generation Models We condition the VLM with a language instruction and image to output
trajectory tokens which are de-tokenized into 2D pixel coordinates for drawing the trajectory on the initial
image. Qualitative examples are shown in Fig 5. Although we see that generated trajectory sketches
are noisy and quite different from the training hindsight trajectory sketches, we find promising signs that
RT-Trajectory still performs reasonably. As image-generating VLMs rapidly improve, we expect that their
trajectory sketch generating capabilities will improve naturally in the future and be usable by RT-Trajectory.

3.3 Measuring Motion Generalization

We wish to explicitly measure motion similarity in order to better understand how well RT-Trajectory is
able to tackle the challenges of novel motion generalization. Towards this, we intend to compare rollout
evaluation trajectories to the most similar trajectories seen during training utilizing the discrete Fréchet
distance [4] (details in App. F). We find that the proposed novel evaluations indeed require a mix of
interpolating seen motions along with generalizing to novel motions altogether, as shown in Fig. 11.

4 Conclusion and Limitations

In this work, we propose a novel policy-conditioning for training robot manipulation policies capable
of generalizing to tasks and motions that are significantly beyond the training data. Key to our proposed
approach is a 2-D trajectory sketch representation for specifying the manipulation tasks. Our trained
trajectory sketch-conditioned policy enjoys the controllability from the trajectory sketch guidance, while
retaining the flexibility of learning-based policies in handling ambiguous scenes and generalization to
novel semantics. We evaluate our proposed approach on 7 diverse manipulation skills that were never seen
during training and benchmarked against three baseline methods. Our proposed method achieves a success
rate of 67%, significantly outperforming the best prior state-of-the-art methods, which achieved 26%.

References

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath, I. Mordatch,
O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao, M. Ryoo, G. Salazar,
P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran, V. Vanhoucke, S. Vega,
Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. RT-1: robotics transformer for
real-world control at scale. Proceedings of Robotics: Science and Systems (RSS), 2023.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, L. Lee,
T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann,
M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran, V. Vanhoucke,
Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and
B. Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In
Conference on Robot Learning (CoRL), 2023.

[3] OpenAlL Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https:
//api.semanticscholar.org/CorpusID:257532815.

[4] M. M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di
Palermo (1884-1940), 22(1):1-72, 1906.

[5] S. Toyer, R. Shah, A. Critch, and S. Russell. The magical benchmark for robust imitation. Advances
in Neural Information Processing Systems, 33:18284-18295, 2020.

[6] A.Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu,
and R. Martin-Martin. What matters in learning from offline human demonstrations for robot
manipulation. Conference on Robot Learning (CoRL), 2021.

[7] A.Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning for
visual robotic manipulation. arXiv preprint arXiv:2307.03659, 2023.

[8] S. Belkhale, Y. Cui, and D. Sadigh. Data quality in imitation learning. arXiv preprint
arXiv:2306.02437, 2023.

[9] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipulation,
2021.

[10] E. Jang, A. Irpan, M. Khansari, D. Kappler, E. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning, 2022.

[11] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot
hours. In IEEE international conference on robotics and automation (ICRA), 2016.

[12] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics.
Proceedings of Robotics: Science and Systems (RSS), 2017.

[13] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

[14] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, B. Zitkovich, E. Xia,
C. Finn, and K. Hausman. Open-world object manipulation using pre-trained vision-language models,
2023.

[15] Z. Chen, S. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen situations
via generative augmentation. Proceedings of Robotics: Science and Systems (RSS), 2023.

[16] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, D. M, J. Peralta,
B. Ichter, K. Hausman, and E. Xia. Scaling robot learning with semantically imagined experience.
In arXiv preprint arXiv:2302.11550, 2023.

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

[17] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu, and
L. Fan. Vima: General robot manipulation with multimodal prompts. In Fortieth International
Conference on Machine Learning, 2023.

[18] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tompson.
Robotic skill acquistion via instruction augmentation with vision-language models. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[19] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value maps
for robotic manipulation with language models, 2023.

[20] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn. Learning language-conditioned
robot behavior from offline data and crowd-sourced annotation, 2021.

[21] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu,
C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do as I can, not as
I say: Grounding language in robotic affordances. In Conference on Robot Learning (CoRL), 2022.

[22] E Hill, S. Mokr4a, N. Wong, and T. Harley. Human instruction-following with deep rein-
forcement learning via transfer-learning from text. CoRR, abs/2005.09382, 2020. URL
https://arxiv.org/abs/2005.09382.

[23] C.Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. Robotics:
Science and Systems, 2021.

[24] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza, T. Davcheyv, Y. Zhou, A. Gupta,
A. Raju, A. Laurens, C. Fantacci, V. Dalibard, M. Zambelli, M. Martins, R. Pevceviciute, M. Blokzijl,
M. Denil, N. Batchelor, T. Lampe, E. Parisotto, K. Zomha, S. Reed, S. G. Colmenarejo, J. Scholz,
A. Abdolmaleki, O. Groth, J.-B. Regli, O. Sushkov, T. Rothorl, J. E. Chen, Y. Aytar, D. Barker,
J. Ortiz, M. Riedmiller, J. T. Springenberg, R. Hadsell, F. Nori, and N. Heess. Robocat: A
self-improving foundation agent for robotic manipulation, 2023.

[25] C.Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning latent
plans from play. Conference on Robot Learning (CoRL), 2019.

[26] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies:
Language model programs for embodied control. In arXiv preprint arXiv:2209.07753, 2022.

[27] E. Chane-Sane, C. Schmid, and I. Laptev. Learning video-conditioned policies for unseen
manipulation tasks, 2023.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, k.. Kaiser, and 1. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

[29] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

[30] M. Gonzalez Arenas, T. Xiao, S. Singh, V. Jain, A. Ren, Q. Vuong, J. Varley, A. Herzog, 1. Leal,
S. Kirmani, M. Prats, D. Sadigh, V. Sindhwani, K. Rao, J. Liang, and A. Zeng. How to prompt your
robot: A promptbook for manipulation skills with code as policies. 2023.

[31] G. Kim, T. Kwon, and J. C. Ye. Diffusionclip: Text-guided diffusion models for robust image
manipulation. In Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

[32] J. Y. Koh, D. Fried, and R. Salakhutdinov. Generating images with multimodal language models.
NeurlPS, 2023.

[33] J. Lu, C. Clark, R. Zellers, R. Mottaghi, and A. Kembhavi. UNIFIED-IO: A unified model for vision,
language, and multi-modal tasks. In Proc. Int. Conf. on Learning Representations (ICLR), 2023.

https://arxiv.org/abs/2005.09382

(34]

[35]

[36]

(37]

(38]
(391

[40]

[41]

J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan, A. Ku, Y. Yang, B. K. Ayan,
B. Hutchinson, W. Han, Z. Parekh, X. Li, H. Zhang, J. Baldridge, and Y. Wu. Scaling autoregressive
models for content-rich text-to-image generation, 2022.

D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, 1. Mordatch, and P. Florence. Palm-e: An embodied
multimodal language model, 2023.

J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge, and Y. Wu.
Vector-quantized image modeling with improved VQGAN. In Proc. Int. Conf. on Learning
Representations (ICLR), 2022.

C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L. Chang,
M. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and M. Grundmann. Mediapipe: A framework
for perceiving and processing reality. In Third Workshop on Computer Vision for AR/VR at IEEE
Computer Vision and Pattern Recognition (CVPR), 2019.

T. Eiter and H. Mannila. Computing discrete fréchet distance. 1994.

G. Borgefors. Distance transformations in arbitrary dimensions. Computer vision, graphics, and
image processing, 27(3):321-345, 1984.

R. M. Holladay and S. S. Srinivasa. Distance metrics and algorithms for task space path optimization.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5533-5540. IEEE, 2016.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901, 2020.

A Related Work

In this section, we discuss prior works studying generalization in robot learning as well as works proposing
specific policy conditioning representations.

Generalization in Robot Learning Recent works have studied how learning-based robot policies may
generalize robustly to novel situations beyond the exact data seen during training. Empirical studies have
analyzed generalization challenges in robotic imitation learning, focusing on 2D control [5], demonstration
quality [6], visual distribution shifts [7], and action consistency [8]. In addition, prior works have proposed
evaluation protocols explicitly testing policy generalization; these include generalizing to novel semantic
attributes [9], holdout language templates [10], unseen object categories [11, 12, 13, 14], new backgrounds
and distractors [15, 16], combinations of distribution shifts [1, 17], open-set language instructions [18, 19],
and web-scale semantic concepts [2]. While these prior works largely address semantic and visual
generalization, we additionally study task generalization which include situations which require combining
seen states and actions in new ways, or generalizing to wholly unseen states or motions altogether.

Policy Conditioning Representations We examine a few approaches for policy conditioning. Broadly,
there are 2 axes to consider: (1) over-specification and under-specification of goals, and (2) conditioning
on all states in a trajectory versus only the end state. The most prolific recent body of work focuses on
language-conditioned policies [10, 1, 2, 20, 21, 22, 23], which utilize templated or freeform language as task
specification. Language-conditioned policies can be thought of as under-specified on the end state (e.g. there
are many possible end-states for a policy that completes pick can). There are many image-conditioned
policy representations with the most popular technique being goal-image conditioning: where a final goal
image defines the desired task’s end-state [24, 25]. Goal image conditioned policies can be thought of as
over-specified on the end state (i.e. “what to do”) because they define an entire configuration, some of which
might not be relevant. For example, the background pixels of the goal image might not be pertinent to the
task, and instead contain superfluous information. There are some examples of intermediate levels of specifi-
cation that propose 2D and 3D object-centric representations [14, 9, 19], using a multimodal embedding that
represents the task as a joint space of task-conditioned text and goal-conditioned image [18, 17, 9], and de-
scribing the policy as code [26] which constrains how to execute every state. An even more detailed type of
state-specification would be conditioning on an entire RGB video which is equivalent to over-specification
over the entire trajectory of states (i.e. “how to do it”’) [27]. However, encoding long videos in-context is
challenging to scale, and learning from high-dimensional videos is a challenging learning problem [10]. In
contrast, our approach uses a lightweight coarse level of state-specification, which aims to strike a balance
between sufficient state-specification capacity to capture salient state properties while still being tractable to
learn from. We specifically compare against language-conditioning and goal-image conditioning baselines,
and show the benefits of using a mid-level conditioning representation such as coarse trajectory sketches.

B Implementation Details

B.1 Policy Training

We leverage Imitation Learning due to it’s strong success in multitask robotic imitation learning settings
[10, 24]. More specifically, we assume access to a collection of successful robot demonstration episodes.
Each episode T contains a sequence of pairs of observations o; and actions a;: 7 = {(0¢,at)}. The
observations include RGB images obtained from the head camera x; and hindsight trajectory sketch cg;.q .
We then learn a policy 7 represented by a Transformer [28] using Behavior Cloning [29] following the RT-1
framework [1], by minimizing the log-likelihood of predicted actions a; given the input image and trajectory
sketch. To support trajectory conditioning, we modify the RT-1 architecture as follows. The trajectory sketch
is concatenated with each RGB image along the feature dimension in the input sequence (a history of 6
images), which is processed by the image tokenizer (an ImageNet pretrained EfficientNet-B3). For the addi-
tional input channels to the image tokenizer, we initialize the new weights in the first convolution layer with
all zeros. Since the language instruction is not used, we remove the FILM layers used in the original RT-1.

B.2 Trajectory Conditioning during Inference

During inference, a trajectory sketch is required to condition RT-Trajectory. We study 4 different methods
to generate trajectory sketches: human drawings, human videos, prompting LLMs with Code as Policies,
and image generation models.

Figure 4: Trajectory from human demonstration video to fold a towel. From left to right, the first 4 images
show the human demonstration, and the last image shows the derived trajectory sketch.

Figure 5: Example trajectory from image generation models. From left to right, the first image shows
the overlaid trajectory sketch, and the next 4 images show the rollout conditioned on it. The language
instruction is: pick orange can from top drawer and place on counter.

Human-drawn Trajectory Sketches Human-drawn sketches are an intuitive and practical way to gener-
ate trajectory sketches at inference time. To scalably produce these sketches during evaluations, we design a
simple UI for users to draw trajectory sketches given the robot’s initial camera image, as shown in App. D.1.

Human Demonstration Videos with Object Interaction We also study first-person human single-hand
demonstration videos. We estimate the trajectory of human hand poses from the video, and convert it
to a trajectory of robot tool poses, which can be used to generate a trajectory sketch.

Prompting LLMs with Code as Policies Large Language Models have demonstrated the ability to write
code to perform robotics tasks [26]. In this work, we aim to leverage the spatial and physical reasoning
capabilities of LLMs to output trajectories. We follow a similar recipe as described in [30] to build a prompt
which contains text descriptions about the objects in the scene detected by a VLM, the robot constraints, the
gripper orientations and coordinate systems, as well as the task instruction. By using this prompt, the LLM
writes code to generate a series of 3D poses - originally intended to be executed with a motion planner,
which we can then re-purpose to draw the trajectory sketch on the initial image to condition RT-Trajectory.

Image Generation Models Since our trajectory conditioning is represented as an image, we can use
text-guided image generation models ([31, 32, 33, 34]) to generate a trajectory sketch provided the initial
image and language instruction which describes the task. In our work, we use a PaLM-E style ([35])
model that generates vector-quantized tokens derived from ViT-VQGAN ([36]) that represent the trajectory
image. Once detokenized, the resulting image can be used to condition RT-Trajectory.

C Experiment Details

C.1 Experimental Setup

We use a mobile manipulator robot from Everyday Robots in our experiments, which has a 7
degree-of-freedom arm, a two-fingered gripper, and a mobile base.

Seen Skills We use the RT-1 [1] demonstration dataset for training, which contains 542 instructions
inspired by an office kitchen setting. The language instructions consist of 8 different manipulation skills
(e.g., Move Near) operating on a set of 17 household kitchen items; in total, the dataset consists of 73,334
real robot demonstrations across these 542 seen tasks, which were collected by manual teleoperation. A
more detailed overview is shown in Table 2.

Unseen Skills We propose 7 new evaluation skills which include unseen objects and manipulation
workspaces, as shown in Table 3 and Fig. 3. Place Fruit inspects whether the policy can place objects
into unseen containers. Both Upright and Move and Move within Drawer examine whether the policy
can combine different seen skills to form a new one. For example, Move within Drawer studies whether
the policy is able to move objects within the drawer while the seen skill Move Near only covers those
motions at height of the tabletop. Restock Drawer requires the robot to place snacks into the drawer at

Skill Count Description Example Instruction

Pick Object 17 Lift the object off the surface pick coke can

Move Object Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry

Place Object Upright 8 Place an elongated object upright place water bottle upright

Knock Object Over 8 Knock an elongated object over knock redbull can over

Open Drawer 3 Open any of the cabinet drawers open the top drawer

Close Drawer 3 Close any of the cabinet drawers close the middle drawer

Place Object into Receptacle 84 Place an object into a receptacle place brown chip bag into white bowl
Pick Object from Receptacle 82 Pick an object up from a location and then place pick green jalapeno chip bag from paper
and Place on the Counter it on the counter bowl and place on counter

Total 542

Table 2: The list of seen training tasks with their descriptions and example language instructions. Language
instructions are only used for language-conditioned baselines.

an empty slot. It studies whether the policy is able to place objects at target positions precisely. Pick from
Chair investigates whether the policy can pick objects at an unseen height in an unseen manipulation
workspace. Fold Towel and Swivel Chair showcase the capability to manipulate a deformable object
and interact with an underactuated system.

Skill Counts Description Example instruction

Place Fruit 12 Place fruit into the container place orange into basket

Upright and Move 6 Place an object upright and move it near another place green can upright near pepsi can

Move within Drawer 6 Move one object near another within the drawer move coke can near 7up can at top drawer
Restock Drawer 12 Place objects into the desired position in the drawer place coke can into the top right of top drawer
Pick from Chair 8 Pick an object placed on the chair pick apple from chair

Fold Towel 4 Fold the towel by moving one corner to another fold towel from bottom right

Swivel Chair 10 Swivel the office chair push the chair

Table 3: The list of unseen evaluation tasks with their descriptions and example language instructions.
Language instructions are only used for language-conditioned baselines. “Counts” refers to the number of
scenes collected for evaluation.

Evaluation Protocol Different trajectory sketches will prompt RT-Trajectory to behave differently. To
make the quantitative comparison between different methods as fair as possible, we propose the following
evaluation protocol. For each skill to evaluate, we collect a set of scenes. Each scene defines the initial
state of the task, described by an RGB image taken by the robot head camera. During evaluation, we first
align relevant objects to the initial state specified by the scene’s RGB image, and then run the policy. For
conditioning RT-Trajectory, we use human-drawn sketches for the unseen tasks in Sec. 3.1. Additionally,
in Sec. 3.2, we evaluate the automated trajectory sketch generation approaches presented in Sec. B.2.

C.2 Implementation Details for R7-1-goal

The network architecture of RT-1-goal is the same as RT-Trajectory, except a goal image is used instead
of a trajectory sketch. To acquire goal conditioning for training, we use the last observation of each episode
as the goal image for all frames in the episode. For the goal images used for policy conditioning in the
quantitative evaluation in Sec. 3.1, we pre-save goal images similar to how we pre-save the initial scene
configuration or trajectory sketch goals.

C.3 Quantitative Results for Unseen Tasks

See Table 4.

D Implementation Details for Different Input Modalities

D.1 Human-drawn Trajectory Sketches
As the main trajectory generation method we study is user-specified trajectory drawings, we develop a

graphical user interface (GUI) for users to draw trajectory sketches. See Fig. 6 for example. Given the
current robot camera image, a user can drag and move the mouse to draw curves on the canvas. Then,

10

Task RT-Traj 2D) RT-Traj (2.5D) RT-1 RT-2 RT-1-goal

Place Fruit 75 75 0 333 83
Upright and Move 333 50 167 O 0
Move within Drawer 66.7 100 333 0 16.7
Restock Drawer 91.7 66.7 417 167 417
Pick from Chair 0 37.5 0 0 16.7
Fold Towel 75 75 0 0 0
Swivel Chair 0 70 167 0 50
Overall 50 67.2 167 11.1 26

Table 4: Success rates for unseen tasks when conditioning with human-drawn sketches.

they can click on the canvas to add markers to indicate gripper closing or opening actions. Additionally, the
Ul interface also supports simple height annotation. Users can specify the desired height values for pixels
they select on the canvas. This height value will be assigned to the closest point on the drawn 2D trajectory.
For unannotated points on the 2D trajectory, we interpolate their height values according to annotated ones.

Figure 6: Left: The GUI for users to draw trajectory sketches given the robot’s current camera image. The
2D trajectory is directly drawn by manual input, which can then be annotated with interaction markers or
waypoints corresponding to user-specified heights. Right: The resulting height-aware trajectory sketch
generated according to the output of the UL

D.2 Generating Human-drawn Trajectory Sketches

For each scene, we use a held-out RT-Trajectory (2.5D) policy to explore different trajectory “prompts”
given a budget of (10) trials, and save the trajectory sketch of the first successful episode. We refer to
such process as “prompt engineering” (Sec. G). If all attempts fail, we just save the trajectory sketch
from the last episode. RT-Trajectory policies used for evaluation are trained with different random seeds
and evaluated with the saved trajectory sketches as conditioning. Note that we observe that our evaluated
policies can have non-zero success rates on the scenes where we fail to find a successful episode during
“prompt engineering”. For RT-1-goal, the image of the last step of the episode used to generate the
trajectory sketch for each scene is saved as the goal conditioning for evaluation.

D.3 Human hand pose estimation

We employ Mediapipe [37] to detect the human hand pose represented as 21 landmarks from the 2D image
at each video frame. The two landmarks on the thumb and another two landmarks on the index finger
are used to represent a parallel gripper. The 2D landmarks are lifted to 3D given the depth map. We then
interpolate the tool pose from these four points. We manually annotate the key frames at which the hand
begins to grasp and release the target object. Given estimated tool poses and key frames for interaction,
we can generate a trajectory sketch per video.

11

E Motion Diversity Analysis

E.1 Computation of trajectory similarity

To measure the distance between two end-effector motion trajectories we employ the Fréchet dis-
tance [4, 38], a measure that quantifies the similarity between two curves by finding the minimum “leash
length” required for two agents traversing each curve simultaneously while maintaining their respective
temporal order. As a well-adopted similarity measure in computer vision and vehicle tracking [39], Fréchet
distance may be a reasonable choice for comparing 3D robot end-effector waypoint trajectories since it
is order-preserving and parameterization independent [40].

Specifically, consider two trajectories 7 and 7/ where each trajectory contains n pose waypoints consisting
of the sensed end-effector center positions, 7 = {po,p1,....pm } and 7" ={p{,p},....00 }» and d(p;,p}) is
a distance measure like Euclidean distance. Then, using the notation 7[1:] to denote removing the first
element and returning the rest of the sequence 7, the Fréchet distance F)p is recursively defined as:

Fp(r,7")=max(d(po,py),min{ Fp (r[1:],7'[1:]),Fp (7,7 [1:]),Fp(r[1:],7)})

E.2 Additional samples of trajectory similarities

Figure 7 shows additional examples of evaluation trajectories and their most similar trajectories in the
training dataset.

F Measuring Motion Generalization

We wish to explicitly measure motion similarity in order to better understand how well RT-Trajectory is
able to tackle the challenges of novel motion generalization. Towards this, we intend to compare rollout
evaluation trajectories to the most similar trajectories seen during training. To accomplish this, we propose
to measure trajectory similarity by utilizing the discrete Fréchet distance [4] (details in App. E.1). By
computing the distance between a query trajectory and all trajectories in our training dataset we can retrieve
the most similar trajectories our policy has been trained on. We perform this lookup for trajectories from
the rollouts for the novel motion evaluations in Sec. 3.1 and present the results in Fig. 11. We find that
the trajectories for novel tasks have varying amounts of similar trajectories in the training trajectories. In
some cases, e.g., the motion for place a fruit in a tall bowl may be very similar to the motion for
an already seen instance of move X near Y. However, for many novel skills the most similar examples
in the training data are still significantly more different than for examples within the training set, as can
be seen in the distribution of their Fréchet distances. In addition, even for evaluation trajectories that seem
close in shape to the most similar training trajectories, we find differences in precision-critical factors
like the z-height of gripper interactions (picks that are just a few centimeter incorrect will not succeed) or
semantic relevance (the most similar training trajectories describe different skills than the target trajectory).
Thus, we expect that the proposed novel evaluations indeed require a mix of interpolating seen motions
along with generalizing to novel motions altogether.

G Emergent capabilities and case studies

Prompt Engineering for Robot Policies Similar to how LLMs respond differently in response to language
prompt engineering, RT-Trajectory enables visual prompt engineering, where a trajectory-conditioned policy
may exhibit better performance when the initial scene is fixed but the coarse trajectory prompts are improved.
We find that changing trajectory sketches induces R1-Trajectory to change behavior modes in a reproducible
manner, which suggests an intriguing opportunity: if a trajectory-conditioned robot policy fails in some
scenario, a practitioner may just need to “query the robot” with a different trajectory prompt, as opposed to
re-training the policy or collecting more data. Qualitatively, this is quite different from standard development
practices with language-conditioned robot policies, and may be viewed as an early exploration into zero-shot
instruction tuning for robotic manipulation, similar to capabilities seen in language modeling [41].

Generalizing to Realistic Settings Prior works studying robotic generalization often evaluate only a few
distribution shifts at once, since generalizing to simultaneous physical and visual variations is challenging;
however, these types of simultaneous distribution shifts are widely prevalent in real world settings. As
a qualitative case study, we evaluate RT-Trajectory in 2 new buildings in 4 realistic novel rooms which

12

front side

-04 -02 00 0.2 0.2 0.4 0.6 0.8

Figure 7: Evaluation trajectories for new skills and their 10 closest trajectories from the training set. Each
row shows three frames of a skill evaluation rollout, with the executed trajectory and similar training set
trajectories overlaid, as well as depicting the trajectories in an orthographic projection in robot base frame
looking at the robot from the front and the side. As can be seen, the policy is able to follow the desired
trajectories closely and achieve the tasks. While in many cases, in particular in image space, some of the
similar trajectories from the training set look very close to the executed trajectory, the front and side view
in rows 1 to 4 reveal that the policy at some crucial point has to - and successfully does - deviate from
what it has seen during training. E.g., in row 3 the prompt says to go all the way down to pick up a bottle,
while all nearest training trajectories are from close middle drawer, which doesn’t move the gripper
down far enough. Additionally, row 5 is an example where for a swivel chair prompt trajectory there
coincidentally are many very closely matching move X near Y training trajectories. However, the prompt
here specifies to not close the gripper at the first contact point, which the policy is able to respect.

contain entirely new backgrounds, lighting conditions, objects, layouts, and furniture geometries. With
little to moderate trajectory prompt engineering, we find that RT-Trajectory is able to successfully perform
a variety of tasks requiring novel motion generalization and robustness to out-of-distribution visual
distribution shifts. These tasks are visualized in Fig. 12 and rollouts are shown fully in Fig. 13.

Retry behavior Compared to non-learning methods, R7-Trajectory is able to recover from execution
failures. Fig. 14 illustrates the retry behavior emerged when RT-Trajectory is opening the drawer given
the trajectory sketch generated by the CaP (Sec. B.2). After a failure attempt to open the drawer by its
handle, the robot retried to grasp the edge of the drawer, and managed to pull the drawer.

Height-aware Disambiguation for R7-Trajectory (2.5D) 2D trajectories (without depth information)
are visually ambiguous for distinguishing whether the robot should move its arm to a deeper or higher. We

13

Figure 8: Visualizing additional interesting examples of RT-Trajectory’s generalization performance in new
scenarios. These include a novel kitchen room setting with an unseen cup and unseen placemat, a new
living room room setting with new manipulation objects with new furniture pieces in new heights, and a
bathroom setting with harsh lighting and different table height.

find that height-aware color grading for RT-Trajectory (2.5D) can effectively help reduce such ambiguity,
as shown in Fig. 15.

14

Figure 9: Example rolllouts of 7 unseen skills. The trajectory sketch overlaid on the initial image is
visualized. From top to bottom: Place Fruit, Upright and Move, Fold Towel, Move within Drawer,
Restock Drawer, Pick from Chair, Swivel Chair.

Figure 10: Example trajectories from image generation models. Each row shows the trajectory sketch
overlaid on the first frame and the rollout. The language instructions are: open middle drawer and
place orange into middle drawer.

15

Top-10 Most Similar Training Trajectories to Query Trajectories Semantic First-Interaction Top-10 Fréchet
Relevance Height Alignment Distances

close top open top -20
rawer drawer

s

move X place X placeX 25
near Y upright intoY

“pick from chair”|

(c)

[“move within drawer”

(d)

opentop close top place X
drawer drawer into top
drawer

Figure 11: Similarity of motion trajectories to examples in the training set. Each visualization on the left
shows an initial image of a rollout and super-imposed the executed trajectory (red) as well as the 10 most
similar trajectories in the database (purple). Row (a) shows examples of the in-distribution close top
drawer skill seen in the training data. Rows (b,c,d) show novel evaluation rollouts. The charts on the
right show statistics of the most similar training samples over a larger set of queries for the skill of the
row, such as the distribution of skill semantics of the samples, the height of the end-effector at the point
of the first interaction with the environment, and the distribution of Fréchet distances. While some query
trajectories are well represented in the training data, for many the closest matches are quite different, come
from unrelated semantic categories and from the required trajectory at crucial interaction points.

(a) (b) (c) (d)

Figure 12: Example RT-Trajectory evaluations in realistic scenarios involving (a) novel articulated objects
requiring new motions, (b) manipulation on new surfaces in new buildings in new heights, (c) interacting
with a pivot-hinge cabinet despite training only on sliding-hinge drawers, and (d) circuitous tabletop patterns
extending beyond direct paths in the training dataset. Full rollouts are shown in the supplemental video at
https://rt-trajectory-anon.github.io/

16

https://rt-trajectory-anon.github.io/

(a)

(b)

(c)

(d)

(e)

(f)

(9)

Figure 13: Qualitative examples of emergent capabilities of RT-Trajectory in realistic scenarios beyond the
training settings: (a) new articulated objects requiring novel motion strategies, (b) new circuitous motions
requiring multiple turns, (c) new living room setting with a new height, object, and background, (d) new
bathroom setting with precise picking from a cup, (e) new bedroom setting with a drawer at a new height,
(f) new kitchen setting with a new pivot hinge that requires a new motion for opening and closing, and (g)
new kitchen setting with an unseen pan requiring placement onto a new stove.

17

Figure 14: Example of retry behavior. The first image is the trajectory sketch generated from the CaP
overlaid on the initial observation. The remaining images show the rollout. The robot first attempts to open
the drawer by grasping its handle, but fails (2nd image). Then, it retries to open the drawer by grasping the
edge instead.

Figure 15: Comparison between RT-Trajectory (2D) and RT-Trajectory (2.5D). Given the same 2D
trajectory generated by the CaP, RT-Trajectory (2.5D) lifts the object while RT-Trajectory (2D) moves the
object to a deeper position due to the ambiguity of a 2D trajectory.

18

	Introduction
	Method
	Experiments
	Unseen Task Generalization
	Automated Trajectory Conditioning
	Measuring Motion Generalization

	Conclusion and Limitations
	Related Work
	Implementation Details
	Policy Training
	Trajectory Conditioning during Inference

	Experiment Details
	Experimental Setup
	Implementation Details for RT-1-goal
	Quantitative Results for Unseen Tasks

	Implementation Details for Different Input Modalities
	Human-drawn Trajectory Sketches
	Generating Human-drawn Trajectory Sketches
	Human hand pose estimation

	Motion Diversity Analysis
	Computation of trajectory similarity
	Additional samples of trajectory similarities

	Measuring Motion Generalization
	Emergent capabilities and case studies

