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Abstract

Sampling from flat modes in discrete spaces is a crucial yet underexplored problem.1

Flat modes represent robust solutions and have broad applications in combinato-2

rial optimization and discrete generative modeling. However, existing sampling3

algorithms often overlook the mode volume and struggle to capture flat modes4

effectively. To address this limitation, we propose Entropic Discrete Langevin5

Proposal (EDLP), which incorporates local entropy into the sampling process6

through a continuous auxiliary variable under a joint distribution. The local entropy7

term guides the discrete sampler toward flat modes with a small overhead. We8

provide non-asymptotic convergence guarantees for EDLP in locally log-concave9

discrete distributions. Empirically, our method consistently outperforms tradi-10

tional approaches across tasks that require sampling from flat basins, including11

Bernoulli distribution, restricted Boltzmann machines, combinatorial optimization,12

and binary neural networks.13

1 Introduction14

Figure 1: Cost landscape visualization
on Traveling Salesman Problem (TSP).
Flat modes imply robust solutions under
budget, whereas sharp modes are highly
sensitive to small changes, leading to
abrupt cost increases.

Discrete sampling is fundamental to many machine learn-15

ing tasks, such as graphical models, energy-based mod-16

els, and combinatorial optimization. Efficient sampling17

algorithms are crucial for navigating the complex proba-18

bility landscapes of these tasks. Recent advancements in19

gradient-based methods have significantly enhanced the20

efficiency of discrete samplers by leveraging gradient in-21

formation, setting new benchmarks for tasks such as prob-22

abilistic inference and combinatorial optimization (Grath-23

wohl et al., 2021; Zhang et al., 2022; Rhodes & Gutmann,24

2022; Sun et al., 2022, 2023; Li & Zhang, 2025).25

Sampling from flat modes in discrete spaces is a critical26

yet underexplored challenge. Flat modes, regions where27

neighboring states have similar probabilities, arise fre-28

quently in applications such as energy-based models and29

neural networks (Hochreiter & Schmidhuber, 1997; Ar-30

bel et al., 2021). These regions not only represent mode31

parameter configurations with high generalization perfor-32

mance (Hochreiter & Schmidhuber, 1997), but they are33

also important in constrained combinatorial optimization34

tasks, where finding structurally similar solutions under a budget is required (see Figure 1 for il-35

lustration). While there has been growing interest in addressing flat regions in continuous spaces,36
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particularly for tasks like neural network optimization and Bayesian deep learning (Li & Zhang, 2024;37

Izmailov et al., 2021; Chaudhari et al., 2019), the discrete counterpart remains largely unexplored,38

highlighting a significant gap.39

In this paper, we propose Entropic Discrete Langevin Proposal (EDLP), that incorporates the concept40

of flatness-aware local entropy (Baldassi et al., 2016) into Discrete Langevin Proposal (DLP) (Zhang41

et al., 2022). By coupling discrete and flat-mode-guided variables, we obtain a broader, entropy-42

informed joint target distribution that biases sampling towards flat modes. Specifically, while updating43

the primary discrete variable using DLP, we simultaneously perform continuous Langevin updates on44

the auxiliary variable. Through the interaction between discrete and auxiliary variables, the discrete45

sampler will be steered toward flat regions. We summarize our contributions as follows:46

• We propose Entropic DLP (EDLP), an entropy-guided, gradient-based proposal for sampling47

discrete flat modes. EDLP efficiently incorporates local entropy guidance by coupling48

discrete and continuous variables within a joint distribution.49

• We provide non-asymptotic convergence guarantees for EDLP in locally log-concave distri-50

butions, offering the first such bound for unadjusted gradient-based discrete sampling.51

• Through extensive experiments, we demonstrate that EDLP outperforms existing discrete52

samplers in capturing flat-mode configurations across various tasks, including Ising models,53

restricted Boltzmann machines, combinatorial optimization, and binary Bayesian neural54

networks. We release the code at https://anonymous.4open.science/r/EDLP-C0E8.55

2 Related Works56

Gradient-Based Discrete Sampling. Gradient-based methods have significantly improved sampling57

efficiency in discrete spaces. Locally informed proposals method by Zanella (2020) leverages58

probability ratios to explore discrete spaces more effectively. Building on this, Grathwohl et al.59

(2021) introduced a gradient-based approach to approximate the probability ratio, further improving60

sampling efficiency. Discrete Langevin Proposal (DLP), introduced by Zhang et al. (2022), adapts the61

principles of the Langevin algorithm (Grenander & Miller, 1994; Roberts & Tweedie, 1996; Roberts62

& Rosenthal, 2002), originally designed for continuous spaces, to discrete settings. This algorithm63

enables parallel updates of multiple coordinates using a single gradient computation, boosting both64

computational efficiency and scalability.65

Flatness-aware Optimization. In early neural network optimization, flatness in energy landscapes66

emerged as crucial for improving generalization. Hochreiter & Schmidhuber (1994) linked flat67

minima to better generalization due to their robustness to parameter perturbations. Ritter & Schulten68

(1988) further emphasized the stability advantages of flat regions. Further, LeCun et al. (1990) linked69

learning algorithm stability to flatness, suggesting optimization methods to exploit this. Later, Gardner70

& Derrida (1989) analyzed training algorithms using a statistical mechanics framework, highlighting71

energy landscape topology’s role. In Bayesian deep learning, Li & Zhang (2024) introduced Entropy72

MCMC (EMCMC) to bias posterior sampling towards flat regions, achieving better generalization of73

Bayesian neural networks.74

Our EDLP differs from existing works by targeting flat modes in discrete distributions. A key75

algorithmic innovation lies in bridging discrete and continuous spaces. This allows the sampler to76

explore intermediate regions between discrete states and gain a richer understanding of the discrete77

landscape, enhancing its ability to sample effectively from flat modes. Further, to our knowledge,78

we are the first to provide non-asymptotic results for DLP-type algorithms without the MH step, as79

established in Theorem 5.5, addressing a critical gap in the literature.80

3 Preliminaries81

Target Distribution. We define a target distribution over a discrete space using an energy function.82

The target distribution is given by π(θ) = 1
Z exp(U(θ)), where θ is a d-dimensional discrete variable83

within domain Θ, U(θ) represents the energy function, and Z is the normalizing constant ensuring84

π(θ) is a proper probability distribution. We make the following assumptions consistent with the85

literature on gradient-based discrete sampling (Grathwohl et al., 2021; Sun et al., 2022; Zhang86

et al., 2022): 1. The domain Θ is factorized coordinatewisely i.e. Θ = Πd
i=1Θi. 2. The energy87
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function U can be extended to a differentiable function in Rd. This extension is crucial for applying88

gradient-based sampling methods, as it allows the use of gradient information.89

Langevin Algorithm. In continuous spaces, the Langevin algorithm is a powerful sampling method90

that follows a Langevin diffusion to update variables: θ′
k+1 = θk + α

2∇U(θk) +
√
αϵk, where91

ϵk ∼ N (0, Id×d). The gradient assists the sampler in efficiently exploring high-probability regions.92

Discrete Langevin Proposal. The Discrete Langevin Proposal (DLP) is an extension of the Langevin93

algorithm tailored for discrete spaces, introduced by Zhang et al. (2022). At a given position θ,94

the proposal distribution q(·|θ) determines the next position. The proposal distribution in DLP is95

formulated as:96

q(θ′|θ) =
exp

(
− 1

2α∥θ
′ − θ − α

2∇U(θ)∥2
)

ZΘ(θ)
, (1)

where ZΘ(θ) is the normalizing constant. DLP can be employed without or with a Metropolis-97

Hastings (MH) step, resulting in the discrete unadjusted Langevin algorithm (DULA) and the discrete98

Metropolis-adjusted Langevin algorithm (DMALA), respectively.99

Local Entropy. Local entropy is a critical concept in flatness-aware optimization techniques, which100

is used to understand the geometric characteristics of energy landscapes (Baldassi et al., 2016;101

Chaudhari et al., 2019; Baldassi et al., 2019). It is defined as:102

F(θa; η) = log

(∑
θ∈Θ

exp

{
U(θ)− 1

2η
∥θ − θa∥2

})
, (2)

where η is a scalar parameter controlling the sensitivity to flatness in the landscape. Local entropy103

provides a measure of the density of configurations around a point, thus identifying regions with high104

configuration density and flat energy landscapes.105

4 Entropic Discrete Langevin Proposal106

4.1 Target Joint Distribution: Coupling Mechanism107

We propose leveraging local entropy (Eq.2) to construct an auxiliary distribution that emphasizes flat108

regions of the target distribution. This auxiliary distribution smoothens the energy landscape, acting109

as an external force, driving the exploration of flat basins. Figure 4 in the Appendix A illustrates110

the motivation behind our approach and the impact of the parameter η on the smoothened target111

distribution.112

We start with the original target distribution p(θ) ∝ exp(U(θ)). By incorporating local entropy, we113

derive a smoothed target distribution in terms of a new variable θa:114

p(θa) ∝ expF(θa; η) =
∑
θ∈Θ

exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
(3)

Inspired by the coupling method introduced by Li & Zhang (2024) in their Section 4.1, we couple θ115

and θa as follows:116

Lemma 4.1. Given θ̃ = [θT ,θT
a ]

T ∈ Θ× Rd, the joint distribution p(θ̃) is:117

p(θ̃) = p(θ,θa) ∝ exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
(4)

By construction, the marginal distributions of θ and θa are the original distribution p(θ) and the118

smoothed distribution p(θa) (Eq. 3).119

This result directly follows from Lemma 1 under Section 4.1 in Li & Zhang (2024). The joint hybrid-120

variable, θ̃ lies in a product space where first d coordinates are discrete-valued and the remaining d121

coordinates lie in Rd. Consequently, the energy function of θ̃ becomes U(θ̃) = U(θ)− 1
2η∥θ−θa∥2,122

and its gradient is given by:123

∇θ̃Uη(θ̃) =

[
∇θUη(θ̃)

∇θa
Uη(θ̃)

]
=

[ ∇θU(θ)− 1
η (θ − θa)

1
η (θ − θa)

]
. (5)
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4.2 Sampling Algorithm: Local Entropy Guidance in Discrete Langevin Proposals124

We propose EDLP, an extension of DLP designed to enhance sampling efficiency from flat modes. In125

our framework (Algorithm 1), the Langevin update for θa follows the distribution qαa
(θ′

a|θ̃):126

qαa
(θ′

a|θ̃) =
1

√
2παa

d
exp

(
− 1

2αa
∥θ′

a − θa −
αa

2
∇θa

Uη(θ̃)∥2
)
. (6)

Unlike the standard DLP, where transitions are purely between discrete states, EDLP leverages127

the current joint variables θ̃ = [θT ,θT
a ]

T to propose the next discrete state. By incorporating the128

coupling between the variables, we refine the DLP proposal by replacing ∇U(θ) with ∇θUη(θ̃).129

This adjustment results in the modified proposal:130

qα(θ
′|θ̃) ∝ exp

(
− 1

2α
∥θ′ − θ − α

2
∇θUη(θ̃)∥2

)
. (7)

To further simplify, we use coordinate-wise factorization from DLP to obtain qα(θ
′|θ̃) =131 ∏d

i=1 qαi
(θ′i|θ̃), where qαi

(θ′i|θ̃) is a categorical distribution:132

Cat
(

Softmax
(
1

2
∇θUη(θ̃)i(θ

′
i − θi)−

(θ′i − θi)
2

2α

))
. (8)

By synthesizing Equations (6) and (8), we derive the full proposal distribution:133

qγ(θ̃′|θ̃) ∝qα(θ′|θ̃)qαa
(θ′

a|θ̃) (9)

where γ = (α, αa).134

This factorized proposal in Eq. (9) is purely a design choice to simplify sampling. The proposal135

distribution is called the Entropic Discrete Langevin Proposal (EDLP). At the current joint position θ̃,136

EDLP generates the next joint position. EDLP can be paired with or without a Metropolis-Hastings137

step (Metropolis et al., 1953; Hastings, 1970) to ensure the Markov chain’s reversibility. These138

algorithms are referred to as EDULA (Entropic Discrete Unadjusted Langevin Algorithm) and139

EDMALA (Entropic Discrete Metropolis-Adjusted Langevin Algorithm), respectively. We will140

collect samples of θ, as the marginal distribution of p(θ̃) over θ yields our desired discrete target141

distribution.142

Alongside the vanilla EDLP, we introduce a computationally efficient Gibbs-like-update (GLU)143

version, in the Appendix B, which involves alternating updates instead of simultaneous updates of144

our variables. We provide a sensitivity analysis of the hyperparameters in Appendix A.145

5 Theoretical Analysis146

In this section, we provide a theoretical analysis of the convergence rate of EDLP i.e. EDULA and147

EDMALA. We make similar assumptions as Pynadath et al. (2024). Those are as follows,148

Assumption 5.1. The function U(·) ∈ C2(Rd) has M -Lipschitz gradient.149

Assumption 5.2. For each θ ∈ Rd, there exists an open ball containing θ of some radius rθ , denoted150

by B(θ, rθ), such that the function U(·) is mθ-strongly concave in B(θ, rθ) for some mθ > 0.151

Assumption 5.3. θa is restricted to a compact subset of Rd labeled Θa.152

We define diam(Θ) = supθ,θ′∈Θ ∥θ − θ′∥, and diam(Θa) = supθa,θ′
a∈Θa

∥θa − θ′
a∥. Let153

ϑ(Θ,Θa) = infθ,θ′∈Θ;θa,θ
′
a∈Θa

(θ − θa)
⊤(θ′ − θ′

a) and ∆(Θ,Θa) = supθ∈Θ, θa∈Θa
∥θa − θ∥.154

Let the joint valid bounded space be Θ̃ and finally define a ∈ argminθ∈Θ ∥∇U(θ)∥ as the set of155

values which minimizes the energy function in Θ.156

Assumptions 5.1 ,5.2, and 5.3 are standard in optimization and sampling literature Bottou et al.157

(2018); Dalalyan (2017); Durmus & Moulines (2017). Under Assumption 5.2, U(·) is m-strongly158

concave on conv(Θ), following Lemma C.3 from Pynadath et al. (2024). The total variation distance159

between two probability measures µ and ν, defined on some space θ ⊂ Rd is∥µ − ν∥TV =160

supA⊆B(θ) |µ(A)− ν(A)| where B(θ) is the set of all measurable sets in θ.161
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Algorithm 1 Entropic Discrete Langevin Proposal: EDULA and EDMALA

Inputs: Main variable θ ∈ Θ , Auxiliary variable θa ∈ Rd, Main stepsize α, Auxiliary stepsize
αa, Flatness parameter η
Initialize: θa ← θ,S ← ∅
loop

Construct ∇θ̃Uη(θ̃) as in Equation (5)
for i = 1 to d do

Construct qiα(·|θ̃) as in Equation (8)
Sample θi

′ ∼ qiα(·|θ̃)
end for
Compute θ′

a ← θa +
αa

2 ∇θaUη(θ̃) +
√
αaϵ where ϵ ∼ N (0, I)

▷ Optionally, do the MH step
Compute qα(θ̃′|θ̃) =

∏
i qiα(θ̃

′
i|θ̃)

and qα(θ̃|θ̃′) =
∏

i qiα(θ̃i|θ̃′)
Set θ ← θ′ and θa ← θ′

a with probability

min

(
1,

qα(θ|θ̃′)

qα(θ′|θ̃)
qαa

(θa|θ̃′)

qαa
(θ′

a|θ̃)
π(θ̃′)

π(θ̃)

)
.
if after burn-in then

Update S ← S ∪ {θ}
end if

end loop
Output: S

5.1 Convergence Analysis for EDULA162

Since EDULA does not have the target as the stationary distribution, we establish mixing bounds for163

it in two steps. We first prove that when both the stepsizes (α , αa) tend to zero, the asymptotic bias164

of EDULA is zero for target distribution π̃(θ̃) ∝ e(U(θ)− 1
2η ∥θ−θa∥2).165

Proposition 5.4. Under Assumptions 5.1, and 5.3, the Markov chain as defined in (9) is reversible166

with respect to some distribution πγ and πγ converges weakly to π as α→ 0 and αa → 0. Further,167

for any α > 0, αa > 0,168

∥πγ − π̃∥1 ≤ Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
,

where Z is the normalizing constant of π(θ).169

The parameter αa is consumed during the computation of the stationary distribution πγ , explicitly170

not appearing in the bound. However, αa indirectly influences the geometric terms ∆(Θ,Θa) and171

ϑ(Θ,Θa). Larger αa increases ∆2(Θ,Θa) due to a greater diameter and reduces ϑ(Θ,Θa) due172

to weaker alignment, thereby loosening the bound. In contrast, smaller αa tightens convergence173

guarantees. This parallels the observable role of α in the bound i.e. bias vanishes to 0 as α → 0.174

Next we establish our main result for EDULA which levarages Proposition 5.4 and the ergodicity of175

the EDULA chain, as a consequence of Lemma D.6 in the Appendix.176

Theorem 5.5. Under Assumptions 5.1, and 5.3 , in Algorithm 1, Markov chain P exhibits,177

∥P k(x, ·)− π̃∥TV ≤ (1− η̄∗)k + Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
where η̄∗ is a constant that can be explicitly computed (see (18) in the Appendix). In essence,178

η̄∗ = f(α, αa, diam(Θ), diam(Θa),∆(Θa,Θ)), where f is increasing exponentially in the first179

two arguments and decreasing exponentially in the last three arguments. Theorem 5.5 shows that180

sufficiently small learning rates bring the samples generated by Algorithm 1 closer to the target181

distribution. However, excessively small rates hinder convergence by limiting exploration, while182

large rates cause the sampler to overshoot the target. Thus, choosing an appropriate learning rate is183

critical for balancing exploration and convergence.184
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5.2 Convergence Analysis for EDMALA185

We establish a non-asymptotic convergence guarantee for EDMALA using a uniform minorization186

argument.187

Theorem 5.6. Under Assumptions 5.1 ,5.2, and 5.3 , and α < 2
M in Algorithm 1, Markov chain P is188

uniformly ergodic under,189

∥P k(x, ·)− π̃∥TV ≤ (1− ϵγ)
k

where, ϵγ = exp

{
−
(
M

2
+

1

α
− m

4

)
diam(Θ)2 − 1

2
∥∇U(a)∥ diam(Θ)−

(
3αa

8η2
+

2

η

)
∆(Θ,Θa)

2 +
ϑ(Θ,Θa)

η

}
190

One notices, ϵγ is exponentially decreasing in the size of the set, Θ, its distance from Θa. Further, as191

α→ 0, ϵγ → 0, causing the convergence factor 1− ϵγ to approach 1. This slows the convergence192

rate, as the chain takes longer to approach the stationary distribution.193

One notices, for η → ∞ (weaker coupling), the bounds in Proposition 5.4 and Theorem 5.6 align194

with those of DULA Zhang et al. (2022) and DMALA (Pynadath et al., 2024), respectively. Note that195

the convergence of the chains for both EDULA and EDMALA imply convergence of the marginals as196

the projection maps are continuous. In fact, deriving a rate of convergence for them is also possible,197

but we omit it here as that is not the goal of this paper.198

6 Experiments199

We conducted an empirical evaluation of the Entropic Discrete Langevin Proposal (EDLP) to demon-200

strate its effectiveness in sampling from flat regions compared to existing discrete samplers. Our201

experimental setups mainly follow Zhang et al. (2022). EDLP is benchmarked against a range of202

popular baselines, including Gibbs sampling, Gibbs with Gradient (GWG) (Grathwohl et al., 2021),203

Hamming Ball (HB) (Titsias & Yau, 2017), Discrete Unadjusted Langevin Algorithm (DULA), and204

Discrete Metropolis-Adjusted Langevin Algorithm (DMALA) (Zhang et al., 2022). For consistency205

in comparing DLP samplers with their entropic counterparts, we maintain α values across most206

instances. We retain Zhang et al. (2022)’s notation for consistency: Gibbs-X for Gibbs sampling,207

GWG-X for Gibbs with Gradient, and HB-X-Y for Hamming Ball. To the best of our knowledge,208

fBP (Baldassi et al., 2016) is the only algorithm that targets flat regions in discrete spaces. However,209

it is not directly comparable to EDLP and the other samplers in our study due to methodological and210

practical reasons (see Appendix C for details).211

6.1 Motivational Synthetic Example212

Figure 2: Overlay Heatmaps for EDULA, EDMALA,
DULA, and DMALA.

We consider sampling from a joint quadrivariate213

Bernoulli distribution. Let θ = (θ1, θ2, θ3, θ4)214

be a 4-dimensional binary random vector, where215

each θi ∈ {0, 1}. The joint probability distri-216

bution is specified by pθ, which represents the217

probability of the vector (θ1, θ2, θ3, θ4). For a218

given state θ then energy function is given by :219

U(θ) =
∑

a∈{0,1}4

(
4∏

n=1

θan
n (1− θn)

1−an

)
ln pa,

The target distribution over the 4D Joint220

Bernoulli space contains both sharp and flat221

modes, each analyzed over their 1-Hamming222

distance neighborhoods. Sharp modes, such as223

0010 and 0111, have high probability mass but224

are surrounded by neighbors with significantly225

lower probabilities, indicating steep local gradi-226

ents. In contrast, flat modes like 0100 and 1001227

are characterized by relatively uniform probabilities among their immediate neighbors, reflecting228

smoother local geometry. For the true target distribution’s visualization refer to Figure 10 in Appendix229
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E.1. We ran 4 chains of DULA, EDULA, DMALA, and EDMALA in parallel for 1000 iterations,230

with an initial burn of 200. From Figure 2, EDMALA and EDULA demonstrate a strong preference231

to visit flat modes, without becoming stuck in the high-probability sharp modes. In contrast, DULA232

and DMALA show a bias toward the sharp modes, showing to be less adept at exploring the flat233

areas where the probability mass is more evenly distributed. Despite showing flatness bias, entropic234

samplers still achieve well-matching samples to the target distribution.235

6.2 Sampling for Traveling Salesman Problems236

In TSP, the objective is to find the shortest route visiting n cities exactly once and returning to the237

origin, choosing from n! paths. In practical applications, minimal cost and deviation from the optimal238

route are often essential for operational consistency. For example, in logistics and delivery services,239

routes that closely follow the optimal sequence improve loading and unloading efficiency and ensure240

consistent customer experience (Laporte, 2009; Golden et al., 2008). Minimal sensitivity reduces the241

cognitive load on drivers who rely on established patterns, which is critical in repetitive, high-volume242

delivery operations Toth & Vigo (2002) Young et al. (2007). Routes with low sensitivity to deviations243

provide robustness in situations where consistency and predictability are priorities. Thus, sampling244

from flat modes allows us to propose multiple robust routes that lie within the same cost bracket.245

The energy function U(θ), where θ represents a specific unique route, signifies the weighted sum of246

the Euclidean distances between consecutive states (cities). In the Traveling Salesman Problem (TSP)247

and similar optimization problems, U(θ) is designed to capture the total cost of a particular route248

configuration θ = (θ1, θ2, . . . , θn). The mathematical formulation of U(θ) can be expressed as:249

U(θ) = −

(
n−1∑
i=1

(
w(θi,θi+1) · ∥θi − θi+1∥

)
+ w(θn,θ1) · ∥θn − θ1∥

)
,

where w(θi,θi+1) is a directional weight or scaling factor that allows for non-symmetric costs, ac-250

counting for the fact that the cost to travel from city θi to θi+1 may differ from the reverse direction,251

and the term w(θn,θ1) represents the cost of returning from the last city θn back to the starting city θ1,252

thereby completing the tour.253

The energy function U(θ) quantifies the overall cost associated with a given route, based on the254

weighted Euclidean distances between consecutive cities. Maximizing U(θ) involves finding the255

optimal sequence of cities that minimizes the total travel cost. This formulation is particularly useful256

in real-world applications where different paths may have varying travel costs due to factors like road257

conditions, transportation constraints, or other contextual variables (Golden et al., 2008; Laporte,258

2009).259

For our experimental setup, we address the 8-city TSP, where each city is represented as a 3D binary260

tensor. A valid solution to the TSP ensures that all cities are visited exactly once, and the path returns261

to the starting city. If a proposed solution violates the uniqueness of city visits, we reject the sample262

and remain at the current solution.263

We employ four samplers: DULA, DMALA, EDULA, and EDMALA, each with a 10,000-iteration264

run and a 2,000-iteration burn-in period. After the burn-in, we record unique paths and plot their costs265

(negative of the energy function). Additionally, we identify the best path for each sampler amongst266

all unique solutions . Consequently, we calculate the average pairwise mismatch count (PMC) of267

the best path to all other sampled paths (see Figure 3), which quantifies how distinct the explored268

solutions are from the optimal path (Schiavinotto & Stützle, 2007; Merz & Freisleben, 1997).269

Figure 3: Performance of various samplers on TSP.

Left: EDULA and EDMALA,270

show clear superiority over271

their counterparts, DULA and272

DMALA, by achieving lower273

variance cost-spreads. This high-274

lights the less variability in their275

sampling, demonstrating their su-276

periority in efficiently finding277

consistent, robust solutions for278

the TSP.279
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Right: To examine the potential variability from the optimal solution, we focus on the upper280

confidence band, represented as the mean discrepancy plus its standard deviation. While DULA and281

EDULA have similar upper bounds, EDMALA has a lower upper bound compared to DMALA. We282

provide additional results in the Appendix E.2.283

6.3 Sampling From Restricted Boltzmann Machines284

Restricted Boltzmann Machines (RBMs) are a class of generative stochastic neural networks that285

learn a probability distribution over their input data. The energy function for an RBM, which defines286

the joint configuration of visible and hidden units, is given by:287

U(θ) =
∑
i

Softplus(Wθ + a)i + b⊤θ,

where {W, a, b} are the weight matrix and bias parameters, respectively, and θ ∈ {0, 1}d represents288

the binary state of the visible units.289

When the RBM assigns high probability to specific digit representations, a sharp mode for digit 3290

(for instance) might appear as an idealized version without extraneous strokes. This configuration291

represents the model’s interpretation of a quintessential ‘3’ with a prominent probability peak. Any292

minor alteration, like flipping a single pixel, lowers the altered image’s probability. The sampler293

has thus learned to prioritize exact, pristine versions of each digit, marking any deviation from this294

high-probability state as unlikely.295

For MNIST, this narrow focus limits flexibility. The model assigns high probability to only a296

few “perfect” digit versions, treating minor variations as less probable. This rigidity makes the297

generated images sensitive to small changes and limits the RBM’s ability to recognize natural, varied298

handwriting. In the context of RBMs, sampling from flat modes explores a wider range of latent299

handwritten styles, enhancing the model’s ability to capture the underlying data distribution. This300

reflects a broader representation of possible input variations, crucial for tasks like image generation301

and data reconstruction Murray et al. (2009). In practice, this means that images generated from flat302

modes in RBMs are less likely to overfit to sharp, specific patterns in the training data and are instead303

more reflective of the variability inherent in the dataset.304

In our experiments, we generated 5000 images per sampler for the MNIST dataset, applying a305

thinning factor of 1000 to ensure diversity in the samples. A simple convolutional autoencoder (CAE)306

was used for image generation and reconstruction, allowing us to evaluate the performance and307

generalization capability of sampler-generated data. To assess robustness, we trained 5 CAEs on the308

sampler-generated images and tested them under various conditions. Initially, clean test data was309

used to establish baseline performance. Subsequently, we introduced Gaussian noise (with a noise310

factor of 0.1) to evaluate the models’ resilience against perturbations, a common method for assessing311

adversarial robustness (Madry et al., 2018). Additionally, we examined the models with occluded312

images, where random sections of the images were obscured by zero-valued pixel blocks. This test313

simulates scenarios with missing or obstructed information, a widely used technique in robustness314

studies to measure model performance under partial information loss (Zhang et al., 2019).315

For quantitative evaluation, we employed several widely accepted metrics: Mean Reconstruction316

Squared Error (MSE) to measure pixel-level differences between original and reconstructed images,317

Peak Signal Noise Ratio (PSNR) to measure the fidelity of the reconstructed images, and the Structural318

Similarity Index (SSIM) to assess the structural integrity of the reconstructions (Wang et al., 2004).319

Additionally, we computed the log-likelihood to quantify how well the reconstructed images fit the320

underlying data distribution. These metrics collectively offer a comprehensive assessment of the321

performance and robustness of the models across clean, noisy, and occluded data.322

The results in Table 1 indicate that EDLP methods consistently outperform their non-entropic323

counterparts across all test settings. Specifically, EDMALA achieves the lowest MSE, highest PSNR,324

highest SSIM (except for Noisy), and the best log-likelihood values among the samplers tested. These325

metrics together suggest that EDLP has superior generalization capabilities, making it especially326

effective for reconstructing unseen data accurately. We provide additional results in the Appendix327

E.3.328
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Table 1: Results of different samplers on MNIST under clean, noisy, and occluded conditions.
Sampler Setting MSE(↓) PSNR(↑) SSIM(↑) Log-Likelihood(↑)
HB-10-1 Clean 0.0253 ± 0.0005 16.3555 ± 0.0858 0.5303 ± 0.0014 -0.0134 ± 0.0009

Noisy 0.0267 ± 0.0004 15.9763 ± 0.0697 0.3941 ± 0.0035 0.0165 ± 0.0011
Occluded 0.0256 ± 0.0004 16.2720 ± 0.0749 0.4963 ± 0.0017 -0.0154 ± 0.0008

BG-1 Clean 0.0257 ± 0.0007 16.2492 ± 0.1125 0.5294 ± 0.0025 -0.0157 ± 0.0014
Noisy 0.0270 ± 0.0006 15.9086 ± 0.0885 0.3938 ± 0.0038 0.0144 ± 0.0013

Occluded 0.0260 ± 0.0006 16.1613 ± 0.0992 0.4947 ± 0.0024 -0.0179 ± 0.0013
DULA Clean 0.0268 ± 0.0006 16.1160 ± 0.1022 0.5114 ± 0.0030 -0.0209 ± 0.0015

Noisy 0.0280 ± 0.0005 15.7851 ± 0.0815 0.3907 ± 0.0041 0.0097 ± 0.0013
Occluded 0.0272 ± 0.0006 16.0187 ± 0.0922 0.4766 ± 0.0028 -0.0233 ± 0.0014

DMALA Clean 0.0256 ± 0.0004 16.3305 ± 0.0709 0.5291 ± 0.0035 -0.0156 ± 0.0011
Noisy 0.0270 ± 0.0004 15.9547 ± 0.0623 0.3939 ± 0.0032 0.0148 ± 0.0009

Occluded 0.0259 ± 0.0004 16.2372 ± 0.0632 0.4950 ± 0.0035 -0.0182 ± 0.0010
EDULA Clean 0.0264 ± 0.0005 16.2135 ± 0.0877 0.5083 ± 0.0052 -0.0179 ± 0.0014

Noisy 0.0276 ± 0.0004 15.8700 ± 0.0652 0.3968 ± 0.0030 0.0121 ± 0.0012
Occluded 0.0268 ± 0.0005 16.1115 ± 0.0797 0.4743 ± 0.0051 -0.0206 ± 0.0014

EDMALA Clean 0.0251 ± 0.0005 16.3974 ± 0.0975 0.5368 ± 0.0016 -0.0117 ± 0.0009
Noisy 0.0266 ± 0.0004 15.9938 ± 0.0727 0.3933 ± 0.0029 0.0177 ± 0.0012

Occluded 0.0255 ± 0.0005 16.3022 ± 0.0839 0.5019 ± 0.0017 -0.0141 ± 0.0007

Table 2: Average Test RMSE for various datasets.
Dataset Gibbs GWG DULA DMALA EDULA EDMALA
COMPAS 0.4752 ±0.0058 0.4756 ±0.0056 0.4789 ±0.0039 0.4773 ±0.0036 0.4778 ±0.0037 0.4768 ±0.0033
News 0.1008 ±0.0011 0.0996 ±0.0027 0.0923 ±0.0037 0.0916 ±0.0040 0.0918 ±0.0036 0.0915 ±0.0036
Adult 0.4784 ±0.0151 0.4432 ±0.0255 0.3895 ±0.0102 0.3872 ±0.0107 0.3889 ±0.0097 0.3861 ±0.0110
Blog 0.4442 ±0.0107 0.3728 ±0.0093 0.3236 ±0.0114 0.3213 ±0.0117 0.3218 ±0.0119 0.3211 ±0.0145

6.4 Binary Bayesian Neural Networks329

In alignment with the findings of Li & Zhang (Section 6.3), which highlight the role of flat modes in330

enhancing generalization in deep neural networks, we explore the training of binary Bayesian neural331

networks using discrete sampling techniques, leveraging the ability of flat modes to facilitate better332

generalization. Our experimental design involves regression tasks on four UCI datasets Dua & Graff333

(2017), with the energy function for each dataset defined as follows:334

U(θ) = −
N∑
i=1

||fθ(xi)− yi||2,

where D = {xi, yi}Ni=1 is the training dataset, and fθ denotes a two-layer neural network with Tanh335

activation and 500 hidden neurons. Following the experimental setup in Zhang et al. (2022), we report336

the average test RMSE and its standard deviation. As shown in Table 2, EDMALA and EDULA337

consistently outperform their non-entropic variants across all datasets, but don’t outperform GWG-1338

on test RMSE on the COMPAS dataset. This exception can be attributed to overfitting, aligning with339

prior work Zhang et al. (2022). Overall, these results confirm that our method enhances generalization340

performance on unseen test data. We provide additional results and hyperparameter settings in the341

Appendix E.4.342

7 Discussion343

7.1 Limitations344

Since EDLP collects only discrete samples, it produces half as many samples per iteration as EMCMC.345

The coupling mechanism in Section 4.1 increases the computational load relative to DLP. However,346

as Li & Zhang states in their Section 4.2, the cost of gradient computation remains the same for347

d-dimensional models when θ̃ resides in a 2d dimensional space. EDLP doubles memory usage348

compared to DLP, but the space complexity remains linear in d, ensuring scalability.349

7.2 Conclusion350

We propose a simple and computationally efficient gradient-based sampler designed for sampling351

from flat modes in discrete spaces. The algorithm leverages a guiding variable based on local352

entropy. We provide non-asymptotic convergence guarantees for both the unadjusted and Metropolis-353

adjusted versions. Empirical results demonstrate the effectiveness of our method across a variety of354

applications. We hope our framework highlights the importance of flat-mode sampling in discrete355

systems, with broad utility across scientific and machine learning domains.356
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A Analysis of the Effect of Flatness Parameter η480

A.1 Intuition481

Figure 4 illustrates the effect of varying the flatness parameter η on the probability distribution p(θa)482

for θ drawn from a Bernoulli(0.5) distribution. The layered curves represent different values of η,483

showing how the distribution p(θa) changes as η increases.484

Figure 4: p(θa) for θ ∼ Bernoulli(0.5)

Effect of Small η (Strong Coupling)485

For very small values of η (e.g., η = 0.01, η = 0.05, η = 0.1), the curves (blue, orange, and green)486

are sharply peaked and closely resemble the original p(θ). Small η values imply strong coupling487

between θ and θa. The auxiliary distribution p(θa) remains very close to p(θ), indicating that θa is488

tightly bound to θ, and the variance is minimal.489

Moderate η Values (Moderate Coupling)490

As η increases (e.g., η = 0.2), the curves (red) become wider and smoother. These moderate η values491

adequately capture the flatness of the landscape. The distribution p(θa) starts to diverge from p(θ),492

allowing θa to explore a broader region around the peaks.493

Large η (Weak Coupling)494

For larger values of η (e.g., η = 0.5, η = 1, η = 2), the curves (purple, brown, and magenta) are495

much wider. Large η values imply weak coupling between θ and θa. The auxiliary distribution p(θa)496

is excessively smoothed out compared to p(θ), indicating that θa can explore a much broader range497

of values with less influence from θ.498

Considerations for η Approaching Infinity499

As η approaches infinity, the auxiliary distribution p(θa) flattens, and the gradient ∇θaUη(θ̃) tends500

toward zero. This results in an extremely weak coupling, effectively causing the EDLP framework501

to behave similarly to a standard DLP. The parameter η thus plays a critical role in determining502

the behavior of the sampler, necessitating careful tuning based on the specific requirements of the503

sampling task.504
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Figure 5: Diagnostics for EDLP

A.2 Sensitivity Analysis505

The flatness parameter η is arguably the most crucial hyperparameter to optimize in the EDLP506

algorithm (Algorithm 1). Similar to the hyperparameter tuning ablation strategies employed in Li &507

Zhang (2024) (Appendix, Section E), we conduct hyperparameter tuning on the COMPAS dataset’s508

validation data. Specifically, we monitor the L2 norm between sampled pairs of θ and θa for various509

values of η. Additionally, we plot the validation RMSE for both EDULA and EDMALA across510

different values of η. Finally, we plot the average MH acceptance ratio for EDMALA to assess the511

impact of η on the joint MH acceptance step. We maintain α = 0.1 for both samplers and αa = 0.01512

for EDULA and αa = 0.001 for EDMALA( see Figure 5).513

We observe that as η increases, the coupling between the variables weakens, allowing both variables514

to move more freely, thus increasing the norm. This behavior is consistent across both EDULA and515

EDMALA. However, EDMALA exhibits a more conservative behavior at the same coupling strength516

compared to EDULA due to the presence of the joint Metropolis-Hastings (MH) acceptance step,517

which imposes stricter alignment between the variables, hence maintaining a tighter coupling.518

Both samplers demonstrate robustness across a wide range of η, with relatively stable validation519

RMSE performance. However, EDULA shows slightly less robustness, particularly at extremely520

small coupling values, resulting in increased variability and higher RMSE. EDMALA maintains a521

stable, consistent performance, indicating better robustness to changes in the coupling parameter.522

The final plot shows how the MH acceptance probability varies with coupling strength η for EDMALA.523

Initially, with very tight coupling , the acceptance probability is near zero, indicating overly restricted524

movements due to the strong alignment requirement between the discrete and continuous variables. As525

η increases (coupling relaxes), the acceptance probability rises significantly, reflecting greater freedom526

in proposing moves that the joint MH criterion accepts. After a certain coupling threshold (around527

0.8 here), the acceptance rate plateaus, suggesting diminishing returns from further relaxation in528

coupling strength. Thus, an intermediate coupling provides a balance, allowing effective exploration529

without overly compromising the sampler’s consistency.530

B Gibbs-like Update Procedure531

Gibbs-like updating procedures have been widely employed across various contexts in the sampling lit-532

erature, particularly within Bayesian hierarchical models, latent variable models, and non-parametric533
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Bayesian approaches. For instance, Gibbs sampling is a fundamental technique in hierarchical534

Bayesian models, where parameters are partitioned into blocks and updated conditionally on others535

to facilitate efficient sampling (Casella & George, 1992). In latent variable models, such as Hidden536

Markov Models (HMMs) and mixture models, Gibbs-like updates allow for alternating between537

sampling latent variables and model parameters, thereby simplifying the overall process (Diebolt538

& Robert, 1994). Additionally, these updates are crucial in non-parametric Bayesian approaches,539

such as Dirichlet Process Mixture Models (DPMMs), where they enable the efficient sampling of540

cluster assignments and hyperparameters (Neal, 2000). Gibbs-like updates are also prominently used541

in spatial statistics, particularly in Conditional Autoregressive (CAR) models, where the value at each542

spatial location is updated based on its neighbors (Besag, 1974).543

Since our goal is to sample from a joint distribution, rather than simultaneously updating θ and544

θa, we alternatively update these variables iteratively. The conditional distribution for the primary545

variable θ is given by:546

p(θ|θa) ∝
1

Zθa

exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
,

where Zθa
= expF(θa; η) serves as the normalization constant. Correspondingly, the conditional547

distribution for the auxiliary variable θa is:548

p(θa|θ) ∝
1

Zθ
exp

{
− 1

2η
∥θ − θa∥2

}
,

where Zθ = exp (U(θ)) is the associated normalization constant. This formulation reveals that θa549

is sampled from N (θ, ηI), with the variance η controlling the expected distance between θ and θa.550

During the Metropolis-Hastings (MH) step, the acceptance probability is now calculated as:551

min

(
1,

qα(θ|θ̃′)

qα(θ′|θ̃)
π(θ̃′)

π(θ̃)

)
.

This Gibbs-like alternating update scheme offers distinct advantages: (1) exact sampling of θa, (2)552

elimination of the need for the αa parameter, (3) a less intensive computation of the MH acceptance553

probability, and (4) reduced overall computational overhead, especially when the proposal step554

involves an MH correction. This gibbs-like updating also shares similarities with the proximal555

sampling methods (Pereyra, 2016; Liang & Chen, 2023). This innovation can potentially allow DLP556

to generalize effectively to more complex, high-dimensional, and non-differentiable discrete target557

distributions such as the discrete Laplace distribution, which is commonly used in privacy-preserving558

mechanisms(Dwork et al., 2006; Ghosh et al., 2012). We leave out the theoretical analysis of the559

GLU versions for future work.560

C Considerations for Excluding Focussed Belief Propogation from561

Benchmarking562

1. Fundamental Differences in Sampling Mechanism: Most of the sampling algorithms we use563

generate samples sequentially, with each sample xt+1 derived from the previous sample xt. This564

sequential dependency is essential for building a Markov Chain that explores the distribution space565

and gradually converges to the target distribution. fBP produces samples sequentially, but instead566

employs a message-passing algorithm aimed at converging to a fixed solution or configuration. It567

operates to converge deterministically to a solution, rather than generating a sequence of probabilistic568

samples. Moreover, fBP lacks a formal proof of convergence, relying instead on heuristic principles569

rooted in replica theory. This absence of theoretical guarantees or established convergence rates570

means that even if fBP appears to perform well, we cannot interpret or quantify its reliability,571

efficiency, or consistency across varying datasets and tasks. In contrast, MCMC-based methods like572

Langevin dynamics and Gibbs sampling come with well-understood convergence properties, enabling573

meaningful performance evaluations and robust benchmarking. This interpretability gap makes fBP574

less suitable for our study, where theoretical soundness and predictable behavior are critical.575
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2. Technical and Practical Constraints with using fBP: While fBP is originally implemented in576

Julia1, a Python wrapper2 is also available. However, this wrapper still depends on the underlying577

Julia or C++ implementations, introducing potential cross-language communication overhead. This578

dependency complicates integration in Python workflows and creates an inherent performance579

disparity when compared to purely Pythonic implementations, making direct runtime comparisons580

less meaningful. Despite fBP’s speed advantage, its execution becomes slow as sample dimensions581

increase and network ensembles grow larger. The volume of message-passing in high-dimensional582

contexts limits its scalability. As task complexity increases, fBP faces challenges in achieving stable583

convergence, further limiting its suitability for our high-dimensional setup. Past studies have excluded584

computationally expensive methods from experimental evaluations Zhang et al. (2022).585

3. Computational Overhead and Efficiency Concerns Resource Demands for Multiple Runs:586

If we were to use fBP to generate multiple samples, we would need to reinitialize and re-run the587

algorithm for each sample with a new seed, effectively solving the problem from scratch each time.588

This is highly inefficient compared to MCMC methods, where each subsequent sample builds on589

the previous one without needing to restart the entire algorithm. For larger models and datasets, this590

repeated initialization and execution would result in a significant computational burden.591

4. Nature of Tasks: In certain structured sampling tasks, such as the TSP, we enforce constraints to592

ensure that each proposed state is a valid TSP solution. This entails accepting only those configura-593

tions that satisfy specific requirements of the TSP. However, fBP does not adhere to such constraints,594

as it lacks mechanisms for directly enforcing the validity of the sampled states. Consequently, fBP595

is unsuitable for tasks where such structural constraints are critical, placing it outside the scope for596

comparison in these applications.597

We conducted preliminary experiments using fBP for Restricted Boltzmann Machine (RBM) sampling598

on the MNIST dataset to assess its effectiveness in image generation. Figure 6 shows random599

image samples generated by fBP on MNIST, which resemble random unstructured noise rather600

than recognizable digits, compared to MNIST samples by DMALA and EDMALA in Figures 7, 8601

respectively. These outputs suggest that fBP doesn’t capture the underlying structure of the MNIST602

data.603

(a) (b) (c)

Figure 6: Random Image Samples for MNIST using fBP

(a) (b) (c)

Figure 7: Random Image Samples for MNIST using DMALA

1Carlo Baldassi, BinaryCommitteeMachinefBP.jl, GitHub repository, https://github.com/
carlobaldassi/BinaryCommitteeMachinefBP.jl, accessed November 8, 2024.

2Curti, Nico and Dall’Olio, Daniele and Giampieri, Enrico, ReplicatedFocusingBeliefPropagation, GitHub
repository, https://github.com/Nico-Curti/rFBP, accessed November 8, 2024.

16

https://github.com/carlobaldassi/BinaryCommitteeMachinefBP.jl
https://github.com/carlobaldassi/BinaryCommitteeMachinefBP.jl
https://github.com/Nico-Curti/rFBP


(a) (b) (c)

Figure 8: Random Image Samples for MNIST using EDMALA

fBP lacks direct use of the energy function U(.) during optimization, preventing accurate data604

modeling. Figure 9 illustrates this through a distribution analysis of generated MNIST classes,605

showing significant mode collapse. Most generated samples cluster around a few classes, with an606

imbalance favoring certain digits and ignoring others.607

Figure 9: Mode Collapse using fBP

These findings highlight a fundamental issue with fBP in image generation tasks. Mode collapse608

suggests fBP struggles to explore diverse data regions, making it unsuitable for generating realistic,609

structured outputs that adhere to specific distribution characteristics, like image data in the MNIST610

dataset.611

In summary, fBP diverges significantly from the MCMC-based sampling methods used in our study612

due to its deterministic message-passing mechanism, which converges to fixed configurations rather613

than generating sequential probabilistic samples. While a Python wrapper exists, its reliance on614

the underlying Julia or C++ implementations introduces potential cross-language communication615

overhead, creating performance inconsistencies when compared to native Python implementations.616

Moreover, fBP’s lack of constraint adherence and dependence on spin-like variable encoding make617

it unsuitable for complex, structured sampling tasks like TSP or data-driven applications requiring618

diverse sampling, such as image generation on MNIST. Our preliminary experiments confirm that619

fBP struggles with mode collapse and fails to capture essential data distribution characteristics.620

D Proofs621

D.1 Proof of Lemma 4.1622

Assume θ̃ = [θT ,θT
a ]

T is sampled from the joint posterior distribution:623

p(θ̃) = p(θ,θa) ∝ exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
. (10)
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Then the marginal distribution for θ is:624

p(θ) =

∫
p(θ,θa)dθa

= (2πη)−
d
2Z−1

∫
exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
dθa

= Z−1 exp(U(θ))(2πη)−
d
2

∫
exp

{
− 1

2η
∥θ − θa∥2

}
dθa

= Z−1 exp(U(θ)),

(11)

where Z =
∑

Θ exp(U(θ)) is the normalizing constant, and it is obtained by:625 ∑
Θ

∫
exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
dθa = (2πη)

d
2

∑
Θ

exp(U(θ)) := (2πη)
d
2Z. (12)

This verifies that the joint posterior distribution p(θ,θa) is mathematically well-defined3. Similarly,626

the marginal distribution for θa is:627

p(θa) =
∑
Θ

p(θ,θa)

∝
∑
Θ

exp

{
U(θ)− 1

2η
∥θ − θa∥2

}
= expF(θa; η).

(13)

D.2 Proof of Proposition 5.4628

We follow a similar-style analysis as seen in Theorem 5.1 of Zhang et al. (2022).629

Using Equation (9),630

qγ(θ̃
′|θ̃) ∝ exp

(
1

2
∇θUη(θ̃)

⊤(θ′ − θ)− 1

2α
∥θ′ − θ∥2

)
· 1
√
2παa

d
exp

(
− 1

2αa
∥θ′

a − θa −
αa

2
∇θaUη(θ̃)∥2

)
=

1
√
2παa

d
exp

(
1

2
∇θU(θ)

⊤(θ′ − θ)− 1

2α
∥θ′ − θ∥2 − 1

2η
(θ − θa)

⊤(θ′ − θ)

)
·(

− 1

2αa
∥θ′

a − θa∥2 +
1

2η
(θ − θa)

⊤(θ′
a − θa)−

αa

8η2
∥θ − θa∥2

)
=

1√
(2παa)d

exp

(
1

2
(−U(θ) + U(θ′))− (θ − θ′)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U((1− s)θ + sθ′)ds

)
(θ − θ′)

− 1

2η
(θ − θa)

⊤(θ′ − θ + θa − θ′
a)−

1

2αa
∥θ′

a − θa∥2 −
αa

8η2
∥θ − θa∥2

)
=

1√
(2παa)d

exp

(
1

2
(−U(θ) + U(θ′))− (θ − θ′)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U((1− s)θ + sθ′)ds

)
(θ − θ′)

− 1

2η
(θ − θa)

⊤(θ′ − θ′
a)−

1

2αa
∥θ′

a − θa∥2 +
4η − αa

8η2
∥θ − θa∥2

)

The normalizing constant for Equation (9) ZΘ̃(θ̃) is computed by integrating over Rd and summing631

over Θ:632

Z
Θ̃
(θ̃) =

1
√
2παa

d

∫
θ′
a

∑
θ′∈Θ

exp

(
1

2
∇θUη(θ̃)

⊤
(θ

′ − θ) −
1

2α
∥θ′ − θ∥2 −

1

2αa

∥θ′
a − θa −

αa

2
∇θaUη(θ̃)∥2

)
dθ

′
a

(14)

We note that since∇2U(·) is continuous( from Assumption 5.2), we know that633

min
x,y∈Θ

(x− y)T
(∫ 1

0

∇2U((1− s)x+ sy)ds

)
(x− y)

3The exact form of the joint posterior is p(θ,θa) = (2πη)−
d
2 Z−1 exp(U(θ)− 1

2η
∥θ − θa∥2).
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is well-defined.634

Consequently, the modified normalizing constant(Equation (14)), Zγ(θ̃), becomes635

Zγ(θ̃) =
1√

(2παa)d

∫
θ′
a

∑
θ′∈Θ

exp

(
1

2

(
− U(θ) + U(θ′)

)
− (θ − θ′)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U
(
(1− s)θ + sθ′) ds) (θ − θ′)

− 1

2η
(θ − θa)

⊤(θ′ − θ′
a)−

1

2αa
∥θ′

a − θa∥2 +
4η − αa

8η2
∥θ − θa∥2

)
.

Now, we establish that q(θ̃|θ̃′) is reversible with respect to πγ , where636

πγ =
Zγ(θ̃) exp{ αa

8η2 ∥θ−θa∥2}π(θ̃)∫
y

∑
x∈Θ Zγ([x⊤,y⊤]⊤) exp αa

8η2 ∥x−y∥2π([x⊤,y⊤]⊤)dy
.637

Note that,638

πγ(θ̃)qγ(θ̃
′|θ̃) =

Zγ(θ̃) exp
(

αa

8η2 ∥θ − θa∥2
)
π(θ̃)∫

y

∑
x∈Θ Zγ([x⊤, y⊤]⊤) exp

(
αa

8η2 ∥x− y∥2
)
π([x⊤, y⊤]⊤) dy

1

Zγ(θ̃)

1

(
√
2παa)d

exp

(
1

2

(
− U(θ) + U(θ′)

)
− (θ − θ′)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U((1− s)θ + sθ′) ds

)
(θ − θ′)

− 1

2η
(θ − θa)

⊤(θ′ − θ′
a)−

1

2αa
∥θ′

a − θa∥2 +
4η − αa

8η2
∥θ − θa∥2

)

=
1∫

y

∑
x∈Θ Zγ([x⊤, y⊤]⊤) exp

(
αa

8η2 ∥x− y∥2
)
π([x⊤, y⊤]⊤) dy

1

(
√
2παa)d

exp

(
1

2

(
U(θ) + U(θ′)

)
− 1

2
(θ − θ′)⊤

(
1

α
I +

1

2

∫ 1

0

∇2U((1− s)θ + sθ′) ds

)
(θ − θ′)

− 1

2η
(θ − θa)

⊤(θ′ − θ′
a)−

1

2αa
∥θ′

a − θa∥2
)

= πγ(θ
′)qγ(θ|θ′).

Chain looks symmetric and reversible with respect to πγ .639

Now, given this, note that Z ′
γ(θ̃) converges to 1 as α→ 0 and αa → 0.640

Z ′
γ(θ̃) = Zγ(θ̃) exp

(
αa

8η2
∥θ − θa∥2

)
=

1√
(2παa)d

∫
y

∑
x

exp

(
− 1

2
(U(θ)− U(x))− (θ − x)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U((1− s)θ + sθ′) ds

)
(θ − x)

− 1

2αa
∥y − θa∥2 +

4η

8η2
∥θ − θa∥2

)
dy

=
α→0

1√
(2παa)d

∫
y

∑
x

exp

(
1

2
(U(x)− U(θ))− 1

2αa
∥y − θa∥2 +

1

2η
∥θ − θa∥2 −

1

2η
(θ − θa)

⊤(x− y)

)
δθ(x) dy

=

∫
y

exp

(
1

2η
∥θ − θa∥2 −

1

2η
(θ − θa)

⊤(θ − y)

)
dy

=
αa→0

∫
y

exp

(
1

2η
∥θ − θa∥2 −

1

2η
(θ − θa)

⊤(θ − θa)

)
dy

= 1.

where δθ(.) is a Dirac delta. It follows that πγ converges pointwisely to π(θ̃). By Scheffé’s Lemma,641

it immediately implies πγ(θ̃)→ π(θ̃) as α→ 0 and αa → 0.642

Let us consider the convergence rate in terms of the L1-norm643

∥πγ − π∥1 =

∫
θa

∑
θ∈Θ

∣∣∣∣∣ Z ′
γ(θ̃)π(θ̃)∫

y

∑
x∈Θ Z ′

γ([x
⊤, y⊤]⊤)π([x⊤, y⊤]⊤)dy

− π(θ̃)

∣∣∣∣∣ dθa
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We write out each absolute value term644 ∣∣∣∣∣ Z′
γ(θ̃)π(θ̃)∫

y

∑
x∈Θ Z′

γ([x
⊤, y⊤]⊤)π([x⊤, y⊤]⊤)dy

− π(θ̃)

∣∣∣∣∣ = π(θ̃)

∣∣∣∣∣ Z′
γ(θ̃)∫

y

∑
x∈Θ Z′

γ([x
⊤, y⊤]⊤)π([x⊤, y⊤]⊤)dy

− 1

∣∣∣∣∣
First, we note that since U is M-gradient Lipschitz and α

2 < 1
M , the matrix645

1

2α
I − 1

4

∫ 1

0

∇2U((1− s)θ + sθ′)ds >
1

4

(
2

α
−M

)
I

is positive definite.646

Second, for x′ ∈ Θ and y′ ∈ Θa (under Assumptions 5.1 and 5.3), we know that the following647

minimum exists and is well-defined: min x∈Θ\{x′}
y∈Θa\{y′}

(x− y)⊤(x′ − y′)648

Thus when,
Z′

γ(θ̃)∫
y

∑
x∈Θ Z′

γ

x⊤

y⊤

π

x⊤

y⊤

dy

− 1 ≥ 0, we get,649

∣∣∣∣∣∣∣∣
Z ′
γ(θ̃)π(θ̃)∫

y

∑
x∈Θ Z ′

γ

([
x⊤

y⊤

])
π

([
x⊤

y⊤

])
dy

− π(θ̃)

∣∣∣∣∣∣∣∣ = π(θ̃)

∣∣∣∣∣∣∣∣
Z ′
γ(θ̃)∫

y

∑
x∈Θ Z ′

γ

([
x⊤

y⊤

])
π

([
x⊤

y⊤

])
dy

− 1

∣∣∣∣∣∣∣∣
≤ π(θ̃)

1 +
1√

(2παa)d

∫
y ̸=θa

∑
x̸=θ

exp

(
1

2
(U(x)− U(θ))− 1

2
(θ − x)⊤

(
1

α
I +

1

2

∫ 1

0

∇2U((1− s)θ + sx) ds

)
(θ − x)

− 1

2αa
∥y − θa∥2 +

4η

8η2
∥θ − θa∥2 −

1

2η
(θ − θa)

⊤(x− y)

)
dy − 1

)

≤ π(θ̃)√
(2παa)d

exp

(
M

4
− 1

2α
+

1

2η
∥θ − θa∥2 −

ϑ(Θ,Θa)

2η

)
·

∫
y ̸=θa

∑
x ̸=θ

exp

(
1

2
U(x)− 1

2
U(θ)− 1

2αa
∥y − θa∥2

)
dy


≤ π(θ̃) exp

(
M

4
− 1

2α
+

1

2η
∥θ − θa∥2 −

ϑ(Θ,Θa)

2η

)(∑
x

exp (U(x))

)

= π(θ̃)Z exp

(
M

4
− 1

2α
+

1

2η
∥θ − θa∥2 −

ϑ(Θ,Θa)

2η

)
≤ π(θ̃)Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
.

Similarly, when
Z′

γ(θ̃)∫
y

∑
x∈Θ Z′

γ

x⊤

y⊤

π

x⊤

y⊤

dy

− 1 < 0, we get650

∣∣∣∣∣∣∣∣
Z ′
γ(θ̃)π(θ̃)∫

y

∑
x∈Θ Z ′

γ

([
x⊤

y⊤

])
π

([
x⊤

y⊤

])
dy

− π(θ̃)

∣∣∣∣∣∣∣∣

= π(θ̃)

1−
1 + 1√

(2παa)d

∫
y ̸=θa

∑
x ̸=θ exp

(
1
2 (U(x)− U(θ))− 1

2 (θ − x)⊤
(

1
αI +

1
2

∫ 1

0
∇2U((1− s)θ + sx)ds

)
(θ − x)− 1

2αa
∥y − θa∥2 + 4η

8η2 ∥θ − θa∥2 − 1
2η (θ − θa)

⊤(x− y)
)
dy

1 + 1√
2παa

d

∫
p

1√
πd exp (−p2)

∫
q ̸=p

∑
r

1
Z exp (U(r))

∑
s̸=r exp

(
1
2

(
U(s)− 1

2U(r)
)
− 1

2 (r − s)⊤
(

1
αI +

1
2

∫ 1

0
∇2U((1− l)r + ls)dl

)
(r − s)− 1

2αa
∥q − p∥2 + 4η

8η2 ∥r − p∥2 − 1
2η (r − p)⊤(s− q)

)
dq dp



≤ π(θ̃)

1− 1

1 + 1√
2παa

d

∫
p

1√
πd exp (−p2)

∫
q ̸=p

exp
(
− 1

2αa
∥q − p∥2

)∑
r exp

(
4η
8η2 ∥r − p∥2

)
1
Z exp (U(r))

∑
s̸=r exp

(
1
2 (U(s)− U(r))− 1

2 (r − s)⊤
(

1
αI +

1
2

∫ 1

0
∇2U((1− l)r + ls)dl

)
(r − s)− 1

2η (r − p)⊤(s− q)
)
dq dp



= π(θ̃)

 1√
2παa

d

∫
p

1√
πd exp

(
−p2

) ∫
q ̸=p

exp
(
− 1

2αa
∥q − p∥2

)∑
r exp

(
4η
8η2 ∥r − p∥2

)
1
Z exp (U(r))

∑
s̸=r exp

(
1
2 (U(s)− U(r))− 1

2 (r − s)⊤
(

1
αI +

1
2

∫ 1

0
∇2U((1− l)r + ls)dl

)
(r − s)− 1

2η (r − p)⊤(s− q)
)
dq dp

1 + 1√
2παa

d

∫
p

1√
πd exp (−p2)

∫
q ̸=p

exp
(
− 1

2αa
∥q − p∥2

)∑
r exp

(
4η
8η2 ∥r − p∥2

)
1
Z exp (U(r))

∑
s̸=r exp

(
1
2 (U(s)− U(r))− 1

2 (r − s)⊤
(

1
αI +

1
2

∫ 1

0
∇2U((1− l)r + ls)dl

)
(r − s)− 1

2η (r − p)⊤(s− q)
)
dq dp



≤ π(θ̃)
√
2παa

d

∫
p

1
√
π
d
exp

(
−p2

) ∫
q ̸=p

exp

(
− 1

2αa
∥q − p∥2

)∑
r

exp

(
4η

8η2
∥r − p∥2

)
1

Z
exp (U(r))

∑
s̸=r

exp

(
1

2
(U(s)− U(r))− 1

2
(r − s)⊤

(
1

α
I +

1

2

∫ 1

0

∇2U((1− l)r + ls)dl

)
(r − s)− 1

2η
(r − p)⊤(s− q)

) dqdp

≤ π(θ̃)√
(2παa)d

exp

(
M

4
− 1

2α

)(∫
p

1
√
π
d
exp

(
−p2

))∫
q ̸=p

exp

(
− 1

2αa
∥q − p∥2

)∑
r

exp

(
1

2η
∥r − p∥2

)
1

Z
exp (U(r))

∑
s ̸=r

exp

(
1

2
(U(s)− U(r))− 1

2η
(r − p)⊤(s− q)

))
dqdp

≤ π(θ̃)
√
2παa

d
exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)∫
p

1
√
π
d
exp

(
−p2

) ∫
q ̸=p

exp

(
− 1

2αa
∥q − p∥2

)∑
r

1

Z
(U(r))

∑
s ̸=r

exp

(
1

2
(U(s)− U(r))

)
dq dp



≤ π(θ̃)
√
2παa

d
Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)(∫
p

1
√
π
d
exp

(
−p2

) ∫
q ̸=p

exp

(
− 1

2αa
∥q − p∥2

)
dq dp

)

= π(θ̃)Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)∫
p

(
1
√
π
d
exp

(
−p2

))
dp

= π(θ̃)Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)

Therefore, the difference between πγ and π̃ can be bounded as follows651

∥πγ − π̃∥1 ≤
∫
θa

∑
θ∈Θ

π(θ̃)Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
dθa

≤ Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
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D.3 Proofs for EDULA652

We start by establishing results for a more general case in which Assumption 5.3 is dropped. We653

establish that in this setting geometric rates of convergence exist. However, in this case proving that654

the stationary distribution is close to the target remains an open problem. .655

Theorem D.1. Let Assumption 5.1 hold. Then for the Markov chain with transition operator P as in656

Algorithm 1, the drift condition is satisfied as follows:657

PV (θ̃) ≤ αa d+ 2

(
1− αa

η

)2

V (θ̃) + 2
α2
a

η2
sup
θ∈Θ
∥θ∥2.

Proof. We establish an explicit drift and minorization condition for the joint chain, which confirms658

the convergence rate. Note that659

p((θ′
a,θ

′) | (θ′
a,θ

′)) = p(θ′
a | θ,θa) · p(θ′ | θa,θ).

Now,660

p(θ′
a | θ,θa) =

1

(2παa)d/2
exp

{
− 1

2αa

∥∥∥∥θ′
a − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2
}

and661

p(θ′ | θa,θ) =
exp

{
− 1

2α

∥∥∥θ′ − θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x− θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2} .

Therefore, our Markov transition operator P is given as662

P ((θa,θ), A) =

∫
A

p((θ′
a,θ

′) | (θ,θa)) dµ,

where A ∈ Θ× Rd and µ is the product of the counting measure and Lebesgue measure.663

We shall first establish a drift condition:664

PV ≤ λV + b,

where we choose the Lyapunov function V (x1,x2) = ∥x1∥2 and some constant b > 0.665

We note that666

PV (θa,θ) =
1

(2παa)d/2

∑
θ′∈Θ

∫
∥θ′

a∥2 exp

{
− 1

2αa

∥∥∥∥θ′
a − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2
}

·
exp

{
− 1

2α

∥∥∥θ′ − θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x− θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2} dθa.

Using a change of variables, we have667

PV (θa,θ) =
1

(2παa)d/2

∑
θ′∈Θ

∫ ∥∥∥∥u+ θa

(
1− αa

η

)
+

αa

η
θ

∥∥∥∥2 exp

{
− 1

2αa
∥u∥2

}

·
exp

{
− 1

2α

∥∥∥θ′ − θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x− θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2} du

≤ αa d+ 2

(
1− αa

η

)2

∥θa∥2 + 2
α2
a

η2
sup
θ∈Θ
∥θ∥2.

Note that when λ = 2
(
1− αa

η

)2
< 1, then this is a proper drift condition with b = αa d +668

2
α2

a

η2 supθ∈Θ ∥θ∥2.669
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Theorem D.2. Under Assumption 5.1, the Markov chain with transition operator P as in Algorithm670

1 satisfies,671

P (θ̃, A) ≥ η̄µ(A)

where η̄ > 0 is defined in (16) and µ(·) is the product of Lebesgue measure and counting measure672

and θ̃ ∈ Cα as in (15) .673

Proof. We establish a minorization on the set,674

Cαa =

x : V (x) ≤
2
(
αa d+ 2

α2
a

η2 supθ∈Θ ∥θ∥2
)

(
1− αa

η

)2
 (15)

We define675

η̄ =
1

(2παa)d/2
exp

−
4

αa

(
αa d + 2

α2
a

η2 supθ∈Θ ∥θ∥2

)
(
1 − αa

η

)2

 ·
1

|Θ|

· exp
{
−

1

2α

[(
(αM + 1)

2
+ αM

2
)

diam(Θ)
2
+ (2 (M + α) + 2αM) ∥∇U(a)∥diam(Θ) +

(
α

2
+ α

)
∥∇U(a)∥2

+2
α

η

[
(αM + 1)

2 diam(Θ)
2
+ 2 (M + α)∥∇U(a)∥diam(Θ) + α

2∥∇U(a)∥2
]1/2

diam(Θ)

]}
(16)

We start with considering any (θ1,θ2) ∈ Cα. Further, we also have (θa,θ) ∈ Cαa
. Therefore676

p((θ1,θ2) | (θa,θ)) =
1

(2παa)d/2
exp

{
− 1

2αa

∥∥∥∥θ1 − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2
}

·
exp

{
− 1

2α

∥∥∥θ2 − θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x− θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2} .

For the first term, we note that677 ∥∥∥∥θ1 − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2 ≤ 2 ∥θ1∥2 + 2

∥∥∥∥(1− αa

η

)
θa +

αa

η
θ

∥∥∥∥2
≤ 2 ∥θ1∥2 + 2

(
1− αa

η

)
∥θa∥2 + 2

αa

η
∥θ∥2

≤ 8

(
αa d+ 2

α2
a

η2 supθ∈Θ ∥θ∥2
)

(
1− αa

η

)2 .

Therefore, the first term is greater than678

1

(2παa)d/2
exp

{
− 1

2αa

∥∥∥∥θ1 − θa

(
1− αa

η

)
− αa

η
θ2

∥∥∥∥2
}

≥ 1

(2παa)d/2
exp

− 4

αa

(
αa d+ 2

α2
a

η2 supθ∈Θ ∥θ∥2
)

(
1− αa

η

)2
 .

For the second term, note that679

exp

{
− 1

2α

∥∥∥θ2 − θ + α∇U(θ) − α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x − θ + α∇U(θ) − α
η (θ − θa)

∥∥∥2} ≥
1

|Θ|
exp

{
−

1

2α

∥∥∥∥θ2 − θ + α∇U(θ) −
α

η
(θ − θa)

∥∥∥∥2} .
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For the numerator, one sees,680 ∥∥∥∥θ2 − θ + α∇U(θ)− α

η
(θ − θa)

∥∥∥∥2 ≤ ∥θ2 − θ + α∇U(θ)∥2 + α2

η2
∥θ − θa∥2

+ 2
α

η
∥θ2 − θ + α∇U(θ)∥ ∥θ − θa∥ .

For the first term, we have681

∥θ2 − θ + α∇U(θ)∥2 ≤ ∥θ2 − θ∥2 + α2∥∇U(θ)∥2 + 2α ∥θ2 − θ∥ ∥∇U(θ)∥.

Define a = argminθ∈Θ∥∇U(θ)∥. Therefore, the above expression is less than682

∥θ2 − θ + α∇U(θ)∥2 ≤ diam(Θ)2 + α2
(
M2diam(Θ)2 + ∥∇U(a)∥2 + 2M diam(Θ)∥∇U(a)∥

)
+ 2α diam(Θ) (M diam(Θ) + ∥∇U(a)∥)

≤ (αM + 1)
2 diam(Θ)2 + 2 (M + α)∥∇U(a)∥diam(Θ) + α2∥∇U(a)∥2.

For the second term, we have683

α∥∇U(θ)∥2 ≤ αM2diam(Θ)2 + α∥∇U(a)∥2 + 2αM diam(Θ)∥∇U(a)∥

and for the final term we have684

2
α

η
∥θ2 − θ + α∇U(θ)∥ ∥θ − θa∥ ≤ 2

α

η

[
(αM + 1)

2 diam(Θ)2 + 2(M + α)∥∇U(a)∥diam(Θ)

+α2∥∇U(a)∥2
]1/2

diam(Θ). (17)

Therefore we have685

exp

{
− 1

2α

∥∥∥θ2 − θ + α∇U(θ) − α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x − θ + α∇U(θ) − α
η (θ − θa)

∥∥∥2}
≥

1

|Θ|
exp

{
−

1

2α

[(
(αM + 1)

2
+ αM

2
)

diam(Θ)
2
+ (2 (M + α) + 2αM) ∥∇U(a)∥diam(Θ) +

(
α

2
+ α

)
∥∇U(a)∥2

+2
α

η

[
(αM + 1)

2 diam(Θ)
2
+ 2 (M + α)∥∇U(a)∥diam(Θ) + α

2∥∇U(a)∥2
]1/2

diam(Θ)

]}
.

This finally gives η̃ as686

η̄ =
1

(2παa)d/2
exp

−
4

αa

(
αa d + 2

α2
a

η2 supθ∈Θ ∥θ∥2

)
(
1 − αa

η

)2


·

1

|Θ|
exp

{
−

1

2α

[(
(αM + 1)

2
+ αM

2
)

diam(Θ)
2
+ (2 (M + α) + 2αM) ∥∇U(a)∥diam(Θ) +

(
α

2
+ α

)
∥∇U(a)∥2

+2
α

η

[
(αM + 1)

2 diam(Θ)
2
+ 2 (M + α)∥∇U(a)∥diam(Θ) + α

2∥∇U(a)∥2
]1/2

diam(Θ)

]}
with the reference measure µ(·) is the product measure of the Lebesgue measure and the counting687

measure.688

Lemma D.3. The Markov chain defined by Algorithm 1 is irreducible, aperiodic and Harris recurrent.689

Proof. For any Borel measurable A with λ(A) > 0 and any θ ∈ Θ, we have690

P (θ′
a ∈ A, θ′ = θ∗ | θa, θ) = P (θ′

a ∈ A | θa, θ) P (θ′ = θ∗ | θa, θ) .

Note that both the above terms are positive since the first distribution is Gaussian and the second term691

is positive by definition. We can similarly establish aperiodicity by noting that there is no partition of692

Θ× Rd such that the previous probability is 1. Finally, due to the fact that the algorithm satisfies a693

drift condition, the Markov chain is Harris.694

We may leverage the above results to obtain a rate of convergence of the sampler using Ekvall &695

Jones (2021).696
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Theorem D.4. The Markov chain has a stationary distribution dependent on γ = (α, αa), πγ , and is697

(M,ρ) geometrically ergodic with698

∥P k(x, ·)− πγ(·)∥TV ≤M(x)ρk

where699

M(x) = 2 +
b̃

1− λ̃
+ Ṽ (x)

and700

ρ ≤ max

(1− η̄)r,

(
1 + 2b̃+ λ̃+ λ̃d

1 + d

)1−r (
1 + 2b̃+ 2λ̃d

)r
for some free parameter 0 < r < 1 and where η̄, b, λ are previously defined.701

Proof. The proof follows directly from Theorem D.1, Theorem D.2 and Lemma D.3 Ekvall & Jones702

(2021).703

Theorem D.5. For any function f : Rp → R with f2(x) ≤ V (x) for all x ∈ Rp one has704

√
n
(
f̄ − Eπγ

f
) d→ N(0, σ2

f )

as n→∞, where σ2
f ∈ [0,∞). , where705

f̄ =
1

n

n∑
i=1

f(Xi).

Proof. The proof follows from Theorem D.1 by noting that PV ≤ λV + b implies706

P (V + 1) ≤ λ (V + 1) + (b+ 1− λ) .

This implies a drift condition holds with V : Rd → [1,∞). Hence the result follows via Jones (2004).707

Note that σ2
f = 0 implies convergence to a Gaussian degenerate at 0.708

Define709

η̄∗ =
1

Φαa(Θa)
exp

{
− 1

αa
diam(Θa)

2 − αa

η2
∆(Θ,Θa)

2

}
× 1

|Θ| exp
{
− 1

2α

[(
(αM + 1)2 + αM2)diam(Θ)2

+ (2(M + α) + 2αM) ∥∇U(a)∥diam(Θ)

+
(
α2 + α

)
∥∇U(a)∥2

+2
α

η

[
(αM + 1)2 diam(Θ)2 + 2(M + α)∥∇U(a)∥diam(Θ) + α2∥∇U(a)∥2

]1/2
diam(Θ)

]}
.

(18)

Lemma D.6. Under Assumptions 5.1 and 5.3, the Markov chain with transition operator P as in710

Algorithm 1 satisfies,711

P ((θa,θ), A) ≥ η̄∗µ(A)

where η̄∗ > 0 is as defined in (18) and µ(·) is the product of Lebesgue measure and counting measure.712

Proof. We consider the case where θa is restricted to some compact subset of Rd, which we refer to713

as Θa. In this case, note that the transition kernel changes to714

p((θ1,θ2) | (θa,θ)) =
1

Φαa(Θa)
exp

{
− 1

2αa

∥∥∥∥θ1 − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2
}

×
exp

{
− 1

2α

∥∥∥θ2 − θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2}
∑

x∈Θ exp

{
− 1

2α

∥∥∥x− θ + α∇U(θ)− α
η (θ − θa)

∥∥∥2} .
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The proof is similar to Theorem D.2. The key difference is that we can minorize on the entire set.715

Noting that716 ∥∥∥∥θ1 − θa

(
1− αa

η

)
− αa

η
θ

∥∥∥∥2 ≤ 2 ∥θ1 − θa∥2 + 2
α2
a

η2
∥θa − θ∥2

≤ 2 diam(Θa)
2 + 2

α2
a

η2
∆(Θ,Θa)

2.

Using the same argument as Theorem D.2, we get a uniform minorization with717

η̄∗ =
1

Φαa(Θa)
exp

{
− 1

αa
diam(Θa)

2 − αa

η2
∆(Θ,Θa)

2

}
× 1

|Θ| exp
{
− 1

2α

[(
(αM + 1)2 + αM2)diam(Θ)2

+ (2(M + α) + 2αM) ∥∇U(a)∥diam(Θ)

+
(
α2 + α

)
∥∇U(a)∥2

+2
α

η

[
(αM + 1)2 diam(Θ)2 + 2(M + α)∥∇U(a)∥diam(Θ) + α2∥∇U(a)∥2

]1/2
diam(Θ)

]}
.

with the reference measure µ(·) is the product measure of the Lebesgue measure and the counting718

measure.719

Proof of Theorem 5.5. Using Lemma D.6 and Proposition 5.4, we further have720

∥P k(x, ·)− π̃∥TV ≤ (1− η̄∗)k + Z exp

(
M

4
− 1

2α
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)
for all x ∈ Rd and M(x), ρ is as defined in Theorem D.1 itself. Hence we are done.721

Theorem D.7. Let assumptions 5.1, 5.3 hold. Then, for any function f : Rp → R with ∥f∥L2
π
<∞,722

one has723 √
n
(
f̄ − Eπγf

) d→ N(0, σ2
f )

as n→∞, where σ2
f ∈ [0,∞).724

Proof. Using Theorem 5.5, the proof follows directly from Jones (2004).725

D.4 Proofs for EDMALA726

Proposition D.8. For EDMALA( EDLP with MH step, refer Algorithm 1) the drift condition is727

satisfied with drift function V (x1, x2) = ∥x1∥2.728

Proof. The proof follows from Theorem D.1 by observing that729

PV (θa, θ) ≤
∫
∥θa1
∥2q((θa,θ), (θa1

,θ1))dθa1
+ 1

≤ λV (θa,θ) + (b+ 1).

Lemma D.9. Under Assumptions 5.1, 5.2, 5.3, and α < 2
M , for Markov chain P in Algorithm 1, we730

have for any θ̃, θ̃′ ∈ Θ̃,731

p(θ̃|θ̃′) ≥ ϵγ
exp

{
1
2U(θ′)

}∑
x∈Θ exp

(
U(x)
2

) .exp
{
− 1

2αa
diam(Θa)

2
}

Φαa
(Θa)

, where732

ϵγ = exp


−
(
M

2
+

1

α
− m

4

)
diam(Θ)2 − 1

2
∥∇U(a)∥ diam(Θ)

−
(
3αa

8η2
+

2

η

)
∆(Θ,Θa)

2 +
ϑ(Θ,Θa)

η

 ,

with a ∈ argminθ∈Θ ∥∇U(θ)∥733
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Proof. We follow a similar minorization proof style as of Lemma 5.3 from Pynadath et al. (2024).734

Notice,735

Zγ(θ̃) ≤
1

√
2παa

d
exp

(
−U(θ)

2
− αa

8η2
∥θ − θa∥2 +

1

2η
∥θ − θa∥2

)∑
x∈Θ

exp

(
U(x)

2

)
∫
y

∑
x

exp

(
− 1

2αa
∥y − θa∥2 −

1

2η
(θ − θa)

⊤(x− y)

)
dy

≤
∑
x∈Θ

exp

(
U(x)

2

)
exp

(
−U(θ)

2
+

1

2η
(∥θ − θa∥2 − ϑ(Θ,Θa))

)
≤
∑
x∈Θ

exp

(
U(x)

2

)
exp

(
−U(θ)

2
+

∆(Θ,Θa)
2 − ϑ(Θ,Θa)

2η

)

Since Assumption 5.2 holds true in this setting, we have an m > 0 such that for any θ ∈ conv(Θ)736

∇2U(θ) ≥ mI.

From this, one notes that737

Zγ(θ̃) ≥
1

√
2παa

d
exp

{
−U(θ)

2
− αa

8η2
∥θ − θa∥2 +

1

2η
∥θ − θa∥2

}
exp

{
−1

2

(
1

α
− m

2

)
diam(Θ)2

}
∑
x∈Θ

exp

(
U(x)

2

)∫
y

∑
x

exp

(
− 1

2αa
∥y − θa∥2 −

1

2η
(θ − θa)

⊤(x− y)

)
dy

≥
∑
x∈Θ

exp

(
U(x)

2

)
exp

{
−U(θ)

2
− αa

8η2
∥θ − θa∥2 −

1

2

(
1

α
− m

2

)
diam(Θ)2 − 1

2η
∆(Θ,Θa)

2

}
≥
∑
x∈Θ

exp

(
U(x)

2

)
exp

{
−U(θ)

2
− αa

8η2
∆(Θ,Θa)

2 − 1

2

(
1

α
− m

2

)
diam(Θ)2 − 1

2η
∆(Θ,Θa)

2

}
In other words,738

exp

(
(−

αa

8η2
−

1

2η
)∆(Θ,Θa)

2 −
1

2

(
1

α
−

m

2

)
diam(Θ)2

)
≤

Zγ(θ̃)∑
x∈Θ exp

(
U(x)

2

)
exp

(
−U(θ)

2

) ≤ exp

(
∆(Θ,Θa)

2 − ϑ(Θ,Θa)

2η

)

Consequently,739

Zγ(θ̃)∑
x∈Θ exp(U(x)

2 ) exp(−U(θ)
2 )

Zγ(θ̃′)∑
x∈Θ exp(U(x)

2 ) exp
(
−U(θ′)

2

) ≥
exp

(
(− αa

8η2 − 1
2η )∆(Θ,Θa)

2 − (2−mα)diam(Θ)2

4α
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2η

)
This implies740

Zγ(θ̃)

Zγ(θ̃′)
≥ exp

(
1

2
(−U(θ) + U(θ′))

)exp
(
(− αa

8η2 − 1
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exp

(
∆(Θ,Θa)2−ϑ(Θ,Θa)

2η

)
One notices from (9),741

qγ(θ̃′|θ̃) = Zγ(θ̃)
−1√

(2παa)d
exp

(
1

2
(−U(θ) + U(θ′))− (θ − θ′)⊤

(
1

2α
I +

1

4

∫ 1

0

∇2U((1− s)θ + sθ′)ds

)
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− 1

2η
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⊤(θ′ − θ′
a)−

1

2αa
∥θ′
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4η − αa

8η2
∥θ − θa∥2

)

≥ Zγ(θ̃)
−1√

(2παa)d
exp
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1

2
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〉
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2α
∥θ − θ′∥2 − 1
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We also note that742
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This is because, From Assumption 5.1 (U is M -gradient Lipschitz), we have743
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Combining, we get746
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Acceptance Ratio,747
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where Z̃ is the normalizing constant for π(θ̃).748

with Acceptance Probability749
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We note that753

p(θ̃′ | θ̃) =
(
A(θ̃′ | θ̃)

)
qγ(θ̃′ | θ̃) +

(
1− L(θ̃)

)
δθ̃(θ̃

′)

≥
(
A(θ̃′ | θ̃)

)
qγ(θ̃′ | θ̃)

=
(
ρ(θ̃′ | θ̃) ∧ 1

)
qγ(θ̃′ | θ̃)

= exp

{
− αa

8η2

(
∥θ′ − θ′

a∥2 − ∥θ − θa∥2
)} Zγ(θ̃)

Zγ(θ̃′)
qγ(θ̃′ | θ̃)

≥ exp

{
− αa

8η2
∥θ′ − θ′

a∥2
}

Zγ(θ̃)

Zγ(θ̃′)
qγ(θ̃′ | θ̃)

≥ exp

{
− αa

8η2
∆(Θ,Θa)

2 +
1

2
(−U(θ) + U(θ′))

} exp
(
− αa

8η2 − 1
2η
)∆(Θ,Θa)

2 − (2−mα)diam(Θ)2

4α

)
exp

(
∆(Θ,Θa)2−ϑ(Θ,Θa)

2η

) qγ(θ̃′ | θ̃)

≥ exp

{
− αa

8η2
∆(Θ,Θa)

2 +
1

2
(−U(θ) + U(θ′))

} exp
(
− αa

8η2 − 1
2η
)∆(Θ,Θa)

2 − (2−mα)diam(Θ)2

4α

)
exp

(
∆(Θ,Θa)2−ϑ(Θ,Θa)

2η

)
·
exp

{
− 1

2αa
diam(Θa)

2
}

Φαa(Θa)

exp
{
(−M

2
− 1

2α
)diam(Θ)2 − 1

2
∥∇U(a)∥diam(Θ) +

(
− 1

2η
− αa

8η2

)
∆(Θ,Θa)

2
}

∑
x∈Θ exp

(
U(x)
2

)
exp

(
−U(θ)

2
+ ∆(Θ,Θa)2−ϑ(Θ,Θa)

2η

)
=

exp
{
− 1

2αa
diam(Θa)

2
}

Φαa(Θa)

exp
{

1
2
U(θ′)

}∑
x∈Θ exp

(
U(x)
2

) exp

{
(−3αa

8η2
− 2

η
)∆(Θ,Θa)

2 +
ϑ(Θ,Θa)

η

}

· exp
{
(−M

2
− 1

α
+

m

4
)diam(Θ)2 − 1

2
∥∇U(a)∥diam(Θ)

}

= ϵγ
exp

{
1
2
U(θ′)

}∑
x∈Θ exp

(
U(x)
2

) exp
{
− 1

2αa
diam(Θa)

2
}

Φαa(Θa)

Proof. Proof follows from using Lemma D.9 .754

E Additional Experimental Results755

E.1 4D Joint Bernoulli756

To provide additional insights into the functionality of EDLP samplers, we explore their behavior on757

the 4D Joint Bernoulli Distribution, which serves as the simplest low-dimensional case among our758

experiments. This aids in visualizing and understanding the sampling process.759

Target Distribution760

The following represents the probability mass function (PMF) for the 4D Joint Bernoulli Distribution761

used in our test case. The distribution has 16 states with the corresponding probabilities:762

Flatness Diagnostics763

Under the experimental setup outlined in Section 6, we present the true Eigenspectrum of the Hessian,764

derived from the discrete samples collected for EDULA, EDMALA, DULA, and DMALA (Figure765

11).We manually tune the stepsizes for EDULA and EDMALA to 0.1 and 0.4 respectively. This766

visualization is inspired by Section 6.3 of (Li & Zhang, 2024), where diagonal Fisher information767

matrix approximation was used to plot the Eigenvalues. The alignment of the Eigenvalues closer to 0768

indicates that the sampled data corresponds to a flatter curvature of the energy function.769

EDMALA and EDULA, specifically designed with entropy-aware flatness optimization, exhibit770

eigenvalue distributions that are notably tighter and more concentrated around zero compared to their771

non-entropic counterparts, DMALA and DULA.772
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PΘ(θ) =



0.07688 if θ = 0000,

0.04725 if θ = 0001,

0.12500 if θ = 0010,

0.01667 if θ = 0011,

0.08688 if θ = 0100,

0.07688 if θ = 0101,

0.07688 if θ = 0110,

0.16756 if θ = 0111,

0.04725 if θ = 1000,

0.05825 if θ = 1001,

0.01667 if θ = 1010,

0.04725 if θ = 1011,

0.07688 if θ = 1100,

0.04725 if θ = 1101,

0.01900 if θ = 1110,

0.01335 if θ = 1111.

Figure 10: Target Distribution for 4D Joint Bernoulli

Figure 11: Eigenspectra of EDULA, EDMALA, DULA, and DMALA’s performance on a Bernoulli
distribution.

Quantitatively, EDULA demonstrates a lower spectral dispersion, evidenced by a lower standard773

deviation (std = 2.401) and narrower interquartile range (IQR = 3.031), relative to DULA (std =774

2.832, IQR = 3.466). Similarly, EDMALA outperforms DMALA in terms of spectral concentration,775

achieving a standard deviation of 2.197 and IQR of 2.747, compared to DMALA’s standard deviation776

of 2.700 and IQR of 3.224. Furthermore, visual inspection corroborates these quantitative findings;777

EDMALA and EDULA feature fewer extreme eigenvalues and outliers, reflecting biasing into778

sampling from flatter regions. Collectively, these results affirm that our entropy-guided methods779

(EDMALA, EDULA) effectively traverse flatter, aligning well with their intended design objectives.780

E.2 TSP781

Figure 12 presents the average PMC between solutions generated by each sampler, along with their782

standard deviations. DULA and EDULA exhibit nearly identical mean swap distances, whereas783

EDMALA demonstrates a notably lower mean swap distance compared to DMALA. This suggests784
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that the solutions proposed by EDMALA are structurally more similar, indicating a higher degree of785

consistency across its sampled solutions.786

Figure 12: Variation in Solutions

Figure 13 showcases the performance characteristics of different samplers in terms of cost and787

solution diversity for the TSP. EDMALA and EDULA exhibit a narrower cost distribution, suggesting788

that they consistently identify solutions within a tighter range of costs. This stability implies a focused789

exploration within a particular solution quality band Camm & Evans (1997). In contrast, DMALA790

and DULA have a broader cost spread, indicating more variability in the quality of solutions they791

find.792

When examining diversity in relation to the best solution, both DULA and DMALA maintain a similar793

spread, signifying comparable exploration depths relative to optimality. However, EDMALA stands794

out with a significantly smaller diversity spread compared to DMALA, indicating that EDMALA795

tends to produce solutions that are closer to the optimal path. This characteristic suggests that796

EDMALA is better suited for tasks requiring proximity to optimal solutions.797

Figure 13: Marginal Plot
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E.3 RBM798

Mode Analysis799

We performed mode analysis to validate the diversity and quality of MNIST digit samples generated by800

various samplers. Mode analysis assesses whether each sampler can capture the full range of MNIST801

digit classes (0-9) without falling into mode collapse, a phenomenon where a generative model fails802

to represent certain data modes, thus limiting diversity. We leveraged a LeNet-5 convolutional neural803

network LeCun et al. (1998) trained on MNIST to classify each generated sample and produce a class804

distribution for each sampler. The choice of LeNet-5, a reliable architecture for digit recognition,805

ensures accurate class predictions, thus providing a robust method to assess the representativeness of806

the samples. We train the model for 10 epochs, and achieve a 98.85% accuracy on test data.807

The results( Figure 14) from our analysis indicated that all samplers produced samples across all digit808

classes, showing no evidence of mode collapse. Although certain samplers exhibited a preference809

for specific classes these biases did not reach the level of complete mode omission. Each class was810

represented in the generated samples, confirming that the samplers achieved an acceptable level of811

mode diversity. By confirming that all classes are covered, we demonstrate that each sampler can812

adequately approximate the diversity of the MNIST dataset, assuring the samples’ representativeness813

Salimans et al. (2016); Goodfellow et al. (2014).814

(a) DULA (b) DMALA (c) BG-1

(d) EDULA (e) EDMALA (f) HB-10-1

Figure 14: Mode Analysis

E.4 BBNN815

We report the Average Training Log-Likelihood for our experiments in Table 3. Across all datasets,816

the EDLP samplers consistently outperform other samplers, demonstrating their ability to maintain or817

improve log-likelihood values. Importantly, when EDLP does not yield a substantial improvement, it818

still manages to avoid significantly impacting the training log-likelihood negatively.819

Table 3: Average Training Log-Likelihood
Dataset Gibbs GWG DULA DMALA EDULA EDMALA
COMPAS -0.3473 ±0.0337 -0.3304 ±0.0302 -0.3385 ±0.0101 -0.3149 ±0.0145 -0.3385 ±0.0110 -0.3145 ±0.0149

News -0.2156 ±0.0003 -0.2138 ±0.0010 -0.2101 ±0.0012 -0.2097 ±0.0011 -0.2097 ±0.0012 -0.2098 ±0.0012

Adult -0.4310 ±0.0166 -0.3869 ±0.0325 -0.3044 ±0.0149 -0.2988 ±0.0158 -0.3032 ±0.0141 -0.2987 ±0.0162

Blog -0.4009 ±0.0072 -0.3414 ±0.0028 -0.2732 ±0.0128 -0.2705 ±0.0129 -0.2699 ±0.0128 -0.2699 ±0.0163
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The computational burden associated with sampling can be a major bottleneck in scenarios requiring820

fast training and prediction, such as online systems or real-time applications. Such requirements821

are seen in financial modeling and stock market prediction, where models must adapt to real-time822

data to ensure accuracy Tsantekidis et al. (2017). Similarly, industrial IoT systems rely on real-time823

predictions to optimize maintenance and reduce downtime, where fast retraining is key Sun et al.824

(2017).825

In Figure 15, we present the measured elapsed time per sample for the adult dataset to demonstrate826

these computational efficiencies, under the same settings as in Section 6, extending to include the827

GLU versions of the EDLP framework(Section B), alongside the results for the standard DLP and828

EDLP methods.829

As illustrated, the EDLP versions exhibit an increase in runtime compared to DLP, due to the830

modifications discussed in Section 4.1. While the runtime difference between the DULA and831

EDULA algorithms (without MH correction) is negligible, the time difference between DMALA832

and EDMALA is more pronounced. This can be attributed to the more complex joint acceptance833

probability calculation required by EDMALA. Despite these variations, the overall runtime overhead834

for EDLP samplers is not substantial and remains practical.835

For the EDLP-GLU variants, we maintained the same η and α values as their corresponding vanilla836

DLP samplers. The EDLP-GLU variants naturally achieve an approximate 50% reduction in runtime837

compared to EDLP. This efficiency stems from the alternating updates between sampling from a838

modified isotropic Gaussian and conditional DLP, designed to match the conditional distributions839

more effectively. However, this approach also introduces a higher standard deviation in runtime.840

The variability is primarily attributed to the contrasting computational costs between the two update841

types: sampling from the modified Gaussian is relatively lightweight, whereas the conditional DLP842

update is computationally intensive. As a result, the EDLP-GLU variants exhibit greater fluctuations843

in runtime compared to other samplers. Furthermore, the negative lower bounds are not physically844

meaningful and stem from the high variability in runtime measurements.845

Figure 15: Runtime Analysis on Adult Dataset

For details of datasets used, refer to the Appendix of Zhang et al. (2022).846

We fix α to 0.1 for DULA, DMALA, EDULA, and EDMALA. For more details on hyperparameters847

see Table 4.848

All experiments in the paper were run on a single RTX A6000.849
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Table 4: Hyper-parameter Settings
Hyperparameters for EDLP

Dataset EDULA EDMALA
αa η αa η

COMPAS 0.0100 4.0 0.0010 4.0
News 0.0100 2.0 0.0001 0.8
Adult 0.0001 2.0 0.0001 4.0
Blog 0.0100 1.0 0.0001 1.0
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Answer: [Yes]986

Justification: We include the experimental details in the appendix.987

Guidelines:988

• The answer NA means that the paper does not include experiments.989

• The experimental setting should be presented in the core of the paper to a level of detail990

that is necessary to appreciate the results and make sense of them.991

• The full details can be provided either with the code, in appendix, or as supplemental992

material.993

7. Experiment statistical significance994

Question: Does the paper report error bars suitably and correctly defined or other appropriate995

information about the statistical significance of the experiments?996
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Answer: [Yes]997

Justification: We report the standard error or standard deviation for all the readings.998

Guidelines:999

• The answer NA means that the paper does not include experiments.1000

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1001

dence intervals, or statistical significance tests, at least for the experiments that support1002

the main claims of the paper.1003

• The factors of variability that the error bars are capturing should be clearly stated (for1004

example, train/test split, initialization, random drawing of some parameter, or overall1005

run with given experimental conditions).1006

• The method for calculating the error bars should be explained (closed form formula,1007

call to a library function, bootstrap, etc.)1008

• The assumptions made should be given (e.g., Normally distributed errors).1009

• It should be clear whether the error bar is the standard deviation or the standard error1010

of the mean.1011

• It is OK to report 1-sigma error bars, but one should state it. The authors should1012

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1013

of Normality of errors is not verified.1014

• For asymmetric distributions, the authors should be careful not to show in tables or1015

figures symmetric error bars that would yield results that are out of range (e.g. negative1016

error rates).1017

• If error bars are reported in tables or plots, The authors should explain in the text how1018

they were calculated and reference the corresponding figures or tables in the text.1019

8. Experiments compute resources1020

Question: For each experiment, does the paper provide sufficient information on the com-1021

puter resources (type of compute workers, memory, time of execution) needed to reproduce1022

the experiments?1023

Answer: [Yes]1024

Justification: We do so right at the beginning in the Appendix.1025

Guidelines:1026

• The answer NA means that the paper does not include experiments.1027

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1028

or cloud provider, including relevant memory and storage.1029

• The paper should provide the amount of compute required for each of the individual1030

experimental runs as well as estimate the total compute.1031

• The paper should disclose whether the full research project required more compute1032

than the experiments reported in the paper (e.g., preliminary or failed experiments that1033

didn’t make it into the paper).1034

9. Code of ethics1035

Question: Does the research conducted in the paper conform, in every respect, with the1036

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1037

Answer: [Yes]1038

Justification: We have read the Ethics Guidelines, and our submission aligns with all the1039

points listed.1040

Guidelines:1041

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1042

• If the authors answer No, they should explain the special circumstances that require a1043

deviation from the Code of Ethics.1044

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1045

eration due to laws or regulations in their jurisdiction).1046

10. Broader impacts1047
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Question: Does the paper discuss both potential positive societal impacts and negative1048

societal impacts of the work performed?1049

Answer: [NA]1050

Justification: This is a MCMC sampling technique which does not have a direct societal1051

impact.1052

Guidelines:1053

• The answer NA means that there is no societal impact of the work performed.1054

• If the authors answer NA or No, they should explain why their work has no societal1055

impact or why the paper does not address societal impact.1056

• Examples of negative societal impacts include potential malicious or unintended uses1057

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1058

(e.g., deployment of technologies that could make decisions that unfairly impact specific1059

groups), privacy considerations, and security considerations.1060

• The conference expects that many papers will be foundational research and not tied1061

to particular applications, let alone deployments. However, if there is a direct path to1062

any negative applications, the authors should point it out. For example, it is legitimate1063

to point out that an improvement in the quality of generative models could be used to1064

generate deepfakes for disinformation. On the other hand, it is not needed to point out1065

that a generic algorithm for optimizing neural networks could enable people to train1066

models that generate Deepfakes faster.1067

• The authors should consider possible harms that could arise when the technology is1068

being used as intended and functioning correctly, harms that could arise when the1069

technology is being used as intended but gives incorrect results, and harms following1070

from (intentional or unintentional) misuse of the technology.1071

• If there are negative societal impacts, the authors could also discuss possible mitigation1072

strategies (e.g., gated release of models, providing defenses in addition to attacks,1073

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1074

feedback over time, improving the efficiency and accessibility of ML).1075

11. Safeguards1076

Question: Does the paper describe safeguards that have been put in place for responsible1077

release of data or models that have a high risk for misuse (e.g., pretrained language models,1078

image generators, or scraped datasets)?1079

Answer: [NA]1080

Justification: This foundational research that does not directly have a societal impact, as it is1081

primarily an MCMC algorithm for discrete spaces1082

Guidelines:1083

• The answer NA means that the paper poses no such risks.1084

• Released models that have a high risk for misuse or dual-use should be released with1085

necessary safeguards to allow for controlled use of the model, for example by requiring1086

that users adhere to usage guidelines or restrictions to access the model or implementing1087

safety filters.1088

• Datasets that have been scraped from the Internet could pose safety risks. The authors1089

should describe how they avoided releasing unsafe images.1090

• We recognize that providing effective safeguards is challenging, and many papers do1091

not require this, but we encourage authors to take this into account and make a best1092

faith effort.1093

12. Licenses for existing assets1094

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1095

the paper, properly credited and are the license and terms of use explicitly mentioned and1096

properly respected?1097

Answer: [No]1098

Justification: We were unable to locate the license for the datasets we utilized. Nevertheless,1099

these datasets are widely recognized and popular, and we cite the pertinent paper whenever1100

necessary.1101
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Guidelines:1102

• The answer NA means that the paper does not use existing assets.1103

• The authors should cite the original paper that produced the code package or dataset.1104

• The authors should state which version of the asset is used and, if possible, include a1105

URL.1106

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1107

• For scraped data from a particular source (e.g., website), the copyright and terms of1108

service of that source should be provided.1109

• If assets are released, the license, copyright information, and terms of use in the1110

package should be provided. For popular datasets, paperswithcode.com/datasets1111

has curated licenses for some datasets. Their licensing guide can help determine the1112

license of a dataset.1113

• For existing datasets that are re-packaged, both the original license and the license of1114

the derived asset (if it has changed) should be provided.1115

• If this information is not available online, the authors are encouraged to reach out to1116

the asset’s creators.1117

13. New assets1118

Question: Are new assets introduced in the paper well documented and is the documentation1119

provided alongside the assets?1120

Answer: [NA]1121

Justification: We do not release new assets.1122

Guidelines:1123

• The answer NA means that the paper does not release new assets.1124

• Researchers should communicate the details of the dataset/code/model as part of their1125

submissions via structured templates. This includes details about training, license,1126

limitations, etc.1127

• The paper should discuss whether and how consent was obtained from people whose1128

asset is used.1129

• At submission time, remember to anonymize your assets (if applicable). You can either1130

create an anonymized URL or include an anonymized zip file.1131

14. Crowdsourcing and research with human subjects1132

Question: For crowdsourcing experiments and research with human subjects, does the paper1133

include the full text of instructions given to participants and screenshots, if applicable, as1134

well as details about compensation (if any)?1135

Answer: [NA]1136

Justification: This research does not involve crowdsourcing or human subjects.1137

Guidelines:1138

• The answer NA means that the paper does not involve crowdsourcing nor research with1139

human subjects.1140

• Including this information in the supplemental material is fine, but if the main contribu-1141

tion of the paper involves human subjects, then as much detail as possible should be1142

included in the main paper.1143

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1144

or other labor should be paid at least the minimum wage in the country of the data1145

collector.1146

15. Institutional review board (IRB) approvals or equivalent for research with human1147

subjects1148

Question: Does the paper describe potential risks incurred by study participants, whether1149

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1150

approvals (or an equivalent approval/review based on the requirements of your country or1151

institution) were obtained?1152

Answer: [NA]1153
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Justification: There are no study participants.1154

Guidelines:1155

• The answer NA means that the paper does not involve crowdsourcing nor research with1156

human subjects.1157

• Depending on the country in which research is conducted, IRB approval (or equivalent)1158

may be required for any human subjects research. If you obtained IRB approval, you1159

should clearly state this in the paper.1160

• We recognize that the procedures for this may vary significantly between institutions1161

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1162

guidelines for their institution.1163

• For initial submissions, do not include any information that would break anonymity (if1164

applicable), such as the institution conducting the review.1165

16. Declaration of LLM usage1166

Question: Does the paper describe the usage of LLMs if it is an important, original, or1167

non-standard component of the core methods in this research? Note that if the LLM is used1168

only for writing, editing, or formatting purposes and does not impact the core methodology,1169

scientific rigorousness, or originality of the research, declaration is not required.1170

Answer: [NA]1171

Justification: The paper does not describe the usage of LLMs if it is an important, original,1172

or non-standard component of the core methods in this research.1173

Guidelines:1174

• The answer NA means that the core method development in this research does not1175

involve LLMs as any important, original, or non-standard components.1176

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1177

for what should or should not be described.1178
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