
Entropy-Guided Sampling of Flat Modes in Discrete Spaces

Anonymous Author(s)

Affiliation

Address

email

Abstract

Sampling from flat modes in discrete spaces is a crucial yet underexplored problem. Flat modes represent robust solutions and have broad applications in combinatorial optimization and discrete generative modeling. However, existing sampling algorithms often overlook the mode volume and struggle to capture flat modes effectively. To address this limitation, we propose *Entropic Discrete Langevin Proposal* (EDLP), which incorporates local entropy into the sampling process through a continuous auxiliary variable under a joint distribution. The local entropy term guides the discrete sampler toward flat modes with a small overhead. We provide non-asymptotic convergence guarantees for EDLP in locally log-concave discrete distributions. Empirically, our method consistently outperforms traditional approaches across tasks that require sampling from flat basins, including Bernoulli distribution, restricted Boltzmann machines, combinatorial optimization, and binary neural networks.

1 Introduction

Discrete sampling is fundamental to many machine learning tasks, such as graphical models, energy-based models, and combinatorial optimization. Efficient sampling algorithms are crucial for navigating the complex probability landscapes of these tasks. Recent advancements in gradient-based methods have significantly enhanced the efficiency of discrete samplers by leveraging gradient information, setting new benchmarks for tasks such as probabilistic inference and combinatorial optimization (Grathwohl et al., 2021; Zhang et al., 2022; Rhodes & Gutmann, 2022; Sun et al., 2022, 2023; Li & Zhang, 2025).

Sampling from flat modes in discrete spaces is a critical yet underexplored challenge. Flat modes, regions where neighboring states have similar probabilities, arise frequently in applications such as energy-based models and neural networks (Hochreiter & Schmidhuber, 1997; Arbel et al., 2021). These regions not only represent mode parameter configurations with high generalization performance (Hochreiter & Schmidhuber, 1997), but they are also important in constrained combinatorial optimization tasks, where finding structurally similar solutions under a budget is required (see Figure 1 for illustration). While there has been growing interest in addressing flat regions in continuous spaces,

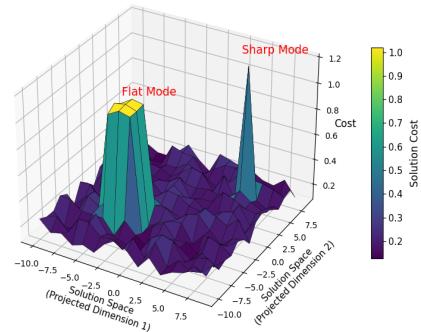


Figure 1: Cost landscape visualization on Traveling Salesman Problem (TSP). Flat modes imply robust solutions under budget, whereas sharp modes are highly sensitive to small changes, leading to abrupt cost increases.

37 particularly for tasks like neural network optimization and Bayesian deep learning (Li & Zhang, 2024;
38 Izmailov et al., 2021; Chaudhari et al., 2019), the discrete counterpart remains largely unexplored,
39 highlighting a significant gap.

40 In this paper, we propose *Entropic Discrete Langevin Proposal* (EDLP), that incorporates the concept
41 of flatness-aware local entropy (Baldassi et al., 2016) into Discrete Langevin Proposal (DLP) (Zhang
42 et al., 2022). By coupling discrete and flat-mode-guided variables, we obtain a broader, entropy-
43 informed joint target distribution that biases sampling towards flat modes. Specifically, while updating
44 the primary discrete variable using DLP, we simultaneously perform continuous Langevin updates on
45 the auxiliary variable. Through the interaction between discrete and auxiliary variables, the discrete
46 sampler will be steered toward flat regions. We summarize our contributions as follows:

- 47 • We propose Entropic DLP (EDLP), an entropy-guided, gradient-based proposal for sampling
48 discrete flat modes. EDLP efficiently incorporates local entropy guidance by coupling
49 discrete and continuous variables within a joint distribution.
- 50 • We provide non-asymptotic convergence guarantees for EDLP in locally log-concave distri-
51 butions, offering the first such bound for unadjusted gradient-based discrete sampling.
- 52 • Through extensive experiments, we demonstrate that EDLP outperforms existing discrete
53 samplers in capturing flat-mode configurations across various tasks, including Ising models,
54 restricted Boltzmann machines, combinatorial optimization, and binary Bayesian neural
55 networks. We release the code at <https://anonymous.4open.science/r/EDLP-C0E8>.

56 2 Related Works

57 **Gradient-Based Discrete Sampling.** Gradient-based methods have significantly improved sampling
58 efficiency in discrete spaces. Locally informed proposals method by Zanella (2020) leverages
59 probability ratios to explore discrete spaces more effectively. Building on this, Grathwohl et al.
60 (2021) introduced a gradient-based approach to approximate the probability ratio, further improving
61 sampling efficiency. Discrete Langevin Proposal (DLP), introduced by Zhang et al. (2022), adapts the
62 principles of the Langevin algorithm (Grenander & Miller, 1994; Roberts & Tweedie, 1996; Roberts
63 & Rosenthal, 2002), originally designed for continuous spaces, to discrete settings. This algorithm
64 enables parallel updates of multiple coordinates using a single gradient computation, boosting both
65 computational efficiency and scalability.

66 **Flatness-aware Optimization.** In early neural network optimization, flatness in energy landscapes
67 emerged as crucial for improving generalization. Hochreiter & Schmidhuber (1994) linked flat
68 minima to better generalization due to their robustness to parameter perturbations. Ritter & Schulten
69 (1988) further emphasized the stability advantages of flat regions. Further, LeCun et al. (1990) linked
70 learning algorithm stability to flatness, suggesting optimization methods to exploit this. Later, Gardner
71 & Derrida (1989) analyzed training algorithms using a statistical mechanics framework, highlighting
72 energy landscape topology's role. In Bayesian deep learning, Li & Zhang (2024) introduced Entropy
73 MCMC (EMCMC) to bias posterior sampling towards flat regions, achieving better generalization of
74 Bayesian neural networks.

75 Our EDLP differs from existing works by targeting flat modes in discrete distributions. A key
76 algorithmic innovation lies in bridging discrete and continuous spaces. This allows the sampler to
77 explore intermediate regions between discrete states and gain a richer understanding of the discrete
78 landscape, enhancing its ability to sample effectively from flat modes. Further, to our knowledge,
79 we are the first to provide non-asymptotic results for DLP-type algorithms without the MH step, as
80 established in Theorem 5.5, addressing a critical gap in the literature.

81 3 Preliminaries

82 **Target Distribution.** We define a target distribution over a discrete space using an energy function.
83 The target distribution is given by $\pi(\theta) = \frac{1}{Z} \exp(U(\theta))$, where θ is a d -dimensional discrete variable
84 within domain Θ , $U(\theta)$ represents the energy function, and Z is the normalizing constant ensuring
85 $\pi(\theta)$ is a proper probability distribution. We make the following assumptions consistent with the
86 literature on gradient-based discrete sampling (Grathwohl et al., 2021; Sun et al., 2022; Zhang
87 et al., 2022): 1. The domain Θ is factorized coordinatewisely i.e. $\Theta = \prod_{i=1}^d \Theta_i$. 2. The energy

88 function U can be extended to a differentiable function in \mathbb{R}^d . This extension is crucial for applying
 89 gradient-based sampling methods, as it allows the use of gradient information.

90 **Langevin Algorithm.** In continuous spaces, the Langevin algorithm is a powerful sampling method
 91 that follows a Langevin diffusion to update variables: $\theta'_{k+1} = \theta_k + \frac{\alpha}{2} \nabla U(\theta_k) + \sqrt{\alpha} \epsilon_k$, where
 92 $\epsilon_k \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{d \times d})$. The gradient assists the sampler in efficiently exploring high-probability regions.

93 **Discrete Langevin Proposal.** The Discrete Langevin Proposal (DLP) is an extension of the Langevin
 94 algorithm tailored for discrete spaces, introduced by Zhang et al. (2022). At a given position θ ,
 95 the proposal distribution $q(\cdot | \theta)$ determines the next position. The proposal distribution in DLP is
 96 formulated as:

$$q(\theta' | \theta) = \frac{\exp\left(-\frac{1}{2\alpha}\|\theta' - \theta - \frac{\alpha}{2}\nabla U(\theta)\|^2\right)}{Z_{\Theta}(\theta)}, \quad (1)$$

97 where $Z_{\Theta}(\theta)$ is the normalizing constant. DLP can be employed without or with a Metropolis-
 98 Hastings (MH) step, resulting in the discrete unadjusted Langevin algorithm (DULA) and the discrete
 99 Metropolis-adjusted Langevin algorithm (DMALA), respectively.

100 **Local Entropy.** Local entropy is a critical concept in flatness-aware optimization techniques, which
 101 is used to understand the geometric characteristics of energy landscapes (Baldassi et al., 2016;
 102 Chaudhari et al., 2019; Baldassi et al., 2019). It is defined as:

$$\mathcal{F}(\theta_a; \eta) = \log \left(\sum_{\theta \in \Theta} \exp \left\{ U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\} \right), \quad (2)$$

103 where η is a scalar parameter controlling the sensitivity to flatness in the landscape. Local entropy
 104 provides a measure of the density of configurations around a point, thus identifying regions with high
 105 configuration density and flat energy landscapes.

106 4 Entropic Discrete Langevin Proposal

107 4.1 Target Joint Distribution: Coupling Mechanism

108 We propose leveraging local entropy (Eq.2) to construct an auxiliary distribution that emphasizes flat
 109 regions of the target distribution. This auxiliary distribution smoothens the energy landscape, acting
 110 as an external force, driving the exploration of flat basins. Figure 4 in the Appendix A illustrates
 111 the motivation behind our approach and the impact of the parameter η on the smoothed target
 112 distribution.

113 We start with the original target distribution $p(\theta) \propto \exp(U(\theta))$. By incorporating local entropy, we
 114 derive a smoothed target distribution in terms of a new variable θ_a :

$$p(\theta_a) \propto \exp \mathcal{F}(\theta_a; \eta) = \sum_{\theta \in \Theta} \exp \left\{ U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\} \quad (3)$$

115 Inspired by the coupling method introduced by Li & Zhang (2024) in their Section 4.1, we couple θ
 116 and θ_a as follows:

117 **Lemma 4.1.** Given $\tilde{\theta} = [\theta^T, \theta_a^T]^T \in \Theta \times \mathbb{R}^d$, the joint distribution $p(\tilde{\theta})$ is:

$$p(\tilde{\theta}) = p(\theta, \theta_a) \propto \exp \left\{ U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\} \quad (4)$$

118 By construction, the marginal distributions of θ and θ_a are the original distribution $p(\theta)$ and the
 119 smoothed distribution $p(\theta_a)$ (Eq. 3).

120 This result directly follows from Lemma 1 under Section 4.1 in Li & Zhang (2024). The joint hybrid-
 121 variable, $\tilde{\theta}$ lies in a product space where first d coordinates are discrete-valued and the remaining d
 122 coordinates lie in \mathbb{R}^d . Consequently, the energy function of $\tilde{\theta}$ becomes $U(\tilde{\theta}) = U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2$,
 123 and its gradient is given by:

$$\nabla_{\tilde{\theta}} U_{\eta}(\tilde{\theta}) = \begin{bmatrix} \nabla_{\theta} U_{\eta}(\tilde{\theta}) \\ \nabla_{\theta_a} U_{\eta}(\tilde{\theta}) \end{bmatrix} = \begin{bmatrix} \nabla_{\theta} U(\theta) - \frac{1}{\eta}(\theta - \theta_a) \\ \frac{1}{\eta}(\theta - \theta_a) \end{bmatrix}. \quad (5)$$

124 **4.2 Sampling Algorithm: Local Entropy Guidance in Discrete Langevin Proposals**

125 We propose EDLP, an extension of DLP designed to enhance sampling efficiency from flat modes. In
 126 our framework (Algorithm 1), the Langevin update for θ_a follows the distribution $q_{\alpha_a}(\theta'_a|\tilde{\theta})$:

$$q_{\alpha_a}(\theta'_a|\tilde{\theta}) = \frac{1}{\sqrt{2\pi\alpha_a^d}} \exp\left(-\frac{1}{2\alpha_a}\|\theta'_a - \theta_a - \frac{\alpha_a}{2}\nabla_{\theta_a}U_{\eta}(\tilde{\theta})\|^2\right). \quad (6)$$

127 Unlike the standard DLP, where transitions are purely between discrete states, EDLP leverages
 128 the current joint variables $\tilde{\theta} = [\theta^T, \theta_a^T]^T$ to propose the next discrete state. By incorporating the
 129 coupling between the variables, we refine the DLP proposal by replacing $\nabla U(\theta)$ with $\nabla_{\theta}U_{\eta}(\tilde{\theta})$.
 130 This adjustment results in the modified proposal:

$$q_{\alpha}(\theta'|\tilde{\theta}) \propto \exp\left(-\frac{1}{2\alpha}\|\theta' - \theta - \frac{\alpha}{2}\nabla_{\theta}U_{\eta}(\tilde{\theta})\|^2\right). \quad (7)$$

131 To further simplify, we use coordinate-wise factorization from DLP to obtain $q_{\alpha}(\theta'|\tilde{\theta}) =$
 132 $\prod_{i=1}^d q_{\alpha_i}(\theta'_i|\tilde{\theta})$, where $q_{\alpha_i}(\theta'_i|\tilde{\theta})$ is a categorical distribution:

$$\text{Cat}\left(\text{Softmax}\left(\frac{1}{2}\nabla_{\theta}U_{\eta}(\tilde{\theta})_i(\theta'_i - \theta_i) - \frac{(\theta'_i - \theta_i)^2}{2\alpha}\right)\right). \quad (8)$$

133 By synthesizing Equations (6) and (8), we derive the full proposal distribution:

$$q_{\gamma}(\tilde{\theta}'|\tilde{\theta}) \propto q_{\alpha}(\theta'|\tilde{\theta})q_{\alpha_a}(\theta'_a|\tilde{\theta}) \quad (9)$$

134 where $\gamma = (\alpha, \alpha_a)$.

135 This factorized proposal in Eq. (9) is purely a design choice to simplify sampling. The proposal
 136 distribution is called the *Entropic Discrete Langevin Proposal* (EDLP). At the current joint position $\tilde{\theta}$,
 137 EDLP generates the next joint position. EDLP can be paired with or without a Metropolis-Hastings
 138 step (Metropolis et al., 1953; Hastings, 1970) to ensure the Markov chain's reversibility. These
 139 algorithms are referred to as EDULA (Entropic Discrete Unadjusted Langevin Algorithm) and
 140 EDMALA (Entropic Discrete Metropolis-Adjusted Langevin Algorithm), respectively. We will
 141 collect samples of θ , as the marginal distribution of $p(\tilde{\theta})$ over θ yields our desired discrete target
 142 distribution.

143 Alongside the vanilla EDLP, we introduce a computationally efficient *Gibbs-like-update* (GLU)
 144 version, in the Appendix B, which involves alternating updates instead of simultaneous updates of
 145 our variables. We provide a sensitivity analysis of the hyperparameters in Appendix A.

146 **5 Theoretical Analysis**

147 In this section, we provide a theoretical analysis of the convergence rate of EDLP i.e. EDULA and
 148 EDMALA. We make similar assumptions as Pynadath et al. (2024). Those are as follows,

149 **Assumption 5.1.** *The function $U(\cdot) \in C^2(\mathbb{R}^d)$ has M -Lipschitz gradient.*

150 **Assumption 5.2.** *For each $\theta \in \mathbb{R}^d$, there exists an open ball containing θ of some radius r_{θ} , denoted
 151 by $B(\theta, r_{\theta})$, such that the function $U(\cdot)$ is m_{θ} -strongly concave in $B(\theta, r_{\theta})$ for some $m_{\theta} > 0$.*

152 **Assumption 5.3.** *θ_a is restricted to a compact subset of \mathbb{R}^d labeled Θ_a .*

153 We define $\text{diam}(\Theta) = \sup_{\theta, \theta' \in \Theta} \|\theta - \theta'\|$, and $\text{diam}(\Theta_a) = \sup_{\theta_a, \theta'_a \in \Theta_a} \|\theta_a - \theta'_a\|$. Let
 154 $\vartheta(\Theta, \Theta_a) = \inf_{\theta, \theta' \in \Theta; \theta_a, \theta'_a \in \Theta_a} (\theta - \theta_a)^T (\theta' - \theta'_a)$ and $\Delta(\Theta, \Theta_a) = \sup_{\theta \in \Theta, \theta_a \in \Theta_a} \|\theta_a - \theta\|$.

155 Let the joint valid bounded space be $\tilde{\Theta}$ and finally define $a \in \arg \min_{\theta \in \Theta} \|\nabla U(\theta)\|$ as the set of
 156 values which minimizes the energy function in Θ .

157 Assumptions 5.1, 5.2, and 5.3 are standard in optimization and sampling literature Bottou et al.
 158 (2018); Dalalyan (2017); Durmus & Moulines (2017). Under Assumption 5.2, $U(\cdot)$ is m -strongly
 159 concave on $\text{conv}(\Theta)$, following Lemma C.3 from Pynadath et al. (2024). The total variation distance
 160 between two probability measures μ and ν , defined on some space $\theta \subset \mathbb{R}^d$ is $\|\mu - \nu\|_{TV} =$
 161 $\sup_{A \subseteq B(\theta)} |\mu(A) - \nu(A)|$ where $B(\theta)$ is the set of all measurable sets in θ .

Algorithm 1 Entropic Discrete Langevin Proposal: EDULA and EDMALA

Inputs: Main variable $\theta \in \Theta$, Auxiliary variable $\theta_a \in \mathbb{R}^d$, Main stepsize α , Auxiliary stepsize α_a , Flatness parameter η
Initialize: $\theta_a \leftarrow \theta$, $\mathcal{S} \leftarrow \emptyset$
loop
 Construct $\nabla_{\tilde{\theta}} U_{\eta}(\tilde{\theta})$ as in Equation (5)
 for $i = 1$ to d **do**
 Construct $q_{i\alpha}(\cdot|\tilde{\theta})$ as in Equation (8)
 Sample $\theta'_i \sim q_{i\alpha}(\cdot|\tilde{\theta})$
 end for
 Compute $\theta'_a \leftarrow \theta_a + \frac{\alpha_a}{2} \nabla_{\theta_a} U_{\eta}(\tilde{\theta}) + \sqrt{\alpha_a} \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 ▷ Optionally, do the MH step
 Compute $q_{\alpha}(\tilde{\theta}'|\tilde{\theta}) = \prod_i q_{i\alpha}(\tilde{\theta}'_i|\tilde{\theta})$
 and $q_{\alpha}(\tilde{\theta}|\tilde{\theta}') = \prod_i q_{i\alpha}(\tilde{\theta}_i|\tilde{\theta}')$
 Set $\theta \leftarrow \theta'$ and $\theta_a \leftarrow \theta'_a$ with probability

$$\min \left(1, \frac{q_{\alpha}(\theta|\tilde{\theta}') q_{\alpha_a}(\theta_a|\tilde{\theta}') \pi(\tilde{\theta}')}{q_{\alpha}(\theta'|\tilde{\theta}) q_{\alpha_a}(\theta'_a|\tilde{\theta}) \pi(\tilde{\theta})} \right)$$

 if *after burn-in* **then**
 Update $\mathcal{S} \leftarrow \mathcal{S} \cup \{\theta\}$
 end if
end loop
Output: \mathcal{S}

162 **5.1 Convergence Analysis for EDULA**

163 Since EDULA does not have the target as the stationary distribution, we establish mixing bounds for
164 it in two steps. We first prove that when both the stepsizes (α, α_a) tend to zero, the asymptotic bias
165 of EDULA is zero for target distribution $\tilde{\pi}(\tilde{\theta}) \propto e^{(\tilde{U}(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2)}$.

166 **Proposition 5.4.** *Under Assumptions 5.1, and 5.3, the Markov chain as defined in (9) is reversible
167 with respect to some distribution π_{γ} and π_{γ} converges weakly to π as $\alpha \rightarrow 0$ and $\alpha_a \rightarrow 0$. Further,
168 for any $\alpha > 0, \alpha_a > 0$,*

$$\|\pi_{\gamma} - \tilde{\pi}\|_1 \leq Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right),$$

169 where Z is the normalizing constant of $\pi(\theta)$.

170 The parameter α_a is consumed during the computation of the stationary distribution π_{γ} , explicitly
171 not appearing in the bound. However, α_a indirectly influences the geometric terms $\Delta(\Theta, \Theta_a)$ and
172 $\vartheta(\Theta, \Theta_a)$. Larger α_a increases $\Delta^2(\Theta, \Theta_a)$ due to a greater diameter and reduces $\vartheta(\Theta, \Theta_a)$ due
173 to weaker alignment, thereby loosening the bound. In contrast, smaller α_a tightens convergence
174 guarantees. This parallels the observable role of α in the bound i.e. bias vanishes to 0 as $\alpha \rightarrow 0$.
175 Next we establish our main result for EDULA which leverages Proposition 5.4 and the ergodicity of
176 the EDULA chain, as a consequence of Lemma D.6 in the Appendix.

177 **Theorem 5.5.** *Under Assumptions 5.1, and 5.3, in Algorithm 1, Markov chain P exhibits,*

$$\|P^k(x, \cdot) - \tilde{\pi}\|_{TV} \leq (1 - \bar{\eta}^*)^k + Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right)$$

178 where $\bar{\eta}^*$ is a constant that can be explicitly computed (see (18) in the Appendix). In essence,
179 $\bar{\eta}^* = f(\alpha, \alpha_a, \text{diam}(\Theta), \text{diam}(\Theta_a), \Delta(\Theta_a, \Theta))$, where f is increasing exponentially in the first
180 two arguments and decreasing exponentially in the last three arguments. Theorem 5.5 shows that
181 sufficiently small learning rates bring the samples generated by Algorithm 1 closer to the target
182 distribution. However, excessively small rates hinder convergence by limiting exploration, while
183 large rates cause the sampler to overshoot the target. Thus, choosing an appropriate learning rate is
184 critical for balancing exploration and convergence.

185 **5.2 Convergence Analysis for EDMALA**

186 We establish a non-asymptotic convergence guarantee for EDMALA using a uniform minorization
187 argument.

188 **Theorem 5.6.** *Under Assumptions 5.1, 5.2, and 5.3, and $\alpha < \frac{2}{M}$ in Algorithm 1, Markov chain P is
189 uniformly ergodic under,*

$$\|P^k(x, \cdot) - \tilde{\pi}\|_{TV} \leq (1 - \epsilon_\gamma)^k$$

190 where, $\epsilon_\gamma = \exp \left\{ - \left(\frac{M}{2} + \frac{1}{\alpha} - \frac{m}{4} \right) \text{diam}(\Theta)^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\Theta) - \left(\frac{3\alpha_a}{8\eta^2} + \frac{2}{\eta} \right) \Delta(\Theta, \Theta_a)^2 + \frac{\vartheta(\Theta, \Theta_a)}{\eta} \right\}$

191 One notices, ϵ_γ is exponentially decreasing in the size of the set, Θ , its distance from Θ_a . Further, as
192 $\alpha \rightarrow 0$, $\epsilon_\gamma \rightarrow 0$, causing the convergence factor $1 - \epsilon_\gamma$ to approach 1. This slows the convergence
193 rate, as the chain takes longer to approach the stationary distribution.

194 One notices, for $\eta \rightarrow \infty$ (weaker coupling), the bounds in Proposition 5.4 and Theorem 5.6 align
195 with those of DULA Zhang et al. (2022) and DMALA (Pynadath et al., 2024), respectively. Note that
196 the convergence of the chains for both EDULA and EDMALA imply convergence of the marginals as
197 the projection maps are continuous. In fact, deriving a rate of convergence for them is also possible,
198 but we omit it here as that is not the goal of this paper.

199 **6 Experiments**

200 We conducted an empirical evaluation of the Entropic Discrete Langevin Proposal (EDLP) to demon-
201 strate its effectiveness in sampling from flat regions compared to existing discrete samplers. Our
202 experimental setups mainly follow Zhang et al. (2022). EDLP is benchmarked against a range of
203 popular baselines, including Gibbs sampling, Gibbs with Gradient (GWG) (Grathwohl et al., 2021),
204 Hamming Ball (HB) (Titsias & Yau, 2017), Discrete Unadjusted Langevin Algorithm (DULA), and
205 Discrete Metropolis-Adjusted Langevin Algorithm (DMALA) (Zhang et al., 2022). For consistency
206 in comparing DLP samplers with their entropic counterparts, we maintain α values across most
207 instances. We retain Zhang et al. (2022)'s notation for consistency: Gibbs-X for Gibbs sampling,
208 GWG-X for Gibbs with Gradient, and HB-X-Y for Hamming Ball. To the best of our knowledge,
209 fBP (Baldassi et al., 2016) is the only algorithm that targets flat regions in discrete spaces. However,
210 it is not directly comparable to EDLP and the other samplers in our study due to methodological and
211 practical reasons (see Appendix C for details).

212 **6.1 Motivational Synthetic Example**

213 We consider sampling from a joint quadrivariate
214 Bernoulli distribution. Let $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$
215 be a 4-dimensional binary random vector, where
216 each $\theta_i \in \{0, 1\}$. The joint probability distri-
217 bution is specified by p_θ , which represents the
218 probability of the vector $(\theta_1, \theta_2, \theta_3, \theta_4)$. For a
219 given state θ then energy function is given by :

$$U(\theta) = \sum_{a \in \{0,1\}^4} \left(\prod_{n=1}^4 \theta_n^{a_n} (1 - \theta_n)^{1-a_n} \right) \ln p_a,$$

220 The target distribution over the 4D Joint
221 Bernoulli space contains both sharp and flat
222 modes, each analyzed over their 1-Hamming
223 distance neighborhoods. Sharp modes, such as
224 0010 and 0111, have high probability mass but
225 are surrounded by neighbors with significantly
226 lower probabilities, indicating steep local gradi-
227 ents. In contrast, flat modes like 0100 and 1001
228 are characterized by relatively uniform probabilities among their immediate neighbors, reflecting
229 smoother local geometry. For the true target distribution's visualization refer to Figure 10 in Appendix

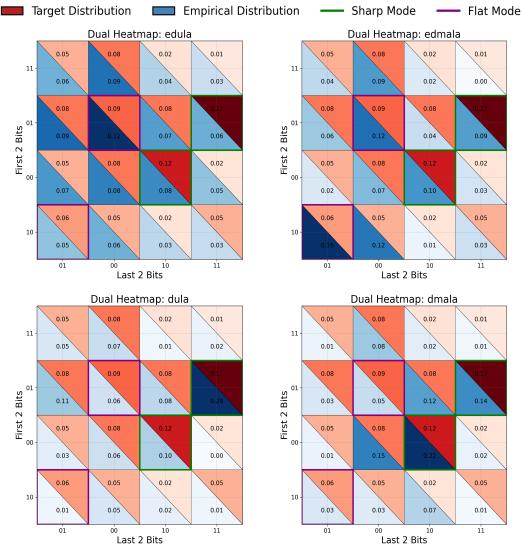


Figure 2: Overlay Heatmaps for EDULA, EDMALA, DULA, and DMALA.

230 E.1. We ran 4 chains of DULA, EDULA, DMALA, and EDMALA in parallel for 1000 iterations,
 231 with an initial burn of 200. From Figure 2, EDMALA and EDULA demonstrate a strong preference
 232 to visit flat modes, without becoming stuck in the high-probability sharp modes. In contrast, DULA
 233 and DMALA show a bias toward the sharp modes, showing to be less adept at exploring the flat
 234 areas where the probability mass is more evenly distributed. Despite showing flatness bias, entropic
 235 samplers still achieve well-matching samples to the target distribution.

236 **6.2 Sampling for Traveling Salesman Problems**

237 In TSP, the objective is to find the shortest route visiting n cities exactly once and returning to the
 238 origin, choosing from $n!$ paths. In practical applications, minimal cost and deviation from the optimal
 239 route are often essential for operational consistency. For example, in logistics and delivery services,
 240 routes that closely follow the optimal sequence improve loading and unloading efficiency and ensure
 241 consistent customer experience (Laporte, 2009; Golden et al., 2008). Minimal sensitivity reduces the
 242 cognitive load on drivers who rely on established patterns, which is critical in repetitive, high-volume
 243 delivery operations Toth & Vigo (2002) Young et al. (2007). Routes with low sensitivity to deviations
 244 provide robustness in situations where consistency and predictability are priorities. Thus, sampling
 245 from flat modes allows us to propose multiple robust routes that lie within the same cost bracket.

246 The energy function $U(\theta)$, where θ represents a specific unique route, signifies the weighted sum of
 247 the Euclidean distances between consecutive states (cities). In the Traveling Salesman Problem (TSP)
 248 and similar optimization problems, $U(\theta)$ is designed to capture the total cost of a particular route
 249 configuration $\theta = (\theta_1, \theta_2, \dots, \theta_n)$. The mathematical formulation of $U(\theta)$ can be expressed as:

$$U(\theta) = - \left(\sum_{i=1}^{n-1} (w_{(\theta_i, \theta_{i+1})} \cdot \|\theta_i - \theta_{i+1}\|) + w_{(\theta_n, \theta_1)} \cdot \|\theta_n - \theta_1\| \right),$$

250 where $w_{(\theta_i, \theta_{i+1})}$ is a directional weight or scaling factor that allows for non-symmetric costs, ac-
 251 counting for the fact that the cost to travel from city θ_i to θ_{i+1} may differ from the reverse direction,
 252 and the term $w_{(\theta_n, \theta_1)}$ represents the cost of returning from the last city θ_n back to the starting city θ_1 ,
 253 thereby completing the tour.

254 The energy function $U(\theta)$ quantifies the overall cost associated with a given route, based on the
 255 weighted Euclidean distances between consecutive cities. Maximizing $U(\theta)$ involves finding the
 256 optimal sequence of cities that minimizes the total travel cost. This formulation is particularly useful
 257 in real-world applications where different paths may have varying travel costs due to factors like road
 258 conditions, transportation constraints, or other contextual variables (Golden et al., 2008; Laporte,
 259 2009).

260 For our experimental setup, we address the 8-city TSP, where each city is represented as a 3D binary
 261 tensor. A valid solution to the TSP ensures that all cities are visited exactly once, and the path returns
 262 to the starting city. If a proposed solution violates the uniqueness of city visits, we reject the sample
 263 and remain at the current solution.

264 We employ four samplers: DULA, DMALA, EDULA, and EDMALA, each with a 10,000-iteration
 265 run and a 2,000-iteration burn-in period. After the burn-in, we record unique paths and plot their costs
 266 (negative of the energy function). Additionally, we identify the best path for each sampler amongst
 267 all unique solutions. Consequently, we calculate the average pairwise mismatch count (PMC) of
 268 the best path to all other sampled paths (see Figure 3), which quantifies how distinct the explored
 269 solutions are from the optimal path (Schiavinotto & Stützle, 2007; Merz & Freisleben, 1997).

270 **Left:** EDULA and EDMALA,
 271 show clear superiority over
 272 their counterparts, DULA and
 273 DMALA, by achieving lower
 274 variance cost-spreads. This high-
 275 lights the less variability in their
 276 sampling, demonstrating their su-
 277 periority in efficiently finding
 278 consistent, robust solutions for
 279 the TSP.

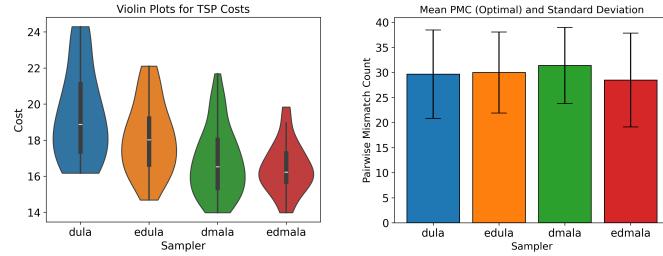


Figure 3: Performance of various samplers on TSP.

280 **Right:** To examine the potential variability from the optimal solution, we focus on the upper
281 confidence band, represented as the mean discrepancy plus its standard deviation. While DULA and
282 EDULA have similar upper bounds, EDMALA has a lower upper bound compared to DMALA. We
283 provide additional results in the Appendix E.2.

284 **6.3 Sampling From Restricted Boltzmann Machines**

285 Restricted Boltzmann Machines (RBMs) are a class of generative stochastic neural networks that
286 learn a probability distribution over their input data. The energy function for an RBM, which defines
287 the joint configuration of visible and hidden units, is given by:

$$U(\boldsymbol{\theta}) = \sum_i \text{Softplus}(\mathbf{W}\boldsymbol{\theta} + \mathbf{a})_i + \mathbf{b}^\top \boldsymbol{\theta},$$

288 where $\{\mathbf{W}, \mathbf{a}, \mathbf{b}\}$ are the weight matrix and bias parameters, respectively, and $\boldsymbol{\theta} \in \{0, 1\}^d$ represents
289 the binary state of the visible units.

290 When the RBM assigns high probability to specific digit representations, a sharp mode for digit 3
291 (for instance) might appear as an idealized version without extraneous strokes. This configuration
292 represents the model’s interpretation of a quintessential ‘3’ with a prominent probability peak. Any
293 minor alteration, like flipping a single pixel, lowers the altered image’s probability. The sampler
294 has thus learned to prioritize exact, pristine versions of each digit, marking any deviation from this
295 high-probability state as unlikely.

296 For MNIST, this narrow focus limits flexibility. The model assigns high probability to only a
297 few “perfect” digit versions, treating minor variations as less probable. This rigidity makes the
298 generated images sensitive to small changes and limits the RBM’s ability to recognize natural, varied
299 handwriting. In the context of RBMs, sampling from flat modes explores a wider range of latent
300 handwritten styles, enhancing the model’s ability to capture the underlying data distribution. This
301 reflects a broader representation of possible input variations, crucial for tasks like image generation
302 and data reconstruction Murray et al. (2009). In practice, this means that images generated from flat
303 modes in RBMs are less likely to overfit to sharp, specific patterns in the training data and are instead
304 more reflective of the variability inherent in the dataset.

305 In our experiments, we generated 5000 images per sampler for the MNIST dataset, applying a
306 thinning factor of 1000 to ensure diversity in the samples. A simple convolutional autoencoder (CAE)
307 was used for image generation and reconstruction, allowing us to evaluate the performance and
308 generalization capability of sampler-generated data. To assess robustness, we trained 5 CAEs on the
309 sampler-generated images and tested them under various conditions. Initially, clean test data was
310 used to establish baseline performance. Subsequently, we introduced Gaussian noise (with a noise
311 factor of 0.1) to evaluate the models’ resilience against perturbations, a common method for assessing
312 adversarial robustness (Madry et al., 2018). Additionally, we examined the models with occluded
313 images, where random sections of the images were obscured by zero-valued pixel blocks. This test
314 simulates scenarios with missing or obstructed information, a widely used technique in robustness
315 studies to measure model performance under partial information loss (Zhang et al., 2019).

316 For quantitative evaluation, we employed several widely accepted metrics: Mean Reconstruction
317 Squared Error (MSE) to measure pixel-level differences between original and reconstructed images,
318 Peak Signal Noise Ratio (PSNR) to measure the fidelity of the reconstructed images, and the Structural
319 Similarity Index (SSIM) to assess the structural integrity of the reconstructions (Wang et al., 2004).
320 Additionally, we computed the log-likelihood to quantify how well the reconstructed images fit the
321 underlying data distribution. These metrics collectively offer a comprehensive assessment of the
322 performance and robustness of the models across clean, noisy, and occluded data.

323 The results in Table 1 indicate that EDLP methods consistently outperform their non-entropic
324 counterparts across all test settings. Specifically, EDMALA achieves the lowest MSE, highest PSNR,
325 highest SSIM (except for Noisy), and the best log-likelihood values among the samplers tested. These
326 metrics together suggest that EDLP has superior generalization capabilities, making it especially
327 effective for reconstructing unseen data accurately. We provide additional results in the Appendix
328 E.3.

Table 1: Results of different samplers on MNIST under clean, noisy, and occluded conditions.

Sampler	Setting	MSE(\downarrow)	PSNR(\uparrow)	SSIM(\uparrow)	Log-Likelihood(\uparrow)
HB-10-1	Clean	0.0253 \pm 0.0005	16.3555 \pm 0.0858	0.5303 \pm 0.0014	-0.0134 \pm 0.0009
	Noisy	0.0267 \pm 0.0004	15.9763 \pm 0.0697	0.3941 \pm 0.0035	0.0165 \pm 0.0011
	Occluded	0.0256 \pm 0.0004	16.2720 \pm 0.0749	0.4963 \pm 0.0017	-0.0154 \pm 0.0008
BG-1	Clean	0.0257 \pm 0.0007	16.2492 \pm 0.1125	0.5294 \pm 0.0025	-0.0157 \pm 0.0014
	Noisy	0.0270 \pm 0.0006	15.9086 \pm 0.0885	0.3938 \pm 0.0038	0.0144 \pm 0.0013
	Occluded	0.0260 \pm 0.0006	16.1613 \pm 0.0992	0.4947 \pm 0.0024	-0.0179 \pm 0.0013
DULA	Clean	0.0268 \pm 0.0006	16.1160 \pm 0.1022	0.5114 \pm 0.0030	-0.0209 \pm 0.0015
	Noisy	0.0280 \pm 0.0005	15.7851 \pm 0.0815	0.3907 \pm 0.0041	0.0097 \pm 0.0013
	Occluded	0.0272 \pm 0.0006	16.0187 \pm 0.0922	0.4766 \pm 0.0028	-0.0233 \pm 0.0014
DMALA	Clean	0.0256 \pm 0.0004	16.3305 \pm 0.0709	0.5291 \pm 0.0035	-0.0156 \pm 0.0011
	Noisy	0.0270 \pm 0.0004	15.9547 \pm 0.0623	0.3939 \pm 0.0032	0.0148 \pm 0.0009
	Occluded	0.0259 \pm 0.0004	16.2372 \pm 0.0632	0.4950 \pm 0.0035	-0.0182 \pm 0.0010
EDULA	Clean	0.0264 \pm 0.0005	16.2135 \pm 0.0877	0.5083 \pm 0.0052	-0.0179 \pm 0.0014
	Noisy	0.0276 \pm 0.0004	15.8700 \pm 0.0652	0.3968 \pm 0.0030	0.0121 \pm 0.0012
	Occluded	0.0268 \pm 0.0005	16.1115 \pm 0.0797	0.4743 \pm 0.0051	-0.0206 \pm 0.0014
EDMALA	Clean	0.0251 \pm 0.0005	16.3974 \pm 0.0975	0.5368 \pm 0.0016	-0.0117 \pm 0.0009
	Noisy	0.0266 \pm 0.0004	15.9938 \pm 0.0727	0.3933 \pm 0.0029	0.0177 \pm 0.0012
	Occluded	0.0255 \pm 0.0005	16.3022 \pm 0.0839	0.5019 \pm 0.0017	-0.0141 \pm 0.0007

Table 2: Average Test RMSE for various datasets.

Dataset	Gibbs	GWG	DULA	DMALA	EDULA	EDMALA
COMPAS	0.4752 \pm 0.0058	0.4756 \pm 0.0056	0.4789 \pm 0.0039	0.4773 \pm 0.0036	0.4778 \pm 0.0037	0.4768 \pm 0.0033
News	0.1008 \pm 0.0011	0.0996 \pm 0.0027	0.0923 \pm 0.0037	0.0916 \pm 0.0040	0.0918 \pm 0.0036	0.0915 \pm 0.0036
Adult	0.4784 \pm 0.0151	0.4432 \pm 0.0255	0.3895 \pm 0.0102	0.3872 \pm 0.0107	0.3889 \pm 0.0097	0.3861 \pm 0.0110
Blog	0.4442 \pm 0.0107	0.3728 \pm 0.0093	0.3236 \pm 0.0114	0.3213 \pm 0.0117	0.3218 \pm 0.0119	0.3211 \pm 0.0145

329 6.4 Binary Bayesian Neural Networks

330 In alignment with the findings of Li & Zhang (Section 6.3), which highlight the role of flat modes in
331 enhancing generalization in deep neural networks, we explore the training of binary Bayesian neural
332 networks using discrete sampling techniques, leveraging the ability of flat modes to facilitate better
333 generalization. Our experimental design involves regression tasks on four UCI datasets Dua & Graff
334 (2017), with the energy function for each dataset defined as follows:

$$U(\boldsymbol{\theta}) = - \sum_{i=1}^N \|f_{\boldsymbol{\theta}}(x_i) - y_i\|^2,$$

335 where $D = \{x_i, y_i\}_{i=1}^N$ is the training dataset, and $f_{\boldsymbol{\theta}}$ denotes a two-layer neural network with Tanh
336 activation and 500 hidden neurons. Following the experimental setup in Zhang et al. (2022), we report
337 the average test RMSE and its standard deviation. As shown in Table 2, EDMALA and EDULA
338 consistently outperform their non-entropic variants across all datasets, but don't outperform GWG-1
339 on test RMSE on the COMPAS dataset. This exception can be attributed to overfitting, aligning with
340 prior work Zhang et al. (2022). Overall, these results confirm that our method enhances generalization
341 performance on unseen test data. We provide additional results and hyperparameter settings in the
342 Appendix E.4.

343 7 Discussion

344 7.1 Limitations

345 Since EDLP collects only discrete samples, it produces half as many samples per iteration as EMCMD.
346 The coupling mechanism in Section 4.1 increases the computational load relative to DLP. However,
347 as Li & Zhang states in their Section 4.2, the cost of gradient computation remains the same for
348 d -dimensional models when $\tilde{\boldsymbol{\theta}}$ resides in a $2d$ dimensional space. EDLP doubles memory usage
349 compared to DLP, but the space complexity remains linear in d , ensuring scalability.

350 7.2 Conclusion

351 We propose a simple and computationally efficient gradient-based sampler designed for sampling
352 from flat modes in discrete spaces. The algorithm leverages a guiding variable based on local
353 entropy. We provide non-asymptotic convergence guarantees for both the unadjusted and Metropolis-
354 adjusted versions. Empirical results demonstrate the effectiveness of our method across a variety of
355 applications. We hope our framework highlights the importance of flat-mode sampling in discrete
356 systems, with broad utility across scientific and machine learning domains.

357 **References**

358 Arbel, M., Zhou, L., and Gretton, A. Generalized energy based models. In *International Conference*
359 *on Learning Representations*, 2021.

360 Baldassi, C., Borgs, C., Chayes, J. T., Ingrosso, A., Lucibello, C., Saglietti, L., and Zecchina,
361 R. Unreasonable effectiveness of learning neural networks: From accessible states and robust
362 ensembles to basic algorithmic schemes. *Proceedings of the National Academy of Sciences*, 113
363 (48):E7655–E7662, 2016.

364 Baldassi, C., Pittorino, F., and Zecchina, R. Shaping the learning landscape in neural networks around
365 wide flat minima. *Proceedings of the National Academy of Sciences*, 117(1):161–170, 2019.

366 Besag, J. Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal*
367 *Statistical Society: Series B (Methodological)*, 36(2):192–225, 1974.

368 Bottou, L., Curtis, F. E., and Nocedal, J. Optimization methods for large-scale machine learning.
369 *Siam Review*, 60(2):223–311, 2018.

370 Camm, J. D. and Evans, J. R. Constrained optimization models: An illustrative example. *Interfaces*,
371 27(3):117–127, 1997.

372 Casella, G. and George, E. I. Explaining the gibbs sampler. *The American Statistician*, 46(3):167–174,
373 1992.

374 Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L.,
375 and Zecchina, R. Entropy-sgd: Biasing gradient descent into wide valleys. *Journal of Statistical*
376 *Mechanics: Theory and Experiment*, 2019(12):124018, 2019.

377 Dalalyan, A. Further and stronger analogy between sampling and optimization: Langevin monte
378 carlo and gradient descent. In *Conference on Learning Theory*, pp. 678–689. PMLR, 2017.

379 Diebolt, J. and Robert, C. P. Estimation of finite mixture distributions through bayesian sampling.
380 *Journal of the Royal Statistical Society: Series B (Methodological)*, 56(2):363–375, 1994.

381 Dua, D. and Graff, C. UCI machine learning repository, 2017. URL <http://archive.ics.uci.edu/ml>.

383 Durmus, A. and Moulines, E. Nonasymptotic convergence analysis for the unadjusted langevin
384 algorithm. *The Annals of Applied Probability*, 27(3):1551–1587, 2017.

385 Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data
386 analysis. In *Theory of Cryptography Conference*, pp. 265–284. Springer, 2006.

387 Ekval, K. O. and Jones, G. L. Convergence analysis of a collapsed Gibbs sampler for Bayesian vector
388 autoregressions. *Electronic Journal of Statistics*, 15(1):691 – 721, 2021. doi: 10.1214/21-EJS1800.
389 URL <https://doi.org/10.1214/21-EJS1800>.

390 Gardner, E. and Derrida, B. Training and generalization in neural networks. *Journal of Physics A: Mathematical and General*, 22(12):1983, 1989.

392 Ghosh, A., Roughgarden, T., and Sundararajan, M. Universally optimal privacy mechanisms for
393 minimax agents. *arXiv preprint arXiv:1207.1240*, 2012.

394 Golden, B., Raghavan, S., and Wasil, E. *The vehicle routing problem: Latest advances and new
395 challenges*. Springer Science & Business Media, 2008.

396 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
397 Bengio, Y. Generative adversarial nets. In *Advances in neural information processing systems*, pp.
398 2672–2680, 2014.

399 Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D., and Maddison, C. J. Oops i took a gradient:
400 Scalable sampling for discrete distributions. *International Conference on Machine Learning*, 2021.

401 Grenander, U. and Miller, M. I. Representations of knowledge in complex systems. *Journal of the
402 Royal Statistical Society: Series B (Methodological)*, 56(4):549–581, 1994.

403 Hastings, W. K. Monte carlo sampling methods using markov chains and their applications.
 404 *Biometrika*, 1970.

405 Hochreiter, S. and Schmidhuber, J. Simplifying neural nets by discovering flat minima. *Advances in*
 406 *neural information processing systems*, 7, 1994.

407 Hochreiter, S. and Schmidhuber, J. Flat minima. *Neural computation*, 9(1):1–42, 1997.

408 Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. G. What are bayesian neural network
 409 posteriors really like? In *International conference on machine learning*, pp. 4629–4640. PMLR,
 410 2021.

411 Jones, G. L. On the Markov chain central limit theorem. *Probability Surveys*, 1(none):
 412 299 – 320, 2004. doi: 10.1214/154957804100000051. URL <https://doi.org/10.1214/154957804100000051>.

414 Laporte, G. Fifty years of vehicle routing. *Transportation Science*, 43(4):408–416, 2009.

415 LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage. In *Advances in neural information*
 416 *processing systems*, pp. 598–605, 1990.

417 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
 418 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

419 Li, B. and Zhang, R. Entropy-MCMC: Sampling from flat basins with ease. In *Proceedings of the*
 420 *Twelfth International Conference on Learning Representations*, 2024.

421 Li, M. and Zhang, R. Reheated gradient-based discrete sampling for combinatorial optimization.
 422 *Transactions on Machine Learning Research*, 2025.

423 Liang, J. and Chen, Y. A proximal algorithm for sampling. *Transactions on Machine Learning*
 424 *Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=CkX0wlhf27>.

425 Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
 426 resistant to adversarial attacks. In *6th International Conference on Learning Representations*,
 427 *ICLR 2018*, 2018.

428 Merz, P. and Freisleben, B. Genetic algorithms for the traveling salesman problem. In *Proceedings*
 429 *of the International Conference on Genetic Algorithms (ICGA)*, pp. 321–328. Morgan Kaufmann,
 430 1997. URL <https://dl.acm.org/doi/10.5555/285619.285682>.

431 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. Equation of
 432 state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092,
 433 1953.

434 Murray, I., Salakhutdinov, R., and Hinton, G. Evaluating rbm approximations: Contrastive divergence
 435 vs. alternative approaches. *Neural Computation*, 2009.

436 Neal, R. M. Markov chain sampling methods for dirichlet process mixture models. *Journal of*
 437 *Computational and Graphical Statistics*, 9(2):249–265, 2000.

438 Pereyra, M. Proximal markov chain monte carlo algorithms. *Statistics and Computing*, 26:745–760,
 439 2016.

440 Pynadath, P., Bhattacharya, R., HARIHARAN, A. N., and Zhang, R. Gradient-based discrete sampling
 441 with automatic cyclical scheduling. In *ICML 2024 Workshop on Structured Probabilistic Inference*
 442 & *Generative Modeling*, 2024. URL <https://openreview.net/forum?id=aTDId2TrtL>.

443 Rhodes, B. and Gutmann, M. U. Enhanced gradient-based MCMC in discrete spaces. *Transactions*
 444 *on Machine Learning Research*, 2022. ISSN 2835-8856.

445 Ritter, H. and Schulten, K. Flat minima. *Journal of Physics A: Mathematical and Theoretical*, 21
 446 (10):L745–L749, 1988.

447 Roberts, G. O. and Rosenthal, J. S. Langevin diffusions and metropolis-hastings algorithms. *Methodology and Computing in Applied Probability*, 4(4):337–357, 2002.

448

449 Roberts, G. O. and Tweedie, R. L. Exponential convergence of langevin distributions and their
450 discrete approximations. *Bernoulli*, pp. 341–363, 1996.

451 Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved
452 techniques for training gans. In *Advances in neural information processing systems*, volume 29,
453 pp. 2234–2242, 2016.

454 Schiavinotto, T. and Stützle, T. A review of metrics on permutations for search landscape analysis.
455 *Computers & Operations Research*, 34(10):3143–3153, 2007. doi: 10.1016/j.cor.2005.11.023.

456 Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxiliary proposal for mcmc in discrete space.
457 In *International Conference on Learning Representations*, 2022.

458 Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D. Discrete langevin samplers via wasserstein
459 gradient flow. In *International Conference on Artificial Intelligence and Statistics*, pp. 6290–6313.
460 PMLR, 2023.

461 Sun, Y., Wang, Z., Liu, X., and Fan, J. When smart devices collaborate: Context-aware inference in
462 smart homes with edge computing. *IEEE Internet of Things Journal*, 2017.

463 Titsias, M. K. and Yau, C. The hamming ball sampler. *Journal of the American Statistical Association*,
464 112(520):1598–1611, 2017.

465 Toth, P. and Vigo, D. The vehicle routing problem. *Society for Industrial and Applied Mathematics*,
466 2002.

467 Tsantekidis, A., Passalis, N., Tefas, A., Kannainen, J., Gabbouj, M., and Iosifidis, A. Using deep
468 learning to forecast stock prices from the limit order book. *IEEE International Conference on
469 Computer Vision (ICCV)*, 2017.

470 Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image quality assessment: From error
471 visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.

472 Young, K., Regan, M. A., and Hammer, M. Driver distraction: A review of the literature. *Accident
473 Analysis & Prevention*, 39(3):562–570, 2007.

474 Zanella, G. Informed proposals for local mcmc in discrete spaces. *Journal of the American Statistical
475 Association*, 115(530):852–865, 2020.

476 Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L. E., and Jordan, M. I. Theoretically principled
477 trade-off between robustness and accuracy. *arXiv preprint arXiv:1901.08573*, 2019.

478 Zhang, R., Liu, X., and Liu, Q. A langevin-like sampler for discrete distributions. In *International
479 Conference on Machine Learning*, pp. 26375–26396. PMLR, 2022.

480 **A Analysis of the Effect of Flatness Parameter η**

481 **A.1 Intuition**

482 Figure 4 illustrates the effect of varying the flatness parameter η on the probability distribution $p(\theta_a)$
 483 for θ drawn from a $\text{Bernoulli}(0.5)$ distribution. The *layered* curves represent different values of η ,
 484 showing how the distribution $p(\theta_a)$ changes as η increases.

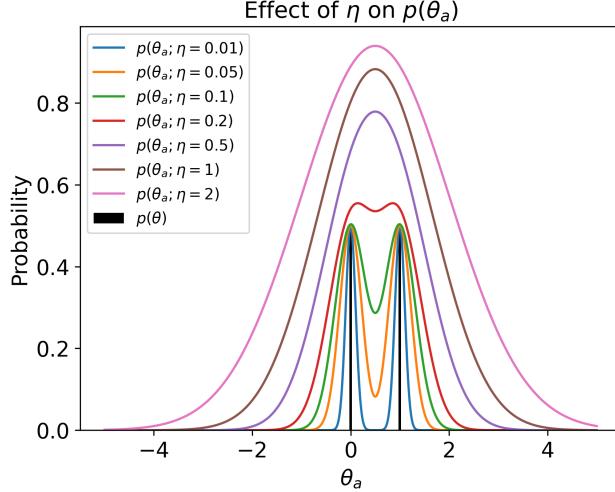


Figure 4: $p(\theta_a)$ for $\theta \sim \text{Bernoulli}(0.5)$

485 **Effect of Small η (Strong Coupling)**

486 For very small values of η (e.g., $\eta = 0.01, \eta = 0.05, \eta = 0.1$), the curves (blue, orange, and green)
 487 are sharply peaked and closely resemble the original $p(\theta)$. Small η values imply strong coupling
 488 between θ and θ_a . The auxiliary distribution $p(\theta_a)$ remains very close to $p(\theta)$, indicating that θ_a is
 489 tightly bound to θ , and the variance is minimal.

490 **Moderate η Values (Moderate Coupling)**

491 As η increases (e.g., $\eta = 0.2$), the curves (red) become wider and smoother. These moderate η values
 492 adequately capture the flatness of the landscape. The distribution $p(\theta_a)$ starts to diverge from $p(\theta)$,
 493 allowing θ_a to explore a broader region around the peaks.

494 **Large η (Weak Coupling)**

495 For larger values of η (e.g., $\eta = 0.5, \eta = 1, \eta = 2$), the curves (purple, brown, and magenta) are
 496 much wider. Large η values imply weak coupling between θ and θ_a . The auxiliary distribution $p(\theta_a)$
 497 is excessively smoothed out compared to $p(\theta)$, indicating that θ_a can explore a much broader range
 498 of values with less influence from θ .

499 **Considerations for η Approaching Infinity**

500 As η approaches infinity, the auxiliary distribution $p(\theta_a)$ flattens, and the gradient $\nabla_{\theta_a} U_n(\tilde{\theta})$ tends
 501 toward zero. This results in an extremely weak coupling, effectively causing the EDLP framework
 502 to behave similarly to a standard DLP. The parameter η thus plays a critical role in determining
 503 the behavior of the sampler, necessitating careful tuning based on the specific requirements of the
 504 sampling task.

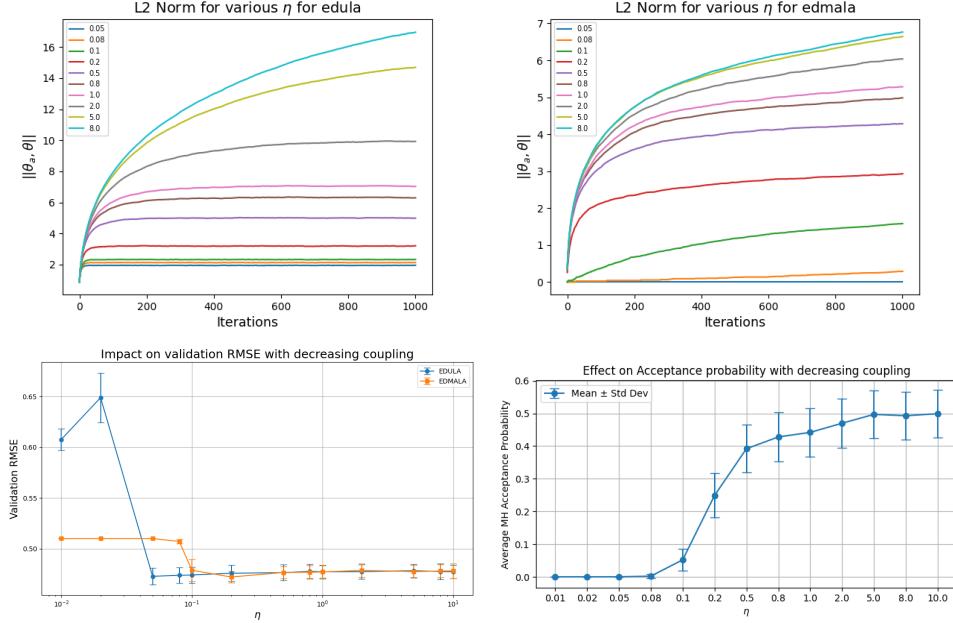


Figure 5: Diagnostics for EDLP

505 A.2 Sensitivity Analysis

506 The flatness parameter η is arguably the most crucial hyperparameter to optimize in the EDLP
 507 algorithm (Algorithm 1). Similar to the hyperparameter tuning ablation strategies employed in Li &
 508 Zhang (2024) (Appendix, Section E), we conduct hyperparameter tuning on the COMPAS dataset's
 509 validation data. Specifically, we monitor the L2 norm between sampled pairs of θ and θ_a for various
 510 values of η . Additionally, we plot the validation RMSE for both EDULA and EDMALA across
 511 different values of η . Finally, we plot the average MH acceptance ratio for EDMALA to assess the
 512 impact of η on the joint MH acceptance step. We maintain $\alpha = 0.1$ for both samplers and $\alpha_a = 0.01$
 513 for EDULA and $\alpha_a = 0.001$ for EDMALA (see Figure 5).

514 We observe that as η increases, the coupling between the variables weakens, allowing both variables
 515 to move more freely, thus increasing the norm. This behavior is consistent across both EDULA and
 516 EDMALA. However, EDMALA exhibits a more conservative behavior at the same coupling strength
 517 compared to EDULA due to the presence of the joint Metropolis-Hastings (MH) acceptance step,
 518 which imposes stricter alignment between the variables, hence maintaining a tighter coupling.

519 Both samplers demonstrate robustness across a wide range of η , with relatively stable validation
 520 RMSE performance. However, EDULA shows slightly less robustness, particularly at extremely
 521 small coupling values, resulting in increased variability and higher RMSE. EDMALA maintains a
 522 stable, consistent performance, indicating better robustness to changes in the coupling parameter.

523 The final plot shows how the MH acceptance probability varies with coupling strength η for EDMALA.
 524 Initially, with very tight coupling, the acceptance probability is near zero, indicating overly restricted
 525 movements due to the strong alignment requirement between the discrete and continuous variables. As
 526 η increases (coupling relaxes), the acceptance probability rises significantly, reflecting greater freedom
 527 in proposing moves that the joint MH criterion accepts. After a certain coupling threshold (around
 528 0.8 here), the acceptance rate plateaus, suggesting diminishing returns from further relaxation in
 529 coupling strength. Thus, an intermediate coupling provides a balance, allowing effective exploration
 530 without overly compromising the sampler's consistency.

531 B Gibbs-like Update Procedure

532 Gibbs-like updating procedures have been widely employed across various contexts in the sampling lit-
 533 erature, particularly within Bayesian hierarchical models, latent variable models, and non-parametric

534 Bayesian approaches. For instance, Gibbs sampling is a fundamental technique in hierarchical
 535 Bayesian models, where parameters are partitioned into blocks and updated conditionally on others
 536 to facilitate efficient sampling (Casella & George, 1992). In latent variable models, such as Hidden
 537 Markov Models (HMMs) and mixture models, Gibbs-like updates allow for alternating between
 538 sampling latent variables and model parameters, thereby simplifying the overall process (Diebolt
 539 & Robert, 1994). Additionally, these updates are crucial in non-parametric Bayesian approaches,
 540 such as Dirichlet Process Mixture Models (DPMMs), where they enable the efficient sampling of
 541 cluster assignments and hyperparameters (Neal, 2000). Gibbs-like updates are also prominently used
 542 in spatial statistics, particularly in Conditional Autoregressive (CAR) models, where the value at each
 543 spatial location is updated based on its neighbors (Besag, 1974).

544 Since our goal is to sample from a joint distribution, rather than simultaneously updating θ and
 545 θ_a , we alternatively update these variables iteratively. The conditional distribution for the primary
 546 variable θ is given by:

$$p(\theta|\theta_a) \propto \frac{1}{Z_{\theta_a}} \exp \left\{ U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\},$$

547 where $Z_{\theta_a} = \exp \mathcal{F}(\theta_a; \eta)$ serves as the normalization constant. Correspondingly, the conditional
 548 distribution for the auxiliary variable θ_a is:

$$p(\theta_a|\theta) \propto \frac{1}{Z_{\theta}} \exp \left\{ -\frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\},$$

549 where $Z_{\theta} = \exp(U(\theta))$ is the associated normalization constant. This formulation reveals that θ_a
 550 is sampled from $\mathcal{N}(\theta, \eta I)$, with the variance η controlling the expected distance between θ and θ_a .
 551 During the Metropolis-Hastings (MH) step, the acceptance probability is now calculated as:

$$\min \left(1, \frac{q_{\alpha}(\theta|\tilde{\theta}') \pi(\tilde{\theta}')}{q_{\alpha}(\theta'|\tilde{\theta}) \pi(\tilde{\theta})} \right).$$

552 This Gibbs-like alternating update scheme offers distinct advantages: (1) exact sampling of θ_a , (2)
 553 elimination of the need for the α_a parameter, (3) a less intensive computation of the MH acceptance
 554 probability, and (4) reduced overall computational overhead, especially when the proposal step
 555 involves an MH correction. This gibbs-like updating also shares similarities with the proximal
 556 sampling methods (Pereyra, 2016; Liang & Chen, 2023). This innovation can potentially allow DLP
 557 to generalize effectively to more complex, high-dimensional, and non-differentiable discrete target
 558 distributions such as the discrete Laplace distribution, which is commonly used in privacy-preserving
 559 mechanisms(Dwork et al., 2006; Ghosh et al., 2012). We leave out the theoretical analysis of the
 560 GLU versions for future work.

561 C Considerations for Excluding Focussed Belief Propagation from 562 Benchmarking

563 **1. Fundamental Differences in Sampling Mechanism:** Most of the sampling algorithms we use
 564 generate samples sequentially, with each sample x_{t+1} derived from the previous sample x_t . This
 565 sequential dependency is essential for building a Markov Chain that explores the distribution space
 566 and gradually converges to the target distribution. fBP produces samples sequentially, but instead
 567 employs a *message-passing algorithm* aimed at converging to a fixed solution or configuration. It
 568 operates to converge deterministically to a solution, rather than generating a sequence of probabilistic
 569 samples. Moreover, fBP lacks a formal proof of convergence, relying instead on heuristic principles
 570 rooted in replica theory. This absence of theoretical guarantees or established convergence rates
 571 means that even if fBP appears to perform well, we cannot interpret or quantify its reliability,
 572 efficiency, or consistency across varying datasets and tasks. In contrast, MCMC-based methods like
 573 Langevin dynamics and Gibbs sampling come with well-understood convergence properties, enabling
 574 meaningful performance evaluations and robust benchmarking. This interpretability gap makes fBP
 575 less suitable for our study, where theoretical soundness and predictable behavior are critical.

576 **2. Technical and Practical Constraints with using fBP:** While fBP is originally implemented in
 577 Julia¹, a Python wrapper² is also available. However, this wrapper still depends on the underlying
 578 Julia or C++ implementations, introducing potential cross-language communication overhead. This
 579 dependency complicates integration in Python workflows and creates an inherent performance
 580 disparity when compared to purely Pythonic implementations, making direct runtime comparisons
 581 less meaningful. Despite fBP's speed advantage, its execution becomes slow as sample dimensions
 582 increase and network ensembles grow larger. The volume of message-passing in high-dimensional
 583 contexts limits its scalability. As task complexity increases, fBP faces challenges in achieving stable
 584 convergence, further limiting its suitability for our high-dimensional setup. Past studies have excluded
 585 computationally expensive methods from experimental evaluations Zhang et al. (2022).

586 **3. Computational Overhead and Efficiency Concerns Resource Demands for Multiple Runs:**
 587 If we were to use fBP to generate multiple samples, we would need to reinitialize and re-run the
 588 algorithm for each sample with a new seed, effectively solving the problem from scratch each time.
 589 This is highly inefficient compared to MCMC methods, where each subsequent sample builds on
 590 the previous one without needing to restart the entire algorithm. For larger models and datasets, this
 591 repeated initialization and execution would result in a significant computational burden.

592 **4. Nature of Tasks:** In certain structured sampling tasks, such as the TSP, we enforce constraints to
 593 ensure that each proposed state is a valid TSP solution. This entails accepting only those configura-
 594 tions that satisfy specific requirements of the TSP. However, fBP does not adhere to such constraints,
 595 as it lacks mechanisms for directly enforcing the validity of the sampled states. Consequently, fBP
 596 is unsuitable for tasks where such structural constraints are critical, placing it outside the scope for
 597 comparison in these applications.

598 We conducted preliminary experiments using fBP for Restricted Boltzmann Machine (RBM) sampling
 599 on the MNIST dataset to assess its effectiveness in image generation. Figure 6 shows random
 600 image samples generated by fBP on MNIST, which resemble random unstructured noise rather
 601 than recognizable digits, compared to MNIST samples by DMALA and EDMALA in Figures 7, 8
 602 respectively. These outputs suggest that fBP doesn't capture the underlying structure of the MNIST
 603 data.

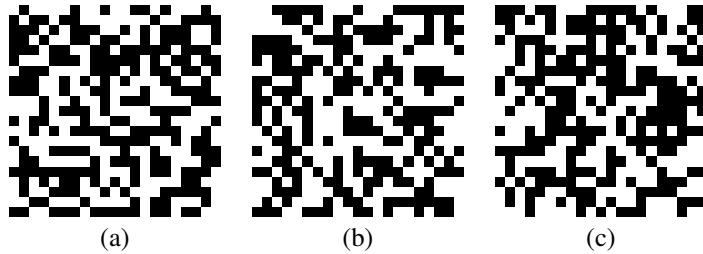


Figure 6: Random Image Samples for MNIST using fBP

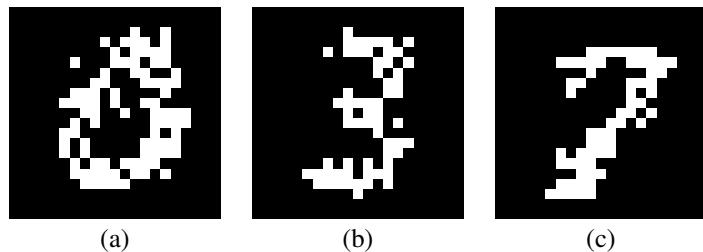


Figure 7: Random Image Samples for MNIST using DMALA

¹Carlo Baldassi, *BinaryCommitteeMachinefBP.jl*, GitHub repository, <https://github.com/carlobaldassi/BinaryCommitteeMachinefBP.jl>, accessed November 8, 2024.

²Curti, Nico and Dall'Olio, Daniele and Giampieri, Enrico, *ReplicatedFocusingBeliefPropagation*, GitHub repository, <https://github.com/Nico-Curti/rFBP>, accessed November 8, 2024.

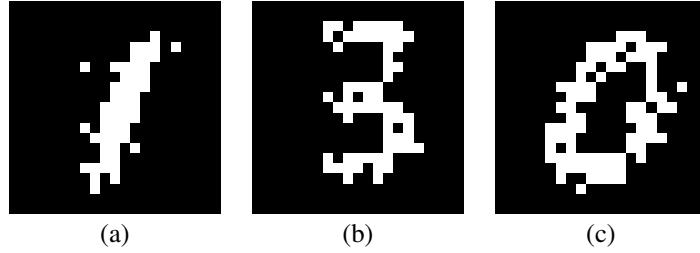


Figure 8: Random Image Samples for MNIST using EDMALA

604 fBP lacks direct use of the energy function $U(\cdot)$ during optimization, preventing accurate data
 605 modeling. Figure 9 illustrates this through a distribution analysis of generated MNIST classes,
 606 showing significant mode collapse. Most generated samples cluster around a few classes, with an
 607 imbalance favoring certain digits and ignoring others.

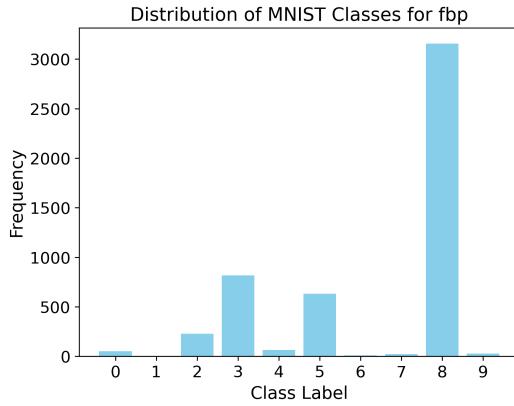


Figure 9: Mode Collapse using fBP

608 These findings highlight a fundamental issue with fBP in image generation tasks. Mode collapse
 609 suggests fBP struggles to explore diverse data regions, making it unsuitable for generating realistic,
 610 structured outputs that adhere to specific distribution characteristics, like image data in the MNIST
 611 dataset.

612 In summary, fBP diverges significantly from the MCMC-based sampling methods used in our study
 613 due to its deterministic message-passing mechanism, which converges to fixed configurations rather
 614 than generating sequential probabilistic samples. While a Python wrapper exists, its reliance on
 615 the underlying Julia or C++ implementations introduces potential cross-language communication
 616 overhead, creating performance inconsistencies when compared to native Python implementations.
 617 Moreover, fBP's lack of constraint adherence and dependence on spin-like variable encoding make
 618 it unsuitable for complex, structured sampling tasks like TSP or data-driven applications requiring
 619 diverse sampling, such as image generation on MNIST. Our preliminary experiments confirm that
 620 fBP struggles with mode collapse and fails to capture essential data distribution characteristics.

621 D Proofs

622 D.1 Proof of Lemma 4.1

623 Assume $\tilde{\theta} = [\theta^T, \theta_a^T]^T$ is sampled from the joint posterior distribution:

$$p(\tilde{\theta}) = p(\theta, \theta_a) \propto \exp \left\{ U(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\}. \quad (10)$$

624 Then the marginal distribution for $\boldsymbol{\theta}$ is:

$$\begin{aligned}
p(\boldsymbol{\theta}) &= \int p(\boldsymbol{\theta}, \boldsymbol{\theta}_a) d\boldsymbol{\theta}_a \\
&= (2\pi\eta)^{-\frac{d}{2}} Z^{-1} \int \exp \left\{ U(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\} d\boldsymbol{\theta}_a \\
&= Z^{-1} \exp(U(\boldsymbol{\theta})) (2\pi\eta)^{-\frac{d}{2}} \int \exp \left\{ -\frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\} d\boldsymbol{\theta}_a \\
&= Z^{-1} \exp(U(\boldsymbol{\theta})),
\end{aligned} \tag{11}$$

625 where $Z = \sum_{\Theta} \exp(U(\boldsymbol{\theta}))$ is the normalizing constant, and it is obtained by:

$$\sum_{\Theta} \int \exp \left\{ U(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\} d\boldsymbol{\theta}_a = (2\pi\eta)^{\frac{d}{2}} \sum_{\Theta} \exp(U(\boldsymbol{\theta})) := (2\pi\eta)^{\frac{d}{2}} Z. \tag{12}$$

626 This verifies that the joint posterior distribution $p(\boldsymbol{\theta}, \boldsymbol{\theta}_a)$ is mathematically well-defined³. Similarly,
627 the marginal distribution for $\boldsymbol{\theta}_a$ is:

$$\begin{aligned}
p(\boldsymbol{\theta}_a) &= \sum_{\Theta} p(\boldsymbol{\theta}, \boldsymbol{\theta}_a) \\
&\propto \sum_{\Theta} \exp \left\{ U(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\} \\
&= \exp \mathcal{F}(\boldsymbol{\theta}_a; \eta).
\end{aligned} \tag{13}$$

628 D.2 Proof of Proposition 5.4

629 We follow a similar-style analysis as seen in Theorem 5.1 of Zhang et al. (2022).

630 Using Equation (9),

$$\begin{aligned}
q_{\gamma}(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) &\propto \exp \left(\frac{1}{2} \nabla_{\boldsymbol{\theta}} U_{\eta}(\tilde{\boldsymbol{\theta}})^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta}) - \frac{1}{2\alpha} \|\boldsymbol{\theta}' - \boldsymbol{\theta}\|^2 \right) \cdot \frac{1}{\sqrt{2\pi\alpha_a^d}} \exp \left(-\frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a - \frac{\alpha_a}{2} \nabla_{\boldsymbol{\theta}_a} U_{\eta}(\tilde{\boldsymbol{\theta}})\|^2 \right) \\
&= \frac{1}{\sqrt{2\pi\alpha_a^d}} \exp \left(\frac{1}{2} \nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta})^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta}) - \frac{1}{2\alpha} \|\boldsymbol{\theta}' - \boldsymbol{\theta}\|^2 - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta}) \right) \cdot \\
&\quad \left(-\frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 + \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^{\top} (\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a) - \frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right) \\
&= \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \exp \left(\frac{1}{2} (-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - (\boldsymbol{\theta} - \boldsymbol{\theta}')^{\top} \left(\frac{1}{2\alpha} I + \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - \boldsymbol{\theta}') \right. \\
&\quad \left. - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta} + \boldsymbol{\theta}_a - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 - \frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right) \\
&= \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \exp \left(\frac{1}{2} (-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - (\boldsymbol{\theta} - \boldsymbol{\theta}')^{\top} \left(\frac{1}{2\alpha} I + \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - \boldsymbol{\theta}') \right. \\
&\quad \left. - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 + \frac{4\eta - \alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right)
\end{aligned}$$

631 The normalizing constant for Equation (9) $Z_{\tilde{\Theta}}(\tilde{\boldsymbol{\theta}})$ is computed by integrating over \mathbb{R}^d and summing
632 over Θ :

$$Z_{\tilde{\Theta}}(\tilde{\boldsymbol{\theta}}) = \frac{1}{\sqrt{2\pi\alpha_a^d}} \int_{\boldsymbol{\theta}'_a} \sum_{\boldsymbol{\theta}' \in \Theta} \exp \left(\frac{1}{2} \nabla_{\boldsymbol{\theta}} U_{\eta}(\tilde{\boldsymbol{\theta}})^{\top} (\boldsymbol{\theta}' - \boldsymbol{\theta}) - \frac{1}{2\alpha} \|\boldsymbol{\theta}' - \boldsymbol{\theta}\|^2 - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a - \frac{\alpha_a}{2} \nabla_{\boldsymbol{\theta}_a} U_{\eta}(\tilde{\boldsymbol{\theta}})\|^2 \right) d\boldsymbol{\theta}'_a \tag{14}$$

633 We note that since $\nabla^2 U(\cdot)$ is continuous (from Assumption 5.2), we know that

$$\min_{x, y \in \Theta} (x - y)^T \left(\int_0^1 \nabla^2 U((1-s)x + sy) ds \right) (x - y)$$

³The exact form of the joint posterior is $p(\boldsymbol{\theta}, \boldsymbol{\theta}_a) = (2\pi\eta)^{-\frac{d}{2}} Z^{-1} \exp(U(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2)$.

634 is well-defined.

635 Consequently, the modified normalizing constant(Equation (14)), $Z_\gamma(\tilde{\boldsymbol{\theta}})$, becomes

$$Z_\gamma(\tilde{\boldsymbol{\theta}}) = \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \int_{\boldsymbol{\theta}'} \sum_{\boldsymbol{\theta}' \in \Theta} \exp \left(\frac{1}{2} (-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - (\boldsymbol{\theta} - \boldsymbol{\theta}')^\top \left(\frac{1}{2\alpha} I + \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - \boldsymbol{\theta}') \right. \\ \left. - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 + \frac{4\eta - \alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right).$$

636 Now, we establish that $q(\tilde{\boldsymbol{\theta}}|\tilde{\boldsymbol{\theta}}')$ is reversible with respect to π_γ , where

$$637 \pi_\gamma = \frac{Z_\gamma(\tilde{\boldsymbol{\theta}}) \exp\{\frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\} \pi(\tilde{\boldsymbol{\theta}})}{\int_y \sum_{x \in \Theta} Z_\gamma([x^\top, y^\top]^\top) \exp\{\frac{\alpha_a}{8\eta^2} \|x - y\|^2\} \pi([x^\top, y^\top]^\top) dy}.$$

638 Note that,

$$\pi_\gamma(\tilde{\boldsymbol{\theta}}) q_\gamma(\tilde{\boldsymbol{\theta}}'|\tilde{\boldsymbol{\theta}}) = \frac{Z_\gamma(\tilde{\boldsymbol{\theta}}) \exp\left(\frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right) \pi(\tilde{\boldsymbol{\theta}})}{\int_y \sum_{x \in \Theta} Z_\gamma([x^\top, y^\top]^\top) \exp\left(\frac{\alpha_a}{8\eta^2} \|x - y\|^2\right) \pi([x^\top, y^\top]^\top) dy} \frac{1}{Z_\gamma(\tilde{\boldsymbol{\theta}})} \frac{1}{(\sqrt{2\pi\alpha_a})^d} \\ \exp\left(\frac{1}{2} (-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - (\boldsymbol{\theta} - \boldsymbol{\theta}')^\top \left(\frac{1}{2\alpha} I + \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - \boldsymbol{\theta}') \right. \\ \left. - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 + \frac{4\eta - \alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right) \\ = \frac{1}{\int_y \sum_{x \in \Theta} Z_\gamma([x^\top, y^\top]^\top) \exp\left(\frac{\alpha_a}{8\eta^2} \|x - y\|^2\right) \pi([x^\top, y^\top]^\top) dy} \frac{1}{(\sqrt{2\pi\alpha_a})^d} \\ \exp\left(\frac{1}{2} (U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}')^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - \boldsymbol{\theta}') \right. \\ \left. - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 \right) \\ = \pi_\gamma(\boldsymbol{\theta}') q_\gamma(\boldsymbol{\theta}'|\boldsymbol{\theta}).$$

639 Chain looks symmetric and reversible with respect to π_γ .

640 Now, given this, note that $Z'_\gamma(\tilde{\boldsymbol{\theta}})$ converges to 1 as $\alpha \rightarrow 0$ and $\alpha_a \rightarrow 0$.

$$Z'_\gamma(\tilde{\boldsymbol{\theta}}) = Z_\gamma(\tilde{\boldsymbol{\theta}}) \exp\left(\frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right) \\ = \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \int_y \sum_x \exp\left(-\frac{1}{2} (U(\boldsymbol{\theta}) - U(x)) - (\boldsymbol{\theta} - x)^\top \left(\frac{1}{2\alpha} I + \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds \right) (\boldsymbol{\theta} - x) \right. \\ \left. - \frac{1}{2\alpha_a} \|y - \boldsymbol{\theta}_a\|^2 + \frac{4\eta}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right) dy \\ \stackrel{\alpha \rightarrow 0}{=} \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \int_y \sum_x \exp\left(\frac{1}{2} (U(x) - U(\boldsymbol{\theta})) - \frac{1}{2\alpha_a} \|y - \boldsymbol{\theta}_a\|^2 + \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (x - y)\right) \delta_{\boldsymbol{\theta}}(x) dy \\ = \int_y \exp\left(\frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta} - y)\right) dy \\ \stackrel{\alpha_a \rightarrow 0}{=} \int_y \exp\left(\frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta} - \boldsymbol{\theta}_a)\right) dy \\ = 1.$$

641 where $\delta_{\boldsymbol{\theta}}(\cdot)$ is a Dirac delta. It follows that π_γ converges pointwisely to $\pi(\tilde{\boldsymbol{\theta}})$. By Scheffé's Lemma, 642 it immediately implies $\pi_\gamma(\tilde{\boldsymbol{\theta}}) \rightarrow \pi(\tilde{\boldsymbol{\theta}})$ as $\alpha \rightarrow 0$ and $\alpha_a \rightarrow 0$.

643 Let us consider the convergence rate in terms of the L_1 -norm

$$\|\pi_\gamma - \pi\|_1 = \int_{\boldsymbol{\theta}_a} \sum_{\boldsymbol{\theta} \in \Theta} \left| \frac{Z'_\gamma(\tilde{\boldsymbol{\theta}}) \pi(\tilde{\boldsymbol{\theta}})}{\int_y \sum_{x \in \Theta} Z'_\gamma([x^\top, y^\top]^\top) \pi([x^\top, y^\top]^\top) dy} - \pi(\tilde{\boldsymbol{\theta}}) \right| d\boldsymbol{\theta}_a$$

644 We write out each absolute value term

$$\left| \frac{Z'_\gamma(\tilde{\theta})\pi(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma([x^\top, y^\top]^\top) \pi([x^\top, y^\top]^\top) dy} - \pi(\tilde{\theta}) \right| = \pi(\tilde{\theta}) \left| \frac{Z'_\gamma(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma([x^\top, y^\top]^\top) \pi([x^\top, y^\top]^\top) dy} - 1 \right|$$

645 First, we note that since U is M-gradient Lipschitz and $\frac{\alpha}{2} < \frac{1}{M}$, the matrix

$$\frac{1}{2\alpha} I - \frac{1}{4} \int_0^1 \nabla^2 U((1-s)\theta + s\theta') ds > \frac{1}{4} \left(\frac{2}{\alpha} - M \right) I$$

646 is positive definite.

647 Second, for $x' \in \Theta$ and $y' \in \Theta_a$ (under Assumptions 5.1 and 5.3), we know that the following
648 minimum exists and is well-defined: $\min_{\substack{x \in \Theta \setminus \{x'\} \\ y \in \Theta_a \setminus \{y'\}}} (x - y)^\top (x' - y')$

649 Thus when, $\frac{Z'_\gamma(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) \pi \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) dy} - 1 \geq 0$, we get,

$$\begin{aligned} & \left| \frac{Z'_\gamma(\tilde{\theta})\pi(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) \pi \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) dy} - \pi(\tilde{\theta}) \right| = \pi(\tilde{\theta}) \left| \frac{Z'_\gamma(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) \pi \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) dy} - 1 \right| \\ & \leq \pi(\tilde{\theta}) \left(1 + \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \int_{y \neq \theta_a} \sum_{x \neq \theta} \exp \left(\frac{1}{2}(U(x) - U(\theta)) - \frac{1}{2}(\theta - x)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-s)\theta + sx) ds \right) (\theta - x) \right. \right. \\ & \quad \left. \left. - \frac{1}{2\alpha_a} \|y - \theta_a\|^2 + \frac{4\eta}{8\eta^2} \|\theta - \theta_a\|^2 - \frac{1}{2\eta} (\theta - \theta_a)^\top (x - y) \right) dy - 1 \right) \\ & \leq \frac{\pi(\tilde{\theta})}{\sqrt{(2\pi\alpha_a)^d}} \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{1}{2\eta} \|\theta - \theta_a\|^2 - \frac{\vartheta(\Theta, \Theta_a)}{2\eta} \right) \cdot \left(\int_{y \neq \theta_a} \sum_{x \neq \theta} \exp \left(\frac{1}{2}U(x) - \frac{1}{2}U(\theta) - \frac{1}{2\alpha_a} \|y - \theta_a\|^2 \right) dy \right) \\ & \leq \pi(\tilde{\theta}) \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{1}{2\eta} \|\theta - \theta_a\|^2 - \frac{\vartheta(\Theta, \Theta_a)}{2\eta} \right) \left(\sum_x \exp(U(x)) \right) \\ & = \pi(\tilde{\theta}) Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{1}{2\eta} \|\theta - \theta_a\|^2 - \frac{\vartheta(\Theta, \Theta_a)}{2\eta} \right) \\ & \leq \pi(\tilde{\theta}) Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right). \end{aligned}$$

650 Similarly, when $\frac{Z'_\gamma(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) \pi \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) dy} - 1 < 0$, we get

$$\begin{aligned} & \left| \frac{Z'_\gamma(\tilde{\theta})\pi(\tilde{\theta})}{\int_y \sum_{x \in \Theta} Z'_\gamma \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) \pi \left(\begin{bmatrix} x^\top \\ y^\top \end{bmatrix} \right) dy} - \pi(\tilde{\theta}) \right| \\ & = \pi(\tilde{\theta}) \left(1 - \frac{1 + \frac{1}{\sqrt{(2\pi\alpha_a)^d}} \int_{y \neq \theta_a} \sum_{x \neq \theta} \exp \left(\frac{1}{2}(U(x) - U(\theta)) - \frac{1}{2}(\theta - x)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-s)\theta + sx) ds \right) (\theta - x) - \frac{1}{2\alpha_a} \|y - \theta_a\|^2 + \frac{4\eta}{8\eta^2} \|\theta - \theta_a\|^2 - \frac{1}{2\eta} (\theta - \theta_a)^\top (x - y) \right) dy}{1 + \frac{1}{\sqrt{2\pi\alpha_a}} \int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \int_{q \neq p} \sum_r \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - \frac{1}{2}U(r)) - \frac{1}{2}(r - s)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-l)r + ls) dl \right) (r - s) - \frac{1}{2\alpha_a} \|q - p\|^2 + \frac{4\eta}{8\eta^2} \|r - p\|^2 - \frac{1}{2\eta} (r - p)^\top (s - q) \right) dq dp} \right) \\ & \leq \pi(\tilde{\theta}) \left(1 - \frac{1 + \frac{1}{\sqrt{2\pi\alpha_a}} \int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \int_{q \neq p} \exp \left(-\frac{1}{2\alpha_a} \|q - p\|^2 \right) \sum_r \exp \left(\frac{4\eta}{8\eta^2} \|r - p\|^2 \right) \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - U(r)) - \frac{1}{2}(r - s)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-l)r + ls) dl \right) (r - s) - \frac{1}{2\eta} (r - p)^\top (s - q) \right) dq dp}{1 + \frac{1}{\sqrt{2\pi\alpha_a}} \int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \int_{q \neq p} \exp \left(-\frac{1}{2\alpha_a} \|q - p\|^2 \right) \sum_r \exp \left(\frac{4\eta}{8\eta^2} \|r - p\|^2 \right) \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - U(r)) - \frac{1}{2}(r - s)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-l)r + ls) dl \right) (r - s) - \frac{1}{2\eta} (r - p)^\top (s - q) \right) dq dp} \right) \\ & \leq \frac{\pi(\tilde{\theta})}{\sqrt{2\pi\alpha_a}^d} \left(\int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \int_{q \neq p} \exp \left(-\frac{1}{2\alpha_a} \|q - p\|^2 \right) \sum_r \exp \left(\frac{4\eta}{8\eta^2} \|r - p\|^2 \right) \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - U(r)) - \frac{1}{2}(r - s)^\top \left(\frac{1}{\alpha} I + \frac{1}{2} \int_0^1 \nabla^2 U((1-l)r + ls) dl \right) (r - s) - \frac{1}{2\eta} (r - p)^\top (s - q) \right) dq dp \right. \\ & \quad \left. - \frac{\pi(\tilde{\theta})}{\sqrt{(2\pi\alpha_a)^d}} \exp \left(\frac{M}{4} - \frac{1}{2\alpha} \right) \left(\int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \right) \int_{q \neq p} \exp \left(-\frac{1}{2\alpha_a} \|q - p\|^2 \right) \sum_r \exp \left(\frac{1}{2\eta} \|r - p\|^2 \right) \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - U(r)) - \frac{1}{2\eta} (r - p)^\top (s - q) \right) dq dp \right) \\ & \leq \frac{\pi(\tilde{\theta})}{\sqrt{2\pi\alpha_a}^d} \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right) \left(\int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \int_{q \neq p} \exp \left(-\frac{1}{2\alpha_a} \|q - p\|^2 \right) \sum_r \frac{1}{Z} \exp(U(r)) \sum_{s \neq r} \exp \left(\frac{1}{2}(U(s) - U(r)) \right) dq dp \right) \\ & \leq \frac{\pi(\tilde{\theta})}{\sqrt{2\pi\alpha_a}^d} Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right) \int_p \frac{1}{\sqrt{\pi^d}} \exp(-p^2) \\ & = \pi(\tilde{\theta}) Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right) \end{aligned}$$

651 Therefore, the difference between π_γ and $\tilde{\pi}$ can be bounded as follows

$$\begin{aligned} \|\pi_\gamma - \tilde{\pi}\|_1 & \leq \int_{\theta_a} \sum_{\theta \in \Theta} \pi(\tilde{\theta}) Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right) d\theta_a \\ & \leq Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right) \end{aligned}$$

652 **D.3 Proofs for EDULA**

653 We start by establishing results for a more general case in which Assumption 5.3 is dropped. We
654 establish that in this setting geometric rates of convergence exist. However, in this case proving that
655 the stationary distribution is close to the target remains an open problem. .

656 **Theorem D.1.** *Let Assumption 5.1 hold. Then for the Markov chain with transition operator P as in
657 Algorithm 1, the drift condition is satisfied as follows:*

$$PV(\tilde{\theta}) \leq \alpha_a d + 2 \left(1 - \frac{\alpha_a}{\eta}\right)^2 V(\tilde{\theta}) + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\theta \in \Theta} \|\theta\|^2.$$

658 *Proof.* We establish an explicit drift and minorization condition for the joint chain, which confirms
659 the convergence rate. Note that

$$p((\theta'_a, \theta') | (\theta_a, \theta)) = p(\theta'_a | \theta, \theta_a) \cdot p(\theta' | \theta_a, \theta).$$

660 Now,

$$p(\theta'_a | \theta, \theta_a) = \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{1}{2\alpha_a} \left\| \theta'_a - \theta_a \left(1 - \frac{\alpha_a}{\eta}\right) - \frac{\alpha_a}{\eta} \theta \right\|^2 \right\}$$

661 and

$$p(\theta' | \theta_a, \theta) = \frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \theta' - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}.$$

662 Therefore, our Markov transition operator P is given as

$$P((\theta_a, \theta), A) = \int_A p((\theta'_a, \theta') | (\theta, \theta_a)) d\mu,$$

663 where $A \in \Theta \times \mathbb{R}^d$ and μ is the product of the counting measure and Lebesgue measure.

664 We shall first establish a drift condition:

$$PV \leq \lambda V + b,$$

665 where we choose the Lyapunov function $V(x_1, x_2) = \|x_1\|^2$ and some constant $b > 0$.

666 We note that

$$\begin{aligned} PV(\theta_a, \theta) &= \frac{1}{(2\pi\alpha_a)^{d/2}} \sum_{\theta' \in \Theta} \int \|\theta'_a\|^2 \exp \left\{ -\frac{1}{2\alpha_a} \left\| \theta'_a - \theta_a \left(1 - \frac{\alpha_a}{\eta}\right) - \frac{\alpha_a}{\eta} \theta \right\|^2 \right\} \\ &\quad \cdot \frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \theta' - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}} d\theta_a. \end{aligned}$$

667 Using a change of variables, we have

$$\begin{aligned} PV(\theta_a, \theta) &= \frac{1}{(2\pi\alpha_a)^{d/2}} \sum_{\theta' \in \Theta} \int \left\| u + \theta_a \left(1 - \frac{\alpha_a}{\eta}\right) + \frac{\alpha_a}{\eta} \theta \right\|^2 \exp \left\{ -\frac{1}{2\alpha_a} \|u\|^2 \right\} \\ &\quad \cdot \frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \theta' - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}} du \\ &\leq \alpha_a d + 2 \left(1 - \frac{\alpha_a}{\eta}\right)^2 \|\theta_a\|^2 + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\theta \in \Theta} \|\theta\|^2. \end{aligned}$$

668 Note that when $\lambda = 2 \left(1 - \frac{\alpha_a}{\eta}\right)^2 < 1$, then this is a proper drift condition with $b = \alpha_a d +$
669 $2 \frac{\alpha_a^2}{\eta^2} \sup_{\theta \in \Theta} \|\theta\|^2$.

670 **Theorem D.2.** Under Assumption 5.1, the Markov chain with transition operator P as in Algorithm
671 I satisfies,

$$P(\tilde{\boldsymbol{\theta}}, A) \geq \bar{\eta}\mu(A)$$

672 where $\bar{\eta} > 0$ is defined in (16) and $\mu(\cdot)$ is the product of Lebesgue measure and counting measure
673 and $\tilde{\boldsymbol{\theta}} \in C_\alpha$ as in (15).

674 *Proof.* We establish a minorization on the set,

$$C_{\alpha_a} = \left\{ x : V(x) \leq \frac{2 \left(\alpha_a d + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\theta}\|^2 \right)}{\left(1 - \frac{\alpha_a}{\eta} \right)^2} \right\} \quad (15)$$

675 We define

$$\begin{aligned} \bar{\eta} = & \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{4}{\alpha_a} \frac{\left(\alpha_a d + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\theta}\|^2 \right)}{\left(1 - \frac{\alpha_a}{\eta} \right)^2} \right\} \cdot \frac{1}{|\Theta|} \\ & \cdot \exp \left\{ -\frac{1}{2\alpha} \left[\left((\alpha M + 1)^2 + \alpha M^2 \right) \text{diam}(\Theta)^2 + (2(M + \alpha) + 2\alpha M) \|\nabla U(a)\| \text{diam}(\Theta) + (\alpha^2 + \alpha) \|\nabla U(a)\|^2 \right. \right. \\ & \left. \left. + 2 \frac{\alpha}{\eta} \left[(\alpha M + 1)^2 \text{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \text{diam}(\Theta) + \alpha^2 \|\nabla U(a)\|^2 \right]^{1/2} \text{diam}(\Theta) \right] \right\} \end{aligned} \quad (16)$$

676 We start with considering any $(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) \in C_\alpha$. Further, we also have $(\boldsymbol{\theta}_a, \boldsymbol{\theta}) \in C_{\alpha_a}$. Therefore

$$\begin{aligned} p((\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) | (\boldsymbol{\theta}_a, \boldsymbol{\theta})) = & \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{1}{2\alpha_a} \left\| \boldsymbol{\theta}_1 - \boldsymbol{\theta}_a \left(1 - \frac{\alpha_a}{\eta} \right) - \frac{\alpha_a}{\eta} \boldsymbol{\theta} \right\|^2 \right\} \\ & \cdot \frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}}. \end{aligned}$$

677 For the first term, we note that

$$\begin{aligned} \left\| \boldsymbol{\theta}_1 - \boldsymbol{\theta}_a \left(1 - \frac{\alpha_a}{\eta} \right) - \frac{\alpha_a}{\eta} \boldsymbol{\theta} \right\|^2 & \leq 2 \|\boldsymbol{\theta}_1\|^2 + 2 \left\| \left(1 - \frac{\alpha_a}{\eta} \right) \boldsymbol{\theta}_a + \frac{\alpha_a}{\eta} \boldsymbol{\theta} \right\|^2 \\ & \leq 2 \|\boldsymbol{\theta}_1\|^2 + 2 \left(1 - \frac{\alpha_a}{\eta} \right) \|\boldsymbol{\theta}_a\|^2 + 2 \frac{\alpha_a}{\eta} \|\boldsymbol{\theta}\|^2 \\ & \leq 8 \frac{\left(\alpha_a d + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\theta}\|^2 \right)}{\left(1 - \frac{\alpha_a}{\eta} \right)^2}. \end{aligned}$$

678 Therefore, the first term is greater than

$$\begin{aligned} & \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{1}{2\alpha_a} \left\| \boldsymbol{\theta}_1 - \boldsymbol{\theta}_a \left(1 - \frac{\alpha_a}{\eta} \right) - \frac{\alpha_a}{\eta} \boldsymbol{\theta}_2 \right\|^2 \right\} \\ & \geq \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{4}{\alpha_a} \frac{\left(\alpha_a d + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\theta}\|^2 \right)}{\left(1 - \frac{\alpha_a}{\eta} \right)^2} \right\}. \end{aligned}$$

679 For the second term, note that

$$\frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}} \geq \frac{1}{|\Theta|} \exp \left\{ -\frac{1}{2\alpha} \left\| \boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}.$$

680 For the numerator, one sees,

$$\begin{aligned} \left\| \boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 &\leq \|\boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta})\|^2 + \frac{\alpha^2}{\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \\ &\quad + 2 \frac{\alpha}{\eta} \|\boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta})\| \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|. \end{aligned}$$

681 For the first term, we have

$$\|\boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta})\|^2 \leq \|\boldsymbol{\theta}_2 - \boldsymbol{\theta}\|^2 + \alpha^2 \|\nabla U(\boldsymbol{\theta})\|^2 + 2\alpha \|\boldsymbol{\theta}_2 - \boldsymbol{\theta}\| \|\nabla U(\boldsymbol{\theta})\|.$$

682 Define $a = \operatorname{argmin}_{\boldsymbol{\theta} \in \Theta} \|\nabla U(\boldsymbol{\theta})\|$. Therefore, the above expression is less than

$$\begin{aligned} \|\boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta})\|^2 &\leq \operatorname{diam}(\Theta)^2 + \alpha^2 (M^2 \operatorname{diam}(\Theta)^2 + \|\nabla U(a)\|^2 + 2M \operatorname{diam}(\Theta) \|\nabla U(a)\|) \\ &\quad + 2\alpha \operatorname{diam}(\Theta) (M \operatorname{diam}(\Theta) + \|\nabla U(a)\|) \\ &\leq (\alpha M + 1)^2 \operatorname{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \operatorname{diam}(\Theta) + \alpha^2 \|\nabla U(a)\|^2. \end{aligned}$$

683 For the second term, we have

$$\alpha \|\nabla U(\boldsymbol{\theta})\|^2 \leq \alpha M^2 \operatorname{diam}(\Theta)^2 + \alpha \|\nabla U(a)\|^2 + 2\alpha M \operatorname{diam}(\Theta) \|\nabla U(a)\|$$

684 and for the final term we have

$$\begin{aligned} 2 \frac{\alpha}{\eta} \|\boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta})\| \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\| &\leq 2 \frac{\alpha}{\eta} \left[(\alpha M + 1)^2 \operatorname{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \operatorname{diam}(\Theta) \right. \\ &\quad \left. + \alpha^2 \|\nabla U(a)\|^2 \right]^{1/2} \operatorname{diam}(\Theta). \end{aligned} \quad (17)$$

685 Therefore we have

$$\begin{aligned} &\frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \boldsymbol{\theta}_2 - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \boldsymbol{\theta} + \alpha \nabla U(\boldsymbol{\theta}) - \frac{\alpha}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \right\|^2 \right\}} \\ &\geq \frac{1}{|\Theta|} \exp \left\{ -\frac{1}{2\alpha} \left[\left((\alpha M + 1)^2 + \alpha M^2 \right) \operatorname{diam}(\Theta)^2 + (2(M + \alpha) + 2\alpha M) \|\nabla U(a)\| \operatorname{diam}(\Theta) + (\alpha^2 + \alpha) \|\nabla U(a)\|^2 \right. \right. \\ &\quad \left. \left. + 2 \frac{\alpha}{\eta} \left[(\alpha M + 1)^2 \operatorname{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \operatorname{diam}(\Theta) + \alpha^2 \|\nabla U(a)\|^2 \right]^{1/2} \operatorname{diam}(\Theta) \right] \right\}. \end{aligned}$$

686 This finally gives $\tilde{\eta}$ as

$$\begin{aligned} \tilde{\eta} &= \frac{1}{(2\pi\alpha_a)^{d/2}} \exp \left\{ -\frac{4}{\alpha_a} \frac{\left(\alpha_a d + 2 \frac{\alpha_a^2}{\eta^2} \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\theta}\|^2 \right)}{\left(1 - \frac{\alpha_a}{\eta} \right)^2} \right\} \\ &\quad \cdot \frac{1}{|\Theta|} \exp \left\{ -\frac{1}{2\alpha} \left[\left((\alpha M + 1)^2 + \alpha M^2 \right) \operatorname{diam}(\Theta)^2 + (2(M + \alpha) + 2\alpha M) \|\nabla U(a)\| \operatorname{diam}(\Theta) + (\alpha^2 + \alpha) \|\nabla U(a)\|^2 \right. \right. \\ &\quad \left. \left. + 2 \frac{\alpha}{\eta} \left[(\alpha M + 1)^2 \operatorname{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \operatorname{diam}(\Theta) + \alpha^2 \|\nabla U(a)\|^2 \right]^{1/2} \operatorname{diam}(\Theta) \right] \right\} \end{aligned}$$

687 with the reference measure $\mu(\cdot)$ is the product measure of the Lebesgue measure and the counting
688 measure.

689 **Lemma D.3.** *The Markov chain defined by Algorithm 1 is irreducible, aperiodic and Harris recurrent.*

690 *Proof.* For any Borel measurable A with $\lambda(A) > 0$ and any $\boldsymbol{\theta} \in \Theta$, we have

$$\mathbb{P}(\boldsymbol{\theta}'_a \in A, \boldsymbol{\theta}' = \boldsymbol{\theta}^* \mid \boldsymbol{\theta}_a, \boldsymbol{\theta}) = \mathbb{P}(\boldsymbol{\theta}'_a \in A \mid \boldsymbol{\theta}_a, \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta}' = \boldsymbol{\theta}^* \mid \boldsymbol{\theta}_a, \boldsymbol{\theta}).$$

691 Note that both the above terms are positive since the first distribution is Gaussian and the second term
692 is positive by definition. We can similarly establish aperiodicity by noting that there is no partition of
693 $\Theta \times \mathbb{R}^d$ such that the previous probability is 1. Finally, due to the fact that the algorithm satisfies a
694 drift condition, the Markov chain is Harris.

695 We may leverage the above results to obtain a rate of convergence of the sampler using Ekvall &
696 Jones (2021).

697 **Theorem D.4.** *The Markov chain has a stationary distribution dependent on $\gamma = (\alpha, \alpha_a), \pi_\gamma$, and is
698 (M, ρ) geometrically ergodic with*

$$\|P^k(x, \cdot) - \pi_\gamma(\cdot)\|_{TV} \leq M(x)\rho^k$$

699 *where*

$$M(x) = 2 + \frac{\tilde{b}}{1 - \tilde{\lambda}} + \tilde{V}(x)$$

700 *and*

$$\rho \leq \max \left\{ (1 - \bar{\eta})^r, \left(\frac{1 + 2\tilde{b} + \tilde{\lambda} + \tilde{\lambda}d}{1 + d} \right)^{1-r} \left(1 + 2\tilde{b} + 2\tilde{\lambda}d \right)^r \right\}$$

701 *for some free parameter $0 < r < 1$ and where $\bar{\eta}, b, \lambda$ are previously defined.*

702 *Proof.* The proof follows directly from Theorem D.1, Theorem D.2 and Lemma D.3 Ekvall & Jones
703 (2021).

704 **Theorem D.5.** *For any function $f : \mathbb{R}^p \rightarrow \mathbb{R}$ with $f^2(x) \leq V(x)$ for all $x \in \mathbb{R}^p$ one has*

$$\sqrt{n} (\bar{f} - \mathbb{E}_{\pi_\gamma} f) \xrightarrow{d} N(0, \sigma_f^2)$$

705 *as $n \rightarrow \infty$, where $\sigma_f^2 \in [0, \infty)$.* , where

$$\bar{f} = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

706 *Proof.* The proof follows from Theorem D.1 by noting that $PV \leq \lambda V + b$ implies

$$P(V + 1) \leq \lambda(V + 1) + (b + 1 - \lambda).$$

707 This implies a drift condition holds with $V : \mathbb{R}^d \rightarrow [1, \infty)$. Hence the result follows via Jones (2004).

708 Note that $\sigma_f^2 = 0$ implies convergence to a Gaussian degenerate at 0.

709 Define

$$\begin{aligned} \bar{\eta}^* &= \frac{1}{\Phi_{\alpha_a}(\Theta_a)} \exp \left\{ -\frac{1}{\alpha_a} \text{diam}(\Theta_a)^2 - \frac{\alpha_a}{\eta^2} \Delta(\Theta, \Theta_a)^2 \right\} \\ &\times \frac{1}{|\Theta|} \exp \left\{ -\frac{1}{2\alpha} [((\alpha M + 1)^2 + \alpha M^2) \text{diam}(\Theta)^2 \right. \\ &\quad + (2(M + \alpha) + 2\alpha M) \|\nabla U(a)\| \text{diam}(\Theta) \\ &\quad + (\alpha^2 + \alpha) \|\nabla U(a)\|^2 \\ &\quad \left. + 2\frac{\alpha}{\eta} [(\alpha M + 1)^2 \text{diam}(\Theta)^2 + 2(M + \alpha) \|\nabla U(a)\| \text{diam}(\Theta) + \alpha^2 \|\nabla U(a)\|^2]^{1/2} \text{diam}(\Theta) \right] \right\}. \end{aligned} \tag{18}$$

710 **Lemma D.6.** *Under Assumptions 5.1 and 5.3, the Markov chain with transition operator P as in
711 Algorithm 1 satisfies,*

$$P((\theta_a, \theta), A) \geq \bar{\eta}^* \mu(A)$$

712 *where $\bar{\eta}^* > 0$ is as defined in (18) and $\mu(\cdot)$ is the product of Lebesgue measure and counting measure.*

713 *Proof.* We consider the case where θ_a is restricted to some compact subset of \mathbb{R}^d , which we refer to
714 as Θ_a . In this case, note that the transition kernel changes to

$$\begin{aligned} p((\theta_1, \theta_2) | (\theta_a, \theta)) &= \frac{1}{\Phi_{\alpha_a}(\Theta_a)} \exp \left\{ -\frac{1}{2\alpha_a} \left\| \theta_1 - \theta_a \left(1 - \frac{\alpha_a}{\eta} \right) - \frac{\alpha_a}{\eta} \theta \right\|^2 \right\} \\ &\times \frac{\exp \left\{ -\frac{1}{2\alpha} \left\| \theta_2 - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}{\sum_{x \in \Theta} \exp \left\{ -\frac{1}{2\alpha} \left\| x - \theta + \alpha \nabla U(\theta) - \frac{\alpha}{\eta} (\theta - \theta_a) \right\|^2 \right\}}. \end{aligned}$$

715 The proof is similar to Theorem D.2. The key difference is that we can minorize on the entire set.
716 Noting that

$$\begin{aligned} \left\| \boldsymbol{\theta}_1 - \boldsymbol{\theta}_a \left(1 - \frac{\alpha_a}{\eta} \right) - \frac{\alpha_a}{\eta} \boldsymbol{\theta} \right\|^2 &\leq 2 \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_a\|^2 + 2 \frac{\alpha_a^2}{\eta^2} \|\boldsymbol{\theta}_a - \boldsymbol{\theta}\|^2 \\ &\leq 2 \text{diam}(\boldsymbol{\Theta}_a)^2 + 2 \frac{\alpha_a^2}{\eta^2} \Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2. \end{aligned}$$

717 Using the same argument as Theorem D.2, we get a uniform minorization with

$$\begin{aligned} \bar{\eta}^* &= \frac{1}{\Phi_{\alpha_a}(\boldsymbol{\Theta}_a)} \exp \left\{ -\frac{1}{\alpha_a} \text{diam}(\boldsymbol{\Theta}_a)^2 - \frac{\alpha_a}{\eta^2} \Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 \right\} \\ &\times \frac{1}{|\boldsymbol{\Theta}|} \exp \left\{ -\frac{1}{2\alpha} \left[((\alpha M + 1)^2 + \alpha M^2) \text{diam}(\boldsymbol{\Theta})^2 \right. \right. \\ &\quad + (2(M + \alpha) + 2\alpha M) \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) \\ &\quad + (\alpha^2 + \alpha) \|\nabla U(a)\|^2 \\ &\quad \left. \left. + 2 \frac{\alpha}{\eta} \left[(\alpha M + 1)^2 \text{diam}(\boldsymbol{\Theta})^2 + 2(M + \alpha) \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) + \alpha^2 \|\nabla U(a)\|^2 \right]^{1/2} \text{diam}(\boldsymbol{\Theta}) \right] \right\}. \end{aligned}$$

718 with the reference measure $\mu(\cdot)$ is the product measure of the Lebesgue measure and the counting
719 measure.

720 *Proof of Theorem 5.5.* Using Lemma D.6 and Proposition 5.4, we further have

$$\|P^k(x, \cdot) - \tilde{\pi}\|_{TV} \leq (1 - \bar{\eta}^*)^k + Z \exp \left(\frac{M}{4} - \frac{1}{2\alpha} + \frac{\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{2\eta} \right)$$

721 for all $x \in \mathbb{R}^d$ and $M(x), \rho$ is as defined in Theorem D.1 itself. Hence we are done.

722 **Theorem D.7.** *Let assumptions 5.1, 5.3 hold. Then, for any function $f : \mathbb{R}^p \rightarrow \mathbb{R}$ with $\|f\|_{\mathbb{L}_\pi^2} < \infty$,
723 one has*

$$\sqrt{n} (\bar{f} - \mathbb{E}_{\pi_\gamma} f) \xrightarrow{d} N(0, \sigma_f^2)$$

724 as $n \rightarrow \infty$, where $\sigma_f^2 \in [0, \infty)$.

725 *Proof.* Using Theorem 5.5, the proof follows directly from Jones (2004).

726 D.4 Proofs for EDMALA

727 **Proposition D.8.** *For EDMALA(EDLP with MH step, refer Algorithm 1) the drift condition is
728 satisfied with drift function $V(x_1, x_2) = \|x_1\|^2$.*

729 *Proof.* The proof follows from Theorem D.1 by observing that

$$\begin{aligned} PV(\boldsymbol{\theta}_a, \boldsymbol{\theta}) &\leq \int \|\boldsymbol{\theta}_{a_1}\|^2 q((\boldsymbol{\theta}_a, \boldsymbol{\theta}), (\boldsymbol{\theta}_{a_1}, \boldsymbol{\theta}_1)) d\boldsymbol{\theta}_{a_1} + 1 \\ &\leq \lambda V(\boldsymbol{\theta}_a, \boldsymbol{\theta}) + (b + 1). \end{aligned}$$

730 **Lemma D.9.** *Under Assumptions 5.1, 5.2, 5.3, and $\alpha < \frac{2}{M}$, for Markov chain P in Algorithm 1, we
731 have for any $\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}' \in \tilde{\boldsymbol{\Theta}}$,*

$$p(\tilde{\boldsymbol{\theta}}|\tilde{\boldsymbol{\theta}}') \geq \epsilon_\gamma \frac{\exp \left\{ \frac{1}{2} U(\boldsymbol{\theta}') \right\}}{\sum_{x \in \boldsymbol{\Theta}} \exp \left(\frac{U(x)}{2} \right)} \cdot \frac{\exp \left\{ -\frac{1}{2\alpha_a} \text{diam}(\boldsymbol{\Theta}_a)^2 \right\}}{\Phi_{\alpha_a}(\boldsymbol{\Theta}_a)}$$

732 , where

$$\epsilon_\gamma = \exp \left\{ \begin{aligned} &-\left(\frac{M}{2} + \frac{1}{\alpha} - \frac{m}{4} \right) \text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) \\ &-\left(\frac{3\alpha_a}{8\eta^2} + \frac{2}{\eta} \right) \Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 + \frac{\vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{\eta} \end{aligned} \right\},$$

733 with $a \in \arg \min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \|\nabla U(\boldsymbol{\theta})\|$

734 *Proof.* We follow a similar minorization proof style as of Lemma 5.3 from Pynadath et al. (2024).

735 Notice,

$$\begin{aligned}
Z_\gamma(\tilde{\boldsymbol{\theta}}) &\leq \frac{1}{\sqrt{2\pi\alpha_a^d}} \exp\left(-\frac{U(\boldsymbol{\theta})}{2} - \frac{\alpha_a}{8\eta^2}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 + \frac{1}{2\eta}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right) \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \\
&\quad \int_y \sum_x \exp\left(-\frac{1}{2\alpha_a}\|y - \boldsymbol{\theta}_a\|^2 - \frac{1}{2\eta}(\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top(x - y)\right) dy \\
&\leq \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left(-\frac{U(\boldsymbol{\theta})}{2} + \frac{1}{2\eta}(\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a))\right) \\
&\leq \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left(-\frac{U(\boldsymbol{\theta})}{2} + \frac{\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{2\eta}\right)
\end{aligned}$$

736 Since Assumption 5.2 holds true in this setting, we have an $m > 0$ such that for any $\boldsymbol{\theta} \in \text{conv}(\boldsymbol{\Theta})$

$$\nabla^2 U(\boldsymbol{\theta}) \geq mI.$$

737 From this, one notes that

$$\begin{aligned}
Z_\gamma(\tilde{\boldsymbol{\theta}}) &\geq \frac{1}{\sqrt{2\pi\alpha_a^d}} \exp\left\{-\frac{U(\boldsymbol{\theta})}{2} - \frac{\alpha_a}{8\eta^2}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 + \frac{1}{2\eta}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right\} \exp\left\{-\frac{1}{2}\left(\frac{1}{\alpha} - \frac{m}{2}\right)\text{diam}(\boldsymbol{\Theta})^2\right\} \\
&\quad \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \int_y \sum_x \exp\left(-\frac{1}{2\alpha_a}\|y - \boldsymbol{\theta}_a\|^2 - \frac{1}{2\eta}(\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top(x - y)\right) dy \\
&\geq \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left\{-\frac{U(\boldsymbol{\theta})}{2} - \frac{\alpha_a}{8\eta^2}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \frac{1}{2}\left(\frac{1}{\alpha} - \frac{m}{2}\right)\text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2\eta}\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2\right\} \\
&\geq \sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left\{-\frac{U(\boldsymbol{\theta})}{2} - \frac{\alpha_a}{8\eta^2}\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \frac{1}{2}\left(\frac{1}{\alpha} - \frac{m}{2}\right)\text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2\eta}\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2\right\}
\end{aligned}$$

738 In other words,

$$\exp\left((-\frac{\alpha_a}{8\eta^2} - \frac{1}{2\eta})\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \frac{1}{2}\left(\frac{1}{\alpha} - \frac{m}{2}\right)\text{diam}(\boldsymbol{\Theta})^2\right) \leq \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})}{\sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left(-\frac{U(\boldsymbol{\theta})}{2}\right)} \leq \exp\left(\frac{\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{2\eta}\right)$$

739 Consequently,

$$\frac{\frac{Z_\gamma(\tilde{\boldsymbol{\theta}})}{\sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left(-\frac{U(\boldsymbol{\theta})}{2}\right)}}{\frac{Z_\gamma(\tilde{\boldsymbol{\theta}'})}{\sum_{x \in \Theta} \exp\left(\frac{U(x)}{2}\right) \exp\left(-\frac{U(\boldsymbol{\theta}')}{2}\right)}} \geq \frac{\exp\left((-\frac{\alpha_a}{8\eta^2} - \frac{1}{2\eta})\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \frac{(2-m\alpha)\text{diam}(\boldsymbol{\Theta})^2}{4\alpha}\right)}{\exp\left(\frac{\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{2\eta}\right)}$$

740 This implies

$$\frac{Z_\gamma(\tilde{\boldsymbol{\theta}})}{Z_\gamma(\tilde{\boldsymbol{\theta}'})} \geq \exp\left(\frac{1}{2}(-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}'))\right) \frac{\exp\left((-\frac{\alpha_a}{8\eta^2} - \frac{1}{2\eta})\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \frac{(2-m\alpha)\text{diam}(\boldsymbol{\Theta})^2}{4\alpha}\right)}{\exp\left(\frac{\Delta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)^2 - \vartheta(\boldsymbol{\Theta}, \boldsymbol{\Theta}_a)}{2\eta}\right)}$$

741 One notices from (9),

$$\begin{aligned}
q_\gamma(\tilde{\boldsymbol{\theta}}'|\tilde{\boldsymbol{\theta}}) &= \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})^{-1}}{\sqrt{(2\pi\alpha_a)^d}} \exp\left(\frac{1}{2}(-U(\boldsymbol{\theta}) + U(\boldsymbol{\theta}')) - (\boldsymbol{\theta} - \boldsymbol{\theta}')^\top\left(\frac{1}{2\alpha}I + \frac{1}{4}\int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}')ds\right)(\boldsymbol{\theta} - \boldsymbol{\theta}')\right. \\
&\quad \left.- \frac{1}{2\eta}(\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top(\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a}\|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 + \frac{4\eta - \alpha_a}{8\eta^2}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right) \\
&\geq \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})^{-1}}{\sqrt{(2\pi\alpha_a)^d}} \exp\left(\frac{1}{2}\langle \nabla U(\boldsymbol{\theta}), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle - \frac{1}{2\alpha}\|\boldsymbol{\theta} - \boldsymbol{\theta}'\|^2 - \frac{1}{2\eta}(\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top(\boldsymbol{\theta}' - \boldsymbol{\theta}'_a)\right. \\
&\quad \left.- \frac{1}{2\alpha_a}\|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 - \frac{\alpha_a}{8\eta^2}\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2\right)
\end{aligned}$$

742 We also note that

$$\begin{aligned}
-\frac{1}{2} \langle \nabla U(\boldsymbol{\theta}), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + \frac{1}{2\alpha} \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|^2 &= \frac{1}{2} \langle -\nabla U(\boldsymbol{\theta}) + \nabla U(a), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + \frac{1}{2} \langle -\nabla U(a), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + \frac{1}{2\alpha} \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|^2 \\
&\leq \frac{1}{2} \langle -\nabla U(\boldsymbol{\theta}) + \nabla U(a), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + \frac{1}{2} \langle -\nabla U(a), \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + \frac{1}{2\alpha} \text{diam}(\boldsymbol{\Theta})^2 \\
&\leq \frac{1}{2} \|\nabla U(\boldsymbol{\theta}) + \nabla U(a)\| \|\boldsymbol{\theta}' - \boldsymbol{\theta}\| + \frac{1}{2} \|\nabla U(a)\| \|\boldsymbol{\theta}' - \boldsymbol{\theta}\| + \frac{1}{2\alpha} \text{diam}(\boldsymbol{\Theta})^2 \\
&\leq \frac{1}{2} \|\nabla U(\boldsymbol{\theta}) + \nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) + \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) + \frac{1}{2\alpha} \text{diam}(\boldsymbol{\Theta})^2 \\
&\leq \left(\frac{1}{2} M + \frac{1}{2\alpha} \right) \text{diam}(\boldsymbol{\Theta})^2 + \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}).
\end{aligned}$$

743 This is because, From Assumption 5.1 (U is M -gradient Lipschitz), we have

$$\frac{1}{2} \int_0^1 \nabla^2 U((1-s)\boldsymbol{\theta} + s\boldsymbol{\theta}') ds (\boldsymbol{\theta} - \boldsymbol{\theta}') + \frac{1}{\alpha} I \geq \left(\frac{1}{\alpha} - \frac{M}{2} \right) I$$

744 Since $\alpha < \frac{2}{M}$, the matrix $\left(\frac{1}{2\alpha} - \frac{M}{2} \right) I$ is positive definite.

745

746 Combining, we get

$$\begin{aligned}
q_\gamma(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) &\geq \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})^{-1}}{\sqrt{(2\pi\alpha_a)^d}} \exp \left\{ \left(-\frac{M}{2} - \frac{1}{2\alpha} \right) \text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 - \frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\} \\
&\geq \frac{\frac{1}{\sqrt{(2\pi\alpha_a)^d}} \exp \left\{ \left(-\frac{M}{2} - \frac{1}{2\alpha} \right) \text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) - \frac{1}{2\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a)^\top (\boldsymbol{\theta}' - \boldsymbol{\theta}'_a) - \frac{1}{2\alpha_a} \|\boldsymbol{\theta}'_a - \boldsymbol{\theta}_a\|^2 - \frac{\alpha_a}{8\eta^2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 \right\}}{\sum_{x \in \boldsymbol{\Theta}} \exp \left(\frac{U(x)}{2} \right) \exp \left(-\frac{U(\boldsymbol{\theta})}{2} + \frac{\Delta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)^2 - \vartheta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)}{2\eta} \right)} \\
&\geq \frac{\exp \left\{ -\frac{1}{2\alpha_a} \text{diam}(\boldsymbol{\Theta}_a)^2 \right\} \exp \left\{ \left(-\frac{M}{2} - \frac{1}{2\alpha} \right) \text{diam}(\boldsymbol{\Theta})^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\boldsymbol{\Theta}) + \left(-\frac{1}{2\eta} - \frac{\alpha_a}{8\eta^2} \right) \Delta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)^2 \right\}}{\Phi_{\alpha_a}(\boldsymbol{\Theta}_a)} \frac{\sum_{x \in \boldsymbol{\Theta}} \exp \left(\frac{U(x)}{2} \right) \exp \left(-\frac{U(\boldsymbol{\theta})}{2} + \frac{\Delta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)^2 - \vartheta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)}{2\eta} \right)}{\sum_{x \in \boldsymbol{\Theta}} \exp \left(\frac{U(x)}{2} \right) \exp \left(-\frac{U(\boldsymbol{\theta})}{2} + \frac{\Delta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)^2 - \vartheta(\boldsymbol{\theta}, \boldsymbol{\theta}_a)}{2\eta} \right)}
\end{aligned}$$

747 Acceptance Ratio,

$$\begin{aligned}
\rho(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) &= \left(\frac{\pi(\tilde{\boldsymbol{\theta}}') q_\gamma(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}})}{\pi(\tilde{\boldsymbol{\theta}}) q_\gamma(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}})} \right) \\
&= \exp \left\{ U(\boldsymbol{\theta}') - U(\boldsymbol{\theta}) + \frac{1}{2\eta} (\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \|\boldsymbol{\theta}' - \boldsymbol{\theta}'_a\|^2) \right\} \frac{\tilde{Z}}{\tilde{Z}} \\
&\exp \left\{ U(\boldsymbol{\theta}) - U(\boldsymbol{\theta}') - \frac{1}{2\eta} (\|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2 - \|\boldsymbol{\theta}' - \boldsymbol{\theta}'_a\|^2) - \frac{\alpha_a}{8\eta^2} (\|\boldsymbol{\theta}' - \boldsymbol{\theta}'_a\|^2 - \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2) \right\} \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})}{Z_\gamma(\tilde{\boldsymbol{\theta}}')} \\
&= \exp \left\{ -\frac{\alpha_a}{8\eta^2} (\|\boldsymbol{\theta}' - \boldsymbol{\theta}'_a\|^2 - \|\boldsymbol{\theta} - \boldsymbol{\theta}_a\|^2) \right\} \frac{Z_\gamma(\tilde{\boldsymbol{\theta}})}{Z_\gamma(\tilde{\boldsymbol{\theta}}')}
\end{aligned}$$

748 where \tilde{Z} is the normalizing constant for $\pi(\tilde{\boldsymbol{\theta}})$.

749 with Acceptance Probability

$$\mathcal{A}(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) = (\rho(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) \wedge 1)$$

750 and consider the transition kernel as

$$p(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) = (\mathcal{A}(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}})) q_\gamma(\tilde{\boldsymbol{\theta}}' | \tilde{\boldsymbol{\theta}}) + (1 - L(\tilde{\boldsymbol{\theta}})) \delta_{\tilde{\boldsymbol{\theta}}}(\tilde{\boldsymbol{\theta}}')$$

751 where $\delta_{\tilde{\boldsymbol{\theta}}}(\tilde{\boldsymbol{\theta}}')$ is the Kronecker delta function and $L(\tilde{\boldsymbol{\theta}})$ is the total acceptance probability from the
752 point $\tilde{\boldsymbol{\theta}}$ with

$$L(\tilde{\boldsymbol{\theta}}) = \int_{\boldsymbol{\theta}'_a \in \boldsymbol{\Theta}_a} \sum_{\boldsymbol{\theta}' \in \boldsymbol{\Theta}} (\rho([\boldsymbol{\theta}'^T, \boldsymbol{\theta}'_a^T]^T | \tilde{\boldsymbol{\theta}}) \wedge 1) q_\gamma([\boldsymbol{\theta}'^T, \boldsymbol{\theta}'_a^T]^T | \tilde{\boldsymbol{\theta}}) d\boldsymbol{\theta}'_a$$

753 We note that

$$\begin{aligned}
p(\tilde{\theta}' \mid \tilde{\theta}) &= \left(\mathcal{A}(\tilde{\theta}' \mid \tilde{\theta}) \right) q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) + \left(1 - L(\tilde{\theta}) \right) \delta_{\tilde{\theta}}(\tilde{\theta}') \\
&\geq \left(\mathcal{A}(\tilde{\theta}' \mid \tilde{\theta}) \right) q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) \\
&= \left(\rho(\tilde{\theta}' \mid \tilde{\theta}) \wedge 1 \right) q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) \\
&= \exp \left\{ -\frac{\alpha_a}{8\eta^2} (\|\theta' - \theta'_a\|^2 - \|\theta - \theta_a\|^2) \right\} \frac{Z_\gamma(\tilde{\theta})}{Z_\gamma(\tilde{\theta}')} q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) \\
&\geq \exp \left\{ -\frac{\alpha_a}{8\eta^2} \|\theta' - \theta'_a\|^2 \right\} \frac{Z_\gamma(\tilde{\theta})}{Z_\gamma(\tilde{\theta}')} q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) \\
&\geq \exp \left\{ -\frac{\alpha_a}{8\eta^2} \Delta(\Theta, \Theta_a)^2 + \frac{1}{2} (-U(\theta) + U(\theta')) \right\} \frac{\exp \left(-\frac{\alpha_a}{8\eta^2} - \frac{1}{2\eta} \right) \Delta(\Theta, \Theta_a)^2 - \frac{(2-m\alpha)\text{diam}(\Theta)^2}{4\alpha}}{\exp \left(\frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right)} q_\gamma(\tilde{\theta}' \mid \tilde{\theta}) \\
&\geq \exp \left\{ -\frac{\alpha_a}{8\eta^2} \Delta(\Theta, \Theta_a)^2 + \frac{1}{2} (-U(\theta) + U(\theta')) \right\} \frac{\exp \left(-\frac{\alpha_a}{8\eta^2} - \frac{1}{2\eta} \right) \Delta(\Theta, \Theta_a)^2 - \frac{(2-m\alpha)\text{diam}(\Theta)^2}{4\alpha}}{\exp \left(\frac{\Delta(\Theta, \Theta_a)^2 - \vartheta(\Theta, \Theta_a)}{2\eta} \right)} \\
&\cdot \frac{\exp \left\{ -\frac{1}{2\alpha_a} \text{diam}(\Theta_a)^2 \right\} \exp \left\{ \left(-\frac{M}{2} - \frac{1}{2\alpha} \right) \text{diam}(\Theta)^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\Theta) + \left(-\frac{1}{2\eta} - \frac{\alpha_a}{8\eta^2} \right) \Delta(\Theta, \Theta_a)^2 \right\}}{\Phi_{\alpha_a}(\Theta_a)} \\
&= \frac{\exp \left\{ -\frac{1}{2\alpha_a} \text{diam}(\Theta_a)^2 \right\}}{\Phi_{\alpha_a}(\Theta_a)} \frac{\exp \left\{ \frac{1}{2} U(\theta') \right\}}{\sum_{x \in \Theta} \exp \left(\frac{U(x)}{2} \right)} \exp \left\{ \left(-\frac{3\alpha_a}{8\eta^2} - \frac{2}{\eta} \right) \Delta(\Theta, \Theta_a)^2 + \frac{\vartheta(\Theta, \Theta_a)}{\eta} \right\} \\
&\cdot \exp \left\{ \left(-\frac{M}{2} - \frac{1}{\alpha} + \frac{m}{4} \right) \text{diam}(\Theta)^2 - \frac{1}{2} \|\nabla U(a)\| \text{diam}(\Theta) \right\} \\
&= \epsilon_\gamma \frac{\exp \left\{ \frac{1}{2} U(\theta') \right\}}{\sum_{x \in \Theta} \exp \left(\frac{U(x)}{2} \right)} \frac{\exp \left\{ -\frac{1}{2\alpha_a} \text{diam}(\Theta_a)^2 \right\}}{\Phi_{\alpha_a}(\Theta_a)}
\end{aligned}$$

754 *Proof.* Proof follows from using Lemma D.9 .

755 E Additional Experimental Results

756 E.1 4D Joint Bernoulli

757 To provide additional insights into the functionality of EDLP samplers, we explore their behavior on
758 the 4D Joint Bernoulli Distribution, which serves as the simplest low-dimensional case among our
759 experiments. This aids in visualizing and understanding the sampling process.

760 Target Distribution

761 The following represents the probability mass function (PMF) for the 4D Joint Bernoulli Distribution
762 used in our test case. The distribution has 16 states with the corresponding probabilities:

763 Flatness Diagnostics

764 Under the experimental setup outlined in Section 6, we present the true Eigenspectrum of the Hessian,
765 derived from the discrete samples collected for EDULA, EDMALA, DULA, and DMALA (Figure
766 11). We manually tune the stepsizes for EDULA and EDMALA to 0.1 and 0.4 respectively. This
767 visualization is inspired by Section 6.3 of (Li & Zhang, 2024), where diagonal Fisher information
768 matrix approximation was used to plot the Eigenvalues. The alignment of the Eigenvalues closer to 0
769 indicates that the sampled data corresponds to a flatter curvature of the energy function.

770 EDMALA and EDULA, specifically designed with entropy-aware flatness optimization, exhibit
771 eigenvalue distributions that are notably tighter and more concentrated around zero compared to their
772 non-entropic counterparts, DMALA and DULA.

$$P_{\Theta}(\theta) = \begin{cases} 0.07688 & \text{if } \theta = 0000, \\ 0.04725 & \text{if } \theta = 0001, \\ 0.12500 & \text{if } \theta = 0010, \\ 0.01667 & \text{if } \theta = 0011, \\ 0.08688 & \text{if } \theta = 0100, \\ 0.07688 & \text{if } \theta = 0101, \\ 0.07688 & \text{if } \theta = 0110, \\ 0.16756 & \text{if } \theta = 0111, \\ 0.04725 & \text{if } \theta = 1000, \\ 0.05825 & \text{if } \theta = 1001, \\ 0.01667 & \text{if } \theta = 1010, \\ 0.04725 & \text{if } \theta = 1011, \\ 0.07688 & \text{if } \theta = 1100, \\ 0.04725 & \text{if } \theta = 1101, \\ 0.01900 & \text{if } \theta = 1110, \\ 0.01335 & \text{if } \theta = 1111. \end{cases}$$

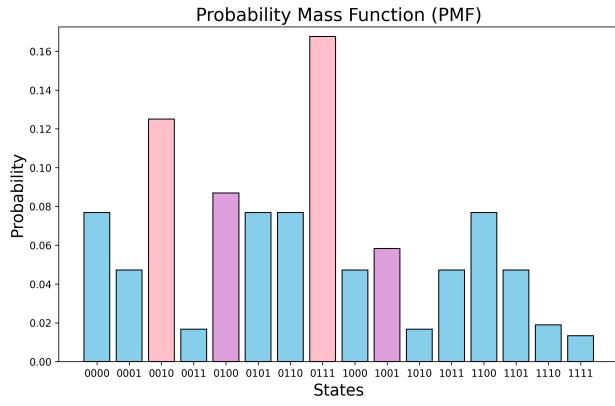


Figure 10: Target Distribution for 4D Joint Bernoulli

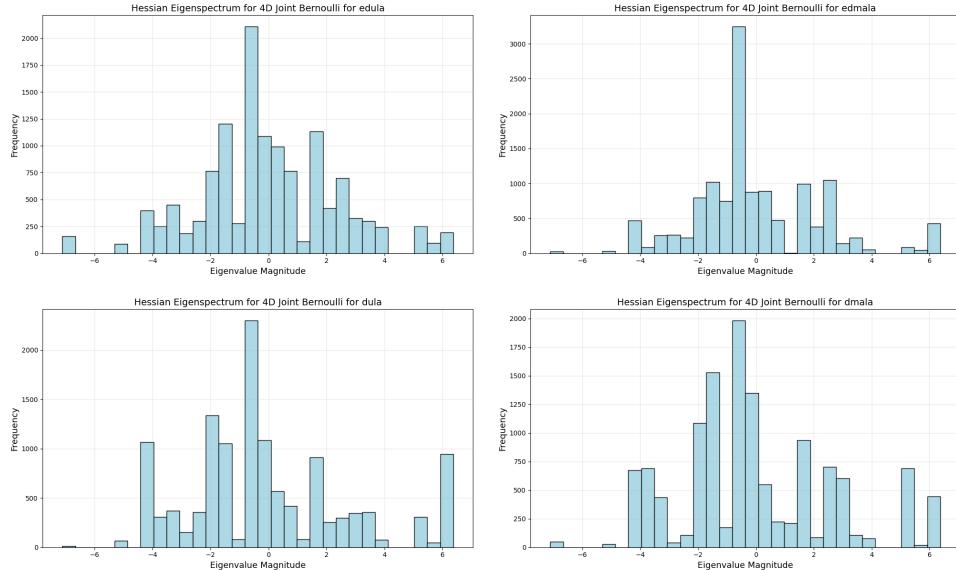


Figure 11: Eigenspectra of EDULA, EDMALA, DULA, and DMALA’s performance on a Bernoulli distribution.

773 Quantitatively, EDULA demonstrates a lower spectral dispersion, evidenced by a lower standard
 774 deviation ($\text{std} = 2.401$) and narrower interquartile range ($\text{IQR} = 3.031$), relative to DULA ($\text{std} = 2.832$, $\text{IQR} = 3.466$). Similarly, EDMALA outperforms DMALA in terms of spectral concentration,
 775 achieving a standard deviation of 2.197 and IQR of 2.747, compared to DMALA’s standard deviation
 776 of 2.700 and IQR of 3.224. Furthermore, visual inspection corroborates these quantitative findings;
 777 EDMALA and EDULA feature fewer extreme eigenvalues and outliers, reflecting biasing into
 778 sampling from flatter regions. Collectively, these results affirm that our entropy-guided methods
 779 (EDMALA, EDULA) effectively traverse flatter, aligning well with their intended design objectives.
 780

781 E.2 TSP

782 Figure 12 presents the average PMC between solutions generated by each sampler, along with their
 783 standard deviations. DULA and EDULA exhibit nearly identical mean swap distances, whereas
 784 EDMALA demonstrates a notably lower mean swap distance compared to DMALA. This suggests

785 that the solutions proposed by EDMALA are structurally more similar, indicating a higher degree of
 786 consistency across its sampled solutions.

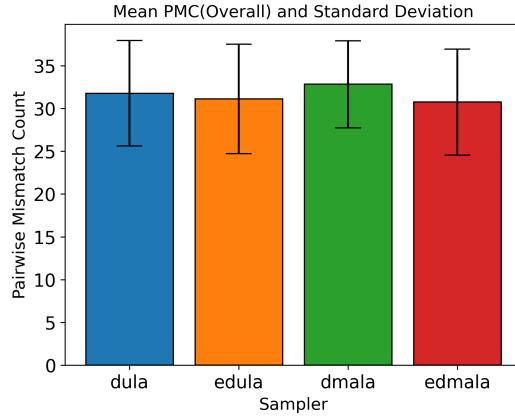


Figure 12: Variation in Solutions

787 Figure 13 showcases the performance characteristics of different samplers in terms of cost and
 788 solution diversity for the TSP. EDMALA and EDULA exhibit a narrower cost distribution, suggesting
 789 that they consistently identify solutions within a tighter range of costs. This stability implies a focused
 790 exploration within a particular solution quality band Camm & Evans (1997). In contrast, DMALA
 791 and DULA have a broader cost spread, indicating more variability in the quality of solutions they
 792 find.

793 When examining diversity in relation to the best solution, both DULA and DMALA maintain a similar
 794 spread, signifying comparable exploration depths relative to optimality. However, EDMALA stands
 795 out with a significantly smaller diversity spread compared to DMALA, indicating that EDMALA
 796 tends to produce solutions that are closer to the optimal path. This characteristic suggests that
 797 EDMALA is better suited for tasks requiring proximity to optimal solutions.

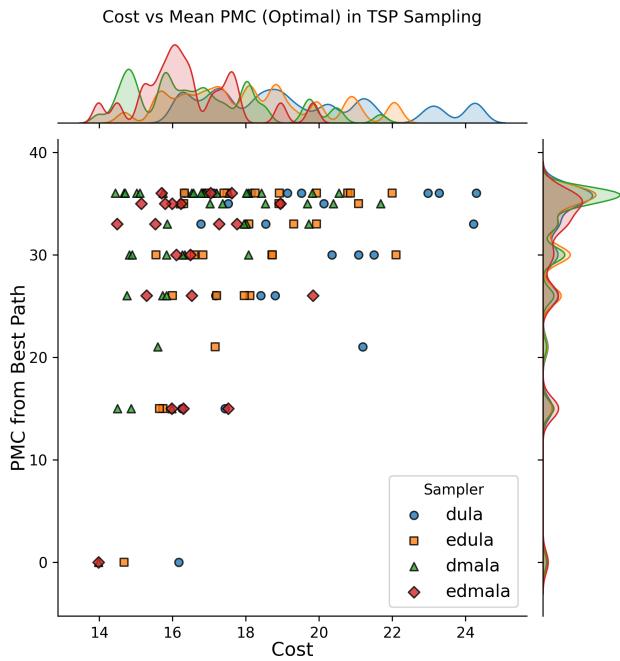


Figure 13: Marginal Plot

798 **E.3 RBM**

799 **Mode Analysis**

800 We performed mode analysis to validate the diversity and quality of MNIST digit samples generated by
 801 various samplers. Mode analysis assesses whether each sampler can capture the full range of MNIST
 802 digit classes (0-9) without falling into *mode collapse*, a phenomenon where a generative model fails
 803 to represent certain data modes, thus limiting diversity. We leveraged a *LeNet-5 convolutional neural*
 804 *network* LeCun et al. (1998) trained on MNIST to classify each generated sample and produce a class
 805 distribution for each sampler. The choice of LeNet-5, a reliable architecture for digit recognition,
 806 ensures accurate class predictions, thus providing a robust method to assess the representativeness of
 807 the samples. We train the model for 10 epochs, and achieve a 98.85% accuracy on test data.

808 The results(Figure 14) from our analysis indicated that all samplers produced samples across all digit
 809 classes, showing no evidence of mode collapse. Although certain samplers exhibited a preference
 810 for specific classes these biases did not reach the level of complete mode omission. Each class was
 811 represented in the generated samples, confirming that the samplers achieved an acceptable level of
 812 *mode diversity*. By confirming that all classes are covered, we demonstrate that each sampler can
 813 adequately approximate the diversity of the MNIST dataset, assuring the samples' representativeness
 814 Salimans et al. (2016); Goodfellow et al. (2014).

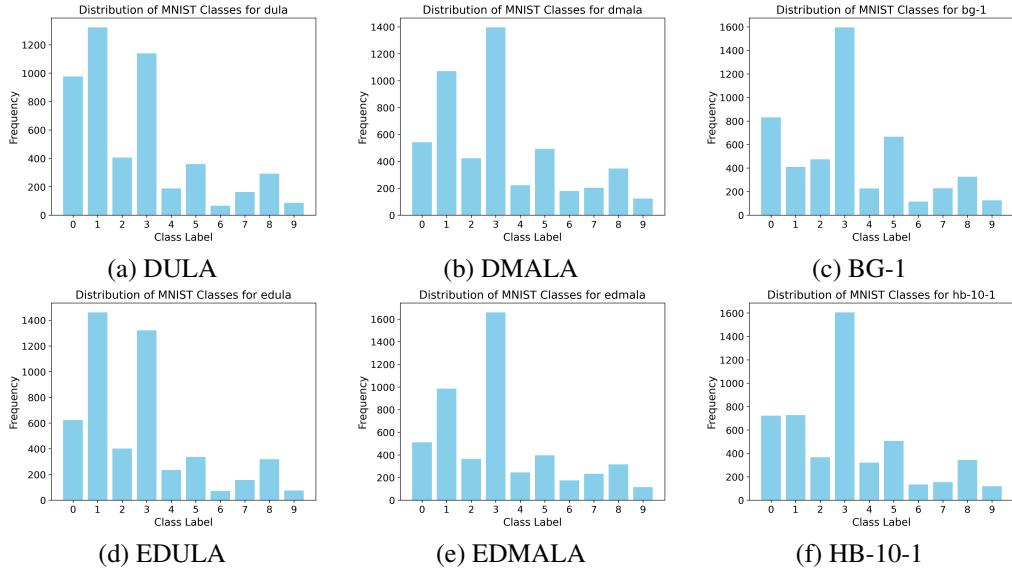


Figure 14: Mode Analysis

815 **E.4 BBNN**

816 We report the Average Training Log-Likelihood for our experiments in Table 3. Across all datasets,
 817 the EDLP samplers consistently outperform other samplers, demonstrating their ability to maintain or
 818 improve log-likelihood values. Importantly, when EDLP does not yield a substantial improvement, it
 819 still manages to avoid significantly impacting the training log-likelihood negatively.

Table 3: Average Training Log-Likelihood

Dataset	Gibbs	GWG	DULA	DMALA	EDULA	EDMALA
COMPAS	-0.3473 ± 0.0337	-0.3304 ± 0.0302	-0.3385 ± 0.0101	-0.3149 ± 0.0145	-0.3385 ± 0.0110	-0.3145 ± 0.0149
News	-0.2156 ± 0.0003	-0.2138 ± 0.0010	-0.2101 ± 0.0012	-0.2097 ± 0.0011	-0.2097 ± 0.0012	-0.2098 ± 0.0012
Adult	-0.4310 ± 0.0166	-0.3869 ± 0.0325	-0.3044 ± 0.0149	-0.2988 ± 0.0158	-0.3032 ± 0.0141	-0.2987 ± 0.0162
Blog	-0.4009 ± 0.0072	-0.3414 ± 0.0028	-0.2732 ± 0.0128	-0.2705 ± 0.0129	-0.2699 ± 0.0128	-0.2699 ± 0.0163

820 The computational burden associated with sampling can be a major bottleneck in scenarios requiring
821 fast training and prediction, such as online systems or real-time applications. Such requirements
822 are seen in financial modeling and stock market prediction, where models must adapt to real-time
823 data to ensure accuracy Tsantekidis et al. (2017). Similarly, industrial IoT systems rely on real-time
824 predictions to optimize maintenance and reduce downtime, where fast retraining is key Sun et al.
825 (2017).

826 In Figure 15, we present the measured elapsed time per sample for the adult dataset to demonstrate
827 these computational efficiencies, under the same settings as in Section 6, extending to include the
828 GLU versions of the EDLP framework(Section B), alongside the results for the standard DLP and
829 EDLP methods.

830 As illustrated, the EDLP versions exhibit an increase in runtime compared to DLP, due to the
831 modifications discussed in Section 4.1. While the runtime difference between the DULA and
832 EDULA algorithms (without MH correction) is negligible, the time difference between DMALA
833 and EDMALA is more pronounced. This can be attributed to the more complex joint acceptance
834 probability calculation required by EDMALA. Despite these variations, the overall runtime overhead
835 for EDLP samplers is not substantial and remains practical.

836 For the EDLP-GLU variants, we maintained the same η and α values as their corresponding vanilla
837 DLP samplers. The EDLP-GLU variants naturally achieve an approximate 50% reduction in runtime
838 compared to EDLP. This efficiency stems from the alternating updates between sampling from a
839 modified isotropic Gaussian and conditional DLP, designed to match the conditional distributions
840 more effectively. However, this approach also introduces a higher standard deviation in runtime.
841 The variability is primarily attributed to the contrasting computational costs between the two update
842 types: sampling from the modified Gaussian is relatively lightweight, whereas the conditional DLP
843 update is computationally intensive. As a result, the EDLP-GLU variants exhibit greater fluctuations
844 in runtime compared to other samplers. Furthermore, the negative lower bounds are not physically
845 meaningful and stem from the high variability in runtime measurements.

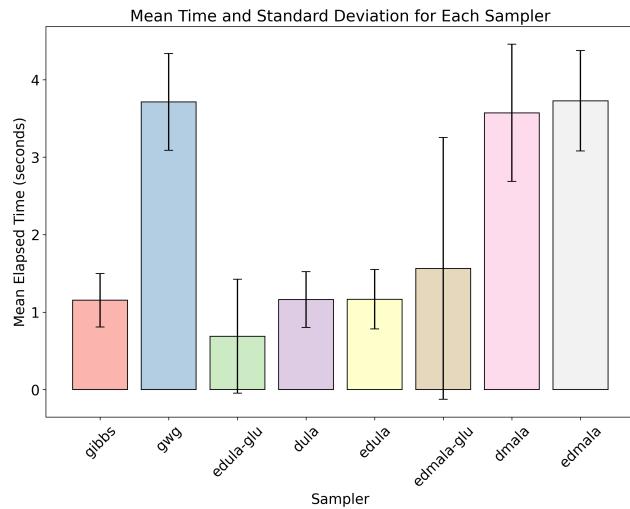


Figure 15: Runtime Analysis on Adult Dataset

846 For details of datasets used, refer to the Appendix of Zhang et al. (2022).

847 We fix α to 0.1 for DULA, DMALA, EDULA, and EDMALA. For more details on hyperparameters
848 see Table 4.

849 All experiments in the paper were run on a single RTX A6000.

Table 4: Hyper-parameter Settings

Dataset	Hyperparameters for EDLP			
	EDULA		EDMALA	
	α_a	η	α_a	η
COMPAS	0.0100	4.0	0.0010	4.0
News	0.0100	2.0	0.0001	0.8
Adult	0.0001	2.0	0.0001	4.0
Blog	0.0100	1.0	0.0001	1.0

850 **NeurIPS Paper Checklist**851 **1. Claims**

852 Question: Do the main claims made in the abstract and introduction accurately reflect the
 853 paper's contributions and scope?

854 Answer: [\[Yes\]](#)

855 Justification: In the introduction, we present four fundamental assertions. Section 4 introduces
 856 our discrete sampler. Section 5 delves into the theoretical underpinnings, including the
 857 requisite assumptions. Section 6 presents the comprehensive experimental results pertaining
 858 to 4D Bernoulli, Ising Model, BBNs, and TSP.

859 Guidelines:

- 860 • The answer NA means that the abstract and introduction do not include the claims
 861 made in the paper.
- 862 • The abstract and/or introduction should clearly state the claims made, including the
 863 contributions made in the paper and important assumptions and limitations. A No or
 864 NA answer to this question will not be perceived well by the reviewers.
- 865 • The claims made should match theoretical and experimental results, and reflect how
 866 much the results can be expected to generalize to other settings.
- 867 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
 868 are not attained by the paper.

869 **2. Limitations**

870 Question: Does the paper discuss the limitations of the work performed by the authors?

871 Answer: [\[Yes\]](#)

872 Justification: We do so in Section 7.1.

873 Guidelines:

- 874 • The answer NA means that the paper has no limitation while the answer No means that
 875 the paper has limitations, but those are not discussed in the paper.
- 876 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 877 • The paper should point out any strong assumptions and how robust the results are to
 878 violations of these assumptions (e.g., independence assumptions, noiseless settings,
 879 model well-specification, asymptotic approximations only holding locally). The authors
 880 should reflect on how these assumptions might be violated in practice and what the
 881 implications would be.
- 882 • The authors should reflect on the scope of the claims made, e.g., if the approach was
 883 only tested on a few datasets or with a few runs. In general, empirical results often
 884 depend on implicit assumptions, which should be articulated.
- 885 • The authors should reflect on the factors that influence the performance of the approach.
 886 For example, a facial recognition algorithm may perform poorly when image resolution
 887 is low or images are taken in low lighting. Or a speech-to-text system might not be
 888 used reliably to provide closed captions for online lectures because it fails to handle
 889 technical jargon.
- 890 • The authors should discuss the computational efficiency of the proposed algorithms
 891 and how they scale with dataset size.

892 • If applicable, the authors should discuss possible limitations of their approach to
893 address problems of privacy and fairness.
894 • While the authors might fear that complete honesty about limitations might be used by
895 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
896 limitations that aren't acknowledged in the paper. The authors should use their best
897 judgment and recognize that individual actions in favor of transparency play an impor-
898 tant role in developing norms that preserve the integrity of the community. Reviewers
899 will be specifically instructed to not penalize honesty concerning limitations.

900 **3. Theory assumptions and proofs**

901 Question: For each theoretical result, does the paper provide the full set of assumptions and
902 a complete (and correct) proof?

903 Answer: [\[Yes\]](#)

904 Justification: We do so in Section 5 and Appendix Section D

905 Guidelines:

906 • The answer NA means that the paper does not include theoretical results.
907 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
908 referenced.
909 • All assumptions should be clearly stated or referenced in the statement of any theorems.
910 • The proofs can either appear in the main paper or the supplemental material, but if
911 they appear in the supplemental material, the authors are encouraged to provide a short
912 proof sketch to provide intuition.
913 • Inversely, any informal proof provided in the core of the paper should be complemented
914 by formal proofs provided in appendix or supplemental material.
915 • Theorems and Lemmas that the proof relies upon should be properly referenced.

916 **4. Experimental result reproducibility**

917 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
918 perimental results of the paper to the extent that it affects the main claims and/or conclusions
919 of the paper (regardless of whether the code and data are provided or not)?

920 Answer: [\[Yes\]](#)

921 Justification: We include a lengthy appendix that provides additional results and details all
922 the experimental configuration, along with the hyperparameters used.

923 Guidelines:

924 • The answer NA means that the paper does not include experiments.
925 • If the paper includes experiments, a No answer to this question will not be perceived
926 well by the reviewers: Making the paper reproducible is important, regardless of
927 whether the code and data are provided or not.
928 • If the contribution is a dataset and/or model, the authors should describe the steps taken
929 to make their results reproducible or verifiable.
930 • Depending on the contribution, reproducibility can be accomplished in various ways.
931 For example, if the contribution is a novel architecture, describing the architecture fully
932 might suffice, or if the contribution is a specific model and empirical evaluation, it may
933 be necessary to either make it possible for others to replicate the model with the same
934 dataset, or provide access to the model. In general, releasing code and data is often
935 one good way to accomplish this, but reproducibility can also be provided via detailed
936 instructions for how to replicate the results, access to a hosted model (e.g., in the case
937 of a large language model), releasing of a model checkpoint, or other means that are
938 appropriate to the research performed.
939 • While NeurIPS does not require releasing code, the conference does require all submis-
940 sions to provide some reasonable avenue for reproducibility, which may depend on the
941 nature of the contribution. For example
942 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
943 to reproduce that algorithm.

944 (b) If the contribution is primarily a new model architecture, the paper should describe
 945 the architecture clearly and fully.
 946 (c) If the contribution is a new model (e.g., a large language model), then there should
 947 either be a way to access this model for reproducing the results or a way to reproduce
 948 the model (e.g., with an open-source dataset or instructions for how to construct
 949 the dataset).
 950 (d) We recognize that reproducibility may be tricky in some cases, in which case
 951 authors are welcome to describe the particular way they provide for reproducibility.
 952 In the case of closed-source models, it may be that access to the model is limited in
 953 some way (e.g., to registered users), but it should be possible for other researchers
 954 to have some path to reproducing or verifying the results.

955 **5. Open access to data and code**

956 Question: Does the paper provide open access to the data and code, with sufficient instruc-
 957 tions to faithfully reproduce the main experimental results, as described in supplemental
 958 material?

959 Answer: **[Yes]**

960 Justification: We will provide a link to an anonymized repository that contains all the code
 961 required to execute the necessary experiments.

962 Guidelines:

- 963 • The answer NA means that paper does not include experiments requiring code.
- 964 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 965 • While we encourage the release of code and data, we understand that this might not be
 966 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
 967 including code, unless this is central to the contribution (e.g., for a new open-source
 968 benchmark).
- 969 • The instructions should contain the exact command and environment needed to run to
 970 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 971 • The authors should provide instructions on data access and preparation, including how
 972 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 973 • The authors should provide scripts to reproduce all experimental results for the new
 974 proposed method and baselines. If only a subset of experiments are reproducible, they
 975 should state which ones are omitted from the script and why.
- 976 • At submission time, to preserve anonymity, the authors should release anonymized
 977 versions (if applicable).
- 978 • Providing as much information as possible in supplemental material (appended to the
 979 paper) is recommended, but including URLs to data and code is permitted.

982 **6. Experimental setting/details**

983 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
 984 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
 985 results?

986 Answer: **[Yes]**

987 Justification: We include the experimental details in the appendix.

988 Guidelines:

- 989 • The answer NA means that the paper does not include experiments.
- 990 • The experimental setting should be presented in the core of the paper to a level of detail
 991 that is necessary to appreciate the results and make sense of them.
- 992 • The full details can be provided either with the code, in appendix, or as supplemental
 993 material.

994 **7. Experiment statistical significance**

995 Question: Does the paper report error bars suitably and correctly defined or other appropriate
 996 information about the statistical significance of the experiments?

997 Answer: [Yes]

998 Justification: We report the standard error or standard deviation for all the readings.

999 Guidelines:

- 1000 • The answer NA means that the paper does not include experiments.
- 1001 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
- 1002 • dence intervals, or statistical significance tests, at least for the experiments that support
- 1003 • the main claims of the paper.
- 1004 • The factors of variability that the error bars are capturing should be clearly stated (for
- 1005 • example, train/test split, initialization, random drawing of some parameter, or overall
- 1006 • run with given experimental conditions).
- 1007 • The method for calculating the error bars should be explained (closed form formula,
- 1008 • call to a library function, bootstrap, etc.)
- 1009 • The assumptions made should be given (e.g., Normally distributed errors).
- 1010 • It should be clear whether the error bar is the standard deviation or the standard error
- 1011 • of the mean.
- 1012 • It is OK to report 1-sigma error bars, but one should state it. The authors should
- 1013 • preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
- 1014 • of Normality of errors is not verified.
- 1015 • For asymmetric distributions, the authors should be careful not to show in tables or
- 1016 • figures symmetric error bars that would yield results that are out of range (e.g. negative
- 1017 • error rates).
- 1018 • If error bars are reported in tables or plots, The authors should explain in the text how
- 1019 • they were calculated and reference the corresponding figures or tables in the text.

1020 8. Experiments compute resources

1021 Question: For each experiment, does the paper provide sufficient information on the com-

1022 puter resources (type of compute workers, memory, time of execution) needed to reproduce

1023 the experiments?

1024 Answer: [Yes]

1025 Justification: We do so right at the beginning in the Appendix.

1026 Guidelines:

- 1027 • The answer NA means that the paper does not include experiments.
- 1028 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
- 1029 • or cloud provider, including relevant memory and storage.
- 1030 • The paper should provide the amount of compute required for each of the individual
- 1031 • experimental runs as well as estimate the total compute.
- 1032 • The paper should disclose whether the full research project required more compute
- 1033 • than the experiments reported in the paper (e.g., preliminary or failed experiments that
- 1034 • didn't make it into the paper).

1035 9. Code of ethics

1036 Question: Does the research conducted in the paper conform, in every respect, with the

1037 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1038 Answer: [Yes]

1039 Justification: We have read the Ethics Guidelines, and our submission aligns with all the

1040 points listed.

1041 Guidelines:

- 1042 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 1043 • If the authors answer No, they should explain the special circumstances that require a
- 1044 • deviation from the Code of Ethics.
- 1045 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
- 1046 • eration due to laws or regulations in their jurisdiction).

1047 10. Broader impacts

1048 Question: Does the paper discuss both potential positive societal impacts and negative
1049 societal impacts of the work performed?

1050 Answer: [NA]

1051 Justification: This is a MCMC sampling technique which does not have a direct societal
1052 impact.

1053 Guidelines:

- 1054 • The answer NA means that there is no societal impact of the work performed.
- 1055 • If the authors answer NA or No, they should explain why their work has no societal
1056 impact or why the paper does not address societal impact.
- 1057 • Examples of negative societal impacts include potential malicious or unintended uses
1058 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
1059 (e.g., deployment of technologies that could make decisions that unfairly impact specific
1060 groups), privacy considerations, and security considerations.
- 1061 • The conference expects that many papers will be foundational research and not tied
1062 to particular applications, let alone deployments. However, if there is a direct path to
1063 any negative applications, the authors should point it out. For example, it is legitimate
1064 to point out that an improvement in the quality of generative models could be used to
1065 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1066 that a generic algorithm for optimizing neural networks could enable people to train
1067 models that generate Deepfakes faster.
- 1068 • The authors should consider possible harms that could arise when the technology is
1069 being used as intended and functioning correctly, harms that could arise when the
1070 technology is being used as intended but gives incorrect results, and harms following
1071 from (intentional or unintentional) misuse of the technology.
- 1072 • If there are negative societal impacts, the authors could also discuss possible mitigation
1073 strategies (e.g., gated release of models, providing defenses in addition to attacks,
1074 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1075 feedback over time, improving the efficiency and accessibility of ML).

1076 11. Safeguards

1077 Question: Does the paper describe safeguards that have been put in place for responsible
1078 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1079 image generators, or scraped datasets)?

1080 Answer: [NA]

1081 Justification: This foundational research that does not directly have a societal impact, as it is
1082 primarily an MCMC algorithm for discrete spaces

1083 Guidelines:

- 1084 • The answer NA means that the paper poses no such risks.
- 1085 • Released models that have a high risk for misuse or dual-use should be released with
1086 necessary safeguards to allow for controlled use of the model, for example by requiring
1087 that users adhere to usage guidelines or restrictions to access the model or implementing
1088 safety filters.
- 1089 • Datasets that have been scraped from the Internet could pose safety risks. The authors
1090 should describe how they avoided releasing unsafe images.
- 1091 • We recognize that providing effective safeguards is challenging, and many papers do
1092 not require this, but we encourage authors to take this into account and make a best
1093 faith effort.

1094 12. Licenses for existing assets

1095 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1096 the paper, properly credited and are the license and terms of use explicitly mentioned and
1097 properly respected?

1098 Answer: [No]

1099 Justification: We were unable to locate the license for the datasets we utilized. Nevertheless,
1100 these datasets are widely recognized and popular, and we cite the pertinent paper whenever
1101 necessary.

1102 Guidelines:

- 1103 • The answer NA means that the paper does not use existing assets.
- 1104 • The authors should cite the original paper that produced the code package or dataset.
- 1105 • The authors should state which version of the asset is used and, if possible, include a
- 1106 URL.
- 1107 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 1108 • For scraped data from a particular source (e.g., website), the copyright and terms of
- 1109 service of that source should be provided.
- 1110 • If assets are released, the license, copyright information, and terms of use in the
- 1111 package should be provided. For popular datasets, paperswithcode.com/datasets
- 1112 has curated licenses for some datasets. Their licensing guide can help determine the
- 1113 license of a dataset.
- 1114 • For existing datasets that are re-packaged, both the original license and the license of
- 1115 the derived asset (if it has changed) should be provided.
- 1116 • If this information is not available online, the authors are encouraged to reach out to
- 1117 the asset's creators.

1118 **13. New assets**

1119 Question: Are new assets introduced in the paper well documented and is the documentation

1120 provided alongside the assets?

1121 Answer: [NA]

1122 Justification: We do not release new assets.

1123 Guidelines:

- 1124 • The answer NA means that the paper does not release new assets.
- 1125 • Researchers should communicate the details of the dataset/code/model as part of their
- 1126 submissions via structured templates. This includes details about training, license,
- 1127 limitations, etc.
- 1128 • The paper should discuss whether and how consent was obtained from people whose
- 1129 asset is used.
- 1130 • At submission time, remember to anonymize your assets (if applicable). You can either
- 1131 create an anonymized URL or include an anonymized zip file.

1132 **14. Crowdsourcing and research with human subjects**

1133 Question: For crowdsourcing experiments and research with human subjects, does the paper

1134 include the full text of instructions given to participants and screenshots, if applicable, as

1135 well as details about compensation (if any)?

1136 Answer: [NA]

1137 Justification: This research does not involve crowdsourcing or human subjects.

1138 Guidelines:

- 1139 • The answer NA means that the paper does not involve crowdsourcing nor research with
- 1140 human subjects.
- 1141 • Including this information in the supplemental material is fine, but if the main contribu-
- 1142 tion of the paper involves human subjects, then as much detail as possible should be
- 1143 included in the main paper.
- 1144 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
- 1145 or other labor should be paid at least the minimum wage in the country of the data
- 1146 collector.

1147 **15. Institutional review board (IRB) approvals or equivalent for research with human**

1148 **subjects**

1149 Question: Does the paper describe potential risks incurred by study participants, whether

1150 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

1151 approvals (or an equivalent approval/review based on the requirements of your country or

1152 institution) were obtained?

1153 Answer: [NA]

1154 Justification: There are no study participants.

1155 Guidelines:

1156 • The answer NA means that the paper does not involve crowdsourcing nor research with
1157 human subjects.

1158 • Depending on the country in which research is conducted, IRB approval (or equivalent)
1159 may be required for any human subjects research. If you obtained IRB approval, you
1160 should clearly state this in the paper.

1161 • We recognize that the procedures for this may vary significantly between institutions
1162 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1163 guidelines for their institution.

1164 • For initial submissions, do not include any information that would break anonymity (if
1165 applicable), such as the institution conducting the review.

1166 **16. Declaration of LLM usage**

1167 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1168 non-standard component of the core methods in this research? Note that if the LLM is used
1169 only for writing, editing, or formatting purposes and does not impact the core methodology,
1170 scientific rigorousness, or originality of the research, declaration is not required.

1171 Answer: [NA]

1172 Justification: The paper does not describe the usage of LLMs if it is an important, original,
1173 or non-standard component of the core methods in this research.

1174 Guidelines:

1175 • The answer NA means that the core method development in this research does not
1176 involve LLMs as any important, original, or non-standard components.

1177 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1178 for what should or should not be described.