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Abstract001

Fine-tuning large language models (LLMs) re-002
mains challenging due to the scarcity of down-003
stream task data and the prevalence of noisy004
supervision. In this paper, we introduce Noise005
Flushing (NF), a novel paradigm that prioritizes006
noise elimination over data augmentation. NF007
leverages abundant irrelevant data—sampled008
from the base LLM—to mitigate noise and009
sharpen focus on task-relevant signals during010
fine-tuning, thus enabling effective adaptation011
in extremely low-resource settings. Theoret-012
ically, we show that NF can match or even013
surpass the performance of standard LoRA014
finetuning settings, despite using substantially015
fewer task-specific examples. Empirically, NF016
achieves consistent and significant improve-017
ments over strong fine-tuning baselines across018
various tasks, including machine translation,019
structured text generation, text-to-SQL, and020
special token understanding—even with fewer021
than 100 examples.022

1 Introduction023

Large Language Models (LLMs) have revolu-024

tionized numerous applications, yet effectively025

adapting them to specialized domains often de-026

pends on fine-tuning. Instruction tuning—a widely027

adopted paradigm that trains models on instruction-028

response pairs (Zhao et al., 2024; Zhou et al.,029

2023)—faces substantial challenges when task-030

specific data is scarce. In such settings, both in-031

structions and responses often embed specific facts032

or biases. We argue that the presence of noise in033

these sparse datasets further exacerbates the diffi-034

culty of effective adaptation.035

With only a handful of examples, LLMs are036

prone to overfitting to noise rather than grasp-037

ing the underlying task semantics. Traditional038

approaches—such as data augmentation and syn-039

thetic data generation (Li et al., 2023; Zhao et al.,040

2024)—aim to amplify the weak task signal, but041
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Figure 1: Overview of Noise Flushing, where irrelevant
data guides LoRA to learn task specific features and mit-
igate noise. (a) Initial LoRA features (from task data)
contain a mix of task features and noise. (b) Loss min-
imization on self-sampled irrelevant data forces noise
suppression. (c) Convergence results in noise suppres-
sion, retaining primarily salient task features. (d) The
low-rank bottleneck in LoRA’s structure inherently pro-
motes noise rejection while preserving task features.

often fall short when the available data is limited 042

and noisy. The fundamental challenge remains: 043

how can models learn effectively when the signal 044

is weak and entangled with noise? 045

Inspired by the intuition that effective learning 046

involves not just amplifying the signal but also ac- 047

tively mitigating noise, we introduce Noise Flush- 048

ing (NF), a novel framework for data-efficient 049

fine-tuning of LLMs. This approach represents 050

a different paradigm: instead of solely focusing on 051

strengthening the weak task signal in limited data, 052

NF prioritizes the removal of pervasive sample- 053

specific noise. NF uses abundant, irrelevant data 054

sampled from the base LLM to mitigate noise and 055

sharpen focus on task-relevant signals, thus en- 056

abling effective adaptation in limited data settings. 057

Specifically, our analysis and experiments reveal 058

that the LoRA module operates within a subspace 059

orthogonal to the base LLM’s foundational repre- 060

sentation space. However, noise in the training 061

data can mislead the LLM by activating undesired 062
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directions within this foundational space. In NF,063

the sampled irrelevant data serve as constraints that064

encourage the LoRA module to suppress responses065

to irrelevant inputs, ensuring that it becomes selec-066

tively active only for task-relevant signals.067

Via theoretical analysis, we show that this ap-068

proach substantially reduces the amount of task-069

specific data required for effective fine-tuning. Our070

analysis suggests that by mixing a small number071

of task-relevant examples with irrelevant data, the072

model can achieve performance on par with tra-073

ditional methods, while requiring up to orders of074

magnitude fewer task samples.075

Empirically, we demonstrate the substantial ad-076

vantages of NF over strong baselines, particularly077

in extremely low-data regimes. Specifically, NF078

achieves significantly higher accuracy in formatted079

text generation and improved BLEURT scores in080

translation, while preserving robust semantic con-081

sistency for special tokens—a notoriously difficult082

challenge in low-resource fine-tuning.083

In summary, the contributions of our work are:084

• First, we reframe data-inefficient instruction tun-085

ing as a noise-resistance problem, highlighting086

the entanglement of task semantics and noise as087

a fundamental bottleneck in low-data learning.088

• Second, we propose NF, a novel method that,089

both theoretically and empirically, demonstrates090

the effectiveness of combining sparse task data091

with abundant irrelevant data sampled from the092

base LLM to enhance task learning by effectively093

suppressing noise.094

• Lastly, we show that NF achieves robust seman-095

tic consistency for novel special tokens, over-096

coming a key limitation of existing knowledge097

injection techniques in LLMs.098

2 Related Work099

In this section, we first review existing approaches100

for fine-tuning LLMs in low-data regimes, followed101

by a discussion of studies that distinguish between102

different types of fine-tuning data.103

2.1 Fine-tuning under Data Scarcity104

In low-data regimes, researchers have explored a105

variety of approaches to enhance model perfor-106

mance. These include data augmentation to vir-107

tually expand training sets (Li et al., 2023; Zhao108

et al., 2024); meta-learning methods that aim to109

“learn to learn” from limited examples (Zhu et al.,110

2024); iterative self-improvement strategies for re- 111

fining training data quality (Li et al., 2023; Zhao 112

et al., 2024); and the generation of synthetic data 113

for instruction tuning (Liu et al., 2023; Dong et al., 114

2024; Mecklenburg et al., 2024). Other efforts 115

involve modifying training objectives (Vernikos 116

et al., 2020) or introducing architectural innova- 117

tions, such as parameter-efficient fine-tuning mod- 118

ules like LoRA (Wang et al., 2022; Hu et al., 2021), 119

and embedding-level noise injection techniques 120

(Jain et al., 2023), all aimed at improving general- 121

ization under limited supervision. 122

NF addresses the challenge of data scarcity from 123

a novel perspective—by mitigating noise and en- 124

hancing focus on task-relevant signals through the 125

use of abundant irrelevant data, which is easily ob- 126

tained by sampling from the base LLM. 127

2.2 Fine-Tuning with Data Prioritization 128

Certain strategies, such as Direct Preference Opti- 129

mization (DPO) (Rafailov et al., 2024) and dataset 130

pruning or distillation (Zhou et al., 2023), oper- 131

ate—either implicitly or explicitly—on the premise 132

that not all data behaviors are equally valuable. 133

DPO, for example, learns from pairs of preferred 134

and dispreferred responses by optimizing for the 135

former. NF aligns with this motivation, emphasiz- 136

ing the importance of task-relevant signals while 137

suppressing noise. 138

However, the underlying mechanism of NF is 139

fundamentally different. It guides the LoRA mod- 140

ule to suppress responses to irrelevant data, thereby 141

forcing it to learn features that are activated only 142

by task-relevant inputs. By leveraging easily gen- 143

erated irrelevant data, NF provides a novel and 144

efficient solution for extremely low-resource sce- 145

narios. Importantly, NF remains effective even in 146

the absence of curated preference pairs, as required 147

by DPO, or large initial datasets, as needed for 148

pruning-based methods. 149

3 Methodology 150

Unless otherwise specified, bold uppercase let- 151

ters denote matrices, and bold lowercase letters 152

denote vectors. We use ∥·∥F to denote the Frobe- 153

nius norm and ∥·∥ for the ℓ2 norm. 154

3.1 Preliminary: Low-Rank Adaptation 155

In this work, we utilize Low-Rank Adaptation 156

(LoRA), which updates pre-trained weights W 157

with a low-rank matrix ∆W = AB, where 158
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Algorithm 1 Noise Flushing for Data-Efficient
Fine-Tuning
Input: Pre-trained LLM, Task dataset Dtask, Irrele-
vant queries Qirr
Parameter: Mixing ratio r (ratio of irrelevant data
to task data per training step)
Output: Finetuned LLM

1: Initialize fine-tuned model with pre-trained
LLM and LoRA

2: Dirr ← Sample QA pairs from LLM with Qirr
3: Prepare dataset by mixing Dtask and Dirr with

ratio 1 : r.
4: for each epoch do
5: for each batch in shuffled combined dataset

do
6: Train LLM with LoRA on the batch.
7: Update LoRA parameters.
8: end for
9: end for

10: return Fine-tuned LLM

rank(∆W ) ≪ rank(W ). The model response be-159

comes r(x) = Wx+BAx.160

Observation 1. Approximate Orthogonality be-161

tween LoRA Activations and original represen-162

tation . LoRA activations tend to be approxi-163

mately orthogonal to the original representations164

from the pre-trained model. This suggests that165

LoRA operates in a distinct update subspace that166

is focused on the new task. A detailed empirical167

analysis is provided in Appendix B.168

3.2 Problem Statement: Task and Noise169

Feature Entanglement170

Instruction tuning with severely limited data suf-171

fers from the entanglement of task-specific features172

and sample-specific stochastic noise. We concep-173

tually decompose the input feature space into an174

(unknown a priori) task feature subspace F and175

a noise feature subspace G, with corresponding176

(conceptual) projection operators PF and PG. For177

any input x, we can consider its features to be rep-178

resentable as a combination of components from179

these subspaces.180

The ideal update ∆W ∗ learned from Dtask181

should primarily reside in the task feature subspace182

F , meaning its projection onto the noise subspace183

G, i.e., PG∆W ∗, should be approximately zero.184

However, with limited task data, standard fine-185

tuning struggles to achieve this disentanglement186

because the subspaces F and G are not explicitly 187

known or engineered. Our method, NF, works im- 188

plicitly: the mixed-data training process guides the 189

LoRA update to primarily capture components in 190

F and ignore or suppress components in G, rather 191

than requiring explicit knowledge or construction 192

of these subspaces. 193

3.3 Noise Flushing Method 194

NF utilizes self-sampled irrelevant data Dirr along- 195

side scarce task-specific data Dtask to guide LoRA 196

updates. The complete procedure is presented in 197

Algorithm 1. As shown, the training process fol- 198

lows a standard supervised learning paradigm over 199

mixed batches drawn from both Dtask and Dirr. 200

Explanation. NF operates on the assump- 201

tion that the task dataset Dtask comprises both 202

task-relevant signals—i.e., features residing in a 203

task-specific subspace F—and noise, i.e., features 204

within a noise subspace G, which may stem from 205

spurious correlations common in low-data regimes. 206

In contrast, the irrelevant dataset Dirr consists of 207

general inputs for which the task-specific signal 208

components PFx are negligible, i.e., PFx ≈ 0 209

for all x ∈ Dirr. From an optimization perspec- 210

tive, the key distinction between NF and standard 211

LoRA lies in how the LoRA adapter ∆W learns 212

from irrelevant data Dirr. For an input x ∈ Dirr, 213

the target output y is generated by the base LLM 214

itself, i.e., y ≈ Wx. Minimizing the supervised 215

loss L((W +∆W )x, y) on such examples implic- 216

itly encourages the LoRA-induced change to be 217

negligible, i.e., ∆Wx ≈ 0. 218

Specifically, the suppression of ∆Wx on irrel- 219

evant data x ∈ Dirr encourages consistency with 220

the model’s pre-trained knowledge and behavior on 221

general inputs. In low-data scenarios—where ∆W 222

might otherwise overfit to noise in Dtask by learn- 223

ing a spurious component ∆WG—this consistency 224

constraint acts as a regularizer, suppressing unde- 225

sirable updates. As a result, the limited capacity of 226

the LoRA adapter is guided to focus on learning 227

genuine task-relevant features ∆WF from Dtask. 228

By mixing Dtask with irrelevant data Dirr, NF ef- 229

fectively steers LoRA towards selective adaptation: 230

amplifying task-specific signals while mitigating 231

the impact of noise. Details on the construction 232

of Dirr can be found in Appendix C. The practical 233

effectiveness of this mechanism is supported by 234

our empirical results. 235
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3.4 Theoretical Analysis of Data Efficiency236

with Noise Flushing237

Building on the intuitive understanding of NF’s238

mechanism, we now provide a theoretical analysis239

of its potential to reduce the need for task-specific240

training data. Given the complexity of LLMs,241

this formalization necessarily relies on strong sim-242

plifying assumptions. Key assumptions include243

bounded inputs ∥x∥ ≤ R, bounded representation244

output ∥∆W ∗(x)∥ ≤ D for task data, bounded245

LoRA updates ∥∆W∥F ≤ C, where R,D,C are246

fixed constants, and the conceptual existence of or-247

thogonal task feature subspace F and noise feature248

subspace G. Details are provided in Appendix A.249

Before presenting our sample complexity250

analysis, we first introduce two types of er-251

rors—commonly referred to as risks in the frame-252

work of Probably Approximately Correct (PAC)253

learning, i.e., the empirical risk and the true risk,254

defined as follows:255

• Empirical risk Remp(f) is the average error of a256

model f evaluated on the training dataset Dtask.257

• True risk R(f) is the expected error of the258

model over the entire data distribution, reflecting259

its generalization performance.260

In PAC learning, the empirical risk serves as261

an approximation of the true risk, with the quality262

of this approximation improving as the number of263

training samples increases.264

Theorem 1. Task-Only Sample Complexity:265

when performing standard LoRA fine-tuning using266

only task data Dtask, to guarantee that the empirical267

risk ϵtask deviates from the true risk with a proba-268

bility of at least 1− δ, the required number of task269

samples ntask is given by:270

ntask = O

(
1

ϵ2task

)
(1)271

This indicates that the required number of task sam-272

ples is inversely proportional to the square of the273

target precision.274

Theorem 2. Mixed-Data Sample Complexity275

with NF consists of two parts:276

1. Noise Suppression: By introducing nirr irrel-277

evant samples, the component of the LoRA ac-278

tivation ∆Wx residing in the noise subspace279

G, denoted ∥PG∆Wx∥F , can be effectively280

suppressed. To achieve a noise suppression281

accuracy of ϵirr with probability 1 − δ, the 282

number of irrelevant samples nirr required is: 283

nirr = O

(
log(d− k)

ϵ2irr

)
(2) 284

where d and k denote the intrinsic dimension 285

of the ∆Wx and F , respectively, thus d−k is 286

the effective dimension of the noise subspace 287

G. ϵ0 is the initial optimization error for the 288

task. 289

2. Task Sample Complexity: Here ϵ0 denotes 290

initial error. After the noise components are 291

suppressed, the number of task samples ntask 292

required to achieve the final target task error 293

ϵtask is: 294

ntask = O

(
log(ϵ0/ϵtask)

α · ϵ2task

)
(3) 295

where α is a factor related to the convergence 296

rate of the optimization process on the task 297

loss. 298

3.5 Discussion 299

Theorem 2 suggests that introducing a sufficient 300

number of irrelevant samples nirr effectively sup- 301

presses noise, thereby reducing the initial opti- 302

mization error ϵ0 for the task loss. As a result, 303

the number of task-specific samples ntask required 304

to achieve a target task precision ϵtask is also re- 305

duced. Despite relying on simplifying assump- 306

tions, this formal analysis supports our earlier in- 307

tuition and optimization-based explanation in Sec- 308

tion 3.3—that NF facilitates more efficient extrac- 309

tion of task-relevant signals from a small set of 310

examples. 311

4 Experiment 312

This section empirically validates the Noise Flush- 313

ing method. We aim to demonstrate: (1) Noise 314

Flushing significantly enhances data efficiency in 315

practical tasks, achieving strong performance with 316

limited task-specific data; (2) Noise Flushing im- 317

proves the model’s internal representations by sup- 318

pressing noise features, leading to more robust task 319

feature learning, thus explaining why Noise Flush- 320

ing works; (3) The gains of Noise Flushing origi- 321

nate from the noise-suppression effect of irrelevant 322

data, not merely from data augmentation. 323
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4.1 Practical Task Performance324

This section evaluates Noise Flushing’s effective-325

ness in enhancing data efficiency on practical tasks:326

formatted text generation, translation, and text-to-327

SQL generation. We aim to show that Noise Flush-328

ing achieves strong performance even with limited329

task-specific data.330

4.1.1 Experiment Setup331

Models and Datasets:332

• Formatted Text Generation Task: Llama333

2-7B-Chat (Touvron et al., 2023) on the334

Zeng et al. (2024) open-source formatted text335

dataset.336

• English-Icelandic Translation Task:337

Gemma-7B-it (Team et al., 2024) on the338

WMT-21 (Akhbardeh et al., 2021) dataset for339

English-Icelandic translation (Garcia et al.,340

2023).341

• Text-to-SQL Generation Task: Qwen1.5-342

7B-Chat (Team, 2024) on the BIRD-SQL343

Mini dataset (Li et al., 2024). We use the344

‘sql-create-context’ (b mc2, 2023) subset for345

scarce task data and also evaluate NF’s syn-346

ergy with ‘synthetic_text_sql’ (Meyer et al.,347

2024) data.348

Baselines: We compare Noise Flushing against349

the following baselines: (1) Original model: The350

pre-trained LLM without any fine-tuning. (2)351

Vanilla LoRA Finetuning: Directly fine-tune on352

the downstream task training data using LoRA.353

This baseline represents standard instruction tun-354

ing in a low-data regime. (3) Controlled Text355

Generation(Dekoninck et al., 2023): Controls text356

generation features by manipulating logits. This357

baseline represents an alternative approach to guide358

model behavior (for formatted text generation).359

(4) DiPMT(Ghazvininejad et al., 2023): Provides360

translation examples and a dictionary to guide trans-361

lation via in-context learning. This baseline rep-362

resents a strong in-context learning approach for363

translation. (5) For Text-to-SQL, we also compare364

NF with advanced LoRA variants: DoRA (Liu365

et al., 2024) and AdaLoRA (Zhang et al., 2023),366

both with and without NF.367

Implementation Details: All experiments use368

LoRA (or its variants) with the following base hy-369

perparameters for 1 epoch: Rank 16, Learning rate370

2e-4, Batch size 64 (reduced to 16 for data scales <371

256).372

4.1.2 Tasks and Evaluation Metrics 373

Formatted Text Generation: Using Llama 2-7B- 374

Chat and the dataset proposed by Zeng et al. (2024), 375

the task is to generate JSON-formatted output. We 376

use accuracy as the metric, measuring the correct- 377

ness of JSON formatting in the generated output. 378

Translation: Using Gemma-7B-it and the 379

WMT-21 dataset, we evaluate English-Icelandic 380

and Icelandic-English translation. We use the 381

BLEURT score as the evaluation metric, as recom- 382

mended by Garcia et al. (2023). 383

Text-to-SQL Generation: Using Qwen1.5-7B- 384

Chat on BIRD-SQL Mini, the task is to generate 385

SQL queries from natural language questions. We 386

report Execution Accuracy (EX %) on the ‘Mod- 387

erate’ and ‘Challenging’ subsets of BIRD-SQL 388

Mini. To simulate low data resource scenarios, 389

we select the first 100 samples. 390

4.1.3 Results and Analysis 391

We selected these tasks for the following reasons: 392

1) LLMs suboptimally possess some problem- 393

solving capability for these tasks. If an LLM com- 394

pletely lacked this capability, it wouldn’t be ap- 395

propriate to address the issue within a few-shot 396

learning context. 2) To simulate real-world sce- 397

narios where training data is limited, such as in 398

English-Icelandic news translation (WMT-21) or 399

specialized Text-to-SQL applications. 400

Noise Flushing significantly boosts performance 401

in formatted text generation (Table 1), translation 402

(Table 2), and Text-to-SQL tasks (Table 3), espe- 403

cially under limited data conditions. In formatted 404

text generation, NF achieves near-perfect accuracy 405

(96.0% with 100 samples), dramatically surpass- 406

ing vanilla LoRA (59.9%). For translation, NF 407

shows substantial BLEURT gains (17-33%) com- 408

pared to vanilla fine-tuning. In Text-to-SQL, NF no- 409

tably improves performance on challenging exam- 410

ples (+200% when combined with Vanilla LoRA) 411

and synergizes with LoRA variants like DoRA and 412

AdaLoRA, as well as synthetic data. These results 413

highlight NF’s broad utility in mitigating noise and 414

enhancing performance, particularly in difficult, 415

low-signal conditions. 416

The findings underscore Noise Flushing’s data 417

efficiency in practical tasks through noise suppres- 418

sion and leveraging limited examples. Additional 419

experiments are detailed in the Appendix. 420
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Method 30 samples 65 samples 85 samples 100 samples
Original model 34.8%
Vanilla LoRA Finetuning 38.8% 48.8% 53.2% 59.9%
Controlled text generation 44.3%
Noise Flushing 38.6% 84.6% 86.9% 96.0%

Table 1: Accuracy of formatted text generation: Noise Flushing achieves significantly higher accuracy with limited
task data, demonstrating strong data efficiency.

Method English-Icelandic Icelandic-English
Score Improvement Score Improvement

Original model 0.3556 - 0.3650 -
Vanilla LoRA Finetuning 0.3628 2.02% 0.3898 6.79%
DiPMT 0.4233 19.03% 0.3420 -6.30%
Noise Flushing 0.4744 33.41% 0.4273 17.07%

Table 2: Bleurt score of English-Icelandic and Icelandic-English translation: Noise Flushing significantly outper-
forms baselines, especially in the low-resource Icelandic-English direction.

Base Method Moderate EX (%) Challenging EX (%)
(vs. w/o NF) (vs. w/o NF)

Task Data: sql-create-context (Qwen1.5-7B-Chat)
Vanilla LoRA w/o NF 7.60 0.98
Vanilla LoRA w/ NF 7.20 (-5.3%) 2.94 (+200.0%)
DoRA w/o NF 6.80 1.96
DoRA w/ NF 7.20 (+5.9%) 2.94 (+50.0%)
AdaLoRA w/o NF 6.00 1.96
AdaLoRA w/ NF 6.80 (+13.3%) 4.90 (+150.0%)

Task Data: synthetic_text_sql (Qwen1.5-7B-Chat)
Synthetic Data w/o NF 6.40 3.92
Synthetic Data w/ NF 7.60 (+18.8%) 3.92 (+0.0%)

Table 3: Performance of Noise Flushing (NF) on the BIRD-SQL Mini (text2sql) task with Qwen1.5-7B-Chat,
showing synergy with advanced LoRA variants and synthetic task data. Percentages in parentheses indicate relative
change compared to the corresponding method without NF.

4.2 Ablation Study421

This section investigates the source of Noise Flush-422

ing’s gains, aiming to confirm that the performance423

improvement stems from the synergistic effect of424

task data and irrelevant data for noise suppression,425

and not simply from one of them.426

4.2.1 Experiment Setup427

Model and Dataset: Llama 2-7B-Chat on the for-428

matted text dataset and proposed by Zeng et al.429

(2024).430

Ablation Conditions: We compare Noise Flush-431

ing (w/ all components) to ablations removing: (1)432

irrelevant data (Vanilla LoRA instruction tuning);433

(2) task data; (3) both task and irrelevant data (Orig-434

inal model).435

Evaluation Metrics: We use the same metrics436

as in the Section 4.1: accuracy for formatted text 437

generation, and BLEURT score for translation. Ad- 438

ditionally, we include the mid-layer concept L2 439

norm from the Intermediate Representation Analy- 440

sis (Section 4.3) to show how different data influ- 441

ence the features the model learns ultimately. 442

4.2.2 Results and Analysis 443

Table 4’s ablation study shows removing either task 444

or irrelevant data severely degrades performance 445

(e.g., formatted text accuracy from 96.0% to 59.9% 446

without irrelevant, 7.4% without task data). This 447

confirms Noise Flushing’s effectiveness stems from 448

the synergistic interaction of both data types for 449

noise suppression and feature learning, not just 450

augmentation. 451

Figure 2 supports this, showing more irrele- 452
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Method w/o irrelevant data w/o task data w/o all w/all
Mid-layer concept L2 norm (avg) 342.7 200.2 388.1 15.0
Formatted text generation 59.9% 7.4% 34.8% 96.0%
English-Icelandic translation 0.3556 0.3735 0.3556 0.4273
Icelandic-English translation 0.3650 0.3965 0.3650 0.4744

Table 4: Ablation Study: Impact of removing irrelevant data or task data. Results show that both components are
crucial for Noise Flushing’s effectiveness, indicating a synergistic noise suppression mechanism.
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Figure 2: Overall loss on downstream tasks with vary-
ing amounts of irrelevant data. The decreasing trend
as irrelevant data increases further supports the noise
suppression hypothesis.

vant data improves performance by reducing down-453

stream task loss, reinforcing NF’s core mechanism.454

4.3 Intermediate Representation Analysis:455

Validating Task Feature Learning via456

Noise Suppression457

This section provides insights into why Noise458

Flushing works by examining its impact on the459

model’s internal representations. We hypothesize460

that Noise Flushing enables the model to learn461

more robust task features by suppressing noise,462

even for novel tokens.463

4.3.1 Experiment Setup464

Model and Dataset: Llama 2-7B-Chat on the for-465

matted text dataset, with task data limited to under466

100 samples.467

Task: Generate JSON-formatted text with a468

“thought” key, using a new special token <sep>469

as a format instruction, without explicit definition470

of <sep>’s meaning.471

Methods Compared: We compare Noise Flush-472

ing to baselines that represent different approaches473

to token embedding initialization and knowledge474

injection: Random Init, Mean Embedding (Welch475

et al., 2020), Vanilla LoRA Finetuning, DMT 476

(Dong et al., 2024), and Fact-based (Mecklenburg 477

et al., 2024). 478

Evaluation Metric: We measure the L2 norm 479

between the embedding of the special token 480

<sep> and the embeddings of keywords (“thought”, 481

“json”) related to its intended semantic meaning 482

(formatted text generation). Lower L2 norms indi- 483

cate better semantic alignment and more effective 484

task feature learning. 485

4.3.2 Results and Analysis 486

Figures 3 and Table 5 show that Noise Flushing 487

excels at learning semantic representations for the 488

new token <sep>. It achieves significantly lower 489

L2 norms to “json” and “thought” across all trans- 490

former blocks compared to baselines. For instance, 491

in the final block, Noise Flushing’s L2 norm to 492

“json” is 46.1, far surpassing the next best baseline 493

(Fact-based at 100.5) and Vanilla LoRA Finetun- 494

ing (182.3). This demonstrates Noise Flushing’s 495

unique effectiveness in aligning <sep>’s internal 496

representation with its intended meaning for for- 497

matted text generation. This strong semantic align- 498

ment, even with limited data, supports the idea that 499

Noise Flushing enables robust task feature learn- 500

ing by suppressing noise and focusing the model 501

on underlying task semantics, including for new 502

tokens. 503

Furthermore, we demonstrate <sep>’s emergent 504

functionality as a plug-and-play “soft prompt” after 505

Noise Flushing: 506

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
follow the <sep> format.
Response {‘thought’: ‘The user is asking
about the color of apples.’, ‘hallucination’:
‘No hallucination found’}

507
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DMT
Random Init 
Mean Embedding

Vanilla LoRA Finetuning 
Factor Based
Noise Flushing

layer 2 
layer 17 
layer 31

Figure 3: L2 Norm between <sep> embedding and keywords “json” and “thought” across transformer blocks.
Noise Flushing consistently achieves the lowest L2 norms, indicating superior semantic alignment and task feature
learning for the special token.

Method First Block Middle Block Last Block
“json” “thought” “json” “thought” “json” “thought”

Random Init 382.5 382.3 388.0 388.1 203.5 202.1
Mean Embedding 328.1 327.9 333.8 333.9 188.2 186.9
Vanilla LoRA Finetuning 336.3 337.5 341.9 343.4 182.3 183.0
DMT 271.1 265.3 277.6 272.0 168.3 168.1
Fact Based 94.5 94.2 102.4 101.9 100.5 103.1
Noise Flushing 3.2 6.2 15.6 14.4 46.1 47.7

Table 5: L2 norms of <sep> to keywords in different transformer blocks: Noise Flushing significantly reduces L2
norms compared to baselines, demonstrating superior semantic alignment of the special token.

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
DO NOT follow the <sep> format.
Response There is no hallucination in the
given response. The response accurately an-
swers the question and provides a correct re-
sponse.

508

These examples demonstrate that the <sep> to-509

ken, learned through Noise Flushing, functions as510

a semantic unit that the LLM can interpret and511

act upon in conjunction with natural language in-512

structions. This emergent soft-prompt capability513

further highlights Noise Flushing’s effectiveness in514

extracting task-specific features and encoding them515

into meaningful representations, even for novel vo-516

cabulary items, by effectively suppressing noise in517

low-data regimes.518

5 Conclusion 519

This paper introduces Noise Flushing (NF), a novel 520

LLM fine-tuning method prioritizing noise removal 521

in low-data settings. NF uses abundant, self- 522

sampled irrelevant data during LoRA fine-tuning to 523

suppress noise and focus on task-relevant features. 524

Both theoretically and empirically, NF shows sig- 525

nificant performance gains with drastically fewer 526

task samples in areas like translation and text-to- 527

SQL, even improving new special token under- 528

standing. NF reframes data-efficient tuning as 529

noise disentanglement, enabling LLMs to learn 530

effectively in sparse data environments. 531

8



Limitations532

Our research demonstrates that leveraging irrele-533

vant data through Noise Flushing offers a promis-534

ing data-efficient approach to instruction tuning,535

especially in low-resource scenarios. By reframing536

the challenge as noise disentanglement, we move537

beyond traditional signal accumulation paradigms.538

However, limitations and open questions remain:539

5.1 Quality and Quantity of Irrelevant Data540

Our theoretical analysis assumes the availability of541

“sufficient” irrelevant data to effectively flush out542

noise features. However, the practical implications543

of “sufficient” quantity and the potential impact544

of irrelevant data quality require further investiga-545

tion. The nature of irrelevant data (e.g., domain546

similarity, data distribution) might influence the547

effectiveness of noise flushing. Future direction:548

Systematically study the impact of irrelevant data549

characteristics (quantity, quality, domain relevance)550

on noise flushing and task performance.551

5.2 Role of LoRA and Low-Rank Constraints552

LoRA’s low-rank constraint is crucial in our Noise553

Flushing framework, preventing overfitting to noise554

from irrelevant data. It remains an open question555

whether other parameter-efficient fine-tuning meth-556

ods or even full-parameter fine-tuning can similarly557

benefit from irrelevant data for noise suppression.558

Future direction: Explore the applicability of Noise559

Flushing with different fine-tuning techniques and560

investigate the optimal rank selection for LoRA in561

noise-flushing scenarios.562

5.3 Theoretical and Practical Gaps563

While our PAC-Learning theory provides guaran-564

tees for Noise Flushing, there might be gaps be-565

tween theoretical assumptions and practical im-566

plementations. For instance, the assumption of567

orthogonal task and noise subspaces is a simplifi-568

cation. Real-world data and model representations569

are more complex. Future direction: Further refine570

the theoretical framework to account for more real-571

istic data and model complexities. Investigate the572

empirical conditions under which Noise Flushing is573

most effective and identify potential failure cases.574

5.4 Experimental Scale and Generalization575

Our experiments, while promising, were conducted576

on relatively small LLMs and a limited set of tasks.577

Validating Noise Flushing on larger models and578

more diverse tasks is crucial to assess its broader 579

applicability and scalability. Future direction: Ex- 580

pand the experimental evaluation to larger LLMs, 581

more diverse tasks, and real-world applications to 582

comprehensively validate the effectiveness and gen- 583

eralization of Noise Flushing. 584

5.5 Computational Cost of Irrelevant Data 585

While Noise Flushing bridges the gap from “im- 586

possible” to “possible” in low-resource settings, 587

it introduces a trade-off: increased computational 588

cost. The inclusion of a large volume of irrele- 589

vant data leads to longer training times and higher 590

computational resource requirements. Although 591

the trade-off between increased computational cost 592

and improved performance in data-scarce scenarios 593

is often acceptable, future research should explore 594

more efficient training strategy that mitigate this 595

burden. Future direction: Develop techniques to 596

reduce the computational overhead of Noise Flush- 597

ing, such as intelligent sampling of irrelevant data, 598

efficient mixing strategies, or adaptive scaling of 599

the irrelevant data ratio during training. 600
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A Appendix: Proofs of Theorems803

In this appendix we present complete proofs of804

Theorems 1 and 2, including the supplementary ar-805

gument showing that once the number of irrelevant806

samples nirr meets the requirement of Theorem 2,807

the noise components are effectively suppressed so808

that fewer task samples is needed for final correc-809

tion.810

Here we use the norm minimization of the dif-811

ference between the activation generated by LoRA812

and the ideal activation to represent the training813

objective. This is for the convenience of demonstra-814

tion, because we are not concerned about the im-815

pact of other components of LLM, such as lm_head,816

on this training dynamic. Only caring about the817

difference in representation provides a microscopic818

perspective for analysis819

We make the following assumptions throughout:820

1. Bounded Inputs: For both task data and ir-821

relevant data, we assume822

∥x∥ ≤ R and ∥x′∥ ≤ R823

Here, R represents the bound on the norm of824

input features.825

2. Bounded Target: For task data, the target826

satisfies827

∥∆(x)∥ ≤ D828

Here, D represents the bound on the norm of829

the target function for task data. Specifically,830

∆(x) is ∆W ∗(x) in main paper, we use it for831

convenience.832

3. Bounded Model Parameters: We consider833

a low-rank update represented as M = AB,834

with835

∥M∥F ≤ C836

Here, C represents the bound on the Frobe-837

nius norm of the model parameters (specifi-838

cally, the low-rank update matrix M , which839

is ∆W in main paper. We use it to convey the840

idea that LoRA activation values provide a cor-841

rection to the representation produced by the842

original weights, and this correction, as our843

experiments show, has independent underly-844

ing meaning and does not lose its significance845

when detached from W; therefore, we use a846

new letter).847

4. Task and Noise Subspaces: Let F de- 848

note the task feature subspace and G denote 849

the noise (irrelevant) subspace. In G, let 850

{g1, . . . , gd−k} be an orthonormal basis. 851

A.1 Proof of Theorem 1: Task-Only Sample 852

Complexity 853

We aim to show that with 854

ntask = O
( 1

ϵ2task

)
855

task samples, the empirical risk 856

L̂task(M) =
1

ntask

ntask∑
i=1

∥Mxi −∆(xi)∥2 857

satisfies 858∣∣L̂task(M)− Ltask(M)
∣∣ ≤ ϵtask 859

for all M with ∥M∥F ≤ C, with high probability. 860

Step 1. Bounded Loss. For each sample x, the 861

loss function is given by 862

l(M,x) = ∥Mx−∆(x)∥2 863

Using the triangle inequality and the boundedness 864

of M and ∆(x), we have 865

∥Mx−∆(x)∥ ≤ ∥Mx∥+ ∥∆(x)∥ ≤ CR+D 866

so that the loss is bounded by 867

B = (CR+D)2 868

Step 2. Rademacher Complexity Bound. Let 869

F = {fM : x 7→ ∥Mx−∆(x)∥2 | ∥M∥F ≤ C} 870

Bartlett and Mendelson (2003) yield that with prob- 871

ability at least 1− δ, for all f ∈ F , 872

∣∣∣E[f(x)]− 1

ntask

ntask∑
i=1

f(xi)
∣∣∣ ≤ 2Rntask(F)+B

√
log(2/δ)

2ntask
873

whereRntask(F) denotes the empirical Rademacher 874

complexity of F . 875

Since the mapping x 7→ Mx is linear, and the 876

squared loss is Lipschitz (on the bounded range), 877

by Talagrand’s contraction lemma we can relate 878

Rntask(F) to that of the linear class 879

H = {hM : x 7→Mx | ∥M∥F ≤ C} 880
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A standard bound is881

Rntask(H) ≤
CR
√
ntask

882

so that883

Rntask(F) ≤ L · CR
√
ntask

884

for some constant L depending on the Lipschitz885

constant (which in turn depends on CR+D).886

Step 3. Sample Complexity. Thus, the general-887
ization error is bounded by888

∣∣∣E[fM (x)]− 1

ntask

ntask∑
i=1

fM (xi)
∣∣∣ ≤ 2LCR√

ntask
+B

√
log(2/δ)

2ntask
889

To ensure that the right-hand side is at most ϵtask,890

it suffices to choose891

ntask = O
( 1

ϵ2task

)
892

This completes the proof of Theorem 1.893

A.2 Proof of Theorem 2: Mixed-Data Sample894

Complexity and Convergence895

In the mixed-data setting, the loss function is de-896
fined as897

L̂(M) =
1

ntask

ntask∑
i=1

∥Mxi−∆(xi)∥2+λ
1

nirr

nirr∑
l=1

∥Mx′
l∥2898

The first term represents the task loss, while the899

second term, using irrelevant samples, acts as a900

regularizer that suppresses the response of M in901

the noise subspace G.902

Part 1. Noise Suppression in the Noise Subspace903

G. For each noise direction gj ∈ G, consider the904

function905

fM,j(x) =
(
gTj Mx

)2
906

Define the function class907

Gj = {x 7→ (gTj Mx)2 : ∥M∥F ≤ C}908

Since ∥gj∥ = 1 and ∥x∥ ≤ R, we have909

(gTj Mx)2 ≤ ∥Mx∥2 ≤ C2R2910

An analysis analogous to that for the task loss (us-911

ing Talagrand’s contraction lemma) shows that912

Rnirr(Gj) ≤ L′ CR
√
nirr

,913

for some constant L′.914

Then, by a standard Rademacher generalization 915

bound, for each fixed gj and for any δ′ > 0, with 916

probability at least 1− δ′, 917

∣∣∣γj(M)−γ̂j(M)
∣∣∣ ≤ 2Rnirr(Gj)+C2R2

√
log(2/δ′)

2nirr
918

where 919

γj(M) = Ex∼Dirr

[
(gTj Mx)2

]
920

and 921

γ̂j(M) =
1

nirr

nirr∑
l=1

(gTj Mx′l)
2 922

Taking a union bound over the d−k noise directions 923

by setting δ′ = δ/(d− k), we require that 924

2L′CR
√
nirr

+ C2R2

√
log (2(d− k)/δ)

2nirr
≤ ϵirr 925

Thus, it suffices to choose 926

nirr = O
( log(d− k)

ϵ2irr

)
927

so that the noise energy in each noise direction is 928

estimated within ϵirr. With the appropriate choice 929

of the regularization parameter λ, the minimization 930

of L̂(M) will force the model to have 931

∥PGM∥ ≤ O(ϵirr) 932

where PG is the projection onto the noise subspace 933

G. 934

Part 2. Task Sample Complexity with Initial 935

Error. Assume we start with an initial model M0 936

such that ∥M0 −M∗∥F = ϵ0. We aim to achieve 937

∥M−M∗∥F ≤ ϵtask through iterative optimization. 938

After k iterations, the error is approximately ∥Mk− 939

M∗∥F ≤ ϵ0(1− α)k. To reach ϵtask, we require: 940

ϵ0(1− α)k ≤ ϵtask 941

Solving for k, and using the approximation 942

log(1− α) ≈ −α for small α, we get: 943

k ≥ log(ϵtask/ϵ0)

log(1− α)
≈ log(ϵ0/ϵtask)

α
944

Assuming the sample complexity per iteration is 945

O(1/ϵ2task), the total task sample complexity is: 946

ntask = O

(
k · 1

ϵ2task

)
= O

(
log(ϵ0/ϵtask)

α · ϵ2task

)
947
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This shows that a smaller initial error ϵ0 (closer948

to ϵtask) reduces the sample complexity through949

the logarithmic factor, while the O(1/ϵ2task) depen-950

dence on the target precision remains.951

While the fundamental order of complexity with952

respect to ϵtask does not change, a good initial esti-953

mate (small ϵ0) significantly reduces the *absolute*954

number of task samples required. This is because955

the logarithmic term, log(ϵ0/ϵtask), becomes small956

when ϵ0 is close to ϵtask. In practical terms, after957

effective noise suppression using irrelevant data,958

the initial estimate M0 is already close to the op-959

timal solution. Therefore, the remaining task data960

is primarily used for fine-tuning, and the required961

amount can be substantially less than what would962

be needed without the initial estimate.963

14



B Appendix: LoRA Orthogonality964

Analysis: Detailed Methodology and965

Results966

This appendix provides a detailed description of the967

methodology and results for the analysis of LoRA968

adapter orthogonality, as mentioned in the main969

paper. We investigate the cosine similarity between970

the corrections applied by LoRA adapters and the971

original representations of the backbone LLMs.972

B.1 Experimental Setup973

B.1.1 Models and Adapters974

We analyze the top 5 most downloaded LoRA975

adapters (as of February 15, 2025) on Hugging976

Face for each of the following Qwen2.5 family977

models:978

• Qwen2.5-0.5B-Instruct979

• Qwen2.5-1.5B-Instruct980

• Qwen2.5-3B-Instruct981

• Qwen2.5-7B-Instruct982

The specific LoRA adapters analyzed, along983

with their corresponding Hugging Face repository984

IDs, are listed below. We use a shorthand notation985

"LoRA 1," "LoRA 2," etc., to refer to the adapters986

within each model size category. The full list of987

LoRA adapters analyzed is provided in Table 6.988

The use herein is in accordance with the open989

source licensing method.990

B.1.2 Data Selection991

For each LoRA adapter, we selected 50 input data992

samples to evaluate the cosine similarity. The data993

selection strategy varied based on the available in-994

formation about the LoRA adapter:995

• Explicit Training Dataset: If the LoRA996

adapter’s Hugging Face repository explicitly997

specified the training dataset, we used the first998

50 samples from that dataset.999

• Similar Task Data: If the training dataset1000

was not specified, but the task was identifi-1001

able (e.g., from the adapter’s name or descrip-1002

tion), we selected 50 samples from a dataset1003

designed for a similar task.1004

• Alpaca Dataset (Default): If neither the train-1005

ing dataset nor the task could be determined,1006

we used the first 50 samples from the Al-1007

paca dataset (Taori et al., 2023) as a general-1008

purpose instruction-following dataset.1009

B.1.3 Cosine Similarity Calculation 1010

We focus on the attention (attn) blocks of the LLMs. 1011

For each LoRA adapter and each attention block, 1012

we perform the following steps: 1013

1. Forward Pass: We pass the 50 selected input 1014

samples through the model with the LoRA 1015

adapter enabled. 1016

2. Extract Representations: For each input 1017

sample and each token within that sample, 1018

we extract two vectors at a given layer l: 1019

(a) Original Representation: Wlx, the out- 1020

put of the original weight matrix Wl at 1021

layer l. 1022

(b) LoRA Correction: BlAlx, the correc- 1023

tion applied by the LoRA adapter at layer 1024

l. 1025

3. Cosine Similarity: We compute the cosine 1026

similarity between the original representation 1027

and the LoRA correction for each token. The 1028

cosine similarity is calculated as: 1029

CosineSimilarity(v1, v2) =
v1 · v2
∥v1∥∥v2∥

1030

where v1 is the original representation (Wlx) and 1031

v2 is the LoRA correction (BlAlx). 4. Averaging: 1032

We average the cosine similarities across all tokens 1033

and all 50 input samples to obtain a single average 1034

cosine similarity value for the LoRA adapter at that 1035

specific layer. 1036

B.2 Results 1037

The figure 4 display the average cosine similar- 1038

ity between the original representation and the 1039

LoRA correction for each of the top 5 LoRA 1040

adapters, across all attention layers, for Qwen2.5- 1041

0.5B, Qwen2.5-1.5B, Qwen2.5-3B and Qwen2.5- 1042

7B, respectively. 1043

B.3 Results 1044
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Table 6: Hugging Face Repository IDs for LoRA Adapters

Model LoRA Label Hugging Face Repository ID
Qwen2.5-0.5B-Instruct LoRA 1 adammandic87/c9526390-2e36-4147-ba6b-ece411ff962a
Qwen2.5-0.5B-Instruct LoRA 2 FrinzTheCoder/Qwen2.5-0.5B-Instruct-EXG
Qwen2.5-0.5B-Instruct LoRA 3 oldiday/39898853-8350-437e-ae74-c253dad112ba
Qwen2.5-0.5B-Instruct LoRA 4 abaddon182/9eabefcd-7c27-4595-9919-589400cb5f58
Qwen2.5-0.5B-Instruct LoRA 5 taronklm/trained_model
Qwen2.5-1.5B-Instruct LoRA 6 jack8885/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct LoRA 7 nannnzk/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct LoRA 8 aleegis12/2976c579-0887-4b32-8145-d035b17acd7c
Qwen2.5-1.5B-Instruct LoRA 9 dixedus/5bcbc7f3-9c67-44fb-bcb4-a70512109458
Qwen2.5-1.5B-Instruct LoRA 10 0x1202/fbda993c-273f-49fc-ac21-6ab3ebbb9d75
Qwen2.5-3B-Instruct LoRA 11 nannnzk/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 12 0xBeaverT/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 13 Superrrdamn/task-2-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 14 gvo1112/task-1-Qwen-Qwen2.5-3B-Instruct-1737588101
Qwen2.5-3B-Instruct LoRA 15 Superrrdamn/task-3-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct LoRA 16 latiao1999/task-3-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 17 gvo1112/task-1-Qwen-Qwen2.5-7B-1737240704
Qwen2.5-7B-Instruct LoRA 18 0xfaskety/task-1-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 19 lfhe/task-2-Qwen-Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct LoRA 20 sumuks/purple-wintermute-0.1-7b
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Figure 4: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct
LoRA Adapters (Continued on next page).
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Figure 5: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct
LoRA Adapters (Continued from previous page).
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B.4 Discussion1045

The figures reveal a consistent trend across all1046

model sizes and LoRA adapters: the cosine simi-1047

larity between the original representation and the1048

LoRA correction is generally very close to zero,1049

indicating near-orthogonality. This suggests that1050

the LoRA adapters are primarily learning to mod-1051

ify the model’s representations in directions that1052

are orthogonal to the original representations, even1053

when using task-relevant data. This finding is non-1054

trivial, as one might expect the LoRA correction to1055

primarily amplify or attenuate existing features in1056

the original representation for a related task. The1057

observed near-orthogonality supports the core con-1058

cept of Noise Flushing. The LoRA adapter appears1059

to be learning task-specific features within a sub-1060

space largely orthogonal to the original model’s1061

representation of the task.1062

C Appendix: Creation of Irrelevant Data1063

A crucial component of Noise Flushing is the gen-1064

eration of the irrelevant dataset, Dirr. This dataset1065

serves to guide the LoRA adapter to preserve the1066

model’s general capabilities and prevent it from1067

overfitting to noise in the scarce task data.1068

Methodology The “self-sampled” irrelevant data1069

(Dirr) is generated by leveraging the base LLM1070

that is being fine-tuned. We take a set of di-1071

verse queries, Qsource_irr, from a general-purpose1072

instruction-following dataset, such as the Alpaca1073

dataset (Taori et al., 2023). For each query qirr ∈1074

Qsource_irr, we feed it to the open-source base LLM1075

(before any fine-tuning with Dtask or Dirr begins)1076

to obtain a corresponding response yirr. The pair1077

(qirr, yirr) then forms an instance in Dirr. This pro-1078

cess ensures that Dirr reflects the model’s inherent1079

knowledge and response style on general inputs.1080

Ensuring Irrelevance To ensure that Dirr re-1081

mains genuinely irrelevant to the specific target1082

task for which Dtask is being used, several strate-1083

gies are employed:1084

1. Source of Queries: Qsource_irr is chosen from1085

a domain or task category distinct from that1086

of Dtask. For example, if Dtask is for a1087

specialized medical text summarization task,1088

Qsource_irr might consist of general knowledge1089

questions, creative writing prompts, or simple1090

conversational exchanges.1091

2. Keyword Filtering: Queries in Qsource_irr that 1092

inadvertently contain keywords highly spe- 1093

cific to the target task can be filtered out. Sim- 1094

ilarly, responses yirr can be checked. 1095

3. Instruction Differentiation: The instructions 1096

or prompts used to generate Dirr are explicitly 1097

different from those defining the target task in 1098

Dtask. The aim is for Dirr to represent a broad 1099

distribution of inputs where the task-specific 1100

fine-tuning should ideally have minimal im- 1101

pact. 1102

By constructing Dirr in this manner, we provide 1103

the model with a wide range of examples where 1104

it should maintain its existing behavior, thereby 1105

regularizing the updates made by the LoRA adapter 1106

when learning from Dtask. 1107

D Appendix: Wall-Clock Time 1108

Comparison 1109

Noise Flushing introduces computational overhead 1110

due to processing additional irrelevant data. With 1111

100x irrelevant data (where marginal benefit begins 1112

diminishing), wall-clock time for NF was 82.88x 1113

that of vanilla LoRA on an NVIDIA H20 with 1114

batch size 32. This highlights the trade-off for 1115

improved performance in data-scarce scenarios. 1116
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E Appendix: Robustness of Noise1117

Flushing1118

E.1 Robustness to Different Irrelevant Data1119

Distributions1120

To investigate NF’s robustness to the source of ir-1121

relevant data (Dirr), we tested different datasets for1122

generating Dirr on the text2sql task (Qwen1.5-7B-1123

Chat, BIRD-SQL Mini, ‘sql-create-context‘ task1124

data). Results in Table 7 suggest NF is robust, con-1125

sistently outperforming the baseline.1126

Irrelevant Data Source (Metric Type) EX (%)
Alpaca (w/ NF) - Moderate EX 7.20
Alpaca (w/ NF) - Challenging EX 2.94
Open-Platypus (w/ NF) - Moderate EX 8.40
Open-Platypus (w/ NF) - Challenging EX 4.90
COIG-CQIA (w/ NF) - Moderate EX 7.60
COIG-CQIA (w/ NF) - Challenging EX 3.92
Baseline (w/o NF) - Moderate EX 7.60
Baseline (w/o NF) - Challenging EX 0.98

Table 7: NF Performance with Varying Irrelevant Data
Sources on BIRD-SQL Mini (text2sql, Qwen1.5-7B-
Chat).

E.2 Comparison with Traditional1127

Regularization (Dropout)1128

We compared LoRA with varying dropout rates1129

against NF on the text2sql task (Qwen1.5-7B-Chat,1130

BIRD-SQL Mini, ‘sql-create-context’ task data).1131

Table 8 shows dropout had minimal impact, while1132

NF provided clearer gains, especially on challeng-1133

ing examples.1134

Method (Metric Type) EX (%)
LoRA (Dropout 0.0) (Baseline) - Moderate EX 7.60
LoRA (Dropout 0.0) (Baseline) - Challenging EX 0.98
LoRA (Dropout 0.05) - Moderate EX 8.00
LoRA (Dropout 0.05) - Challenging EX 0.98
LoRA (Dropout 0.1) - Moderate EX 7.20
LoRA (Dropout 0.1) - Challenging EX 0.98
LoRA (Dropout 0.2) - Moderate EX 7.20
LoRA (Dropout 0.2) - Challenging EX 0.98
LoRA (Dropout 0.3) - Moderate EX 7.60
LoRA (Dropout 0.3) - Challenging EX 0.98
LoRA w/ NF (No Dropout) - Moderate EX 7.20
LoRA w/ NF (No Dropout) - Challenging EX 2.94

Table 8: Comparison of NF with Dropout as Regulariza-
tion on BIRD-SQL Mini (text2sql, Qwen1.5-7B-Chat).

E.3 Effect of Irrelevant Data Quantity on 1135

Generalization Benchmarks 1136

We evaluated the impact of varying amounts of 1137

irrelevant data (Dirr from Alpaca) used in NF 1138

(Qwen1.5-7B-Chat, fine-tuned on a small, fixed 1139

task dataset) on standard benchmarks. Results (Ta- 1140

bles 9 and 10) show NF largely preserves general 1141

capabilities at moderate Dirr ratios. 1142

Irrelevant Samples (Log Scale) GSM8K Acc (%)
0 (Baseline task-only fine-tune) 28.96
51 29.34
153 29.11
510 29.34
1632 29.04
5151 28.20
16371 27.37

Table 9: GSM8K Performance vs. Irrelevant Data Quan-
tity with NF (Qwen1.5-7B-Chat).

Irrelevant Samples (Log Scale) AGIEval Avg Acc (%)
0 (Baseline task-only fine-tune) 44.57
391 45.37
1173 44.69
3128 44.81
8602 43.47
21114 43.65

Table 10: AGIEval Average Accuracy vs. Irrelevant
Data Quantity with NF (Qwen1.5-7B-Chat).

E.4 Performance on Larger Models 1143

To assess scalability, we tested NF on Qwen1.5- 1144

32B-Chat for the text2sql task (BIRD-SQL Mini, 1145

‘sql-create-context‘ task data). Table 11 shows NF 1146

continues to provide benefits. 1147

Model (Metric Type) EX (%)
Qwen1.5-7B-Chat (w/o NF) - Moderate EX 7.60
Qwen1.5-7B-Chat (w/o NF) - Challenging EX 0.98
Qwen1.5-7B-Chat (w/ NF) - Moderate EX 7.20
Qwen1.5-7B-Chat (w/ NF) - Challenging EX 2.94
Qwen1.5-32B-Chat (w/o NF) - Moderate EX 19.60
Qwen1.5-32B-Chat (w/o NF) - Challenging EX 12.75
Qwen1.5-32B-Chat (w/ NF) - Moderate EX 24.40

(+24.5%)
Qwen1.5-32B-Chat (w/ NF) - Challenging EX 16.67

(+30.7%)

Table 11: NF Performance on Qwen1.5-32B-Chat for
text2sql (BIRD-SQL Mini). Percentages in parentheses
indicate relative change compared to the 32B model
without NF.
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