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Abstract

Fine-tuning large language models (LLMs) re-
mains challenging due to the scarcity of down-
stream task data and the prevalence of noisy
supervision. In this paper, we introduce Noise
Flushing (NF), a novel paradigm that prioritizes
noise elimination over data augmentation. NF
leverages abundant irrelevant data—sampled
from the base LLM—to mitigate noise and
sharpen focus on task-relevant signals during
fine-tuning, thus enabling effective adaptation
in extremely low-resource settings. Theoret-
ically, we show that NF can match or even
surpass the performance of standard LoRA
finetuning settings, despite using substantially
fewer task-specific examples. Empirically, NF
achieves consistent and significant improve-
ments over strong fine-tuning baselines across
various tasks, including machine translation,
structured text generation, text-to-SQL, and
special token understanding—even with fewer
than 100 examples.

1 Introduction

Large Language Models (LLMs) have revolu-
tionized numerous applications, yet effectively
adapting them to specialized domains often de-
pends on fine-tuning. Instruction tuning—a widely
adopted paradigm that trains models on instruction-
response pairs (Zhao et al., 2024; Zhou et al.,
2023)—faces substantial challenges when task-
specific data is scarce. In such settings, both in-
structions and responses often embed specific facts
or biases. We argue that the presence of noise in
these sparse datasets further exacerbates the diffi-
culty of effective adaptation.

With only a handful of examples, LLMs are
prone to overfitting to noise rather than grasp-
ing the underlying task semantics. Traditional
approaches—such as data augmentation and syn-
thetic data generation (Li et al., 2023; Zhao et al.,
2024)—aim to amplify the weak task signal, but
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Figure 1: Overview of Noise Flushing, where irrelevant
data guides LoRA to learn task specific features and mit-
igate noise. (a) Initial LoRA features (from task data)
contain a mix of task features and noise. (b) Loss min-
imization on self-sampled irrelevant data forces noise
suppression. (c) Convergence results in noise suppres-
sion, retaining primarily salient task features. (d) The
low-rank bottleneck in LoRA’s structure inherently pro-
motes noise rejection while preserving task features.

often fall short when the available data is limited
and noisy. The fundamental challenge remains:
how can models learn effectively when the signal
is weak and entangled with noise?

Inspired by the intuition that effective learning
involves not just amplifying the signal but also ac-
tively mitigating noise, we introduce Noise Flush-
ing (NF), a novel framework for data-efficient
fine-tuning of LL.Ms. This approach represents
a different paradigm: instead of solely focusing on
strengthening the weak task signal in limited data,
NF prioritizes the removal of pervasive sample-
specific noise. NF uses abundant, irrelevant data
sampled from the base LLM to mitigate noise and
sharpen focus on task-relevant signals, thus en-
abling effective adaptation in limited data settings.

Specifically, our analysis and experiments reveal
that the LoRA module operates within a subspace
orthogonal to the base LLM’s foundational repre-
sentation space. However, noise in the training
data can mislead the LLM by activating undesired



directions within this foundational space. In NF,
the sampled irrelevant data serve as constraints that
encourage the LoRA module to suppress responses
to irrelevant inputs, ensuring that it becomes selec-
tively active only for task-relevant signals.

Via theoretical analysis, we show that this ap-
proach substantially reduces the amount of task-
specific data required for effective fine-tuning. Our
analysis suggests that by mixing a small number
of task-relevant examples with irrelevant data, the
model can achieve performance on par with tra-
ditional methods, while requiring up to orders of
magnitude fewer task samples.

Empirically, we demonstrate the substantial ad-
vantages of NF over strong baselines, particularly
in extremely low-data regimes. Specifically, NF
achieves significantly higher accuracy in formatted
text generation and improved BLEURT scores in
translation, while preserving robust semantic con-
sistency for special tokens—a notoriously difficult
challenge in low-resource fine-tuning.

In summary, the contributions of our work are:

 First, we reframe data-inefficient instruction tun-
ing as a noise-resistance problem, highlighting
the entanglement of task semantics and noise as
a fundamental bottleneck in low-data learning.

* Second, we propose NF, a novel method that,
both theoretically and empirically, demonstrates
the effectiveness of combining sparse task data
with abundant irrelevant data sampled from the
base LLM to enhance task learning by effectively
suppressing noise.

* Lastly, we show that NF achieves robust seman-
tic consistency for novel special tokens, over-
coming a key limitation of existing knowledge
injection techniques in LLMs.

2 Related Work

In this section, we first review existing approaches
for fine-tuning LLMs in low-data regimes, followed
by a discussion of studies that distinguish between
different types of fine-tuning data.

2.1 Fine-tuning under Data Scarcity

In low-data regimes, researchers have explored a
variety of approaches to enhance model perfor-
mance. These include data augmentation to vir-
tually expand training sets (Li et al., 2023; Zhao
et al., 2024); meta-learning methods that aim to
“learn to learn” from limited examples (Zhu et al.,

2024); iterative self-improvement strategies for re-
fining training data quality (Li et al., 2023; Zhao
et al., 2024); and the generation of synthetic data
for instruction tuning (Liu et al., 2023; Dong et al.,
2024; Mecklenburg et al., 2024). Other efforts
involve modifying training objectives (Vernikos
et al., 2020) or introducing architectural innova-
tions, such as parameter-efficient fine-tuning mod-
ules like LoORA (Wang et al., 2022; Hu et al., 2021),
and embedding-level noise injection techniques
(Jain et al., 2023), all aimed at improving general-
ization under limited supervision.

NF addresses the challenge of data scarcity from
a novel perspective—by mitigating noise and en-
hancing focus on task-relevant signals through the
use of abundant irrelevant data, which is easily ob-
tained by sampling from the base LLM.

2.2 Fine-Tuning with Data Prioritization

Certain strategies, such as Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) and dataset
pruning or distillation (Zhou et al., 2023), oper-
ate—either implicitly or explicitly—on the premise
that not all data behaviors are equally valuable.
DPO, for example, learns from pairs of preferred
and dispreferred responses by optimizing for the
former. NF aligns with this motivation, emphasiz-
ing the importance of task-relevant signals while
suppressing noise.

However, the underlying mechanism of NF is
fundamentally different. It guides the LoRA mod-
ule to suppress responses to irrelevant data, thereby
forcing it to learn features that are activated only
by task-relevant inputs. By leveraging easily gen-
erated irrelevant data, NF provides a novel and
efficient solution for extremely low-resource sce-
narios. Importantly, NF remains effective even in
the absence of curated preference pairs, as required
by DPO, or large initial datasets, as needed for
pruning-based methods.

3 Methodology

Unless otherwise specified, bold uppercase let-
ters denote matrices, and bold lowercase letters
denote vectors. We use ||-|| » to denote the Frobe-
nius norm and |[|-|| for the /5 norm.

3.1 Preliminary: Low-Rank Adaptation

In this work, we utilize Low-Rank Adaptation
(LoRA), which updates pre-trained weights W
with a low-rank matrix AW = AB, where



Algorithm 1 Noise Flushing for Data-Efficient
Fine-Tuning
Input: Pre-trained LLM, Task dataset Dy,, Irrele-
vant queries Qi
Parameter: Mixing ratio 7 (ratio of irrelevant data
to task data per training step)
Output: Finetuned LLM
1: Initialize fine-tuned model with pre-trained
LLM and LoRA
2: Dy < Sample QA pairs from LLM with Q.
3: Prepare dataset by mixing Dy,g and Dy, with
ratiol : r.
4: for each epoch do

5. for each batch in shuffled combined dataset
do

6: Train LLM with LoRA on the batch.

7: Update LoRA parameters.

8:  end for

9: end for

10: return Fine-tuned LLM

rank(AW') < rank(W'). The model response be-
comes 7(x) = Wz + BAx.

Observation 1. Approximate Orthogonality be-
tween LoRA Activations and original represen-
tation . LoRA activations tend to be approxi-
mately orthogonal to the original representations
from the pre-trained model. This suggests that
LoRA operates in a distinct update subspace that
is focused on the new task. A detailed empirical
analysis is provided in Appendix B.

3.2 Problem Statement: Task and Noise
Feature Entanglement

Instruction tuning with severely limited data suf-
fers from the entanglement of task-specific features
and sample-specific stochastic noise. We concep-
tually decompose the input feature space into an
(unknown a priori) task feature subspace F' and
a noise feature subspace G, with corresponding
(conceptual) projection operators Pr and FPg. For
any input z, we can consider its features to be rep-
resentable as a combination of components from
these subspaces.

The ideal update AW™ learned from Dy,
should primarily reside in the task feature subspace
F', meaning its projection onto the noise subspace
G, i.e., PAW™, should be approximately zero.
However, with limited task data, standard fine-
tuning struggles to achieve this disentanglement

because the subspaces F' and G are not explicitly
known or engineered. Our method, NF, works im-
plicitly: the mixed-data training process guides the
LoRA update to primarily capture components in
F and ignore or suppress components in G, rather
than requiring explicit knowledge or construction
of these subspaces.

3.3 Noise Flushing Method

NF utilizes self-sampled irrelevant data D, along-
side scarce task-specific data Dy, to guide LoORA
updates. The complete procedure is presented in
Algorithm 1. As shown, the training process fol-
lows a standard supervised learning paradigm over
mixed batches drawn from both Dy, and Djy,.

Explanation. NF operates on the assump-
tion that the task dataset D comprises both
task-relevant signals—i.e., features residing in a
task-specific subspace F'—and noise, i.e., features
within a noise subspace G, which may stem from
spurious correlations common in low-data regimes.
In contrast, the irrelevant dataset D, consists of
general inputs for which the task-specific signal
components Prx are negligible, i.e., Ppx ~ 0
for all z € Dj;. From an optimization perspec-
tive, the key distinction between NF and standard
LoRA lies in how the LoRA adapter AW learns
from irrelevant data Dj,. For an input x € Djy,
the target output y is generated by the base LLM
itself, i.e., y = Wax. Minimizing the supervised
loss L((W + AW )z, y) on such examples implic-
itly encourages the LoRA-induced change to be
negligible, i.e., AWz ~ 0.

Specifically, the suppression of AW x on irrel-
evant data x € D;,., encourages consistency with
the model’s pre-trained knowledge and behavior on
general inputs. In low-data scenarios—where AW
might otherwise overfit to noise in Dy, by learn-
ing a spurious component AWg—this consistency
constraint acts as a regularizer, suppressing unde-
sirable updates. As a result, the limited capacity of
the LoRA adapter is guided to focus on learning
genuine task-relevant features AWp from Dyyg.
By mixing Dy, with irrelevant data Dj., NF ef-
fectively steers LoRA towards selective adaptation:
amplifying task-specific signals while mitigating
the impact of noise. Details on the construction
of Dy can be found in Appendix C. The practical
effectiveness of this mechanism is supported by
our empirical results.



3.4 Theoretical Analysis of Data Efficiency
with Noise Flushing

Building on the intuitive understanding of NF’s
mechanism, we now provide a theoretical analysis
of its potential to reduce the need for task-specific
training data. Given the complexity of LLMs,
this formalization necessarily relies on strong sim-
plifying assumptions. Key assumptions include
bounded inputs ||z|| < R, bounded representation
output [|[AW™*(z)|| < D for task data, bounded
LoRA updates | AW ||r < C, where R, D, C are
fixed constants, and the conceptual existence of or-
thogonal task feature subspace F' and noise feature
subspace (5. Details are provided in Appendix A.

Before presenting our sample complexity
analysis, we first introduce two types of er-
rors—commonly referred to as risks in the frame-
work of Probably Approximately Correct (PAC)
learning, i.e., the empirical risk and the true risk,
defined as follows:

* Empirical risk Renp(f) is the average error of a
model f evaluated on the training dataset Diy.

* True risk R(f) is the expected error of the
model over the entire data distribution, reflecting
its generalization performance.

In PAC learning, the empirical risk serves as
an approximation of the true risk, with the quality
of this approximation improving as the number of
training samples increases.

Theorem 1. Task-Only Sample Complexity:
when performing standard LoRA fine-tuning using
only task data Dy, to guarantee that the empirical
risk sk deviates from the true risk with a proba-
bility of at least 1 — &, the required number of task
samples n,gk is given by:

1
Ntask = O <2> (D
€task

This indicates that the required number of task sam-
ples is inversely proportional to the square of the
target precision.

Theorem 2. Mixed-Data Sample Complexity
with NF consists of two parts:

1. Noise Suppression: By introducing n irrel-
evant samples, the component of the LoRA ac-
tivation AW x residing in the noise subspace
G, denoted || PoAW x|, can be effectively
suppressed. To achieve a noise suppression

accuracy of € with probability 1 — §, the
number of irrelevant samples nj; required is:

Nipr = O <10g(d2_k)> ()

Eirr

where d and k denote the intrinsic dimension
of the AW x and F, respectively, thus d — k is
the effective dimension of the noise subspace
G. €q is the initial optimization error for the
task.

2. Task Sample Complexity: Here ¢y denotes
initial error. After the noise components are
suppressed, the number of task samples 7k
required to achieve the final target task error

€task 1S:

Ntask = O <10g(60/26m§k)) (3)

Q- €pok

where « is a factor related to the convergence
rate of the optimization process on the task
loss.

3.5 Discussion

Theorem 2 suggests that introducing a sufficient
number of irrelevant samples n;. effectively sup-
presses noise, thereby reducing the initial opti-
mization error €y for the task loss. As a result,
the number of task-specific samples n,g required
to achieve a target task precision eyg is also re-
duced. Despite relying on simplifying assump-
tions, this formal analysis supports our earlier in-
tuition and optimization-based explanation in Sec-
tion 3.3—that NF facilitates more efficient extrac-
tion of task-relevant signals from a small set of
examples.

4 Experiment

This section empirically validates the Noise Flush-
ing method. We aim to demonstrate: (1) Noise
Flushing significantly enhances data efficiency in
practical tasks, achieving strong performance with
limited task-specific data; (2) Noise Flushing im-
proves the model’s internal representations by sup-
pressing noise features, leading to more robust task
feature learning, thus explaining why Noise Flush-
ing works; (3) The gains of Noise Flushing origi-
nate from the noise-suppression effect of irrelevant
data, not merely from data augmentation.



4.1 Practical Task Performance

This section evaluates Noise Flushing’s effective-
ness in enhancing data efficiency on practical tasks:
formatted text generation, translation, and text-to-
SQL generation. We aim to show that Noise Flush-
ing achieves strong performance even with limited
task-specific data.

4.1.1 Experiment Setup
Models and Datasets:

¢ Formatted Text Generation Task: Llama
2-7B-Chat (Touvron et al., 2023) on the
Zeng et al. (2024) open-source formatted text
dataset.

¢ English-Icelandic = Translation Task:
Gemma-7B-it (Team et al., 2024) on the
WMT-21 (Akhbardeh et al., 2021) dataset for
English-Icelandic translation (Garcia et al.,
2023).

¢ Text-to-SQL Generation Task: Qwenl.5-
7B-Chat (Team, 2024) on the BIRD-SQL
Mini dataset (Li et al., 2024). We use the
‘sql-create-context’ (b mc2, 2023) subset for
scarce task data and also evaluate NF’s syn-
ergy with ‘synthetic_text_sql’ (Meyer et al.,
2024) data.

Baselines: We compare Noise Flushing against
the following baselines: (1) Original model: The
pre-trained LLM without any fine-tuning. (2)
Vanilla LoRA Finetuning: Directly fine-tune on
the downstream task training data using LoRA.
This baseline represents standard instruction tun-
ing in a low-data regime. (3) Controlled Text
Generation(Dekoninck et al., 2023): Controls text
generation features by manipulating logits. This
baseline represents an alternative approach to guide
model behavior (for formatted text generation).
(4) DIiPMT(Ghazvininejad et al., 2023): Provides
translation examples and a dictionary to guide trans-
lation via in-context learning. This baseline rep-
resents a strong in-context learning approach for
translation. (5) For Text-to-SQL, we also compare
NF with advanced LoRA variants: DoRA (Liu
et al., 2024) and AdaLLoRA (Zhang et al., 2023),
both with and without NF.

Implementation Details: All experiments use
LoRA (or its variants) with the following base hy-
perparameters for 1 epoch: Rank 16, Learning rate
2e-4, Batch size 64 (reduced to 16 for data scales <
256).

4.1.2 Tasks and Evaluation Metrics

Formatted Text Generation: Using Llama 2-7B-
Chat and the dataset proposed by Zeng et al. (2024),
the task is to generate JSON-formatted output. We
use accuracy as the metric, measuring the correct-
ness of JSON formatting in the generated output.

Translation: Using Gemma-7B-it and the
WMT-21 dataset, we evaluate English-Icelandic
and Icelandic-English translation. We use the
BLEURT score as the evaluation metric, as recom-
mended by Garcia et al. (2023).

Text-to-SQL Generation: Using Qwenl1.5-7B-
Chat on BIRD-SQL Mini, the task is to generate
SQL queries from natural language questions. We
report Execution Accuracy (EX %) on the ‘Mod-
erate’ and ‘Challenging’ subsets of BIRD-SQL
Mini. To simulate low data resource scenarios,
we select the first 100 samples.

4.1.3 Results and Analysis

We selected these tasks for the following reasons:
1) LLMs suboptimally possess some problem-
solving capability for these tasks. If an LLM com-
pletely lacked this capability, it wouldn’t be ap-
propriate to address the issue within a few-shot
learning context. 2) To simulate real-world sce-
narios where training data is limited, such as in
English-Icelandic news translation (WMT-21) or
specialized Text-to-SQL applications.

Noise Flushing significantly boosts performance
in formatted text generation (Table 1), translation
(Table 2), and Text-to-SQL tasks (Table 3), espe-
cially under limited data conditions. In formatted
text generation, NF achieves near-perfect accuracy
(96.0% with 100 samples), dramatically surpass-
ing vanilla LoRA (59.9%). For translation, NF
shows substantial BLEURT gains (17-33%) com-
pared to vanilla fine-tuning. In Text-to-SQL, NF no-
tably improves performance on challenging exam-
ples (+200% when combined with Vanilla LoRA)
and synergizes with LoRA variants like DoRA and
AdalLoRA, as well as synthetic data. These results
highlight NF’s broad utility in mitigating noise and
enhancing performance, particularly in difficult,
low-signal conditions.

The findings underscore Noise Flushing’s data
efficiency in practical tasks through noise suppres-
sion and leveraging limited examples. Additional
experiments are detailed in the Appendix.



Method 30 samples 65 samples 85 samples 100 samples
Original model 34.8%

Vanilla LoRA Finetuning 38.8% 48.8% 53.2% 59.9%
Controlled text generation 44.3%

Noise Flushing 38.6% 84.6 % 86.9% 96.0%

Table 1: Accuracy of formatted text generation: Noise Flushing achieves significantly higher accuracy with limited

task data, demonstrating strong data efficiency.

Method English-Icelandic Icelandic-English
Score  Improvement Score Improvement
Original model 0.3556 - 0.3650 -
Vanilla LoRA Finetuning 0.3628 2.02% 0.3898 6.79%
DiPMT 0.4233 19.03% 0.3420 -6.30%
Noise Flushing 0.4744 33.41% 0.4273 17.07 %

Table 2: Bleurt score of English-Icelandic and Icelandic-English translation: Noise Flushing significantly outper-

forms baselines, especially in the low-resource Icelandic-English direction.

Base Method Moderate EX (%) Challenging EX (%)
(vs. w/o NF) (vs. w/o NF)

Task Data: sql-create-context (Qwenl.5-7B-Chat)

Vanilla LoRA w/o NF 7.60 0.98

Vanilla LoRA w/ NF 7.20 (-5.3%) 2.94 (+200.0%)

DoRA w/o NF 6.80 1.96

DoRA w/ NF 7.20 (+5.9%) 2.94 (+50.0%)

AdalLoRA w/o NF 6.00 1.96

AdalLoRA w/ NF 6.80 (+13.3%) 4.90 (+150.0%)
Task Data: synthetic_text_sql (Qwenl.5-7B-Chat)

Synthetic Data w/o NF 6.40 3.92

Synthetic Data w/ NF 7.60 (+18.8%) 3.92 (+0.0%)

Table 3: Performance of Noise Flushing (NF) on the BIRD-SQL Mini (text2sql) task with Qwen1.5-7B-Chat,
showing synergy with advanced LoRA variants and synthetic task data. Percentages in parentheses indicate relative
change compared to the corresponding method without NF.

4.2 Ablation Study

This section investigates the source of Noise Flush-
ing’s gains, aiming to confirm that the performance
improvement stems from the synergistic effect of
task data and irrelevant data for noise suppression,
and not simply from one of them.

4.2.1 Experiment Setup

Model and Dataset: Llama 2-7B-Chat on the for-
matted text dataset and proposed by Zeng et al.
(2024).

Ablation Conditions: We compare Noise Flush-
ing (w/ all components) to ablations removing: (1)
irrelevant data (Vanilla LoRA instruction tuning);
(2) task data; (3) both task and irrelevant data (Orig-
inal model).

Evaluation Metrics: We use the same metrics

as in the Section 4.1: accuracy for formatted text
generation, and BLEURT score for translation. Ad-
ditionally, we include the mid-layer concept L2
norm from the Intermediate Representation Analy-
sis (Section 4.3) to show how different data influ-
ence the features the model learns ultimately.

4.2.2 Results and Analysis

Table 4’s ablation study shows removing either task
or irrelevant data severely degrades performance
(e.g., formatted text accuracy from 96.0% to 59.9%
without irrelevant, 7.4% without task data). This
confirms Noise Flushing’s effectiveness stems from
the synergistic interaction of both data types for
noise suppression and feature learning, not just
augmentation.

Figure 2 supports this, showing more irrele-



Method w/o irrelevant data w/o task data w/oall  w/all
Mid-layer concept L2 norm (avg) 342.7 200.2 388.1 15.0
Formatted text generation 59.9% 7.4% 348% 96.0%
English-Icelandic translation 0.3556 0.3735 0.3556  0.4273
Icelandic-English translation 0.3650 0.3965 0.3650 0.4744

Table 4: Ablation Study: Impact of removing irrelevant data or task data. Results show that both components are
crucial for Noise Flushing’s effectiveness, indicating a synergistic noise suppression mechanism.
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Figure 2: Overall loss on downstream tasks with vary-
ing amounts of irrelevant data. The decreasing trend
as irrelevant data increases further supports the noise
suppression hypothesis.

vant data improves performance by reducing down-
stream task loss, reinforcing NF’s core mechanism.

4.3 Intermediate Representation Analysis:
Validating Task Feature Learning via
Noise Suppression

This section provides insights into why Noise
Flushing works by examining its impact on the
model’s internal representations. We hypothesize
that Noise Flushing enables the model to learn
more robust task features by suppressing noise,
even for novel tokens.

4.3.1 Experiment Setup

Model and Dataset: Llama 2-7B-Chat on the for-
matted text dataset, with task data limited to under
100 samples.

Task: Generate JSON-formatted text with a
“thought” key, using a new special token <sep>
as a format instruction, without explicit definition
of <sep>’s meaning.

Methods Compared: We compare Noise Flush-
ing to baselines that represent different approaches
to token embedding initialization and knowledge
injection: Random Init, Mean Embedding (Welch

et al., 2020), Vanilla LoRA Finetuning, DMT
(Dong et al., 2024), and Fact-based (Mecklenburg
et al., 2024).

Evaluation Metric: We measure the L2 norm
between the embedding of the special token
<sep> and the embeddings of keywords (“thought”,
“json”) related to its intended semantic meaning
(formatted text generation). Lower L2 norms indi-
cate better semantic alignment and more effective
task feature learning.

4.3.2 Results and Analysis

Figures 3 and Table 5 show that Noise Flushing
excels at learning semantic representations for the
new token <sep>. It achieves significantly lower
L2 norms to “json” and “thought” across all trans-
former blocks compared to baselines. For instance,
in the final block, Noise Flushing’s L2 norm to
“json” is 46.1, far surpassing the next best baseline
(Fact-based at 100.5) and Vanilla LoRA Finetun-
ing (182.3). This demonstrates Noise Flushing’s
unique effectiveness in aligning <sep>’s internal
representation with its intended meaning for for-
matted text generation. This strong semantic align-
ment, even with limited data, supports the idea that
Noise Flushing enables robust task feature learn-
ing by suppressing noise and focusing the model
on underlying task semantics, including for new
tokens.

Furthermore, we demonstrate <sep>’s emergent
functionality as a plug-and-play “soft prompt” after
Noise Flushing:

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
follow the <sep> format.
Response {‘thought’: ‘The user is asking
about the color of apples.”, ‘hallucination’:
‘No hallucination found’}
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Figure 3: L2 Norm between <sep> embedding and keywords “json” and “thought” across transformer blocks.
Noise Flushing consistently achieves the lowest L2 norms, indicating superior semantic alignment and task feature

learning for the special token.

Method First Block Middle Block Last Block
“json”  “thought” “json” “thought” “json” “thought”

Random Init 382.5 382.3 388.0 388.1 203.5 202.1
Mean Embedding 328.1 3279 333.8 3339 188.2 186.9
Vanilla LoRA Finetuning  336.3 3375 341.9 3434 182.3 183.0
DMT 271.1 265.3 277.6 272.0 168.3 168.1
Fact Based 94.5 94.2 102.4 101.9 100.5 103.1
Noise Flushing 3.2 6.2 15.6 144 46.1 47.7

Table 5: L2 norms of <sep> to keywords in different transformer blocks: Noise Flushing significantly reduces L2
norms compared to baselines, demonstrating superior semantic alignment of the special token.

Query Q: what is the color of apple. A: apple
is purple. Check context for hallucinations,
DO NOT follow the <sep> format.
Response There is no hallucination in the
given response. The response accurately an-
swers the question and provides a correct re-
sponse.

These examples demonstrate that the <sep> to-
ken, learned through Noise Flushing, functions as
a semantic unit that the LLM can interpret and
act upon in conjunction with natural language in-
structions. This emergent soft-prompt capability
further highlights Noise Flushing’s effectiveness in
extracting task-specific features and encoding them
into meaningful representations, even for novel vo-
cabulary items, by effectively suppressing noise in
low-data regimes.

5 Conclusion

This paper introduces Noise Flushing (NF), a novel
LLM fine-tuning method prioritizing noise removal
in low-data settings. NF uses abundant, self-
sampled irrelevant data during LoRA fine-tuning to
suppress noise and focus on task-relevant features.
Both theoretically and empirically, NF shows sig-
nificant performance gains with drastically fewer
task samples in areas like translation and text-to-
SQL, even improving new special token under-
standing. NF reframes data-efficient tuning as
noise disentanglement, enabling LLMs to learn
effectively in sparse data environments.



Limitations

Our research demonstrates that leveraging irrele-
vant data through Noise Flushing offers a promis-
ing data-efficient approach to instruction tuning,
especially in low-resource scenarios. By reframing
the challenge as noise disentanglement, we move
beyond traditional signal accumulation paradigms.
However, limitations and open questions remain:

5.1 Quality and Quantity of Irrelevant Data

Our theoretical analysis assumes the availability of
“sufficient” irrelevant data to effectively flush out
noise features. However, the practical implications
of “sufficient” quantity and the potential impact
of irrelevant data quality require further investiga-
tion. The nature of irrelevant data (e.g., domain
similarity, data distribution) might influence the
effectiveness of noise flushing. Future direction:
Systematically study the impact of irrelevant data
characteristics (quantity, quality, domain relevance)
on noise flushing and task performance.

5.2 Role of LoRA and Low-Rank Constraints

LoRA’s low-rank constraint is crucial in our Noise
Flushing framework, preventing overfitting to noise
from irrelevant data. It remains an open question
whether other parameter-efficient fine-tuning meth-
ods or even full-parameter fine-tuning can similarly
benefit from irrelevant data for noise suppression.
Future direction: Explore the applicability of Noise
Flushing with different fine-tuning techniques and
investigate the optimal rank selection for LoRA in
noise-flushing scenarios.

5.3 Theoretical and Practical Gaps

While our PAC-Learning theory provides guaran-
tees for Noise Flushing, there might be gaps be-
tween theoretical assumptions and practical im-
plementations. For instance, the assumption of
orthogonal task and noise subspaces is a simplifi-
cation. Real-world data and model representations
are more complex. Future direction: Further refine
the theoretical framework to account for more real-
istic data and model complexities. Investigate the
empirical conditions under which Noise Flushing is
most effective and identify potential failure cases.

5.4 Experimental Scale and Generalization

Our experiments, while promising, were conducted
on relatively small LLMs and a limited set of tasks.
Validating Noise Flushing on larger models and

more diverse tasks is crucial to assess its broader
applicability and scalability. Future direction: Ex-
pand the experimental evaluation to larger LLMs,
more diverse tasks, and real-world applications to
comprehensively validate the effectiveness and gen-
eralization of Noise Flushing.

5.5 Computational Cost of Irrelevant Data

While Noise Flushing bridges the gap from “im-
possible” to “possible” in low-resource settings,
it introduces a trade-off: increased computational
cost. The inclusion of a large volume of irrele-
vant data leads to longer training times and higher
computational resource requirements. Although
the trade-off between increased computational cost
and improved performance in data-scarce scenarios
is often acceptable, future research should explore
more efficient training strategy that mitigate this
burden. Future direction: Develop techniques to
reduce the computational overhead of Noise Flush-
ing, such as intelligent sampling of irrelevant data,
efficient mixing strategies, or adaptive scaling of
the irrelevant data ratio during training.
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A Appendix: Proofs of Theorems

In this appendix we present complete proofs of
Theorems 1 and 2, including the supplementary ar-
gument showing that once the number of irrelevant
samples ni,, meets the requirement of Theorem 2,
the noise components are effectively suppressed so
that fewer task samples is needed for final correc-
tion.

Here we use the norm minimization of the dif-
ference between the activation generated by LoRA
and the ideal activation to represent the training
objective. This is for the convenience of demonstra-
tion, because we are not concerned about the im-
pact of other components of LLM, such as Im_head,
on this training dynamic. Only caring about the
difference in representation provides a microscopic
perspective for analysis

We make the following assumptions throughout:

1. Bounded Inputs: For both task data and ir-
relevant data, we assume

2]l <R and '] < R
Here, R represents the bound on the norm of
input features.

Bounded Target: For task data, the target
satisfies

[A(z)[ < D

Here, D represents the bound on the norm of
the target function for task data. Specifically,
A(x) is AW*(x) in main paper, we use it for
convenience.

. Bounded Model Parameters: We consider
a low-rank update represented as M = AB,
with

[M|Fr<C

Here, C represents the bound on the Frobe-
nius norm of the model parameters (specifi-
cally, the low-rank update matrix M, which
is AW in main paper. We use it to convey the
idea that LoRA activation values provide a cor-
rection to the representation produced by the
original weights, and this correction, as our
experiments show, has independent underly-
ing meaning and does not lose its significance
when detached from W; therefore, we use a
new letter).
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4. Task and Noise Subspaces: Let F' de-
note the task feature subspace and G denote
the noise (irrelevant) subspace. In G, let
{91, .., 94—k} be an orthonormal basis.

A.1 Proof of Theorem 1: Task-Only Sample
Complexity

We aim to show that with

1

2
€task

Ntask = O(

)

task samples, the empirical risk

Task
L k(M Mux; 2
(M) = - Z M — Az
satisfies
‘ztask(M) - Ltask<M)‘ < €rask

for all M with || M||r < C, with high probability.

Step 1. Bounded Loss.
loss function is given by

For each sample z, the

(M, z) = | Mz — A=)]*

Using the triangle inequality and the boundedness
of M and A(z), we have

Mz — A(x)|| < [Mz]| + [|A(2)]| < CR+ D

so that the loss is bounded by
= (CR+ D)?
Step 2. Rademacher Complexity Bound. Let

F={fu:a~ Mz - A@)|? | |M|Fr < C}
Bartlett and Mendelson (2003) yield that with prob-
ability at least 1 — 9, for all f € F,

Niask

foz

where R, (F) denotes the empirical Rademacher
complexity of F.

Since the mapping = — Mz is linear, and the
squared loss is Lipschitz (on the bounded range),
by Talagrand’s contraction lemma we can relate
R (F) to that of the linear class

1

ntask

E[f(z

< 27?'n[ask (‘F) B

H={hy:z Mz | |M|F<C

log(2/9)

2Nyask



A standard bound is

CR
Rnlas H S
¢ ( ) \/ Ttask
so that OR
7g'ntask (‘F) S L-

y/ Ttask

for some constant L depending on the Lipschitz
constant (which in turn depends on CR + D).

Step 3. Sample Complexity. Thus, the general-
ization error is bounded by

Task

_ 2LCR log(2/9)
i +B
fIW nldsk Z fNI m - 4/ Mtask 2ntask

To ensure that the right-hand side is at most e,
it suffices to choose

Ntask = O (%)

€task

This completes the proof of Theorem 1.

A.2  Proof of Theorem 2: Mixed-Data Sample
Complexity and Convergence

In the mixed-data setting, the loss function is de-
fined as

Mtask

> IMzi-A

ntmqk —1
i=1

(@)l +>\72 [ M|

The first term represents the task loss, while the
second term, using irrelevant samples, acts as a
regularizer that suppresses the response of M in
the noise subspace G.

Part 1. Noise Suppression in the Noise Subspace
G. For each noise direction g; € G, consider the
function

farg(x) = (97 Mx)?

Define the function class

gi={z— (g;‘-FMac)2

Since ||g;|| = 1 and ||z|| < R, we have

HIMl[e < C}

(9] Mz)* < ||Mz|* < C*R?

An analysis analogous to that for the task loss (us-
ing Talagrand’s contraction lemma) shows that

Rnirr (g]) S LI ’

for some constant L.
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Then, by a standard Rademacher generalization
bound, for each fixed g; and for any ¢’ > 0, with
probability at least 1 — ¢,

R log(2/6'
D) ~55(0)| < 2R, (G422 B
where
and _
R 1 nll‘l‘
(M) = — > (gF Map?

Taking a union bound over the d—k noise directions
by setting 6’ = 6/(d — k), we require that

T \/log (24~ k)/9) _

2L'CR
VMirr
Thus, it suffices to choose

log(d — k)
2

irr

> €irr
2Ny

Niry = O( >

so that the noise energy in each noise direction is
estimated within €;,,. With the appropriate choice
of the regularization parameter A, the minimization
of L(M) will force the model to have

€

[P M| < O(éirr)

where Pg is the projection onto the noise subspace
G.

Part 2. Task Sample Complexity with Initial
Error. Assume we start with an initial model M,
such that || My — M*||r = €p. We aim to achieve
|| M — M*||p < €k through iterative optimization.
After k iterations, the error is approximately || M —
M*||r < €o(1 — a)*. To reach e, we require:

50(1 - a)k < €rask

Solving for k, and using the approximation
log(1 — a) & —a for small a, we get:

log(e()/etask)
(6%

E> log(ftask/fo) ~

~ log(l — )
Assuming the sample complexity per iteration is

O(1/€2), the total task sample complexity is:

)

log(EO/ftask)

2
Q- Eagk

1
2

%) ol

task

Niask = O (k :



This shows that a smaller initial error € (closer
to €sk) reduces the sample complexity through
the logarithmic factor, while the O(1/€2, ) depen-
dence on the target precision remains.

While the fundamental order of complexity with
respect to €g,sx does not change, a good initial esti-
mate (small €p) significantly reduces the *absolute*
number of task samples required. This is because
the logarithmic term, log(€p/€sk ), becomes small
when ¢ is close to €gsk. In practical terms, after
effective noise suppression using irrelevant data,
the initial estimate My is already close to the op-
timal solution. Therefore, the remaining task data
is primarily used for fine-tuning, and the required
amount can be substantially less than what would
be needed without the initial estimate.
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B Appendix: LoRA Orthogonality
Analysis: Detailed Methodology and
Results

This appendix provides a detailed description of the
methodology and results for the analysis of LoORA
adapter orthogonality, as mentioned in the main
paper. We investigate the cosine similarity between
the corrections applied by LoRA adapters and the
original representations of the backbone LLMs.

B.1 Experimental Setup

B.1.1 Models and Adapters

We analyze the top 5 most downloaded LoRA
adapters (as of February 15, 2025) on Hugging
Face for each of the following Qwen2.5 family
models:

* Qwen2.5-0.5B-Instruct
* Qwen2.5-1.5B-Instruct
¢ Qwen2.5-3B-Instruct

* Qwen2.5-7B-Instruct

The specific LoRA adapters analyzed, along
with their corresponding Hugging Face repository
IDs, are listed below. We use a shorthand notation
"LoRA 1," "LoRA 2," etc., to refer to the adapters
within each model size category. The full list of
LoRA adapters analyzed is provided in Table 6.

The use herein is in accordance with the open
source licensing method.

B.1.2 Data Selection

For each LoRA adapter, we selected 50 input data
samples to evaluate the cosine similarity. The data
selection strategy varied based on the available in-
formation about the LoRA adapter:

o Explicit Training Dataset: If the LoRA
adapter’s Hugging Face repository explicitly
specified the training dataset, we used the first
50 samples from that dataset.

» Similar Task Data: If the training dataset
was not specified, but the task was identifi-
able (e.g., from the adapter’s name or descrip-
tion), we selected 50 samples from a dataset
designed for a similar task.

* Alpaca Dataset (Default): If neither the train-
ing dataset nor the task could be determined,
we used the first 50 samples from the Al-
paca dataset (Taori et al., 2023) as a general-
purpose instruction-following dataset.
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B.1.3 Cosine Similarity Calculation

We focus on the attention (attn) blocks of the LLMs.
For each LoRA adapter and each attention block,
we perform the following steps:

1. Forward Pass: We pass the 50 selected input
samples through the model with the LoRA
adapter enabled.

Extract Representations: For each input
sample and each token within that sample,
we extract two vectors at a given layer [:

(a) Original Representation: Wz, the out-
put of the original weight matrix W at
layer (.

(b) LoRA Correction: B;A;x, the correc-
tion applied by the LoRA adapter at layer
l.

. Cosine Similarity: We compute the cosine
similarity between the original representation
and the LoRA correction for each token. The
cosine similarity is calculated as:

CosineSimilarity (vq, va) = b2
[[oa][flvll

where v is the original representation (W;x) and
v9 is the LORA correction (B;A;z). 4. Averaging:
We average the cosine similarities across all tokens
and all 50 input samples to obtain a single average
cosine similarity value for the LoRA adapter at that
specific layer.

B.2 Results

The figure 4 display the average cosine similar-
ity between the original representation and the
LoRA correction for each of the top 5 LoRA
adapters, across all attention layers, for Qwen?2.5-
0.5B, Qwen2.5-1.5B, Qwen2.5-3B and Qwen2.5-
7B, respectively.

B.3 Results



Table 6: Hugging Face Repository IDs for LoORA Adapters

Model LoRA Label | Hugging Face Repository ID

Qwen2.5-0.5B-Instruct | LoRA 1 adammandic87/c9526390-2e36-4147-babb-ece411{f962a
Qwen2.5-0.5B-Instruct | LoRA 2 FrinzZTheCoder/Qwen2.5-0.5B-Instruct-EXG
Qwen2.5-0.5B-Instruct | LoRA 3 oldiday/39898853-8350-437e-ae74-c253dad112ba
Qwen2.5-0.5B-Instruct | LoRA 4 abaddon182/9eabefcd-7¢27-4595-9919-589400cb5f58
Qwen2.5-0.5B-Instruct | LoRA 5 taronklm/trained_model

Qwen2.5-1.5B-Instruct | LoRA 6 jack8885/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct | LoRA 7 nannnzk/task-1-Qwen-Qwen2.5-1.5B-Instruct
Qwen2.5-1.5B-Instruct | LoRA 8 aleegis12/2976¢579-0887-4b32-8145-d035b17acd7c
Qwen2.5-1.5B-Instruct | LoRA 9 dixedus/5bcbce7f3-9¢67-44fb-bcb4-a70512109458
Qwen2.5-1.5B-Instruct | LoRA 10 0x1202/fbda993c-273f-49fc-ac21-6ab3ebbb9d75
Qwen2.5-3B-Instruct LoRA 11 nannnzk/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 12 OxBeaverT/task-1-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 13 Superrrdamn/task-2-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-3B-Instruct LoRA 14 gvol112/task-1-Qwen-Qwen2.5-3B-Instruct-1737588101
Qwen2.5-3B-Instruct LoRA 15 Superrrdamn/task-3-Qwen-Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct LoRA 16 latiao1999/task-3-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 17 gvol112/task-1-Qwen-Qwen2.5-7B-1737240704
Qwen2.5-7B-Instruct LoRA 18 Oxfaskety/task-1-Qwen-Qwen2.5-7B
Qwen2.5-7B-Instruct LoRA 19 Ifhe/task-2-Qwen-Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct LoRA 20 sumuks/purple-wintermute-0.1-7b
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Figure 4: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct

LoRA Adapters (Continued on next page).
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Figure 5: Cosine Similarity between Original Representation and LoRA Correction for Different Qwen2.5-Instruct

LoRA Adapters (Continued from previous page).
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B.4 Discussion

The figures reveal a consistent trend across all
model sizes and LoRA adapters: the cosine simi-
larity between the original representation and the
LoRA correction is generally very close to zero,
indicating near-orthogonality. This suggests that
the LoRA adapters are primarily learning to mod-
ify the model’s representations in directions that
are orthogonal to the original representations, even
when using task-relevant data. This finding is non-
trivial, as one might expect the LoRA correction to
primarily amplify or attenuate existing features in
the original representation for a related task. The
observed near-orthogonality supports the core con-
cept of Noise Flushing. The LoRA adapter appears
to be learning task-specific features within a sub-
space largely orthogonal to the original model’s
representation of the task.

C Appendix: Creation of Irrelevant Data

A crucial component of Noise Flushing is the gen-
eration of the irrelevant dataset, D;,. This dataset
serves to guide the LoRA adapter to preserve the
model’s general capabilities and prevent it from
overfitting to noise in the scarce task data.

Methodology The “self-sampled” irrelevant data
(Dyy) is generated by leveraging the base LLM
that is being fine-tuned. We take a set of di-
verse queries, Qsource irr, from a general-purpose
instruction-following dataset, such as the Alpaca
dataset (Taori et al., 2023). For each query giy €
Qsource_irr» We feed it to the open-source base LLM
(before any fine-tuning with Dy,g or Dj, begins)
to obtain a corresponding response yi,. The pair
(irr, Yirr) then forms an instance in Dj,. This pro-
cess ensures that D;,, reflects the model’s inherent
knowledge and response style on general inputs.

Ensuring Irrelevance To ensure that Dj, re-
mains genuinely irrelevant to the specific target
task for which Dy, is being used, several strate-
gies are employed:

1. Source of Queries: Qsoyrce irr 1S chosen from
a domain or task category distinct from that
of Dysk. For example, if Dy is for a
specialized medical text summarization task,
Qsource_irr Might consist of general knowledge
questions, creative writing prompts, or simple
conversational exchanges.
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2. Keyword Filtering: Queries in Qsoyrce_irr that
inadvertently contain keywords highly spe-
cific to the target task can be filtered out. Sim-
ilarly, responses v, can be checked.

. Instruction Differentiation: The instructions
or prompts used to generate D;, are explicitly
different from those defining the target task in
Dyask. The aim is for Dj, to represent a broad
distribution of inputs where the task-specific
fine-tuning should ideally have minimal im-
pact.

By constructing Dj in this manner, we provide
the model with a wide range of examples where
it should maintain its existing behavior, thereby
regularizing the updates made by the LoRA adapter
when learning from Dyyg.

D Appendix: Wall-Clock Time
Comparison

Noise Flushing introduces computational overhead
due to processing additional irrelevant data. With
100x irrelevant data (where marginal benefit begins
diminishing), wall-clock time for NF was 82.88x
that of vanilla LoRA on an NVIDIA H20 with
batch size 32. This highlights the trade-off for
improved performance in data-scarce scenarios.



E Appendix: Robustness of Noise
Flushing

E.1 Robustness to Different Irrelevant Data
Distributions

To investigate NF’s robustness to the source of ir-
relevant data (D), we tested different datasets for
generating Dj; on the text2sql task (Qwen1.5-7B-
Chat, BIRD-SQL Mini, ‘sql-create-context® task
data). Results in Table 7 suggest NF is robust, con-
sistently outperforming the baseline.

Irrelevant Data Source (Metric Type) EX (%)
Alpaca (w/ NF) - Moderate EX 7.20
Alpaca (w/ NF) - Challenging EX 2.94
Open-Platypus (w/ NF) - Moderate EX 8.40
Open-Platypus (w/ NF) - Challenging EX 4.90
COIG-CQIA (w/ NF) - Moderate EX 7.60
COIG-CQIA (w/ NF) - Challenging EX 3.92
Baseline (w/o NF) - Moderate EX 7.60
Baseline (w/o NF) - Challenging EX 0.98

Table 7: NF Performance with Varying Irrelevant Data
Sources on BIRD-SQL Mini (text2sql, Qwenl1.5-7B-
Chat).

E.2 Comparison with Traditional
Regularization (Dropout)

We compared LoRA with varying dropout rates
against NF on the text2sql task (Qwen1.5-7B-Chat,
BIRD-SQL Mini, ‘sql-create-context’ task data).
Table 8 shows dropout had minimal impact, while
NF provided clearer gains, especially on challeng-
ing examples.

Method (Metric Type) EX (%)
LoRA (Dropout 0.0) (Baseline) - Moderate EX 7.60
LoRA (Dropout 0.0) (Baseline) - Challenging EX 0.98
LoRA (Dropout 0.05) - Moderate EX 8.00
LoRA (Dropout 0.05) - Challenging EX 0.98
LoRA (Dropout 0.1) - Moderate EX 7.20
LoRA (Dropout 0.1) - Challenging EX 0.98
LoRA (Dropout 0.2) - Moderate EX 7.20
LoRA (Dropout 0.2) - Challenging EX 0.98
LoRA (Dropout 0.3) - Moderate EX 7.60
LoRA (Dropout 0.3) - Challenging EX 0.98
LoRA w/ NF (No Dropout) - Moderate EX 7.20
LoRA w/ NF (No Dropout) - Challenging EX 2.94

Table 8: Comparison of NF with Dropout as Regulariza-
tion on BIRD-SQL Mini (text2sql, Qwen1.5-7B-Chat).
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E.3 Effect of Irrelevant Data Quantity on
Generalization Benchmarks

We evaluated the impact of varying amounts of
irrelevant data (Dj, from Alpaca) used in NF
(Qwenl.5-7B-Chat, fine-tuned on a small, fixed
task dataset) on standard benchmarks. Results (Ta-
bles 9 and 10) show NF largely preserves general
capabilities at moderate D), ratios.

Irrelevant Samples (Log Scale) GSMS8K Acc (%)
0 (Baseline task-only fine-tune) 28.96

51 29.34

153 29.11

510 29.34

1632 29.04

5151 28.20
16371 27.37

Table 9: GSM8K Performance vs. Irrelevant Data Quan-
tity with NF (Qwen1.5-7B-Chat).

Irrelevant Samples (Log Scale) AGIEval Avg Acc (%)
0 (Baseline task-only fine-tune) 44.57

391 45.37

1173 44.69

3128 44.81

8602 43.47

21114 43.65

Table 10: AGIEval Average Accuracy vs. Irrelevant
Data Quantity with NF (Qwen1.5-7B-Chat).

E.4 Performance on Larger Models

To assess scalability, we tested NF on Qwenl1.5-
32B-Chat for the text2sql task (BIRD-SQL Mini,
‘sql-create-context* task data). Table 11 shows NF
continues to provide benefits.

Model (Metric Type) EX (%)
Qwenl.5-7B-Chat (w/o NF) - Moderate EX 7.60
Qwen1.5-7B-Chat (w/o NF) - Challenging EX 0.98
Qwenl.5-7B-Chat (w/ NF) - Moderate EX 7.20
Qwenl.5-7B-Chat (w/ NF) - Challenging EX 2.94
Qwenl.5-32B-Chat (w/o NF) - Moderate EX 19.60
Qwenl.5-32B-Chat (w/o NF) - Challenging EX 12.75
Qwenl.5-32B-Chat (w/ NF) - Moderate EX 24.40

(+24.5%)
Qwenl.5-32B-Chat (w/ NF) - Challenging EX 16.67

(+30.7%)

Table 11: NF Performance on Qwen1.5-32B-Chat for
text2sql (BIRD-SQL Mini). Percentages in parentheses
indicate relative change compared to the 32B model
without NF.
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