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ABSTRACT

Traffic flow generation problem under realistic scenarios has raised more and more
attention in recent years. This problem aims at generating traffic flow without us-
ing historical traffic data. Since road network and POI data can provide a more
comprehensive picture of traffic patterns, most previous methods use both or ei-
ther of them to generate traffic flow. However, roadnet graph in real-world has
bias and abnormal structure, which will influence the performance of traffic gen-
eration. Previous traffic generation models directly receive real-world roadnet
graph with map-match POI data as input and then use an end-to-end loss for train-
ing, which could not model the complex relationship between POI and traffic in a
proper way. Different from prior methods, we propose a novel POI-based Traffic
Generation model via Supervised Contrastive learning on Reconstructed graph,
termed as TG-SCR, which combines POI data and road network data to gener-
ate the distribution of traffic flows. Our model has two novel modules: a graph
reconstruction module and a POI supervised contrastive module. The structural
module includes a k-NN graph builder and a k-NN graph aggregator, which is
used to reconstruct the original roadnet graph into a k-NN graph and reform POI
feature. The contrastive module is used to model the relationship between POI
feature and traffic flow. Extensive experiments show that our model outperforms
other baseline methods on four real-world datasets.

1 INTRODUCTION

Recently, traffic generation problem has become an increasingly popular research topic due to the
growing importance of intelligent transportation systems and the availability of large amounts of
traffic data. It has important implications for traffic management, safety, and environmental sus-
tainability. Generating traffic flow precisely can help transportation authorities and planners make
accurate decisions about traffic flow management and infrastructure investment. For example, pre-
dicting traffic volume and congestion can help officials adjust traffic signal timings, optimize route
planning, and manage demand for public transportation.

For a long time, people use time series forecasting methods to predict traffic flows, such as traditional
statistical methods like ARIMAWilliams & Hoel (2003). In recent years, deep learning models
such as RNN-based modelsVan Lint et al. (2002), LSTM-based modelsZhao et al. (2017); Fu et al.
(2016); Chen et al. (2016) and STGNN-based modelsYu et al. (2017a); Li et al. (2017) have also
been applied to traffic prediction tasks with promising results. These models can capture spatial
dependencies between traffic variables and learn complex traffic patterns in high-dimensional traffic
data.

In this paper, we focus on ”Traffic Generation Task”, which is completely different from ”Traffic
Prediction Task”. The biggest difference between these two tasks is that traffic prediction models
predict the future traffic based on historic traffic data, while traffic generation models generate the
future traffic based on other non-traffic data such as POI data or check-in data. For instance, if we
want to forecast the traffic flow in the next week, traffic prediction models need historical traffic data
or any data in the same format as the volume to be predicted. However, traffic generation models
simply require static data to simulate the real environment and then generate traffic flow. Compared
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to traffic prediction task, traffic generation task is more meaningful in real-world for the following
reasons. Firstly, normal traffic prediction models require large scale of historic traffic data to improve
their predicting performance. However, it is not easy to collect real-world traffic, especially in small
cities. Secondly, the performance of historical traffic-based traffic prediction models become worse
if the environment changes, such as road construction, new shopping malls and so on. Instead,
traffic generation task is to explore the deep principles of how traffic flow generates, for which these
situations can be handled. Therefore, it is meaningful to study on traffic generation task.

Despite the rapid development of deep learning models in traffic generation domain, most of pre-
vious traffic generation models face two challenges. The first challenge is the abnormal structures
in real-world roadnet graph. Since road networks provide information on the physical layout of
roads, such as their length and connectivity, most previous traffic generation models directly use
real-world roadnet graph as backbone and map spatio-temporal data on it, so as to explore how traf-
fic flow is likely to be distributed across different routes and intersections. However, roadnet graphs
in real-world do not always hold the basic law that ”neighbor nodes have similar features”. Previous
GNN-based models could not handle this issue, resulting in accumulation of bias in the training
procedure, therefore reducing the generating quality.

The second challenge is how to train the traffic generation model in a proper way. Most previous
traffic generation models focus on imposing constraints on the final predictions in an end-to-end
style, such as using Cross-Entropy loss or MSE loss, but do not explicitly consider the representa-
tions learned by the model. More specifically, the weights of neural networks with end-to-end loss
are optimized simply based on the output errorm which means the network is only capable of cap-
turing the output error rather than capturing the complex relationships between POI features. This
will lead to overfitting and reduced accuracy when dealing with more complex data. Thus, previous
models do not make good use of the soft label information of traffic data.

In this paper, we propose a new deep learning model, which combines POI data and road network
data to predict the distribution of traffic flows, thus successfully solving the problem of generating
traffic flows in areas without historical traffic data. Extensive experiments show that our designed
model achieves the best performance on four real-world datasets.

Our main contributions can be summarized as below:

• Structural Module. We add a structural module including a k-NN Graph Builder and a
k-NN Graph Aggregator to reform the original roadnet graph into a k-NN Graph and revise
the original POI feature. By doing so, our model successfully eliminate bias and anomalies
in the real-world roadnet graph.

• Contrastive Module. In this module, we add a supervised contrastive loss to learn a
regression-aware representation by contrasting POI feature embedding against other nodes
in a batch based on their target distance. By doing so, our model explicitly hold the for-
mer similarity relationships between samples to optimize the representation for the traffic
generation task.

• Evaluation. Under extensive experiments on four real-world datasets, we show that TG-
SCR provides consistent boosts in traffic generation performance.

2 RELATED WORKS

2.1 TRADITIONAL NON-DEEP-LEARNING METHODS

Time series models have a wide range of applications in the domain of traffic prediction. Con-
ventional time series models such as ARIMAAhmed & Cook (1979) are first used for traffic flow
prediction. After that, extended variants such as SARIMIAWilliams & Hoel (2003), KARIMAVan
Der Voort et al. (1996), STARIMASun et al. (2005); Kamarianakis & Prastacos (2003) and ARI-
MAXWilliams (2001) are also used for predicting traffic. Besides, researchers also use other para-
metric model like Kalman filterGuo et al. (2014) and non-parametric model like k-nearest neighbors
modelsCai et al. (2016), bayesian networkSun et al. (2005), SVRWu et al. (2004) to predict traf-
fic flow. There are also traffic prediction methods that are based on transportation laws. Zhou et
al. asu-trans-ai lab (2020) propose Grid2Demand to generate traffic flow in gridded areas based on
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Figure 1: Difference between conventional traffic prediction problem and traffic generation problem
studied in this paper.

the gravity model. However, performance of these methods can be limited by their assumptions
and biases, and traditional non-deep-learning methods may struggle with high-dimensional data or
complex relationships between variables.

2.2 DEEP LEARNING MODELS WITHOUT GRAPH

With the development of deep neural networks, many researchers try to apply different deep learning
methods to solve the traffic generation problem. DBN-SVRLi & Wang (2017) uses multiple RBM
models to extract features from the data and a support vector regression classifier is connected on top
to predict traffic flow. Researchers first use RNN-based models such as LSTMZhao et al. (2017);
Fu et al. (2016), R-LSTMJia et al. (2017) and LSTM-GRUFu et al. (2016) to capture the time
dependence of traffic flow. In order to consider spatial correlations in traffic flow, researchers also
start to use CNN-based models such as UrbanFlowZhang et al. (2016), DeepCNNMa et al. (2017),
ST-ResNetZhang et al. (2017). Afterwards, hybrid models combining CNN and RNN are widely
used to solve the traffic prediction task, such as DNN-BTFWu et al. (2018), HMDLFDu et al. (2018),
Deep-LSTMYu et al. (2017c) and SRCNYu et al. (2017b). However, these deep learning models
have poor generalization performance and are difficult to use to predict traffic flow under real-world
datasets.

2.3 GRAPH NEURAL NETWORK MODELS

In recent years, there has been an increasing enthusiasm in the domain of deep learning for Graph
Neural Networks (GNNs). GNNs have emerged as a new and powerful approach for handling graph-
structured data, which make it useful in solving traffic prediction task. GNN-based models such as
DCRNNLi et al. (2017), STGCNYu et al. (2017a), STFGNNLi & Zhu (2021), TrajNetHui et al.
(2021), STDN and MVGCNFu et al. (2022). Furthermore, in order to capture the dynamic rela-
tionship between traffic flow and other influence factors, more models such as AGCRNBai et al.
(2020), DGCRNLi et al. (2023), DMSTGCNHan et al. (2021) and DSTAGNNLan et al. (2022) are
proposed. However, under real-world dataset, the roadnet graph which GNN-based models research
on may have bias, resulting in inaccuracy of traffic flow prediction.

3 PRELIMINARY

We start with formally introducing the problem of traffic generation. A city-level road network graph
G = (V,E) is given, where ni denotes the i-th node of the graph and ej denotes the j-th edge. G
carries a node-level POI features namely X. For each node in G, xi represents a 24-dimensional
Point of Interest (POI) feature vector, where each dimension corresponds to the number of one
category of POI points within a 1km radius around ni. Similarly, yi represents a 24-dimensional
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Figure 2: The overall architecture of TG-SCR.

traffic vector, where each dimension corresponds to the number of arrival points within a 1km radius
around ni for an one-hour time slice.

Different from previous traffic prediction task based on spatio-temporal data, the traffic generation
task studied in this paper simply focuses on the spatio dimension. Figure 1a shows how a common
spatio-temporal model predicts traffic flow. In the conventional traffic prediction task, one main way
to achieve the goal is to combine graph convolution with recurrent neural network to capture both
spatial and temporal dependencies. Figure 1b shows a common model to solve the traffic generation
task, where only graph convolution is used to generate traffic flow.

The traffic generation task can be defined as below:

Problem Definition 1 (Traffic Generation) Given a roadnet graph G along with its POI feature
X that has been map-match on G, the objective of traffic generation task is to generate an one-day
traffic flow Y. Suppose f(·) is a model that maps POI feature to traffic, this traffic generation task
can be formulated as:

Y = f(G,X) (1)

4 METHODOLOGY

4.1 TRAFFIC GENERATION

To generate traffic flow based on roadnet graph along with POI data, we propose a novel POI-based
traffic generation model via supervised contrastive learning on reconstructed graph, called TG-SCR.
TG-SCR has two modules: a graph reconstruction module and a POI contrastive module, focusing
on structural view and POI contrastive view respectively. The first graph reconstruction module has
two components: a k-NN Graph Builder and a k-NN Graph Aggregator. k-NN graph builder is
used for converting the original roadnet graph into a k-NN graph, while the k-NN Graph Aggregator
is used for aggregating POI feature to generate reforming feature. In the second POI supervised
contrastive module, motivated from the insight that ”Similar POI patterns generate similar traffic
flow”, we propose a supervised contrastive loss with traffic feature as soft label and then use it to
train the residual encoder. By incorporating these two modules, our model can better distinguish
between different POI features and their corresponding traffic patterns. The overall architecture of
TG-SCR is shown in Figure 2.

4.2 GRAPH RECONSTRUCTION MODULE

Under realistic scenarios, roadnet graphs do not conform to the laws of general graph datasets. As
is shown in Figure 3, it can be found that one of the laws that should be satisfied in the regular
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Figure 3: The pie chart describing hop number ratio of shortest path of node pairs with nearest POI
feature in Futian, Nanshan, Beijing and Shanghai.

datasets, i.e., ”the closer the points are, the closer the relationship is”, is not fully satisfied in real-
world roadnet graph. It can be seen from Figure 3 that about forty to fifty percent of the node
pairs with nearest POI feature are not connected in the roadnet graph (the shortest path is greater
than one hop), which contradicts the human intuition that connected node pairs should have similar
POI feature. Therefore, corrections need to be made to the original roadnet graph when using it for
traffic prediction. Graph Reconstrcuction module includes a k-NN Graph Builder and a k-NN Graph
Aggregator. The k-NN graph builder converts the original roadnet graph G into a k-nearest neighbor
graph G′. Assume the i-th node is denoted as ni with its POI feature Xi and traffic flow Yi. Each
dimension of Xi or Yi is denoted as xd

i or ydi (d ≤ 24). For the k-NN graph building step, we first
compute the L2 distance l between the anchor node and other nodes (suppose the j-th node):

li,j = ||xi − xj || =
√∑

d

(
xd
i − xd

j

)2
(2)

Suppose the L2 distances between ni and other nodes constitutes a set Li. We select k nodes with
minimum L2 distance and connect them pairwisely in the newly formed k-NN graph. These k nodes
will be reformed into the neighbor nodes of ni in k-NN graph. The set of these nodes is denoted as
Ki. This step can be formulated as:

Ki = {nj ∈ N : |Li ∩ (−∞, li,j)| < k} (3)

After that, a k-NN Graph Aggregator is applied to transform the raw POI feature X into aggregated
POI feature X ′ by adding the nearest POI feature in G′. The aggregating operation can be formulated
as below:

X ′
i = Xi +

∑
j∈Ki

Xj (4)

4.3 POI CONTRASTIVE MODULE

The relationship among POI, roadnet and traffic is complicated. Most previous models simply use
an end-to-end loss to optimize the mapping relations. However, the correlation of POI embeddings
between different nodes belonging to the same POI pattern is not taken into account in end-to-end
loss function. Therefore, we consider improving the expressiveness using the soft label information
of traffic data. Since the insight of contrastive loss is to make the hidden embeddings of samples in
the same class close to each other, we propose a supervised contrastive loss that use traffic data as
soft label, which can ensure distances in the embedding space are ordered according to distances in
the label space.
Suppose in a training batch B with N nodes, the randomly selected anchor node in B is denoted as
ni, its traffic and POI embedding are denoted as yi and vi respectively. The predicted traffic of this
node is denoted as ŷi. We first select c nearest nodes in B based on their traffic distance and treat
them as positive set P, then the rest nodes in B are classified to negative set N. The procedure of
generating positive set and negative set can be formulated as below:

P = {nj ∈ B : |Y ∩ (−∞, ||yi − yj ||)| < c} (5)
N = {nk}, k ̸= i, k ∈ B, k /∈ P (6)
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Based on the positive set defined in Eq (5) and the negative set defined in Eq (6), our POI supervised
contrastive loss LSC can be formulated as:

LSC = − 1

N
log

∑
j∈P

exp (sim (vi,vj) /τ)∑
k∈N

exp (sim (vi,vk) /τ)
(7)

where τ represents the temperature coefficient. In LSC loss, any two nodes can be thought of as
a positive pair or a negative pair, depending on their similarities in traffic flow. We define positive
and negative samples in a relative way, based on the distance between their traffic and that of anchor
node.

4.4 LOSS SUMMARY

In addition to the contrastive loss mentioned above, we define another loss to describe the error
between predicted and real traffic flow from a global perspective. This loss is used to measure the
mean square error between predicted traffic Ŷ and real traffic Y . It can be formulated as below:

LMSE = MSELoss(Ŷ , Y ) =
1

N

N∑
i=1

(ŷi − yi)
2 (8)

The final loss combines the LSC term and LMSE term:

LTotal = α · LSC + LMSE (9)

where α is a hyperparameter.
To alleviate the gradient vanishing problem during training procedure, we simply train the LMSE

for the first five hundred epochs, and then add LSC into training. The training procedure of TG-SCR
can be expressed as below:

Algorithm 1 Training procedure of TG-SCR

Input: Roadnet graph G with map-matched POI feature X , encoder e(·) and decoder d(·) parame-
terized with θ

1: Build k-NN graph G′ from G based on Eq (3)
2: Get Aggregated POI feature X ′ from X based on Eq (4)
3: Compute POI embeddings: E′ = e(X ′)
4: repeat
5: Sample a training batch B including N nodes
6: Define positive set P and negative set N based on Eq (5) and Eq (6)
7: Compute LTotal based on Eq (9)
8: Back Propagation
9: Update θ based on Eq (7)

10: until LTotal < ϵ
Output: Predicted traffic Ŷ

5 EXPERIMENT

5.1 EXPERIMENT SETUP

5.1.1 DATASETS

We evaluate our model on four real-world datasets of Futian, Nanshan, Shanghai and Beijing. In
these four datasets, nodes and edges in the graph are roadnet junctions and roads extracted from
OpenStreetMap. Node features consist of POI data, which are queried from Baidu Map with API
tools. The traffic data of Futian, Nanshan, Beijing and Shanghai is downloaded from Baidu (2019c),
Baidu (2019a) and Baidu (2019b). For POI data, according to Baidu, we divide it into twenty-four
categories. For traffic data, we split the one-day trajectory data using our-hour as grain size. Since
traffic data and POI data are sparse in cities, we filter nodes with excessively sparse traffic or POI
data to reduce the sparsity of graphs. Details of these four datasets are shown in Table 1.
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Indicator Futian Nanshan Beijing Shanghai

# Nodes 42,018 20,969 86,011 94,661
# Edges 52,621 26,929 115,728 125,290

Mean POI Count 177.97 165.22 41.99 74.70
Standard Deviation of POI Count 264.63 239.39 37.79 137.51

Mean Traffic Volume 420.35 231.17 40.12 30.17
Standard Deviation of Traffic Volume 337.77 155.00 31.94 24.52

Table 1: Basic information of four real-world datasets.

5.1.2 BASELINE METHODS

We compare our model with three categories of methods. First category includes several traditional
machine learning methods used to solve regression problems, such as DecisionTree (DTree)Quinlan
(1986), RandomForest (RF)Breiman (2001), XGBoostChen & Guestrin (2016) and SVRCortes &
Vapnik (1995).The second category is methods that based on Graph Neural Networks, such as
GCNKipf & Welling (2016), GraphSAGEHamilton et al. (2017), GATVelickovic et al. (2017) and
GINXu et al. (2018). The third category includes other models that are used for generating traffic
flow based on POI data, such as DeepFlowGen (DFG)Shao et al. (2021) and DeepCrowdJiang et al.
(2021). The results of the comparison between our model and baselines are shown in Table 2.

5.1.3 EXPERIMENT SETTINGS

We use three common metrics to evaluate the prediction error between predict traffic and real traffic,
which are Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). Since MAPE cannot be calculated when the true value equals zero, we
revise the MAPE metric by masking locations where the real traffic flow is zero in this timestep then
evaluating the rest. To overcome the issue of gradient vanishing, we add LSC into training after
five hundred epochs. The parameters of all methods have been tuned through a grid search. Code is
available at https://anonymous.4open.science/r/TG-SCR-D0BE/.

5.2 EXPERIMENT RESULTS

The results of the comparison between our model and baselines are shown in Table 2. On all of
these four real-world datasets with different scales, TG-SCR outperforms other baseline methods
in all three evaluation metrics: RMSE, MAE and MAPE. The experiment results show that for all
the real-world datasets with different data scale, our model achieve the best performance. Notably,
Table 2 shows that some GNN-based methods like GCN performs badly in generating traffic. This
is mainly due to the fact that these methods are influenced by abnormal structures in the real-world
roadnet graph. GNN’s message passing mechanism leads to errors where the predicted traffic of
some specific area (e.g. hospital, school) are severely influenced by some more distant areas. TG-
SCR overcome this problem by reconstructing the original roadnet graph and thus avoiding the flaws
brought by message passing.

5.3 ABLATION STUDY

As discussed in Section 4.1, TG-SCR includes two novel modules: a graph reconstruction module
(denoted as GRM) and a POI supervised contrastive module (denoted as SCM). We perform ablation
study to examine the effect of these two modules in TG-SCR. We consider two variants of TG-SCR:
(1) TG-SCR without graph reconstruction module (abbreviated as TR-SCR w/o GRM). (2) TG-SCR
without graph reconstruction module and POI supervised contrastive module (abbreviated as TG-
SCR w/o GRM & SCM). Experiment results on Futian dataset are shown in Table 3, from which we
could observe that TG-SCR has performance gain over two variants, proving the significance of the
proposed graph reconstruction module and POI supervised contrastive module.
The improvement induced by adding the POI supervised contrastive module (SCM) is due to that
adding a supervised contrastive loss term helps model to learn to complicated relationship between
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Method Futian Nanshan
RMSE MAE MAPE RMSE MAE MAPE

RF 64.28 52.83 35.13% 74.72 30.66 24.88%
XGBoost 76.13 62.01 36.37% 67.13 36.81 26.76%

SVR 262.91 157.56 64.06% 100.18 53.59 51.84%

GCN 173.57± 4.17 102.46± 2.61 49.76%± 3.54% 92.57± 0.93 66.50± 0.43 25.38%± 1.39%
GraphSAGE 102.64± 3.04 74.62± 2.56 42.94%± 2.59% 90.18± 1.00 63.59± 0.46 24.73%± 0.91%

GAT 92.47± 1.57 68.47± 0.47 39.83%± 0.82% 71.48± 1.31 31.09± 0.55 21.41%± 1.57%
GIN 79.33± 1.11 58.92± 0.54 40.97%± 0.60% 65.25± 0.62 29.59± 0.28 21.08%± 0.79%
DFG 82.39± 0.46 63.64± 0.37 38.61%± 0.65% 72.46± 0.57 36.47± 0.30 23.35%± 0.59%

DeepCrowd 92.46± 1.38 67.54± 0.70 38.45%± 0.86% 74.36± 0.37 36.46± 0.23 23.72%± 0.34%
TG-SCR 53.19± 0.40 41.03± 0.21 30.06%± 0.69% 51.56± 0.42 27.43± 0.24 19.05%± 0.29%

Method Beijing Shanghai
RMSE MAE MAPE RMSE MAE MAPE

RF 9.03 4.56 17.62% 6.62 3.02 13.04%
XGBoost 14.52 7.33 29.24% 7.81 4.50 18.89%

SVR 19.12 10.16 36.34% 25.05 13.57 46.84%
GCN 20.46± 1.46 13.49± 0.84 56.20%± 1.95% 18.34± 0.87 11.52± 0.33 42.71%± 3.73%

GraphSAGE 22.56± 1.36 14.22± 0.83 53.37%± 1.86% 14.36± 1.31 9.64± 0.83 41.69%± 5.31%
GAT 18.92± 1.30 12.38± 0.56 33.27%± 2.02% 9.44± 1.03 6.82± 0.95 28.59%± 3.51%
GIN 10.29± 0.99 6.22± 0.40 24.68%± 2.42% 6.57± 0.17 3.79± 0.06 21.06%± 1.42%
DFG 3.48± 0.16 2.29± 0.06 9.55%± 0.21% 2.39± 0.04 1.74± 0.02 9.54%± 0.60%

DeepCrowd 10.29± 1.04 6.22± 0.46 24.86%± 2.89% 6.57± 0.09 4.25± 0.03 16.63%± 0.92%
TG-SCR 1.47± 0.07 1.10± 0.05 5.12%± 0.14% 1.67± 0.03 1.26± 0.02 7.31%± 0.83%

Table 2: Performance comparison between TG-SCR and other baseline methods on four real-world
datasets. Results shows that our model outperforms other baseline methods in all four real-world
datasets. All experiments are repeated for five times, and the mean and standard deviation (±) are
reported.

Method Futian Nanshan
RMSE MAE MAPE RMSE MAE MAPE

TG-SCR 53.19± 0.40 41.03± 0.21 30.06%± 0.69% 51.56± 0.42 27.43± 0.24 19.05%± 0.29%
TG-SCR w/o GRM 55.67± 0.42 42.63± 0.21 31.28%± 1.66% 52.72± 0.61 27.19± 0.23 19.28%± 1.08%

TG-SCR w/o GRM & SCM 92.46± 1.38 67.54± 0.70 38.40%± 0.86% 72.46± 0.57 36.47± 0.42 23.58%± 8.36%

Table 3: Performance comparison between TG-SCR and its variants. All experiments are repeated
for five times, and the mean and standard deviation (±) are reported.

POI features and traffic. The performance boosted by adding graph reconstruction module (GRM)
is due to reconstructing graph saves model from being influenced by anomalous structures in the
original real-world roadnet graph.

5.4 PARAMETER SENSITIVE ANALYSIS

There are two important hyperparameters that should be conducted, which are the combination
coefficient α named in Eq (9) and the neighbor aggregator number k. We test the sensitivity of α by
varying it from 0.001 to 0.1 using the regular experiment setting. Also, the sensitivity of k are tested
by varying it from 1 to 10. The corresponding RMSE results are respectively shown in Figure 4a
with blue lines. The blue shaded area in each line chart indicates the error range of the corresponding
standard deviation. Among eight line chart in Figure 4a, α is senstive merely in Futian dataset, and
k is not sensitive in all the four dataset. We find that the performance of TG-SCR is generally stable
with the change of α and k, which means the performance of TG-SCR is not sensitive to α or k.

5.5 CASE STUDY

In case study, we select part of data in Shanghai dataset and visualize the POI embedding of GCN
and TG-SCR using t-SNE dimensionality reduction algorithm. The visualization results are shown
in Figure 4b. The two locations circled on the map with dashed boxes are far in distance but similar
in POI distribution. It can be seen that the POI embeddings of nodes in these two locations more
similar than that of GCN, which shows that our model can capture feature similarities and filter out
abnormal edges in the original graph.
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(a) Parameter sensitive analysis (b) T-SNE visualization of GCN and TG-SCR results

Figure 4: (a). Two parameter sensitivity analysis on four real-world datasets. The corresponding
RMSE results are respectively shown using line charts. The blue shaded area in each line chart
indicates the error range of the corresponding standard deviation. (b). T-SNE visualization of POI
embeddings of GCN and TG-SCR on part of Shanghai dataset.

6 CONCLUSION

In this paper, we have researched on the traffic generation problem without using historical traffic
data. We demonstrate that the original roadnet graph has abnormal structures and it is not enough
to learn the complex relationship between POI data and traffic flow with simply end-to-end loss.
To address these issues, we propose TG-SCR, a novel POI-based traffic generation model via su-
pervised contrastive learning on reconstructed graph. Our model includes a graph reconstruction
module and a POI supervised contrastive module. First, we propose a graph reconstruction module
to reconstruct the original roadnet graph into a k-NN graph. After that, a POI supervised contrastive
module is conducted to model the relationship between POI feature and traffic flow. Moreover, we
conduct experiments on four real-world datasets. Extensive experiments indicate that our model
outperforms other baseline methods. In conclusion, by combing k-NN graph reconstruction mecha-
nism and supervised contrastive loss, TG-SCR can generate traffic flow with high quality based on
POI data in real-world datasets.
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A APPENDIX

A.1 EXPERIMENTS ON SPATIO-TEMPORAL MODELS

To further illustrate the power of TG-SCR in solving the traffic generation problem, we additionally
conduct experiments on several spatio-temporal models as well as their variants. Taking DCRNN
as an example, DCRNNmlp denotes that the GRU and RNN structures in the model are replaced
with fully connected layers. DCRNNtransformer adds a self-attention mechanism and positional
encoding based on DCRNNmlp. The results of the comparison between our model and other spatio-

Method Futian Nanshan
RMSE MAE MAPE RMSE MAE MAPE

DCRNN 442.5912 50.3046 43.04% 380.4306 45.0945 40.33%
DCRNNmlp 133.1649 38.0537 24.42% 124.486 32.2951 24.82%

DCRNNtransformer 368.4053 45.5119 40.48% 329.595 40.0576 34.73%

STGCN 285.411 43.6264 36.81% 274.522 35.381 30.46%
STGCNmlp 109.4752 34.4618 21.03% 88.4164 30.0691 21.9%

STGCNtransformer 405.0078 48.5714 41.92% 468.2043 49.1706 42.98%

D2STGNN 481.4794 53.5861 44.55% 522.9714 54.633 45.73%
D2STGNNmlp 172.5711 40.3273 32.08% 157.582 33.6911 27.4%

D2STGNNtransformer 406.8035 47.0052 42.79% 470.4691 49.698 42.23%

TG-SCR 51.5639 27.4304 19.57% 53.275 27.947 18.45%

Method Beijing Shanghai
RMSE MAE MAPE RMSE MAE MAPE

DCRNN 1003.7166 530.1937 1019.42% 1421.4306 768.0945 1359.5%
DCRNNmlp 22.4629 8.4756 26.58% 13.486 4.2951 47.82%

DCRNNtransformer 842.5207 481.3813 857.3% 793.5288 558.5023 750.19%

STGCN 693.5531 423.1444 729.45% 1146.5004 603.2289 1145.73%
STGCNmlp 14.5814 6.5035 13.76% 9.0463 3.5702 38.85%

STGCNtransformer 515.3719 274.364 735.4% 689.421 520.471 663.52%

D2STGNN 1280.0422 581.451 1257.26% No Convergence No Convergence No Convergence
D2STGNNmlp 38.5926 14.5609 103.91% 45.487 26.9913 351.46%

D2STGNNtransformer No Convergence No Convergence No Convergence No Convergence No Convergence No Convergence

TG-SCR 1.5364 1.1647 4.28% 1.6713 1.265 19.05%

Table 4: Performance comparison between TG-SCR and other spatio-temporal models with their
variants on four real-world datasets. Results shows that TG-SCR outperforms other spatio-temporal
models and their variants in all four real-world datasets.

temporal models are shown in Table 4. On all of these four real-world datasets with different scales,
TG-SCR outperforms other spatio-temporal models as well as their variants. It can be seen that even
when compared to spatio-temporal convolutional models, TG-SCR is powerful at generating traffic
flows.

A.2 COMPARISON WITH TRAFFIC FLOW DATASETS

Compared with the traditional spatio-temporal traffic dataset, these four real-world datasets in this
paper is much more larger in scale and therefore more consistent with real-life traffic prediction
scenarios. The basic information of the four real-world datasets and some common spatio-temporal
traffic datasets is shown in Table 5.

Indicators Futian Nanshan Beijing Shanghai METR-LA PEMS-03 PEMS-04 PEMS-07 PEMS-08 PEMS-BAY

# Nodes 42,018 20,969 86,011 94,661 325 358 307 883 170 207
# Edges 52,621 26,929 115,728 125,290 2369 2268 2591 2704 2914 1515

Table 5: Basic information of four real-world datasets and other traffic flow datasets.

A.3 EXPERIMENTS ON EFFICIENCY

We also experimentally analyzed the efficiency of TG-SCR. Table 6 shows the training time of TG-
SCR and other spatio-temporal models on four real-world datasets. The training time of TG-SCR
is significantly shorter than that of the other spatio-temporal graph models and competitable with
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that of their MLP variants. These results fully demonstrate that TG-SCR not only achieves good
performance, but also has higher efficiency compared to other spatio-temporal models.

Model Futian Nanshan Beijing Shanghai

DCRNN 5130 5715 4812 4606
DCRNNmlp 1836 1900 1105 1257

DCRNNtransformer 12645 10504 9350 17559

STGCN 2691 2588 2042 2539
STGCNmlp 473 492 500 588

STGCNtransformer 10572 11469 15058 15770

D2STGNN 4615 5028 3711 -
D2STGNNmlp 542 761 909 827

D2STGNNtransformer 15294 13460 - -

TG-SCR 628 733 606 675

Table 6: Training time (second) of TG-SCR and other spatio-temporal models with their variants on
four real-world datasets.
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