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Abstract
Modelling prosody variation is critical for syn-001
thesizing natural and expressive speech in end-002
to-end text-to-speech (TTS) systems. In this pa-003
per, a cross-utterance conditional VAE (CUC-004
VAE) is proposed to estimate a posterior proba-005
bility distribution of the latent prosody features006
for each phoneme by conditioning on acoustic007
features, speaker information, and text features008
obtained from both past and future sentences.009
At inference time, instead of the standard Gaus-010
sian distribution used by VAE, CUC-VAE al-011
lows sampling from an utterance-specific prior012
distribution conditioned on cross-utterance in-013
formation, which allows the prosody features014
generated by the TTS system to be related to015
the context and is more similar to how hu-016
mans naturally produce prosody. The perfor-017
mance of CUC-VAE is evaluated via a quali-018
tative listening test for naturalness, intelligibil-019
ity and quantitative measurements, including020
word error rates and the standard deviation of021
prosody attributes. Experimental results on LJ-022
Speech and LibriTTS data show that the pro-023
posed CUC-VAE TTS system improves natural-024
ness and prosody diversity with clear margins.025

1 Introduction026

Recently, abundant research have been performed027

on modelling variations other than the input text028

in synthesized speech such as background noise,029

speaker information, and prosody, as those directly030

influence the naturalness and expressiveness of the031

generated audio. Prosody, as the focus of this pa-032

per, collectively refers to the stress, intonation, and033

rhythm in speech, and has been an increasingly034

popular research aspect in end-to-end TTS systems035

(van den Oord et al., 2016; Wang et al., 2017; Stan-036

ton et al., 2018; Elias et al., 2021; Chen et al., 2021).037

Some previous work captured prosody features ex-038

plicitly using either style tokens or variational au-039

toencoders (VAEs) (Kingma and Welling, 2014;040

Hsu et al., 2019a) which encapsulate prosody in-041

formation into latent representations. Recent work042

achieved fine-grained prosody modelling and con- 043

trol by extracting prosody features at phoneme 044

or word-level (Lee and Kim, 2019; Sun et al., 045

2020a,b). However, the VAE-based TTS system 046

lacks control over the latent space where the sam- 047

pling is performed from a standard Gaussian prior 048

during inference. Therefore, recent research (Dah- 049

mani et al., 2019; Karanasou et al., 2021) employed 050

a conditional VAE (CVAE) (Sohn et al., 2015) to 051

synthesize speech from a conditional prior. Mean- 052

while, pre-trained language model (LM) such as 053

bidirectional encoder representation for Transform- 054

ers (BERT) (Devlin et al., 2019) has also been ap- 055

plied to TTS systems (Hayashi et al., 2019; Kenter 056

et al., 2020; Jia et al., 2021; Futamata et al., 2021; 057

Cong et al., 2021) to estimate prosody attributes im- 058

plicitly from pre-trained text representations within 059

the utterance or the segment. Efforts have been de- 060

voted to include cross-utterance information in the 061

input features to improve the prosody modelling of 062

auto-regressive TTS (Xu et al., 2021). 063

To generate more expressive prosody, while 064

maintaining high fidelity in synthesized speech, a 065

cross-utterance conditional VAE (CUC-VAE) com- 066

ponent is proposed, which is integrated into and 067

jointly optimised with FastSpeech 2 (Ren et al., 068

2021), a commonly used non-autoregressive end-to- 069

end TTS system. Specifically, the CUC-VAE TTS 070

system consists of cross-utterance embedding (CU- 071

embedding) and cross-utterance enhanced CVAE 072

(CU-enhanced CVAE). The CU-embedding takes 073

BERT sentence embeddings from surrounding ut- 074

terances as inputs and generates phoneme-level CU- 075

embedding using a multi-head attention (Vaswani 076

et al., 2017) layer where attention weights are de- 077

rived from the encoder output of each phoneme as 078

well as the speaker information. The CU-enhanced 079

CVAE is proposed to improve prosody variation 080

and to address the inconsistency between the stan- 081

dard Gaussian prior, which the VAE-based TTS 082

system is sampled from, and the true prior of 083
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speech. Specifically, the CU-enhanced CVAE is084

a fine-grained VAE that estimates the posterior of085

latent prosody features for each phoneme based on086

acoustic features, cross-utterance embedding, and087

speaker information. It improves the encoder of088

standard VAE with an utterance-specific prior. To089

match the inference with training, the utterance-090

specific prior, jointly optimised with the system, is091

conditioned on the output of CU-embedding. La-092

tent prosody features are sampled from the derived093

utterance-specific prior instead of a standard Gaus-094

sian prior during inference.095

The proposed CUC-VAE TTS system was eval-096

uated on the LJ-Speech read English data and the097

LibriTTS English audiobook data. In addition to098

the sample naturalness measured via subjective lis-099

tening tests, the intelligibility is measured using100

word error rate (WER) from an automatic speech101

recognition (ASR) system, and diversity in prosody102

was measured by calculating standard deviations of103

prosody attributes among all generated audio sam-104

ples of an utterance. Experimental results showed105

that the system with CUC-VAE achieved a much106

better prosody diversity while improving both the107

naturalness and intelligibility compared to the stan-108

dard FastSpeech 2 baseline and two variants.109

The rest of this paper is organised as follows.110

Section 2 introduces the background and related111

work. Section 3 illustrates the proposed CUC-VAE112

TTS system. Experimental setup and results are113

shown in Section 4 and Section 5, with conclusions114

in Section 6.115

2 Background116

Non-Autoregressive TTS. Promising progress has117

taken place in non-autoregressive TTS systems to118

synthesize audio with high efficiency and high119

fidelity thank to the advancement in deep learn-120

ing. A non-autoregressive TTS system maps the121

input text sequence into an acoustic feature or122

waveform sequence without using the autoregres-123

sive decomposition of output probabilities. Fast-124

Speech (Ren et al., 2019) and ParaNet (Peng et al.,125

2019) requires distillation from an autoregressive126

model, while more recent non-autoregressive TTS127

systems, including FastPitch (La’ncucki, 2021),128

AlignTTS (Zeng et al., 2020) and FastSpeech129

2 (Ren et al., 2021), do not rely on any form of130

knowledge distillation from a pre-trained TTS sys-131

tem. In this paper, the proposed CUC-VAE TTS132

system is based on FastSpeech 2. FastSpeech 2133

replaces the knowledge distillation for the length 134

regulator in FastSpeech with mean-squared error 135

training based on duration labels, which are ob- 136

tained from frame-to-phoneme alignment to sim- 137

plify the training process. Additionally, FastSpeech 138

2 predicts pitch and energy from the encoder output, 139

which is also supervised with pitch contours and 140

L2-norm of signal amplitudes as labels respectively. 141

The pitch and energy prediction injects additional 142

prosody information, which improves the natural- 143

ness and expressiveness in the synthesized speech. 144

Pre-trained Representation in TTS. It is be- 145

lieved that prosody can also be inferred from lan- 146

guage information in both current and surrounding 147

utterances (Shen et al., 2018; Fang et al., 2019; 148

Xu et al., 2021; Zhou et al., 2021). Such informa- 149

tion is often entailed in vector representations from 150

a pre-trained LM, such as BERT (Devlin et al., 151

2019). Some existing work incorporated BERT 152

embeddings at word or subword-level into autore- 153

gressive TTS models (Shen et al., 2018; Fang et al., 154

2019).More recent work (Xu et al., 2021) used the 155

chunked and paired sentence patterns from BERT. 156

Besides, a relational gated graph network with pre- 157

trained BERT embeddings as node inputs (Zhou 158

et al., 2021) was used to extract word-level seman- 159

tic representations, thus enhancing expressiveness. 160

VAEs in TTS. VAEs have been widely adopted 161

in TTS systems to explicit model prosody varia- 162

tion. The training objective of VAE is to max- 163

imise pθ(x), the data likelihood parameterised by 164

θ, which can be regarded as the marginalisation 165

w.r.t. the latent vector z as shown in Eq. (1). 166

pθ(x) =

∫
pθ(x | z)p(z)dz. (1) 167

To make this calculation tractable, the marginalisa- 168

tion is approximated using evidence lower bound 169

(ELBO): 170

LELBO(x) = Eqϕ(z|x)[log pθ(x|z)] 171

− βDKL (qϕ(z|x)∥p(z)) , (2) 172

where qϕ(z|x) is the posterior distribution of 173

the latent vector parameterized by ϕ, β is a hy- 174

perparameter, and DKL(·) is the Kullback-Leibler 175

divergence. The first term measures the expected 176

reconstruction performance of the data from the 177

latent vector and is approximated by Monte Carlo 178

sampling of z according to the posterior distribu- 179

tion. The reparameterization trick is applied to 180

make the sampling differentiable. The second term 181
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Transformer

Figure 1: The CUC-VAE TTS system architecture consists of the cross-utterance embedding (CU-embedding) and
the cross-utterance enhanced (CU-enhanced) CVAE, which are integrated to into and jointly optimised with the
FastSpeech 2 system.

encourages the posterior distribution to approach182

the prior distribution which is sampled from during183

inference, and β weighs this term’s contribution.184

A large body of previous work on VAE-based185

TTS used VAEs to capture and disentangle data186

variations in different aspects in the latent space.187

Works by Akuzawa et al. (2018) leveraged VAE to188

model the speaking style of an utterance. Mean-189

while, Hsu et al. (2019a,b) explored the disentan-190

glement between prosody variation and speaker191

information using VAE together with adversarial192

training. Recently, fine-grained VAE (Sun et al.,193

2020a,b) was adopted to model prosody in the la-194

tent space for each phoneme or word. Moreover,195

vector-quantised VAE was also applied to discrete196

duration modelling by Yasuda et al. (2021).197

CVAE is a variant of VAE when the data gener-198

ation is conditioned on some other information y.199

In CVAE, both prior and posterior distributions are200

conditioned on additional variables, and the data201

likelihood calculation is modified as shown below:202

203

pθ(x | y) =
∫

pθ(x | z,y)pϕ(z | y)dz. (3)204

Similar to VAE, this intractable calculation can be205

converted to the ELBO form as206

LELBO(x | y) = Eqϕ(z|x,y)[log pθ(x | z,y)]
− βDKL (qϕ(z | x,y)∥p(z | y)) .

207

To model the conditional prior, a density network208

is usually used to predict the mean and variance209

based on the conditional input y.210

3 CUC-VAE TTS System 211

The proposed CUC-VAE TTS system, which is 212

adapted from FastSpeech 2 as shown in Fig. 1, 213

aims to synthesize speech with more expressive 214

prosody. Fig. 1 describes the model architecture, 215

which has two components: CU-embedding and 216

CU-enhanced CVAE. The CUC-VAE TTS system 217

takes as input [ui−L, · · · ,ui, · · · ,ui+L], si and 218

xi, where [ui−L, · · · ,ui, · · · ,ui+L] is the cross- 219

utterance set that includes the current utterance ui 220

and the L utterances before and after ui. Each u 221

represents the text content of an utterance. Note 222

that si is the speaker ID, and xi is the reference 223

mel-spectrogram of the current utterance ui. In 224

this section, the two main components of the CUC- 225

VAE TTS system will be introduced in detail. 226

3.1 Cross-Utterance Embedding 227

The CU-embedding encodes not only the phoneme 228

sequence and speaker information but also cross- 229

utterance information into a sequence of mixture 230

encodings in place of a standard embedding. As 231

shown in Fig. 1, the first L utterances and the 232

last L utterances surrounding the current one, ui, 233

are used as text input in addition to the current 234

utterance and speaker information. Same as the 235

standard embedding, an extra G2P conversion is 236

first performed to convert the current utterance into 237

phonemes Pi = [p1, p2, · · · , pT ], where T is the 238

number of phonemes. Then, a Transformer encoder 239

is used to encode the phoneme sequence into a se- 240

quence of phoneme encodings. Besides, speaker 241
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information is encoded into a speaker embedding242

si which is directly added to each phoneme en-243

coding to form the mixture encodings Fi of the244

phoneme sequence.245

Fi = [fi(p1),fi(p2), · · · ,fi(pT )], (4)246

where f represents resultant vector from the addi-247

tion of each phoneme encoding and speaker em-248

bedding.249

To supplement the text information from the250

current utterance to generate natural and expres-251

sive audio, cross-utterance BERT embeddings252

together with a multi-head attention layer are253

used to capture contextual information. To be-254

gin with, 2L cross-utterance pairs, denoted as Ci,255

are derived from 2L + 1 neighboring utterances256

[ui−L, · · · ,ui, · · · ,ui+L] as:257

Ci = [c(ui−L,ui−L+1), · · · , c(ui−1,ui), · · · , c(ui+L−1,ui+L)],

(5)258

where c(uk, uk+1) = {[CLS],uk, [SEP],uk+1},
which adds a special token [CLS] at the beginning
of each pair and inserts another special token [SEP]
at the boundary of each sentence to keep track of
BERT. Then, the 2L cross-utterance pairs are fed
to the BERT to capture cross-utterance information,
which yields 2L BERT embedding vectors by tak-
ing the output vector at the position of the [CLS]
token and projecting each to a 768-dim vector for
each cross-utterance pair, as shown below:

Bi = [b−L, b−L+1, · · · , bL−1],

where each vector bk in Bi represents the BERT259

embedding of the cross-utterance pair c(uk,uk+1).260

Next, to extract CU-embedding vectors for each261

phoneme specifically, a multi-head attention layer262

is added to combine the 2L BERT embeddings into263

one vector as shown in Eq. (6).264

Gi = MHA(FiW
Q,BiW

K,BiW
V), (6)265

where MHA(·) denotes the multi-head attention266

layer, W Q, W K and W V are linear projection267

matrices, and Fi denotes the sequence of mixture268

encodings for the current utterance which acts as269

the query in the attention mechanism. For simplic-270

ity, we denote Eq. (6) as Gi = [g1, g2, · · · , gT ]271

from the multi-head attention being of length T272

and each of them is then concatenated with its cor-273

responding mixture encoding. The concatenated274

vectors are projected by another linear layer to275

form the final output Hi of the CU-embedding, 276

Hi = [h1,h2, · · · ,hT ] of the current utterance, 277

as shown in Eq. (7). 278

ht = [gt,f(pt)]W , (7) 279

where W is a linear projection matrix. Moreover, 280

an additional duration predictor takes Hi as inputs 281

and predicts the duration Di of each phoneme. 282

3.2 Cross-Utterance Enhanced CVAE 283

In addition to the CU-embedding, a CU-enhanced 284

CVAE is proposed to conquer the lack of prosody 285

variation of FastSpeech 2 and the inconsistency 286

between the standard Gaussian prior distribution 287

sampled by the VAE based TTS system and the 288

true prior distribution of speech. Specifically, the 289

CU-enhanced CVAE consists of an encoder mod- 290

ule and a decoder module, as shown in Fig. 1. The 291

utterance-specific prior in the encoder aims to learn 292

the prior distribution zp from the CU-embedding 293

output H and predicts duration D. For conve- 294

nience, the subscript i is omitted in this subsection. 295

Furthermore, the posterior module in the encoder 296

takes as input reference mel-spectrogram x, then 297

model the approximate posterior z conditioned on 298

utterance-specific conditional prior zp. Sampling 299

is done from the estimated prior by the utterance- 300

specific prior module and is reparameterized as: 301

302

z = µ⊕ σ ⊗ zp, (8) 303

where µ and σ are estimated from conditional 304

posterior module to approximate posterior distri- 305

bution N (µ,σ), zp is sampled from the learned 306

utterance-specific prior, and ⊕,⊗ are elementwise 307

addition and multiplication operation. Furthermore, 308

the utterance-specific conditional prior module is 309

conducted to learn utterance-specific prior with 310

CU-embedding output H and D. The reparame- 311

terization is as follows: 312

zp = µp ⊕ σp ⊗ ϵ, (9) 313

where µp,σp are learned from the utterance- 314

specific prior module, and ϵ is sampled from the 315

standard Gaussian N (0, 1). By substituting Eq. (9) 316

into Eq. (8), the following equation can be derived 317

for the total sampling process: 318

z = µ⊕ σ ⊗ µp ⊕ σ ⊗ σp ⊗ ϵ. (10) 319

During inference, sampling is done from the 320

learned utterance-specific conditional prior distri- 321

bution N (µp,σp) from CU-embedding instead of 322

4



a standard Gaussian distribution N (0, 1). For sim-323

plicity, we can formulate the data likelihood calcu-324

lation as follows, where the intermediate variable325

utterance-specific prior zp from D,H to obtain z326

is omitted:327

pθ(x | H,D) =
∫
pθ(x | z,H,D)pϕ(z | H,D)dz,

(11)328

In Eq. (11), ϕ, θ are the encoder and decoder mod-329

ule parameters of the CUC-VAE TTS system.330

Moreover, the decoder in CU-enhanced CVAE331

is adapted from FastSpeech 2. An additional pro-332

jection layer is firstly added to project z to a high333

dimensional space so that z could be added to H .334

Next, a length regulator expands the length of in-335

put according to the predicted duration D of each336

phoneme. The rest of Decoder is same as the De-337

coder module in FastSpeech 2 to convert the hid-338

den sequence into an mel-spectrogram sequence339

via parallelized calculation.340

Therefore, the ELBO objective of the CUC-VAE341

can be expressed as,342

L(x | H,D) = Eqϕ(z|D,H)[log pθ(x | z,D,H)]

− β1

T∑
n=1

DKL

(
qϕ1

(
zn | zn

p ,x
)
∥qϕ2

(
zn
p | D,H

))
− β2

T∑
n=1

DKL

(
qϕ2

(
zn
p | D,H

)
∥p(zn

p )
)
,

(12)343

where ϕ1, ϕ2 are two parts of CUC-VAE encoder ϕ344

to obtain z from zp,x and zp from D,H respec-345

tively, β1, β2 are two balance constants, p(zn
p ) is346

chosen to be standard Gaussian N (0, 1). Mean-347

while, zn and zn
p correspond to the latent represen-348

tation for the n-th phoneme, and T is the length of349

the phoneme sequence.350

4 Experimental Setup351

4.1 Dataset352

To evaluate the proposed CUC-VAE TTS system,353

a series of experiments were conducted on a single354

speaker dataset and a multi-speaker dataset. For the355

single speaker setting, the LJ-Speech read English356

data (Ito and Johnson, 2017) was used which con-357

sists of 13,100 audio clips with a total duration of358

approximately 24 hours. A female native English359

speaker read all the audio clips, and the scripts were360

selected from 7 non-fiction books. For the multi-361

speaker setting, the train-clean-100 and train-clean-362

360 subsets of the LibriTTS English audiobook363

data (Zen et al., 2019) were used. These subsets364

used here consist of 1151 speakers (553 female365

speakers and 598 male speakers) and about 245 366

hours of audio. All audio clips were re-sampled at 367

22.05 kHz in experiments for consistency. 368

The proposed CU-embedding in our system 369

learns the cross-utterance representation from sur- 370

rounding utterances. However, unlike LJ-Speech, 371

transcripts of LibriTTS utterances are not arranged 372

as continuous chunks of text in their correspond- 373

ing book. Therefore, transcripts of the LibriTTS 374

dataset were pre-processed to find the location of 375

each utterance in the book, so that the first L and 376

last L utterances of the current one can be effi- 377

ciently obtained during training and inference. The 378

pre-processed scripts and our code are available 1. 379

4.2 System Specification 380

The proposed CUC-VAE TTS system was based 381

on the framework of FastSpeech 2. The CU- 382

embedding utilised a Transformer to learn the cur- 383

rent utterance representation, where the dimension 384

of phoneme embeddings and the size of the self- 385

attention were set to 256. To explicitly extract 386

speaker information, 256-dim speaker embeddings 387

were also added to the Transformer output. Mean- 388

while, the pre-trained BERT model to extract cross- 389

utterance information had 12 Transformer blocks 390

and 12-head attention layers with 110 million pa- 391

rameters. The size of the derived embeddings of 392

each cross-utterance pair was 768-dim. Note that 393

the BERT model and corresponding embeddings 394

were fixed when training the TTS system. Net- 395

work in CU-enhanced CVAE consisted of four 1D- 396

convolutional (1D-Conv) layers with kernel sizes 397

of 1 to predict the mean and variance of 2-dim 398

latent features. Then a linear layer was added to 399

transform the sampled latent feature to a 256-dim 400

vector. The duration predictor which consisted of 401

two convolutional blocks and an extra linear layer 402

to predict the duration of each phoneme for the 403

length regulator in FastSpeech 2 was adapted to 404

take in CU-embedding outputs. Each convolutional 405

block was comprised of a 1D-Conv network with 406

ReLU activation followed by a layer normaliza- 407

tion and dropout layer. The Decoder adopted four 408

feed-forward Transformer blocks to convert hidden 409

sequences into 80-dim mel-spectrogram sequence, 410

similar to FastSpeech 2. Finally, HifiGAN (Kong 411

et al., 2020) was used to synthesize waveform from 412

the predicted mel-spectrogram. 413

1https://anonymous.4open.science/r/co
de-2708
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4.3 Evaluation Metrics414

In order to evaluate the performance of our pro-415

posed component, both subjective and objective416

tests were performed. First of all, a subjective417

listening test was performed over 11 synthesized418

audios with 23 volunteers asked to rate the natural-419

ness of speech samples on a 5-scale mean opinion420

score (MOS) evaluation. The MOS results were421

reported with 95% confidence intervals. In addi-422

tion, an AB test was conducted to compare the423

CU-enhanced CVAE with utterance-specific prior424

and normal CVAE with standard Gaussian prior.425

23 volunteers were asked to choose the preference426

audio generated by different models in the AB test.427

For the objective evaluation, F0 frame error428

(FFE) (Chu and Alwan, 2009) and mel-cepstral dis-429

tortion (MCD) (Kubichek, 1993) were used to mea-430

sure the reconstruction performance of different431

VAEs. FFE combined the Gross Pitch Error (GPE)432

and the Voicing Decision Error (VDE) and was433

used to evaluate the reconstruction of the F0 track.434

MCD evaluated the timbral distortion, which was435

computed from the first 13 MFCCs in our experi-436

ments. Moreover, word error rates (WER) from an437

ASR model trained on the real speech from the Lib-438

riTTS training set were reported. Complementary439

to naturalness, the WER metric showed both the440

intelligibility and the degree of inconsistency be-441

tween synthetic speech and real speech. The ASR442

system used in this paper was an attention-based443

encoder-decoder model trained on Librispeech 960-444

hour data, with a WER of 4.4% on the test-clean set.445

Finally, the diversity of samples was evaluated by446

measuring the standard deviation of two prosody447

attributes of each phoneme: relative energy (E)448

and fundamental frequency (F0), similar to Sun449

et al. (2020b). Relative energy was calculated as450

the ratio of the average signal amplitude within a451

phoneme to the average amplitude of the entire sen-452

tence, and fundamental frequency was measured453

using a pitch tracker. In this paper, the average454

standard deviation of E and F0 of three phonemes455

in randomly selected 11 utterances was reported to456

evaluate the diversity of generated speech.457

5 Results458

This section presents the series of experiments for459

the proposed CUC-VAE TTS system. First, abla-460

tion studies were performed to progressively show461

the influence of different parts in the CUC-VAE462

TTS system based on MOS and WER. Next, the463

reconstruction performance of CUC-VAE was eval- 464

uated by FFE and MCD. Then, the naturalness and 465

prosody diversity using CUC-VAE were compared 466

to FastSpeech 2 and other VAE techniques. At last, 467

a case study illustrated the prosody variations with 468

different cross-utterance information as an exam- 469

ple. The audio examples are available on the demo 470

page 2. 471

5.1 Ablation Studies 472

Ablation studies in this section were conducted on 473

the LJ-Speech data based on the subjective test and 474

WER. First, to investigate the effect of the differ- 475

ent number of neighbouring utterances, CUC-VAE 476

TTS systems built with L = 1, 3, 5 were evaluated 477

using MOS scores, as shown in Table 1. 478

Table 1: The MOS results of CUC-VAE TTS systems
on LJ-Speech dataset. MOS was reported with 95% con-
fident intervals. “L = 1”,“L = 3”,“L = 5” represented
the number of past and future utterances.

Systems Cross-utterance (2L) MOS
CUC-VAE L = 1 2.93 ± 0.12
CUC-VAE L = 3 3.72 ± 0.09
CUC-VAE L = 5 3.95 ± 0.07

The effect of the different number of neighbour- 479

ing utterances on the naturalness of the synthesized 480

speech can be observed by comparing MOS scores 481

which is the higher the better. The CUC-VAE with 482

L = 5 achieved highest score 3.95 compared to 483

system with L = 1 and L = 3. Since only marginal 484

MOS improvements were obtained using more than 485

5 neighbouring utterances, the rest of experiments 486

were performed using L = 5. 487

Then we investigated the influence of each part 488

of CUC-VAE on performance. The baseline was 489

our implementation of Fastspeech 2. For the sys- 490

tem denoted as Baseline + fine-grained VAE which 491

served as a stronger baseline, the pitch predictor 492

and energy predictor of FastSpeech 2 were replaced 493

with a fine-grained VAE with 2-dim latent space. 494

Based on the fine-grained VAE baseline, the CVAE 495

was added without the CU-embedding to the sys- 496

tem, referred to as Baseline+CVAE to verify the 497

function of CVAE on the system, which conditions 498

on the current utterance. Again, MOS was com- 499

pared among these systems as shown in Table 2. 500

As shown in Table 2, MOS progressively in- 501

creased when fine-grained VAE, CVAE, and CU- 502

embedding were added in consecutively. The pro- 503

posed CUC-VAE TTS system achieved the highest 504

2https://bit.ly/cuc-vae-tts-demo
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Table 2: The MOS results of TTS systems with different
modules on LJ-Speech dataset. MOS was reported with
95% confident intervals. Baseline + fine-grained VAE
added a fine-grained VAE to baseline. Baseline+CVAE
represents a CVAE TTS system without CU-embedding.

Systems MOS
Ground Truth 4.31 ± 0.06

Baseline 3.85 ± 0.07
Baseline+Fine-grained VAE 3.55 ± 0.08

Baseline+CVAE 3.64 ± 0.08
CUC-VAE 3.95 ± 0.07

MOS 3.95 compared to baselines. The results indi-505

cated that CUC-VAE module played a crucial role506

in generating more natural audio.507

To verify the importance of the utterance-508

specific prior to the synthesized audio, the same509

CUC-VAE system was used, and the only differ-510

ence is whether to sample latent prosody features511

from the utterance-specific prior or from a stan-512

dard Gaussian distribution. A subjective AB test513

was performed which required 23 volunteers to pro-514

vide their preference between audios synthesized515

from the 2 approaches. Moreover, WER was also516

compared here to show the intelligibility of the517

synthesized audio. As shown in Table 3, the pref-518

erence rate of using the utterance-specific prior is519

0.52 higher than its counterpart, and a 4.9% abso-520

lute WER reduction was found, which confirmed521

the importance of the utterance-specific prior in our522

CUC-VAE TTS system.523

Table 3: The subjective listening preference rate be-
tween CUC-VAE with or without utterance-specific
prior from the AB test. The CUC-VAE without
utterance-specific prior was a simplified version of
our proposed CUC-VAE where latent samples were
drawn from a standard Gaussian distribution instead of
utterance-specific prior. WER metric was also reported.

System utterance-specific prior RATE WER
CUC-VAE % 0.24 14.8
CUC-VAE ! 0.76 9.9

5.2 Reconstruction Performance524

FFE and MCD were used to measure the re-525

construction performance of VAE systems. An526

utterance-level prosody modelling baseline which527

extract one latent prosody feature vector for an528

utterance was added for more comprehensive com-529

parison, and is referred to as the Global VAE.530

Table. 4 shows the reconstruction performance531

Table 4: Reconstruction preformance on LJ-Speech and
LibriTTS dataset. + Global VAE and + fine-grained
VAE represent that the baseline is added the global VAE
and the fine-grained VAE, respectively.

Systems
LJ-Speech LibriTTS

MCD FFE MCD FFE
Baseline 6.70 0.58 6.32 0.58

Baseline+Global VAE 6.50 0.41 6.27 0.45
Baseline+Fine-grained VAE 6.34 0.26 6.28 0.35

CUC-VAE 6.27 0.24 6.04 0.34

on the LJ-Speech dataset and LibriTTS dataset, 532

respectively. Baseline had the highest value of FFE 533

and MCD on the LJ-Speech dataset and LibriTTS 534

dataset. The value of FFE and MCD decreased 535

when the global VAE was added and was further 536

reduced when the fine-grained VAE was added to 537

the baseline. Our proposed CUC-VAE TTS system 538

achieved the lowest FFE and MCD across the table 539

on both the LJ-Speech and LibriTTS datasets. This 540

indicated that richer prosody-related information 541

entailed in both cross-utterance and conditional 542

inputs was captured by CUC-VAE. 543

5.3 Sample Naturalness and Diversity 544

Next, sample naturalness and intelligibility were 545

measured using MOS and WER respectively on 546

both LJ-Speech and LibriTTS datasets. Comple- 547

mentary to the naturalness, the diversity of gener- 548

ated speech from the conditional prior was evalu- 549

ated by comparing the standard deviation of E and 550

F0 similar to (Sun et al., 2020b). 551

LJ-Speech experiments were shown in left part 552

of Table. 5. Compared to the global VAE and fine- 553

grained VAE, the proposed CUC-VAE received 554

the highest MOS and achieved the lowest WER. 555

Although both F0 and E of the CUC-VAE TTS 556

system were lower than the baseline + fine-grained 557

VAE, the proposed system achieved a clearly higher 558

prosody diversity than the baseline and baseline 559

+ global VAE systems. The fine-grained VAE 560

achieved the highest prosody variation as its latent 561

prosody features were sampled from a standard 562

Gaussian distribution, which lacks the constraint 563

of language information from both the current and 564

the neighbouring utterances. This caused extreme 565

prosody variations to occur which impaired both 566

the naturalness and the intelligibility of synthesized 567

audios. As a result, the CUC-VAE TTS system was 568

able to achieve high prosody diversity without hurt- 569

ing the naturalness of the generated speech. In 570

fact, the adequate increase in prosody diversity im- 571
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Table 5: Sample naturalness and diversity results on LJ-Speech and LibriTTS datasets. Three metrics are reported
for each dataset, namely MOS, WER, and Prosody Std. The Prosody Std. includes standard deviations of relative
energy (E) and fundamental frequency (F0) in Hertz within each phonene.

LJ-Speech LibriTTS

MOS WER Prosody Std. MOS WER Prosody Std.

F0 E F0 E

Ground Truth 4.31 ± 0.06 8.8 - - 4.10 ± 0.07 5.0 - -
Baseline 3.85 ± 0.07 10.8 1.86× 10−13 6.78× 10−7 3.53 ± 0.08 6.0 2.13× 10−13 7.22× 10−7

Baseline+Global VAE 3.82 ± 0.07 10.4 1.46 0.0004 3.59 ± 0.08 10.8 2.01 0.0054
Baseline+Fine-grained VAE 3.55 ± 0.08 12.8 49.60 0.0670 3.43 ± 0.08 5.6 63.64 0.0901

CUC-VAE 3.95 ± 0.07 9.9 26.35 0.0184 3.63 ± 0.08 5.5 30.28 0.0217

proved the expressiveness of the synthesized audio,572

and hence increased the naturalness.573

The right part of Table. 5 showed the results574

on LibriTTS dataset. Similar to the LJ-Speech575

experiments, the CUC-VAE TTS system achieved576

the best naturalness measured by MOS, the best577

intelligibility measured by WER, and the second-578

highest prosody diversity across the table. Overall,579

consistent improvements in both naturalness and580

prosody diversity were observed on both single-581

speaker and multi-speaker datasets.582

5.4 A Case Study583

To better illustrate how the utterance-specific584

prior influenced the naturalness of the synthesized585

speech under a given context, a case study was586

performed by synthesizing an example utterance,587

“Mary asked the time”, with two different neigh-588

bouring utterances: “Who asked the time? Mary589

asked the time.” and “Mary asked the time, and was590

told it was only five.” Based on the linguistic knowl-591

edge, to answer the question in the first setting, an592

emphasis should be put on the word “Mary”, while593

in the second setting, the focus of the sentence is594

“asked the time”. The model trained on LJ-Speech595

dataset was used to synthesize the utterance and596

the results were shown in Fig. 2.597

Fig. 2 showed the energy and pitch of the two598

utterance. Energy of the first word “Mary” in599

Fig. 2(a) changed significantly (energy of “Ma-”600

was much higher than “-ry”), which reflected an601

emphasis on the word “Mary”, whereas in Fig. 2(b),602

energy of “Mary” had no obvious change, i.e., the603

word was not emphasized. On the other hand,604

the fundamental frequency of words “asked” and605

“time” stayed at a high level for a longer time in the606

second audio than the first one, reflecting another607

type of emphasis on those words which was also608

coherent with the given context. Therefore, the609

difference of energy and pitch between the two ut-610

terances demonstrated that the speech synthesized611

(a) Who asked the time? Mary asked the time.

(b) Mary asked the time, and was told it was only five.

Figure 2: Comparisons between the energy and pitch
contour of same text “Mary asked the time" but different
neighbouring utterances, generated by CUC-VAE TTS
trained on LJ-Speech.

by our model is sufficiently contextualized. 612

6 Conclusion 613

In this paper, a non-autoregressive CUC-VAE TTS 614

system was proposed to synthesize speech with bet- 615

ter naturalness and more prosody diversity. CUC- 616

VAE TTS system estimated the posterior distribu- 617

tion of latent prosody features for each phone based 618

on cross-utterance information in addition to the 619

acoustic features and speaker information. The 620

generated audio was sampled from an utterance- 621

specific prior distribution, approximated based on 622

cross-utterance information. Experiments were 623

conducted to evaluate the proposed CUC-VAE TTS 624

system with metrics including MOS, preference 625

rate, WER, and the standard deviation of prosody 626

attributes. Experiment results showed that the pro- 627

posed CUC-VAE TTS system improved both the 628

naturalness and prosody diversity in the generated 629

audio samples, which outperformed the baseline in 630

all metrics with clear margins. 631
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