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Abstract
Unconscious bias has been shown to influence
how we assess our peers, with consequences for
hiring, promotions and admissions. In this work,
we focus on affinity bias, the component of un-
conscious bias which leads us to prefer people
who are similar to us, despite no deliberate inten-
tion of favoritism. In a world where the people
hired today become part of the hiring commit-
tee of tomorrow, we are particularly interested
in understanding (and mitigating) how affinity
bias affects this feedback loop. This problem has
two distinctive features: 1) we only observe the
biased value of a candidate, but we want to opti-
mize with respect to their real value 2) the bias
towards a candidate with a specific set of traits
depends on the fraction of people in the hiring
committee with the same set of traits. We in-
troduce a new bandits variant that exhibits those
two features, which we call affinity bandits. Un-
surprisingly, classical algorithms such as UCB
often fail to identify the best arm in this setting.
We prove a new instance-dependent regret lower
bound, which is larger than that in the standard
bandit setting by a multiplicative function of K.
Since we treat rewards that are time-varying and
dependent on the policy’s past actions, deriving
this lower bound requires developing proof tech-
niques beyond the standard bandit techniques. Fi-
nally, we design an elimination-style algorithm
which nearly matches this regret, despite never
observing the real rewards.

1. Introduction
“Unconscious bias” is a term coined to designate stereotypes
(positive or negative) that we hold outside of our aware-
ness. In recent years, numerous studies have argued that
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unconscious bias is pervasive, and that it shapes even well-
meaning individuals’ assessment of their peers (FitzGerald
& Hurst, 2017; Oberai & Anand, 2018; Pager & Shepherd,
2008; Tate & Page, 2020; Holroyd et al., 2017; Buetow,
2019; Sukhera, 2019). These skewed assessments in turn im-
pact employment (Bertrand & Mullainathan, 2004; Bohnet
et al., 2016; Uhlmann & Cohen, 2005; Stoica et al., 2020;
Crawford et al., 2018; Somashekhar, 2014). We want to de-
sign systemic mitigation strategies which relieve individuals
of the difficult task of giving an unbiased assessment, while
still leading towards a fairer outcome.

In this work, we choose to focus solely on one of the key
aspects of unconscious bias: affinity (or similarity) bias
(Huang et al., 2019; Oberai & Anand, 2018; Russell et al.,
2019; Clifton et al., 2019). This bias captures the human ten-
dency to favor people who are similar to ourselves, whether
it’s because of our skill-set, our language, or even the school
we attended. We are particularly interested in the feedback
loop which naturally arises in hiring: today’s hired candi-
date will be part of tomorrow’s hiring committee. Therefore,
the more people with a specific set of attributes are hired, the
higher the proportion of them in future decision processes,
which means the stronger the overall affinity bias will be
towards this set of attributes.

These types of decision-making processes with feedback
loops have been modeled by non-stationary multi-armed
bandits (Gittins, 1979; Whittle, 1988; Heidari et al., 2016;
Levine et al., 2017; Malik et al., 2022; 2023; Kleinberg &
Immorlica, 2018). In this framework, the decision-maker
can interact with the system by pulling an arm, and the
system can react by adapting its reward based on the past
actions. Prior work has studied both stochastic systems and
adversarial systems. As we are interested in modeling an
ever-present unconscious effect–as opposed to conscious,
chosen discriminatory actions–we assume the system reacts
in a stochastic way.

One key feature of our problem is that although the per-
ceived rewards evolve, the real reward of each arm remains
unchanged. This is in stark contrast to most of the non-
stationary bandits literature, in which it is assumed that
previous actions change the environment. In our case, the
environment remains unchanged, but as the composition
of the hiring committee changes, so does its overall un-
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conscious bias, which leads to variations in the observed
rewards. While the decision-maker only observes biased
rewards, they want to optimize their actions with respect
to the real rewards, which are never observed. The other
key feature of our problem is that the biased feedback de-
pends not only on the past actions (which has been studied
in (Tang & Ho, 2019; Gaucher et al., 2022; Schumann et al.,
2022)), but also on time t, since what matters is the fraction
of times this arm has been selected. Indeed, when someone
from a given group (defined as a set of attributes) is hired,
not only does this group’s relative importance increases, but
all the other groups become proportionally less represented.

To gain insights into the effects and mitigation strategies of
affinity bias in hiring, we propose a non-stationary bandit
setting, in which each arm represents a group of people
exhibiting the same set of traits. On each turn, the hiring
committee picks an arm, which represents hiring someone
with that set of traits. They then observe only the potentially
biased feedback of this arm, which relates to the real reward
in the following informal way: the observed rewards (biased
feedback) follow the same distribution as the real rewards,
except that the average of each arm i is multiplicatively
reweighed by Wi(t), which is expressed as a function1 f
of the fraction of time i has been pulled at time t, and the
initial bias of the system.

Trivially, if the decision-makers do not gain information
about the real reward from the perceived reward, it is im-
possible for them to minimize the regret with respect to the
real reward. We therefore assume that while the hiring com-
mittee knows neither the exact function f , the initial bias,
nor the real reward, it does know that the perceived reward
depends on the real reward in the way expressed above. It is
important to note that unconscious bias is—by definition—
shaping our judgment beyond our awareness. As such, no
additional observations of the candidate over the bandit
decision-making time-scale after their hiring would help
reveal their true value: the bias comes from the assessor’s
perception, which will potentially take a longer time-scale
to overcome. We now move on to our main contributions:

1.1. Main contributions

Affinity bandits model. We introduce a new variant of
non-stationary multi-arm bandits called affinity bandits, for
which we only observe evolving biased feedback. This bi-
ased feedback varies based on the fraction of times each arm
has been selected in the past, while the real unobserved re-
ward of each arm remain unchanged. Unsurprisingly, adding
this feedback loop makes traditional algorithms (such as
UCB or EXP3) incur linear regret.

1The function f models the unknown relation between the
amount of bias and size of the affinity group. The choice of
f(·) = 1 models an unbiased system.

New lower bound through new techniques. We prove
this setting is inherently harder than the standard setting by
obtaining a lower bound on the regret. This bound holds
even in the full information setting, when the exact bias is
known, and therefore results only from the feedback loop
effect (and not, for example, from the lack of information).
Compared to the standard regret bound, the regret in our
setting incurs at least a multiplicative factor which depends
on the total number of groups. We emphasize that the proof
of this lower bound requires several new ideas beyond the
standard regret lower bound techniques.

Near optimal algorithm. We provide an algorithm that
attains logarithmic regret, and nearly matches the lower
bound. Interestingly, this is a variant of the elimination
algorithm, which keeps a set of potentially optimal arms,
and play them one after the other until it is certain that
it can eliminate some of them. We therefore prove that
to compensate for unconscious bias, the strategy which
gives a chance to everyone one after the other until enough
information is gathered is almost optimal.

1.2. Related works

Aside from the tight connections with “non-stationary ban-
dits” and “history-dependent biased bandits” mentioned
above, our work is linked to a few other lines of research
(see Appendix A for an extended discussion). There is a
rich history of fairness-related work with bandits (Joseph
et al., 2016; Liu et al., 2017; Gillen et al., 2018; Khalili
et al., 2021; Wang et al., 2021), in which the goal is to
minimize regret while satisfying some fairness constraints.
Our setting could also be seen as a special case of partial
monitoring (Rustichini, 1999; Bartók et al., 2014; Latti-
more & Szepesvári, 2019; Bartók et al., 2011; Bar-On &
Mansour, 2024) with adversarial feedback. However, their
regret guarantees do not transfer meaningfully to our set-
ting (see Appendix B for details). Finally, our work build
on techniques for bandit lower bound, in particular asymp-
totic instance-dependent techniques (Lai & Robbins, 1985;
Burnetas & Katehakis, 1996) and the framework to obtain
bounds based on divergence decomposition (Garivier et al.,
2019; Kaufmann et al., 2016). Our work generalizes this
framework to handle the challenging setting where observed
feedback is time-varying and dependent on the decisions of
a policy which potentially knows the bias model exactly.

2. Problem Setting
We consider a variant of the K-armed stochastic multi-
armed bandit problem where each arm i ∈ [K] represents a
group of people exhibiting the same set of traits relevant for
the hiring task, e.g. skill-set. This arm is associated with a
distribution νi with finite, unknown mean µi. A bandit pol-
icy π interacts with (a transformation of) this environment
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Figure 1: Representation of our setting when each arm has been
picked exactly once. The expected biased feedback is the expected
real reward divided by K. The ordering of the observed rewards is
identical to that of the real rewards, but the suboptimality gaps are
divided by K.
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Figure 2: From the setting in Figure 1, we picked arm
2. The biased feedback for arm 2 now appears better
than the one for arm 1, the real best arm. Moreover,
while the fraction for arm 2 increases, the fraction for
all the other arm decreases.

ν = (νi)i∈[K] over n time steps. At each time t ≤ n, the
policy first selects an arm At ∈ [K], then observes stochas-
tic feedback Yt. The objective of a policy π is to minimize
the (pseudo-)regret:

Rν,π(n) = max
i∗∈[K]

E

∑
t∈[n]

Xi∗,t −XAt,t


=
∑
i∈[K]

∆iE [Ti(n)] , (1)

where each Xi,t ∼ νi is an (unobserved) sample from arm
i’s associated distribution, ∆i = maxi∗∈[K] µi∗ − µi is the
suboptimality gap of arm i, and Ti(n) =

∑n
t=1 1{At =

i} is the number of times arm i is played from time 1 to
n. As this objective depends on the unobserved Xi,t, not
the feedback Yt, achieving sublinear regret is not possible
without an assumption on the feedback. We aim to model
feedback systems with the following features:

1. The system has an initial, perhaps misleading, affinity
for each arm.

2. Pulling an arm increases the system’s affinity towards
that arm.

3. Pulling an arm slightly decreases the system’s affinity
towards other arms2.

We adopt a fairly general model on the feedback Yt captur-
ing the essence of these features:
Assumption 2.1 (Feedback model). At each time t, upon
pulling an arm At ∈ [K], the policy observes feedback Yt

sampled from a distribution satisfying:

E [Yt | Ft−1] = µAtWAt(t)

(Yt − E [Yt | Ft−1]) is 1-subGuassian,
(2)

where Ft is the filtration of observations (As, Ys)s≤t until

2This represents the relative affinity of a group slightly decreas-
ing when the size of the hiring committee increases without the
size of the group increasing.

t, and Wi(t) is a multiplicative reweighting of arm i’s mean
µi. We assume this multiplicative reweighting satisfies:

Wi(t) ≜ f

(
T 0
i + Ti(t− 1)

tbias0 + t− 1

)
≜ f

(
T bias
i (t− 1)

tbias − 1

)
(3)

for some T 0
i ≥ 1, tbias0 =

∑
i∈[K] T

0
i , and function f (x)

which is bounded on (0, 1], non-decreasing, and L-Lipschitz
for x ∈ (0, 1]. In other words, the reweighting Wi(t) is a
function of the total fraction of times arm i has been pulled.

Important features of feedback model:

(i) Generalizes subGaussian bandits. Our setting sub-
sumes the standard subGaussian bandit setting. Indeed,
notice that f (x) = 1 and Yt = XAt,t where Xi,t − µi is
1-subGaussian satisfies Assumption 2.1.

(ii) Admits polynomial bias functions. Our setting allows
the mean of Yt to scale with the fraction of times the selected
arm At has been played, or indeed any bounded polynomial
of this fraction. More precisely, for any α ≥ 1, our model
captures f (x) = xα since this choice is α-Lipschitz, in-
creasing, and bounded in [0, 1] for x ∈ [0, 1].

(iii) Extends beyond polynomial biases. Our assumptions
on f (x) are more general than simply functions of the
form xα. For example, the sigmoid function f (x) = (1 +
exp(−x))−1 is 1/4-Lipschitz, increasing, and bounded be-
tween [1/2, 1) for x ∈ [0, 1]. Further, for any function f (x)
satisfying Assumption 2.1, the functions min {c1, f (x)}
and max {c2, f (x)} also satisfy Assumption 2.1 for any
c1, c2 ∈ [0, 1].

(iv) Allows additive, multiplicative, and random re-
ward transformations. Concretely, if Xi,t − µi is 1-
subGaussian, then all of the following choices of feedback
Yt satisfy Assumption 2.1: (a) Yt = WAt

(t)XAt,t, (b)
Yt = XAt,t + µAt

(Wi(t) − 1), and (c) Yt = BtXAt,t

where Bt is Bernoulli with mean Wi(t) (conditionally) in-
dependent of XAt,t.
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(v) Allows dependence on initial biases. The parameters
T 0
i correspond to the “initial bias” of the feedback system.

These parameters can, for instance, make initial feedback
for the optimal arm appear very small, and initial feedback
for a suboptimal arm appear very large. Indeed, if T 0

1 ≫ T 0
2

and Wi(t) =
Tbias
i (t−1)
tbias−1

, then on average, the feedback for
arm 1 will initially appear larger than that of arm 2, even if
µ2 > µ1.

3. Why is the problem difficult?
Ignoring the bias leads to linear regret. One may wonder
if naı̈vely ignoring the bias model and running a standard
bandit algorithm such as UCB or EXP3 could still achieve
sublinear regret in this setting. Unfortunately, these algo-
rithms suffer linear regret. Indeed, we prove in Theorem E.1
that UCB suffers linear regret on a simple 2-armed Bernoulli
bandit instance with constant suboptimality gaps. Empir-
ically, we observe this same phenomenon for UCB (Auer
et al., 2002), EXP3 (Auer et al., 1995), and EXP3-IX (Kocák
et al., 2014) in Figure 34.

At a high level, these algorithms fail because the bias struc-
ture can make a suboptimal arm appear empirically optimal
at early time steps. These standard algorithms will there-
fore start by favoring the suboptimal arm in the early stages.
However, the more an arm is played, the better its observed
mean appear, despite its real mean remaining unchanged.
This leads the algorithms to continue to select the subopti-
mal arm, incurring linear regret and even failing at best-arm
identification with constant probability. See Appendix F for
more details and comparisons to other UCB variants.

Exploding variance when “unbiasing” the feedback.
Even if the learner knew the feedback model exactly, it
could obtain unbiased samples from the true reward distri-
butions by multiplying the observed feedback by the inverse
reweighting WAt

(t)−1. However, this operation scales up
the variance by WAt(t)

−2 = f
(
Tbias
At

(t−1)/(tbias−1)
)−2

by
Assumption 2.1. Thus, for arms which have been played
infrequently, obtaining an unbiased sample comes at the
cost of potentially large variance (since f (x) is nondecreas-
ing in x). The fact that the variance (as well as, potentially,

4We report the results for a 2-armed Bernoulli bandit en-
vironment with µ1 = .4 < .6 = µ2 and with bias model
Wi(t) = Tbias

i (t−1)/(tbias−1). Each datapoint is the average of
60 repeats with time horizon n = 2 · 104, T bias

2 = 10, and T bias
1

varying from 1 and 200.
4We remark that the standard UCB-V algorithm assumes all

rewards are bounded on the interval [0, b] for a known constant b.
However, our implementation debiases the feedback Yt by obtain-
ing unbiased estimates of the true rewards, Zt,At = YtWAt(t)

−1,
which has unbounded support. Our implementation of this algo-
rithm adaptively estimates an upper bound for Zt,At based on the
observed samples. See Appendix F for details.

Algorithm 1 Elimination algorithm for unknown bias model

Require: Time horizon n ∈ N, sampling schedule mr ≈
log(n)/∆̃2

r, where ∆̃r = 2−r.
Let τ0 = 0, t = 1 and A1 = [K]
for r = 1, 2, . . . do

for ℓ ∈ [|mr|], i ∈ Ar in increasing order of index do
Pull arm i, receive feedback Yt, update t← t+ 1.

end for
Compute µ̂i(r), the empirical average of the feedback
for arm i observed during round r
Update active arms:
Ar+1 =

{
i ∈ Ar : maxj∈Ar

µ̂j(r)− µ̂i(r) ≤ ∆̃r

}
Mark τr as the end time of round r

end for

the support of the debiased samples) is time-varying and
can potentially scale polynomially in the time horizon in-
validates or trivializes standard regret guarantees for many
bandit algorithms (e.g., UCB-V (Audibert et al., 2007) and
EXP3 (Auer et al., 1995)). Since it rescales the feedback
by WAt

(t)−1 to obtain unbiased samples, UCB-V has sig-
nificantly larger regret scaling and deviations than in the
standard, unbiased stochastic feedback setting, as can be
seen on Figure 45.

Lower bound for known bias model but upper bound for
unknown. One notable feature of our lower bound is that
it holds even when the bias model f (·) and initial biases
T 0
i from Assumption 2.1 are known exactly to an algorithm.

Recall, however, that we aim to design an algorithm for
settings where the bias model and initial biases are unknown.
Theorem 5.2 thus gives us an ambitious (yet, as we show in
Theorem 4.1 and Corollary 5.4, nearly-tight) regret scaling
target.

4. Regret upper-bounds for unknown bias
model

Here, we study the phased-elimination style algorithm (es-
sentially the algorithm from (Auer & Ortner, 2010)) de-
scribed in Algorithm 1. We show that, even when the bias
model f

(
Tbias
i (t−1)/(tbias−1)

)
is unknown to the algorithm,

logarithmic instance-dependent regret bounds are possible,
assuming the time horizon is known and sufficiently large.

Before establishing the regret guarantee, let us first give
some intuition for why the algorithm should work. Algo-
rithm 1 proceeds in rounds r ≥ 1. At each round, the
objective of the algorithm is to eliminate all arms whose av-

5One can observe the impact of this scaling issue on a 2-armed
Bernoulli instance, with µ1 = .4 < .6 = µ2 and bias model
Wi(t) = Tbias

i (t−1)/(tbias−1). We show 40 sample paths for n =
2 · 105 time steps. T bias

1 = 100, T bias
2 = 10.
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the initial bias. We show results for UCB, EXP3 and EXP3-
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algorithms are more likely to pull it more than the optimal
arm. Moreover, even for high weight on the optimal arm, the
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optimal arm can be bounded away from 0.
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Figure 4: The number of times the suboptimal arm is pulled
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√
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XAt,t as samples. In the second environment, UCB-V re-
ceives “debiased” feedback YtWAt(t)

−1 as samples. While
we cannot conclude whether the regret of UCB-V grows as√
t from this graph, it is unlikely it grows as log(t).

erage feedback is smaller than the largest average feedback
by an additive factor of ∆̃r = 2−r. The main challenge is
to guarantee that this rule, with sufficiently high probability,
eliminates only the suboptimal arms. Notice that, for any
two arms i∗ and i,

E [µ̂i∗(r)− µ̂i(r) | Fr−1] = µi∗W̄i∗(r)− µiW̄i(r)

= (µi∗ − µi)W̄i∗(r) (4)
+ µi(W̄i∗(r)− W̄i(r)), (5)

where in the above, we employ a slight abuse of notation by
taking Fr to be the filtration of observations until the end of
round r, and W̄i(r) = 1/mr

∑τr
t=τr−1+1 Wi(t)1{At = i}

is the average reweighting of arm i over round r.

The first term in the above decomposition (4) is essentially
a reweighted suboptimality gap between arms i∗ and i with
the same sign as the difference in true means between these
two arms. The second term (5), however, is a non-zero bias
term which can be positive or negative, and could potentially
cause the optimal arm to be eliminated. Fortunately, one
can show (see Lemma C.7) that, under Assumption 2.1, that
(5) is bounded by:

|µi(W̄i∗(r)− W̄i(r))|≲ ∆̃2
rL(1 +

T 0
max − T 0

min

K
)
log(log(n)

log(n)

where T 0
max−T 0

min is the gap between the largest and small-
est initial number of arm pulls. This establishes that, for
sufficiently large n, the bias term (5) scales as ∆̃2

r ≪ ∆̃r,
and hence is negligible relative to the elimination criterion
of Algorithm 1. This is the key insight to proving that the al-

gorithm achieves a sublinear regret guarantee. In particular,
we establish the following:
Theorem 4.1 (Regret guarantee for Algorithm 1; Simplified
version of Theorem C.4 and Corollary C.6). Suppose that
Algorithm 1 is run for n time-steps in an environment ν
with bias model satisfying Assumption 2.1 with Lipschitz
constant L and µi ∈ [0, 1] for all i ∈ [K], using the sam-
pling schedule mr = 22r+6 log( 12π2K

2r2n). Further, sup-
pose n is sufficiently large such that log(nK)/log(log(nK)) ≳
L(1 + (T

0
max−T 0

min/K)), and T 0
max ≲ log(Kn). Then, the

regret of Algorithm 1 satisfies the following two bounds:

Rν,π(n) ≲ f (1/15K)
−2
∑

i:∆i>0
log(n)/∆i

and

Rν,π(n) ≲ f (1/15K)
−1
√
Kn log(n).

5. Asymptotic instance-dependent lower
bound

To characterize the fundamental difficulties of our problem
setting, we derive instance-dependent lower bounds on the
performance of any “consistent” bandit policy. Our notion
of consistency in Definition 5.1 is a finite-time adaptation
of similar (asymptotic) notions of consistency from the ban-
dits literature (e.g., (Lai & Robbins, 1985, Eq. (1.8)) and
(Burnetas & Katehakis, 1996, UF Policy)).
Definition 5.1 (Consistent policy). Let E be a set of un-
biased bandit environments ν with bias model follow-
ing Assumption 2.1 with a fixed and common set of ini-
tial biases

{
T 0
i

}
i∈[K]

and reweighting function Wi(t) =

5
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f
(
Tbias
i (t−1)/(tbias−1)

)
. We call a family of bandit policies

{πn}n≥1 consistent for an environment class E (with its
associated bias model) if there are constants6 C > 0 and
a ∈ (0, 1) such that, for all n ≥ 1 and ν ∈ E , the regret of
policy πn is bounded as: Rν,πn(n) ≤ C · na.

When the dependence of πn on n is clear from context,
we adopt a slight abuse of notation and call the policy π
consistent.

Before continuing, we emphasize a couple key features of
our notion of consistency, which differ slightly from those
in prior literature. Consistent policies πn (as per Defini-
tion 5.1) may (potentially) know both the time horizon and
bias model exactly. (i) The fact that the policy may know
the time horizon and satisfy consistency is crucial – indeed,
it is unclear if there exists any policy with sublinear regret
when the time horizon is unknown.7 (ii) Moreover, the fact
that the lower bound holds against policies which know the
bias model exactly makes the guarantee quite strong, and
reflects the fact that our setting is fundamentally harder than
a standard stochastic bandits problem, even when the bias
model is exactly known. (iii) Finally, we emphasize that
Definition 5.1 is non-vacuous, as there exist policies satisfy-
ing the definition (e.g, Algorithm 1 with regret guarantee in
Theorem 4.1).

We state the following lower bound and proof sketch un-
der the assumption that ∆max/∆min = O(1) for simplicity
of exposition. For the more general statement under less
restrictive conditions, see the more general statement and
proofs in Appendix D.

Theorem 5.2 (Informal statement of Theorem D.1). Fix
any K > 1, time horizon n, and bias model satisfying
Assumption 2.1. Let π be a consistent policy for the class of
Gaussian environments with suboptimality gaps ∆i ≤ 1 per
Definition 5.1. Then, for any such environment ν for which
∆max/∆min = O(1) and − log(f (4/K)) = O(log(K)), the
policy π must suffer regret at least:

Rν,π(n) ≳ f (O(log(K)/K))
−2
∑

i:∆i>0
log(n)/∆i,

Remark 5.3 (Comparison to standard bandit regret lower
bound). We note that in the standard, unbiased setting, Lai &
Robbins (1985) established a lower bound for Gaussian ban-
dits of the form Rν,π(n) ≥

∑
i:∆i>0

2 log(n)
∆i

−O(1). They

6Note that this constant C may depend on the common envi-
ronment parameters of E such as K, the initial biases T 0

i , and the
bias function f (·).

7One might hope to apply the standard “doubling trick” (Auer
et al., 1995) used to convert an algorithm which knows the time
horizon to one which do not (while essentially preserving the regret
guarantee of the known time-horizon algorithm). Unfortunately,
this trick does not apply to our setting, since the feedback observed
by the algorithm depends on the entire observation history.

also gave an algorithm with regret asymptotically match-
ing their lower bound. Our lower bound shows that, at
least in the setting where the maximum ratio of (nonzero)
suboptimality gaps is not too small, then the regret in the
biased setting we study must be at least a factor (roughly)
f (O(log(K)/K))

−2 larger than in the standard setting.

As a consequence of Theorem 5.2, one can show that, under
a mild additional condition on the bias function f (·), our re-
gret guarantee for Algorithm 1 is optimal up to poly log(K)
factors.

Corollary 5.4 (Comparison of Theorem 4.1 and Theo-
rem 5.2). Under the conditions in Theorems 4.1 and 5.2a,
suppose additionally that the bias model satisfies the follow-
ing: for any x ∈ (0, 1) and µ ∈ (1, 1/x), there is a constant
L′ > 0 such that f (µx) ≤ µL′

f (x) . Then, for sufficiently
large time horizons, the regret bound of Algorithm 1 in
Theorem 4.1 matches Theorem 5.2 up to a multiplicative
O(log(K)2L

′
) factor.

We briefly interpret Corollary 5.4 with some examples.
When f (x) = xα for some α ≥ 1, then Corollary 5.4
implies the regret bounds are tight up to an O(log(K)2α)
factor. Moreover, any non-decreasing reweighting func-
tion f (x) which is upper and lower bounded by con-
stant degree polynomials in x similarly satisfy optimal-
ity up to a poly log(K) factor. Finally, notice that some
reweighting functions such as the sigmoid function f (x) =
(1 + exp(−x))−1 are tight up to constant factors, since
f (x) ∈ [1/2, 1].

5.1. Proof sketch

Here, we give a sketch of the proof of Theorem 5.2. A
complete proof with all formal statements can be found
in Appendix D. In the following proof sketch, to reduce
clutter, we will use E [·] ,E(i) [·] to denote expectation w.r.t.
the observations of a policy π in environment ν,ν(i) (and
similarly for probabilities). Further, for a measure P on the
filtration Fn = σ(Hn) generated by the n-round observa-
tion history Hn = (At, Yt)t∈[n], we will denote PHτ for
τ ≤ n to be the pushforward measure of the observation
history until τ ,Hτ , under P.

Consider any bandit policy π interacting in an environment
ν with a bias model satisfying Assumption 2.1. To obtain
a lower bound on the regret Rν,π(n), we construct a set of
alternative environments ν(i) for each suboptimal arm in ν,
such that arm i is optimal under ν(i). To obtain sublinear
regret in environment ν and ν(i) simultaneously (as is man-
dated by the consistency condition in Definition 5.1), the
policy π must pull arm i sufficiently many times to distin-
guish between these two environments. Due to the feedback
model from Assumption 2.1, however, pulling an arm i
decreases the mean of the feedback distribution for every
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other arm. We show that this feedback structure implies
a significant strengthening of the stochastic bandit lower
bound.

Step 1: From lower-bounding regret to lower bounding
the number of arm pulls.

Recall that, by the standard regret decomposition (1), we
may write: Rν,π(n) =

∑
i:∆i>0 ∆iE [Ti(n)] . Thus, to

lower bound Rν,π(n), it suffices to lower bound E [Ti(n)]
for each suboptimal arm i. Since we assume for the sim-
plicity of this proof sketch that ∆max/∆min = O(1), it thus
suffices to find a set of arms S ⊂ [K] such that |S|= Ω(K)
and (roughly), for some β ≲ log(K):

E [Ti(n)] ≳ f (β/K)
−2 log(n)/∆2

max ∀i ∈ S. (6)

Step 2: Relating the divergence decomposition to a “bi-
ased proxy” for E [Ti(n)].

A standard technique for lower-bounding E [Ti(n)] is via
the KL-divergence decomposition. Indeed, in the standard
unbiased stochastic setting, the KL-divergence between the
observation histories in two environments ν,ν(i) differing
only in arm i takes the following convenient form:

DKL(Pr
Hn∥Pr(i),Hn) = DKL(νi∥ν(i)i )E [Ti(n)] .

See, e.g., (Auer et al., 1995, Eq. (17)) or (Latti-
more & Szepesvári, 2020, Lemma 15.1) for a refer-
ence. Under the feedback model of Assumption 2.1,
however, the KL-divergence depends on a “biased proxy”
E
[∑

t Wi(t)
21{At = i}

]
instead of directly on E [Ti(n)].

In particular, we have the following:

Lemma 5.5 (A divergence decomposition for biased envi-
ronments; Informal statement of Lemma D.3). Fix a time
horizon n ≥ 1, a Gaussian bandit environment with sub-
optimal arm i satisfying Assumption 2.1 and a policy π
satisfying Definition 5.1. Let ν(i) be a Gaussian bandit
environment (with the same bias model) such that νj = ν(j)

for all j ̸= i, and ν(i) has mean µ
(i)
i = µi + (1 + ε)∆i for

some ε > 0. Then, for any stopping time τi ≤ n,

(1 + ε)2∆2
i

2
E
[∑

t∈[τi]
Wi(t)

21{At = i}
]

= DKL(Pr
Hτi∥Pr(i),Hτi )

≳
E [τi]

n
log(n)−O(1).

Lemma 5.5 has two parts. The equality in Lemma 5.5
is the generalization of the divergence decomposition to
the biased feedback setting. As discussed above, instead
of directly equating the KL-divergence to E [Ti(τi)], this
identity relates the KL-divergence to a “biased proxy” for
this quantity, depending on the multiplicative biases Wi(t).

The inequality in Lemma 5.5 is the consequence of a data-
processing inequality on the KL-divergence (in a similar
spirit to the argument in (Garivier et al., 2019, Eq. (8))). For
more details, refer to the proof in Appendix D.

Step 3: Relating the “biased proxy” with E [Ti(τi)] via
stopping times

Inspecting Lemma 5.5, we observe that if we could find
a stopping time τi such that, simultaneously (i) the multi-
plicative reweighting Wi(t) ≤ f (β/K) for all t < τi and
(ii) E[τi]/n = Ω(1), then we could conclude that:

(1 + ε)2∆2
i

2
f

(
β

K

)2

E [Ti(τi)] ≳ log(n)−O(1).

The above would immediately imply our claimed regret
lower bound, through the regret decomposition (1). The
following claim gives a construction for τi which will (es-
sentially) satisfy (i). We will soon see that this construction
also satisfies (ii).

Claim 5.6 (Consequence of the Divergence Decomposition;
Simplified version of Claim D.4). Consider the same setting
as in Lemma 5.5, where arm i is suboptimal in ν. Fix
n0 ≈ log(n)/12∆2

max, β ≈ log(K), and define:

τi = min
{
t ≥ n0 : T

bias
i (t)/tbias ≳ β/K or t = n

}
.

Then, denoting Ti(a, b) = Ti(b)− Ti(a), we have that:

E
[∑

t∈[τi]
Wi(t)

21{At = 1}
]
≤ n0 + f

(
β

K

)2

E [Ti(n0, τi)] .

In particular, this implies that for any policy satisfying
E [τi] = Ω(n):

E [Ti(n0, τi)] ≳ f (β/K)
−2

(log(n)/∆2
i −O(1)) .

Claim 5.6 follows from the definition of the stopping time τi,
together with the conditions on Wi(t) from Assumption 2.1.
To utilize this claim, however, we must show that E [τi] =
Ω(n).

From Claim 5.6, we see that we can obtain a refined upper-
bound on the “biased proxy” using stopping times. Thus, re-
call that we choose n0 ≈ log(n)/12∆2

max. If we can show that
E [τi] ≥ n/6 for a constant fraction of arms, then Claim 5.6
would give our desired regret lower bound.

Step 4: Lower-bounding E [τi] for many arms

Recall from Claim 5.6 that τi is the first time after n0 when
arm i is played > β/K fraction of the time (or n, in the
case that this event does not occur). To complete our lower
bound argument, by Claim 5.6, it suffices to show that,
for any policy π (satisfying Definition 5.1), E [τi] = Ω(n).
Notice that, by definition of τi, the event that τi = n is

7
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equivalent to Tbias
i (t)/tbias ≤ β/K for all t ∈ [n0, n). Thus,

we have:

E [τi] ≥ nPr [τi = n]

= nPr
[
Tbias
i (t)/tbias ≤ β/K ∀t ∈ [n0, n)

]
. (7)

Hence, it suffices to show that the above probability is con-
stant.

Unfortunately, since the quantity Tbias
i (t)/tbias is inherently

policy-specific, it is infeasible to make deterministic state-
ments about this quantity for every arm. Fortunately, how-
ever, obtaining our lower bound requires bounding E [τi]
only for a constant fraction of suboptimal arms i. Thus,
through deterministic pigeonholing arguments, we identify
properties on the quantities Tbias

i (t−1)/(tbias−1) (for a suffi-
ciently large subset of arms) which hold deterministically
for any algorithm. The first is the observation that, for any
time t, many arms must have small Tbias

i (t−1)/(tbias−1).

Lemma 5.7 (Size of the small bias set). Consider a bandit
policy π interacting in an environment ν. Let us denote, for
any t ∈ [n] and β > 1,

St(β) =
{
i ∈ [K] : T

bias
i (t)/tbias ≤ β/K

}
.

Then, |St(β)|≥ (1− 1/β)K.

While Lemma 5.7 guarantees that |St(β)|= Ω(K) for every
fixed t, it does not guarantee that the arms in St(β) stay
the same as t changes. Moreover, the set St(β) is random.
Ideally, we would like to use Lemma 5.7 to conclude that
some fixed set S̃ of Ω(K) arms such that, for every i ∈ S̃:

Pr
[
Tbias
i (t−1)/(tbias−1) ≤ β/K ∀t ∈ [n0, n)

]
= Ω(1).

Indeed, together with Claim 5.6 with (7), this would imply
our desired lower bound.

There is, however, a flaw above – we cannot give any uncon-
ditional nontrivial guarantee on the number of arms for S̃ .
Indeed, at time n0 ≈ log(n)/12∆2

max, it might be the case that
the policy π identifies all arms i ∈ Sn0

(β), pulling them
until Tbias

i (t−1)/(tbias−1) > β/K. In this way, an algorithm
could guarantee that S̃ = ∅. However, there is a cost to the
policy removing many arms from Sn0

(β). Indeed, playing
any fixed arm decreases the fraction of times that all other
arms have been played. Thus, one can show that removing
each successive arm from Sn0

(β) requires playing the arm
more than the previously removed one, and this cost scales
with n0 (see Lemma D.8 for a precise statement).

Motivated the above discussion, we show that, for any policy
π, there is a (random) set of arms B with |B|= Ω(K) such
that, for each arm i ∈ B, one of two conditions must be
satisfied: either (i) the arm has been played less than a
O(1/K) fraction of time, or (ii) it has been pulled more than

our desired lower bound on this quantity. Notice that, if
B were not random, then we could appeal to Claim 5.6 to
conclude with a stronger lower bound on E [Ti(n)] for each
of the Ω(K) arms.

Lemma 5.8 (A small bias set which is stable over time; in-
formal statement of Lemma D.6). Let π be any bandit policy
interacting in an environment ν satisfying Assumption 2.1
with the reweighting function − log(f (4/K)) = O(log(K))
and suboptimality gaps satisfying ∆max/∆min = O(1). Let
n0 ≈ log(n)/∆2

max and β ≈ log(K). Then, there exists a set
of arms B ⊆ Sn0

(β) such that |B|≥ K/2, and each arm
i ∈ B satisfies one of the following:

Case 1. Tbias
i (t)
tbias

≲ β
K ∀t ∈ [n0, n).

Case 2. Ti(n0, n) ≳ f
(

4
K

)−2 log(n)
∆2

i
.

Intuitively, Lemma 5.8 tells us that, for any bandit policy
π, for a large (possibly random) set of arms B, one of two
things can happen. In Case 1, an arm i ∈ B is played
roughly Õ(1/K) times. Ignoring the fact that B is random,
these are the arms for which the stronger lower bound from
Claim 5.6 applies. In Case 2, Ti(n) must already be larger
than the desired regret lower-bound (recall that we assume
∆max/∆min = O(1) for this proof sketch.

In order to apply the arguments from above, we need to
translate the guarantees from Lemma 5.8, which hold for
a random set of arms B, to a guarantee that either Case 1
or 2 happens with constant probability for a deterministic
set of arms B′ of a similar size. As it turns out, this can be
accomplished via a pigeonholing argument. In particular, we
can obtain the following “derandomization” of Lemma 5.8:

Lemma 5.9 (A derandomization of Lemma 5.8; Informal
statement of Lemma D.11). There exists a (deterministic)
set B′ ⊆ [K] such that |B′|≥ K/4 and, for each i ∈ B′, one
of the following holds:

Case 1’. E [τi] ≥ n
6 .

Case 2’. E [Ti(n0, n)] ≳ f
(

4
K

)−2 log(n)
∆2

i
.

At a high level, Lemma 5.9 follows from Lemma 5.7 as
follows: We show, via a pigeonholing argument, that since
Lemma 5.7 is true for a random set B, there exists a deter-
ministic set B′ (of size roughly half of B) such that either
Case 1 or Case 2 happens with constant probability for each
arm i ∈ B′. Since one of these two events happens with
constant probability, we can translate each of these cases
into a corresponding in-expectation condition (see Cases 1’
and 2’).

With this deterministic guarantee, the proof is immediate:
for each arm in B′, if the first case holds with constant
probability, then, by definition of τi, we have E [τi] = Ω(n).
In this case, our lower bound follows from Claim 5.6. In
the other case, we directly have our desired lower bound
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on E [Ti(n)]. For further details, refer to the full proof in
Appendix D.
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Impact Statement
We introduce a simplified model to mathematically study
the feedback loop created by affinity bias in hiring, and how
to mitigate it. We prove a lower bound on the regret of
any algorithm (even one that knows the exact bias model),
and provide an algorithm nearly matching this lower bound
despite not knowing the bias. Perhaps the biggest insight
we gain from this analysis comes from the fact that this
almost-optimal algorithm is a variant of the elimination
algorithm (in which we pick each group one after the other
in a round-robin fashion, until we’re confident we have
gathered enough information), which shows giving every
group a chance is essentially the best policy in this setting.

Since we aim to minimize regret with respect to fixed arm
means, underlining assumptions of this work are that (i)
some groups perform better than others, and (ii) the under-
lying qualities of each group do not change with time. In
the case where groups are defined by skill-set and we aim to
pinpoint the most relevant skill-set for a job, assumption (i)
may come at no cost. However, if we define groups based on
sensitive attributes (which would allow to mitigate legally-
relevant discrimination), assuming that the different groups
have different expectations become problematic. This set-
ting could be better modeled, e.g., by a variant of contextual
bandits rather than our variant of the traditional bandits.
Moreover, if the decision-making process has downstream
impacts on the groups, assumption (ii) may also be unrealis-
tic. However, generalizing our model to accommodate both
time-varying feedback and underlying rewards appears to
be a challenging direction. We hope the proof techniques
here pave the way towards these setting, which we leave for
future work.

Finally, another assumption of the simplified model is that
we always consider the whole history of the algorithm in
our bias model, which would correspond to an ever-growing
hiring committee. In practice, the number of people in
a hiring committee is bounded. One could address this
limitation by allowing the algorithm to depend only on the
last M hires. This is also left for future work.
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A. Extended related works
Fairness and sequential decision making The study of fairness in the context of multi-armed bandit problems was first
studied in (Joseph et al., 2016). Since then, a number of works, including (Liu et al., 2017; Gillen et al., 2018; Khalili et al.,
2021; Wang et al., 2021), have considered a variety of fairness notions for bandits and sequential decision making problems.
In these settings, the goal is typically to simultaneously minimize regret measured with respect to the observed rewards,
while satisfying some notion of fairness. By contrast, in our setting, the decision maker receives biased feedback, and the
goal is to minimize regret relative to the unbiased reward distribution. There is otherwise no reward or penalty for fairness
(or lack thereof), diversity in action selection, etc., beyond the goal of minimizing regret.

Bandits with biased feedback A number of recent works have studied bandit models where the observed feedback is biased.
(Tang & Ho, 2019) considers a Bernoulli bandit problem where the observed rewards for arm i are biased as a function of (i)
the number of times arm i has been played and (ii) the empirical average of past rewards from arm i. (Gaucher et al., 2022;
Schumann et al., 2022) considers the problem of linear bandits where the observed feedback is biased by a linear function
which depends on the current action and reward of the selected arm. None of these models, however, can capture the setting
which we consider, where (a) the arm mean depends on the fraction of times an arm is played, and (b) playing one arm
decreases the biased means of every other arm.

Non-stationary bandits Multi-armed bandit problems with time-varying rewards have a long history. One of the earliest
models is the so-called rested bandit (Gittins, 1979), where the reward distribution of an arm changes (in some structured
way) when it is pulled. A related setting is the restless bandits problem, introduced in (Whittle, 1988), where the reward
distributions change with time, independently of the chosen arm. The rotting bandits and rising bandits problems (Heidari
et al., 2016; Levine et al., 2017; Li et al., 2020) consider settings where the means of an arm’s reward is decreasing or
increasing (respectively) as a function of the number of times it is played. The tallying bandit problem (Malik et al., 2022;
2023) is a generalization of the rested, rotting, and increasing bandits settings which allows the mean of an arm’s reward to
vary as a function of the number of times an arm was played over the last m time-steps. The recharging bandits problem
(Kleinberg & Immorlica, 2018) is a setting where the means vary as an increasing concave function of the time since they
were last played.

The measure of regret in each of these settings is with respect to the observed rewards with potentially changing distributions.
By contrast, in our model, the observed rewards are non-stationary, but the distributions of unbiased rewards (against which
we measure our regret) do not change with time.

Partial Monitoring Partial monitoring is a general sequential decision-making setting introduced by (Rustichini, 1999)
which encompasses both bandit and full-information problems, and allows the feedback observed by the learner after
playing an action to be different than the reward associated with that action. In the standard K-arm, m-outcome setting,
there is a loss matrix L ∈ RK×m and feedback matrix Φ ∈ ΣK×m, where Σ is the set of m outcomes. At each round,
the learner selects an arm At ∈ [K], simultaneously the environment selects an outcome it, then the learner suffers (but
does not observe) loss LAtit , and observes feedback ΦAtit . The goal is to minimize regret with respect to the true losses,
not the observed feedback. While our setting can be modelled as an adversarial partial monitoring problem (where the
number of outcomes scales with the number of possible bias configurations for each arm), the regret guarantees do not
transfer meaningfully. Indeed, the regret classification theorem (Bartók et al., 2014; Lattimore & Szepesvári, 2019) implies
linear regret in the worst case (since the guarantees assume adversarial noise). Moreover, guarantees for stochastic partial
monitoring (e.g., (Bartók et al., 2011)) are not applicable, as the feedback distributions are not i.i.d. in our model.

Techniques for bandit lower bounds Our lower bound techniques build upon a long line of works which characterized
the fundamental limits of bandit problems. Asymptotic instance-dependent bandit lower bounds were first given in (Lai &
Robbins, 1985), and later generalized in (Burnetas & Katehakis, 1996). (Garivier et al., 2019) gave a simple yet powerful
framework for obtaining lower bounds by combining the standard “divergence decomposition” for KL divergences with a
data-processing inequality. (Kaufmann et al., 2016) exploited the fact that the divergence decomposition holds also until any
finite stopping time to obtain lower bounds for the Best-Arm Identification problem. Our work generalizes this framework
to handle the challenging setting where observed feedback is time-varying and dependent on the decisions of a policy which
potentially knows the bias model exactly.

12
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Algorithm 2 The Elimination-style algorithm for unknown bias model, with added notations

Require: Time horizon n ∈ N, sampling schedule mr.
Pull each arm i ∈ [K] once (in arbitrary order) and discard the sample {Ensure T 0

i ≥ 1 for all i ∈ [K]}
Let τ0 = 0, t = 1, and A1 = [K]
for r = 1, 2, . . . do

Set bi(r) =
∑

j∈Ar
1{j < i} {The number of arms played before i at each iteration ℓ during round r.}

for ℓ ∈ [|mr|], i ∈ Ar in increasing order of index do
Pull arm i and receive feedback Yt (we will sometimes refer to this sample as Yi,r,ℓ).
Set timei(r, ℓ) = t and update t← t+ 1

end for
Update:

µ̂i(r) =

∑
ℓ∈[|mr|] Yi,r,ℓ

mr
and Ar+1 =

{
i ∈ Ar : max

j∈Ar

µ̂j(r)− µ̂i(r) ≤ 2−r

}
and τr = t− 1.

end for

B. Relationship to partial monitoring literature
Here, we expand upon the comment in Section 1 regarding partial monitoring algorithms suffering linear regret in our
setting.

Let us consider a 2-armed Bernoulli bandit instance with means 1 > µ1 > µ2 > 0, under a bias model Wi(t). At each
round, Yt is generated as follows: For each arm i ∈ {1, 2} at time t, let Xi,t ∼ Bernoulli(µi), let Fi,t ∼ Bernoulli(Wi(t)),
let Yi,t = Xi,tFi,t, and take Yt = YAt,t. Clearly, this construction satisfies Assumption 2.1.

We can model this setting as a partial monitoring problem as follows: let L,Φ ∈ RK×m, where K = 2 is the number of
arms and m = 16 is the number of outcomes (representing the 24 possible configurations of (X1,t, X2,t, F1,t, F2,t) for each
t). Then, the loss and feedback matrices at each row i ∈ [K] and each column (X1,t, X2,t, F1,t, F2,t) ∈ {0, 1}4 is:

L[i, (X1,t, X2,t, F1,t, F2,t)] = 1−Xi,t

Φ[i, (X1,t, X2,t, F1,t, F2,t)] = 1−Xi,tFi,t

An adversary could simulate our setting by sampling Xi,t ∼ Bernoulli(µi) and Fi,t ∼ Bernoulli(Wi(t)), then selecting
the outcome O(t) = (X1,t, X2,t, F1,t, F2,t).

However, it is straightforward to observe that, when the adversary is allowed to choose the outcomes arbitrarily, then linear
regret is inevitable. Indeed, consider the outcomes O1 = (0, 1, 0, 0) and O2 = (1, 0, 0, 0). Notice that L[i, O1] = 1{i = 1}
and L[i, O2] = 1{i = 2}, while Φ[i, O1] = 0 = Φ[i, O2]. Consider two environments: in the first, the adversary chooses
O1 for each time t ∈ [n] (hence, action 2 is optimal); in the second, the adversary chooses O2 for each time t ∈ [n] (hence,
action 1 is optimal). However, since the feedback is deterministically 0 at every time-step, (the distribution of) any policy is
the same in both environments. Thus, any policy must suffer regret at least n/2 in one of these two environments.

C. A phased elimination-style algorithm for unknown bias model
Here, we analyze the regret of Algorithm 2. Before stating the bound, let us first introduce a useful decomposition of
Tbias
At

(t−1)

tbias−1
for Algorithm 2:

Lemma C.1. In the context of Algorithm 2, let t = timei(r, ℓ) be the time when the algorithm plays an active arm i ∈ Ar

for the ℓth time in round r. Then,

T bias
i (t− 1)

tbias − 1
=

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ar′ |mr′ + |Ar|(ℓ− 1) + bi(r)
,

where mr is the number of times each active arm is played in round r, and bi(r) =
∑

j∈Ar
1{j < i} is the number of arms

played before i in each iteration ℓ of round r.
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Proof. This decomposition follows immediately from the definition of Algorithm 2, noting that (i) at each round r′, each
arm is played mr′ times (for a total of |Ar′ |mr′ time steps), (ii) before arm i is played for the ℓth time in round r, every
arm has been played for (ℓ− 1)|Ar| times, and (iii) additionally the arms in Ar which have smaller index than i (bi(r) in
total) have been played one additional time. Similarly, since Ar+1 ⊆ Ar, an active arm at the ℓth iteration of round r was
played

∑r−1
r′=1 mr′ times in the previous rounds (corresponding to the plays in rounds 1 to r − 1), plus ℓ− 1 times in round

r before the current iteration.

The regret guarantee for Algorithm 2 will also make use of the following notation:
Definition C.2 (Active arm upper confidence sets). Let us define the following sets Ur:

U1 = [K] and Ur+1 =
{
i ∈ Ur : ∆if̄

min
i (r) ≤ 2−r+1

}
,

where

f̄min
i (r) = f̄i (r | U1, . . . , Ur) ,

and f̄i (r | A1, . . . ,Ar) is the average reweighting of arm i during round r, i.e.,

f̄i (r | A1, . . . ,Ar) =
1

mr

timei(r,mr)∑
t=timei(r,1)

f

(
T bias
i (t− 1)

tbias − 1

)
1{At = i} (8)

=
1

mr

∑
ℓ∈[mr]

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ar′ |mr′ + |Ar|(ℓ− 1) + bi(Ar)

)
. (9)

Further, let us denote ui as the last round when i is in Ur, i.e.,

ui = min {r ≥ 1 : i ̸∈ Ur+1} .

Before stating our main algorithmic guarantee, we establish some important properties of Definition C.2:
Lemma C.3. For every r ≥ 1, the sets Ur and associated functions f̄min

i (r) from Definition C.2 satisfy the following: Let
i∗ = argmaxµi be the index of an optimal arm. Then, for any arm i ∈ Ur, under Assumption 2.1,

i∗ ∈ Ur and f̄min
i (r) ≤ f̄i (r | A1, . . . ,Ar) ∀i ∈ [K],Aℓ ⊆ Uℓ ∀ℓ ∈ [r].

Before proving Lemma C.3, we first briefly give some intuition for Definition C.2 in light of this result. Recall that
Algorithm 1 maintains a set of “active” arms Ar during each round r. At the end of each round r, the algorithm eliminates
arms whose empirically averaged feedback is sufficiently smaller than the largest observed feedback. More specifically, it
eliminates all arms i such that:

max
j∈Ar

µ̂j(r)− µ̂i(r) > 2−r,

By definition, the expected feedback averaged over round r (and conditioned on the observations from previous rounds) for
an active arm i ∈ Ar is:

µ̃i(r) = µif̄i (r | A1, . . . ,Ar) .

Therefore, the expected gap between an optimal arm i∗’s feedback and any other active arm i’s feedback averaged over
round r is given by:

µ̃i∗(r)− µ̃i(r) = µi∗ f̄i∗ (r | A1, . . . ,Ar)− µif̄i (r | A1, . . . ,Ar)

= ∆if̄i (r | A1, . . . ,Ar) + µi∗(f̄i (r | A1, . . . ,Ar)− f̄i∗ (r | A1, . . . ,Ar)).

In Lemma C.7, we show that, for sufficiently large time horizons T and by the choice of sampling schedule mr, the
second term above is negligible (i.e., sufficiently smaller than 2−r). Hence, the gap above is dominated by the first term,
∆if̄i (r | A1, . . . ,Ar). Now, we show in Lemma C.8 that, with high probability, Ar ⊆ Ur and i∗ ∈ Ar for all rounds r.
Hence, with high probability, by Lemma C.3 it holds that f̄i (r | A1, . . . ,Ar) ≥ f̄min

i (r) for every active arm i ∈ Ar, and
the suboptimal arm is not eliminated. Thus, we can interpret ∆if̄

min
i (r) as (essentially) a high probability lower bound on

the “reweighted” suboptimality gap µ̃i∗(r) − µ̃i(r). Thus, the sets Ur+1 mimic the definition of the active sets Ar+1 in
Algorithm 1, replacing the empirical gap maxj∈Ar µ̂j(r)− µ̂i(r) with ∆if̄

min
i (r) ≲ maxj∈Ur µ̃j(r)− µ̃i(r).
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Proof of Lemma C.3. We first notice that, since ∆i∗ = 0 for any optimal arm i∗, trivially we have that ∆i∗ f̄
min
i∗

(r) = 0 ≤
2−r+1 for every r. Hence, by definition of the upper confidence sets from Definition C.2, i∗ ∈ Ur for all r.

To establish the remaining claim, we notice that, for any round r such that i ∈ Ar (hence also i ∈ Ur since Ar ⊆ Ur):

f̄min
i (r) = f̄i (r | U1, . . . Ur)

=
1

mr

mr∑
ℓ=1

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)

)

=
1

mr

mr∑
ℓ=1

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) +
∑

j∈Ur
1{j < i}

)

≤ 1

mr

mr∑
ℓ=1

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ar′ |mr′ + |Ar|(ℓ− 1) +
∑

j∈Ar
1{j < i}

)

=
1

mr

mr∑
ℓ=1

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ar′ |mr′ + |Ar|(ℓ− 1) + bi(Ar)

)
= f̄i (r | A1, . . . ,Ar) ,

where in the inequality above, we used the facts that (i) Ar′ ⊆ Ur′ for every r′ ∈ [r] by definition, and (ii) the function
f(·) is non-decreasing by Assumption 2.1. Notice that this inequality becomes an equality in the case that r = 1, since
A1 = U1.

Theorem C.4 (Generalized version of regret guarantee from Theorem 4.1). Suppose that Algorithm 2 is run using the
sampling schedule:

mr = 22r+5 log

(
12

π2
K2r2n

)
, (10)

for a time horizon n sufficiently large such that:

log(nK) ≥ µ1L

25

(
1 + max

{(
1 +

T 0
max − T 0

min

K

)
log

(
1 + 28 log

(
12

π2
K2n

))
,
(
1 + T 0

max − T 0
min

)
log (13)

})
. (11)

Then, assuming the environment satisfies (2) and Assumption 2.1 with µi ∈ [0, 1] for all i ∈ [0, 1], the regret of Algorithm 2
is bounded as:

Rν,π(n) =
∑

i:∆i>0

∆iE [Ti(n)] ≤
∑

i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if̄min
i (ui − 1)

2 . (12)

Further, we also have the bound:

Rν,π(n) ≤ K + 2

√√√√√211nK log
(
12
π2K2n3

)
3f
(

T 0
min

tbias0 +K−1

)2 . (13)

Let us briefly comment on how to interpret the regret guarantee of Theorem C.4. Recall from Lemma C.3 that the average
multiplicative reweighting of arm i during round r can be written as:

f̄i (r | A1, . . . ,Ar) =
1

mr

mr∑
ℓ=1

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ar′ |mr′ + |Ar|(ℓ− 1) + bi(r)

)
,

where bi(r) =
∑

j∈Ar
1{j < i} is the number of arms played before i during each iteration of round r. Now, one can show

that Lr′ ⊆ Ar′ ⊆ Ur′ holds for all r′ ≤ n with high probability (see the proof of Lemma C.8 for details). Hence, with high
probability, f̄min (r) ≤ f̄i (r | A1, . . . ,Ar) for every i ∈ Ar.
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Now, by definition, ui is the smallest r such that i ̸∈ Ur+1. Since Ar′ ⊂ Ur′ for all r′ with high probability, it follows
that i ̸∈ Aui+1 with high probability. Also, notice that i ∈ Sui , so ∆if̄min (ui − 1) ≤ 2−(ui−1)+1, or equivalently,
2ui ≤ 4

f̄min(ui−1)∆i
. Recalling our choice of sampling schedule mr, this impies that, with high probability, each

suboptimal arm will be played no more than
∑

r′≤ui
mr′ ≲ mui

≲ log(n)

f̄min
i (ui−1)2∆2

i

times.

Because of the above observations, we can interpret f̄min
i (ui − 1) to be a high-probability lower bound on the average

reweighting on arm i over round ui − 1, i.e., the round before i is eliminated (with high probability) by Algorithm 1.

Before proving Theorem C.4, we interpret this result by giving bounds on f̄min
i (ui − 1).

Lemma C.5 (Typical scaling). Recall the function f̄min
i (r) from Definition C.2 defined for each round r ≥ 1 and i ∈ Ur.

For any round r ≥ 1,

f̄min
i (r) ≥ f

(
min

{
T 0
i

tbias0 + i− 1
,
1

K

})
≥ f

(
T 0
min

tbias0 +K − 1

)
.

Further, if T 0
max ≤ 27 log

(
12K2n/π2

)
and n ≥ r ≥ 2, then

f̄min
i (r) ≥ f

(
1

15K

)
.

Proof. Begin by recalling, by Definition C.2,

f̄min
i (r) = f̄i (r | U1, . . . , Ur) =

1

mr

∑
ℓ∈[mr]

f

(
T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)

)
.

Recall that, by Assumption 2.1, f (·) is nondecreasing. Therefore, to establish our claims, it suffices to lower bound, for
each ℓ ∈ [mr], the fraction of times arm i is played at the ℓth iteration of round r:

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
.

Now, we can decompose the fraction of times an arm i is played as:

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
=

T 0
i

tbias0 + bi(Ur)

tbias0 + bi(Ur)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
(14)

+

r−1∑
r′=1

1

|Ur′ |
|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
(15)

+
ℓ− 1

|Ur|(ℓ− 1)

|Ur|(ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
. (16)

Using the fact that Ur+1 ⊆ Ur for all r and U1 = [K], we thus conclude that:

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
≥ min

{
T 0
i

tbias0 + bi(U1)
,

1

|U1|

}
= min

{
T 0
i

tbias0 + i− 1
,
1

K

}
≥ T 0

min

tbias0 +K − 1
.

This establishes the first claim.

We now focus on establishing the refined claim for rounds n ≥ r ≥ 2. Using the decomposition from (14), it follows that

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
≥

r−1∑
r′=1

1

|Ur′ |
|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
.
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Since r ≥ 2 and K ≥ |Ur′ |≥ |Ur| for r′ ≤ r, we can further bound the RHS above as:

r−1∑
r′=1

1

|Ur′ |
|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
≥ 1

K

∑r−1
r′=1|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)

=
1

K

1
tbias0 +bi(Ur)∑r−1

r′=1
|Ur′ |mr′

+ 1 + |Ur|(ℓ−1)∑r−1

r′=1
|Ur′ |mr′

≥ 1

K

1
tbias0 +K−1∑r−1

r′=1
|Ur′ |mr′

+ 1 + |Ur|(ℓ−1)∑r−1

r′=1
|Ur′ |mr′

≥ 1

K

1
tbias0 +K−1

Km1
+ 1 + mr∑r−1

r′=1
mr′

,

Recalling our choice of mr,

r−1∑
r′=1

mr′ =

r−1∑
r′=1

22r+5 log

(
12

π2
K2(r′)2n

)

≥ 25 log

(
12

π2
K2n

) r−1∑
r′=1

22r

= 27 log

(
12

π2
K2n

)
22(r−1) − 1

3
,

so, since r ≤ n,

mr∑r−1
r′=1 mr′

≤
22r+5 log

(
12
π2K

2r2n
)

27 log
(
12
π2K2n

)
22(r−1)−1

3

≤
log
(
12
π2K

2n3
)

log
(
12
π2K2n

) 22r+5

27 22(r−1)−1
3

≤
log
((

12
π2K

2n
)3)

log
(
12
π2K2n

) 22r+5

27 22(r−1)−1
3

= 9
22r

22r − 4

=
9

1− 2−2(r−1)

≤ 9

1− 2−2(2−1)

= 12.

Collecting our results, we thus have:

r−1∑
r′=1

1

|Ur′ |
|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
≥ 1

K

1
tbias0 +K−1

Km1
+ 1 + mr∑r−1

r′=1
mr′

≥ 1

K

1
tbias0 +K−1

Km1
+ 13

≥ 1

K

1
tbias0

Km1
+ 14

,

17



On Mitigating Affinity Bias through Bandits with Evolving Biased Feedback

where in the last line, we used the fact that m1 ≥ 1. Therefore, if m1 ≥ T 0
max, i.e.,

T 0
max ≤ 27 log

(
12

π2
K2n

)
= m1,

then since tbias
0 /K ≤ T 0

max, we conclude that:

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)
≥

r−1∑
r′=1

1

|Ur′ |
|Ur′ |mr′

tbias0 +
∑r−1

r′=1|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)

≥ 1

K

1
tbias0

Km1
+ 14

≥ 1

K

1
T 0
max

m1
+ 14

≥ 1

15K
.

This establishes the second claim.

Corollary C.6 (Simplified regret upper bounds). In the same setting as Theorem C.4, we have the following regret bound
for Algorithm 1:

Rν,π(n) ≤
∑

i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if
(
min

{
T 0
i

tbias0 +i−1
, 1
K

})2
≤

∑
i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if
(

T 0
min

tbias0 +K−1

)2 .
Further, assuming T 0

max ≤ 27 log
(
12K2n/π2

)
, then

Rν,π(n) ≤
∑

i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if
(

1
15K

)2 .
Proof of Corollary C.6. The first set of regret bounds follows immediately from Theorem C.4 and the first set of inequalities
in Lemma C.5.

For the second claim, we consider two cases: (i) ui ≤ 2, and (ii) ui > 2. Recalling the regret decomposition from (1), we
have that:

Rν,π(n) =
∑

i:∆i>0

∆iE [Ti(n)] =
∑

i:∆i>0

∆i (E [Ti(n)1{i ̸∈ Aui+1}] + E [Ti(n)1{i ∈ Aui+1}]) .

Using Lemma C.8 and the fact that Ti(n) ≤ n by definition,

Rν,π(n) ≤
∑

i:∆i>0

∆i (E [Ti(n)1{i ̸∈ Aui+1}] + nPr [i ∈ Aui+1]) ≤
∑

i:∆i>0

∆i +∆iE [Ti(n)1{i ̸∈ Aui+1}] .

Since ui ≤ 2 by assumption of case (i), and by definition of Algorithm 1:

E [Ti(n)1{i ̸∈ Aui+1}] ≤
ui∑
r=1

mr ≤
2∑

r=1

mr.

18



On Mitigating Affinity Bias through Bandits with Evolving Biased Feedback

Plugging in our choice of mr from Theorem C.4,

E [Ti(n)1{i ̸∈ Aui+1}] ≤
2∑

r=1

22r+5 log

(
12

π2
K2r2n

)
≤ 27

24 − 1

3
log

(
12

π2
K2n3

)
≤ 211

3
log

(
12

π2
K2n3

)
.

Finally, recalling that ∆i ∈ (0, 1] and f (·) ∈ (0, 1] by assumption, the above implies that

E [Ti(n)1{i ̸∈ Aui+1}] ≤
211

3
log

(
12

π2
K2n3

)(
1

∆if
(

1
15K

))2

.

Otherwise, in case (ii) that ui > 2, by the second bound in Lemma C.5 we have that:

f̄min
i (ui − 1) ≥ f

(
1

15K

)
.

Plugging in this bound to Lemma C.9, we obtain:

E [Ti(n)] ≤ 1 +
211

3
log

(
12

π2
K2n3

)(
1

∆if̄min
i (ui − 1)

)2

≤ 1 +
211

3
log

(
12

π2
K2n3

)(
1

∆if
(

1
15K

))2

.

Collecting these two cases, we conclude that

Rν,π(n) ≤
∑

i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if
(

1
15K

)2 ,
as claimed.

We now turn our attention to the proof of Theorem C.4. The first step is a key stability result, showing that the error in
suboptimality gap estimates is sufficiently small to prevent Algorithm 2 from mistakenly removing an arm too early.

Lemma C.7. Let {Yt}t≥1 be feedback satisfying (2) and Assumption 2.1, which is observed by Algorithm 2. Let Ar be the
set of active arms at round r, mr be the number of times each active arm i ∈ Ar is pulled during round r, and τr be the last
time index of the rth round. Denote the mean of the samples for an arm i ∈ Ar observed by the algorithm during round
r ≥ 1 as:

µ̃i(r) =
1

mr

τr∑
t=τr−1+1

E
[
Yt1{At = i} | Fτr−1

]
.

Then, for any active arms i, j ∈ Ar in round r,

µ̃i(r)− µ̃j(r) = ∆i,j f̄i (r | A1, . . . ,Ar) + µjξi,j (r | A1, . . . ,Ar)

= ∆i,j f̄j (r | A1, . . . ,Ar) + µiξi,j (r | A1, . . . ,Ar)

where f̄i (r | A1, . . . ,Ar) is as defined in (8), and

max
i′ ̸=j′∈[K]

|ξi′,j′ (r | A1, . . . ,Ar) | ≤
L

mr

(
1 +

(
1 +

T 0
max − T 0

min

|Ar|

)
log

(
1 +

|Ar|mr

tbias0 +
∑r−1

r′=1|Ar′ |mr′

))
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Proof. Following the notation of Algorithm 2, take τr = τr−1 + |Ar|mr to be the time at the end of the rth round. Consider
any time in the rth round t = τr−1 + |Ar|(ℓ− 1) + bi(Ar) + 1, where ℓ ∈ [|Ar|] and bi(Ar) =

∑
j∈Ar

1{j < i} denotes
the number of arms played before i in round ℓ. Then the fraction of times arm i was played before t is:

T bias
i (t− 1)

tbias − 1
=

T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)
=

T 0
i +

∑r−1
r′=1 mr′ + (ℓ− 1)

T 0 +
∑r−1

r′=1|Ar|mr′ + |Ar|(ℓ− 1) + bi(Ar)

Now, the empirical average of the feedback from round r for arm i is:

µ̃i(r) =
1

mr

τr∑
t=τr−1+1

E
[
Yt1{At = i} | Fτr−1

]
=

1

mr

mr∑
ℓ=1

E
[
Yi,r,ℓ | Fτr−1

]
=

1

mr

∑
ℓ∈[mr]

µiWi(τr−1 + |Ar|(ℓ− 1) + bi(Ar) + 1)

=
1

mr

∑
ℓ∈[mr]

µif

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
Thus, for any arms i, j, and taking ∆i,j = µi − µj ,

µ̃i(r)− µ̃j(r) =
1

mr

∑
ℓ∈[mr]

µif

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− µjf

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)

=
∆i,j

mr

∑
ℓ∈[mr]

f

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)

+
µj

mr

∑
ℓ∈[mr]

f

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− f

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)
= ∆i,j f̄i (r | A1, . . . ,Ar) + µjξi,j (r | A1, . . . ,Ar) ,

where

f̄i (r | A1, . . . ,Ar) =
1

mr

∑
ℓ∈[mr]

f

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
and

ξi,j (r | A1, . . . ,Ar) =
1

mr

∑
ℓ∈[mr]

f

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− f

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)
.

Similarly, we also have that:

µ̃i(r)− µ̃j(r) =
1

mr

∑
ℓ∈[mr]

µif

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− µjf

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)

=
µi

mr

∑
ℓ∈[mr]

f

(
T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− f

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)

+
∆i,j

mr

∑
ℓ∈[mr]

f

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(Ar)

)
= µiξi,j (r | A1, . . . ,Ar) + ∆i,j f̄j (r | A1, . . . ,Ar) ,
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It suffices, thus, to bound ξi,j (r | A1, . . . ,Ar). To begin, we use Assumption 2.1 to bound this term as follows:

|ξi,j (r | A1, . . . ,Ar)| ≤
1

mr

∑
ℓ∈[mr]

∣∣∣∣∣f
(

T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)

)
− f

(
T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

)∣∣∣∣∣
≤ L

mr

∑
ℓ∈[mr]

∣∣∣∣∣ T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)
−

T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

∣∣∣∣∣ . (17)

Next, we bound each term in (17) as follows:∣∣∣∣∣ T bias
i (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar)
−

T bias
j (τr−1) + (ℓ− 1)

τbiasr−1 + |Ar|(ℓ− 1) + bj(r)

∣∣∣∣∣
=

∣∣∣∣∣ (T bias
i (τr−1) + (ℓ− 1))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))− (T bias

j (τr−1) + (ℓ− 1))(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))

(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))

∣∣∣∣∣
≤

∣∣∣∣∣ (T bias
i (τr−1) + (ℓ− 1))bj(r)− (T bias

j (τr−1) + (ℓ− 1))bi(Ar)

(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))

∣∣∣∣∣ (18)

+

∣∣∣∣∣ (T bias
i (τr−1)− T bias

j (τr−1))(τ
bias
r−1 + |Ar|(ℓ− 1))

(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))

∣∣∣∣∣ . (19)

For (18), we use the facts that 0 ≤ bi(Ar) ≤ |Ar|, |Ar|≥ 1, and T bias
i (τr−1) ≤ τbiasr−1 to further bound (18) as:∣∣∣∣∣ (T bias

i (τr−1) + (ℓ− 1))bj(r)− (T bias
j (τr−1) + (ℓ− 1))bi(Ar)

(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))

∣∣∣∣∣ ≤ |Ar|
τbiasr−1 + |Ar|(ℓ− 1)

.

For (19), we use the fact that, by definition of Algorithm 2, all active arms at the end of each round have been pulled the
same number of times (modulo their initial biases), i.e., T bias

i (τr−1)− T bias
j (τr−1) = T 0

i − T 0
j . Thus, we further bound

(19) as: ∣∣∣∣∣ (T bias
i (τr−1)− T bias

j (τr−1))(τ
bias
r−1 + |Ar|(ℓ− 1))

(τbiasr−1 + |Ar|(ℓ− 1) + bi(Ar))(τbiasr−1 + |Ar|(ℓ− 1) + bj(r))

∣∣∣∣∣ ≤ T 0
max − T 0

min

τbiasr−1 + |Ar|(ℓ− 1)
.

Plugging in these bounds to (17), we conclude that:

|ξi,j (r | A1, . . . ,Ar)| ≤
L(|Ar|+(T 0

max − T 0
min))

mr

∑
ℓ∈[mr]

1

τbiasr−1 + |Ar|(ℓ− 1)

≤ L(|Ar|+(T 0
max − T 0

min))

mr

(
1

τbiasr−1

+

∫ mr−1

0

1

τbiasr−1 + |Ar|x
dx

)

=
L(|Ar|+(T 0

max − T 0
min))

mr

 1

τbiasr−1

+
log
(

τbias
r−1+|Ar|(mr−1)

τbias
r−1

)
|Ar|


≤ L(|Ar|+(T 0

max − T 0
min))

mr

 1

τbiasr−1

+
log
(

τbias
r −1

τbias
r−1

)
|Ar|

 .

Using the fact that τbiasr−1 ≥ tbias0 = KT 0
min +

∑
i∈[K] T

0
i − T 0

min ≥ |Ar|+T 0
max − T 0

min, we thus obtain:

|ξi,j (r | A1, . . . ,Ar)| ≤
L

mr

(
1 +

(
1 +

T 0
max − T 0

min

|Ar|

)
log

(
τbiasr − 1

τbiasr−1

))
,

which, after using the fact that, by definition of Algorithm 2, τbiasr = tbias0 +
∑r

r′=1|Ar′ |mr′ , we obtain the claimed
result.
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Using Lemma C.7, we are now ready to show that, with high probability, arm i is removed after at most ui rounds, where ui

is the round defined in Definition C.2.
Lemma C.8. Suppose that Algorithm 2 is run with mr as in (10). and suppose that n is sufficiently large such that it
satisfies (11). Then, Algorithm 2 satsifies the following:

Pr [i ̸∈ Aui+1] ≥ 1− 1

n
,

where ui is the round defined in Definition C.2.

Proof. For ease of notation, let us assume without loss of generality that µi ≥ µi+1 for all i ∈ [K − 1] in this proof (hence,
arm 1 is optimal). We prove the following stronger claim:

Pr [L∗ ⊆ Ar ⊆ Ur ∀r ∈ [ui] and i ̸∈ Aui+1] ≥ 1− 1

n
where L∗ = {i ∈ [K] : ∆i = 0}

To prove the claim, it is equivalent to show that

Pr [i ∈ Aui+1 or ∃r ∈ [ui] : L∗ ̸⊆ Ar or Ar ̸⊆ Ur] ≤
1

n
.

To begin, first notice that, by definition of ui, i ̸∈ Uui+1, so since A1 = U1 = [K]:

Pr [i ∈ Aui+1 or ∃r ∈ [ui] : L∗ ̸⊆ Ar or Ar ̸⊆ Ur]

≤ Pr [∃r ∈ [ui + 1] : L∗ ̸⊆ Ar or Ar ̸⊆ Ur]

≤
ui∑
r=1

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1, L∗ ̸⊆ Ar+1 or Ar+1 ̸⊆ Ur+1] . (20)

We next decompose each term in the summation from (20) as:

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1, L∗ ̸⊆ Ar+1 or Ar+1 ̸⊆ Ur+1]

= Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃i∗ ∈ L∗ : i∗ ̸∈ Ar+1] (21)
+ Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃j ∈ Ur \ Ur+1 : j ∈ Ar+1] . (22)

To bound (21), first note that, by definition of Algorithm 2:

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃i∗ ∈ L∗ : i∗ ̸∈ Ar+1]

= Pr
[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃i∗ ∈ L∗ : µ̂max(r)− µ̂i∗(r) > 2−r

]
= Pr

[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃i∗ ∈ L∗, j ∈ Ar : µ̂j(r)− µ̂i∗(r) > 2−r

]
≤
∑
j∈[K]

∑
i∗ ̸=j

Pr
[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1, i∗ ∈ L∗, j ∈ Ar, µ̂j(r)− µ̂i∗(r) > 2−r

]
. (23)

Then, recall that, by Lemma C.7, and assuming L∗ ⊆ Ar′ ⊆ Ur′ for every r′ ≤ r, and since i∗, j ∈ Ar and f(·) ≥ 0 by
Assumption 2.1:

µ̃j(r)− µ̃i∗(r)

= −∆j f̄j (r | A1, . . . ,Ar)− µi∗ξj,i∗ (r | A1, . . . ,Ar)

≤ µ1|ξj,i∗ (r | A1, . . . ,Ar) |

≤ µ1L

mr

(
1 +

(
1 +

T 0
max − T 0

min

|Ar|

)
log

(
1 +

|Ar|mr

T 0 +
∑r−1

r′=1|Ar′ |mr′

))

≤


µ1L

27 log( 12
π2 K2n)

(
1 +

(
1 +

T 0
max−T 0

min
K

)
log
(
1 + 28 log

(
12
π2K

2n
)))

if r = 1

µ1L

22r+5 log( 12
π2 K2r2n)

(
1 +

(
1 + T 0

max − T 0
min

)
log

(
1 +

22r+6 log( 12
π2 K2r2n)∑r−1

r′=1
22r′+6 log( 12

π2 K2(r′)2n)

))
if r > 1

≤


µ1L

27 log( 12
π2 K2n)

(
1 +

(
1 +

T 0
max−T 0

min
K

)
log
(
1 + 28 log

(
12
π2K

2n
)))

if r = 1

µ1L

22r+5 log( 12
π2 K2r2n)

(
1 +

(
1 + T 0

max − T 0
min

)
log (13)

)
if r > 1
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where in the last line, we used the choice of mr and the fact that Ar ⊆ Ar−1. Now, for any r ≥ 2,

22r+5 log
(
12
π2K

2r2n
)∑r−1

r′=1 2
2r′+5 log

(
12
π2K2(r′)2n

) ≤ 22r+5 log
(
12
π2K

2r2n
)

22(r−1)+5 log
(
12
π2K2(r − 1)2n

)
= 4

log
(
12
π2K

2n
)
+ 2 log(r)

log
(
12
π2K2n

)
+ 2 log(r − 1)

≤ 4
log
(
12
π2K

2n
)
+ 2 log(2)

log
(
12
π2K2n

)
≤ 12

where the penultimate inequality above follows from the fact that the function a+2 log(r)
a+2 log(r−1) is decreasing in r for any a > 0

and r ≥ 1. Hence, our assumption in (11) that n is sufficiently large thus guarantees that:

µ̃j′(r)− µ̃j(r) ≤ 2−2r ≤ 2−r−1

Plugging these conclusions into (23), we conclude with the following upper-bound on (21):

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃i∗ ∈ L∗ : i∗ ̸∈ Ar+1]

≤
∑

j ̸=j′∈[K]

Pr
[
µ̂j′(r)− µ̂j(r)− (µ̃j′(r)− µ̃j(r)) > 2−r−1

]
. (24)

We bound (22) using nearly identical arguments to (21), as follows: begin by noticing that, by our assumption (WLOG) that
1 ∈ L∗:

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃j ∈ Ur \ Ur+1 : j ∈ Ar+1]

= Pr
[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃j ∈ Ur \ Ur+1 : µ̂max(r)− µ̂j(r) ≤ 2−r

]
≤ Pr

[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃j ∈ Ur \ Ur+1 : µ̂1(r)− µ̂j(r) ≤ 2−r

]
≤
∑
j∈[K]

Pr
[
L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1, j ∈ Ur \ Ur+1 : µ̂1(r)− µ̂j(r) ≤ 2−r

]
Then, by Lemma C.7, assuming L∗ ⊆ Ar′ ⊆ Ur′ for all r′ ≤ r, since 1 ∈ Ur, by Lemma C.3, and using our previous
argument to upper-bound |ξ1,j (r | A1, . . . ,Ar) |:

µ̃1(r)− µ̃j(r) = ∆j f̄1 (r | A1, . . . ,Ar) + µjξ1,j (r | A1, . . . ,Ar)

≥ ∆j f̄
min
j (r)− µ1|ξ1,j (r | A1, . . . ,Ar) |

≥ ∆j f̄
min
j (r)− 2−r−1.

Now, if j ∈ Ur \ Ur+1, then ∆j f̄
min
j (r) > 2−r+1. Therefore, combining the above bounds, we obtain the following bound

on (22):

Pr [L∗ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1,∃j ∈ Ur \ Ur+1 : j ∈ Ar+1]

≤
∑
j∈[K]

Pr
[
µ̂1(r)− µ̂j(r)− (µ̃1(r)− µ̃j(r)) ≤ −(2−r+1 − 2−r−1 − 2−r)

]
≤
∑
j∈[K]

Pr
[
µ̂1(r)− µ̂j(r)− (µ̃1(r)− µ̃j(r)) ≤ −2−r−1

]
. (25)

Therefore, by the Chernoff bound for subGaussian random variables together with our choice of mr to bound (24) and (25),
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we obtain the bound on (20):

Pr [i ∈ Aui+1 or ∃r ∈ [ui] : Lr ̸⊆ Ar or Ar ̸⊆ Ur]

≤
ui∑
r=1

Pr [Lr′ ⊆ Ar′ ⊆ Ur′ ∀r′ < r + 1, Lr+1 ̸⊆ Ar+1 or Ar+1 ̸⊆ Ur+1]

≤
ui∑
r=1

∑
j∈[K]

∑
i∗ ̸=j

2 exp

(
−mr2

−2(r+1)

4

)

=

ui∑
r=1

∑
j∈[K]

∑
i∗ ̸=j

2 exp

(
−
8 log

(
12
π2K

2r2n
)

4

)

≤
ui∑
r=1

6

π2r2n

≤ 1

n
,

as claimed.

Using the high probability guarantee from Lemma C.8, we can now obtain an upper bound on the number of times a
suboptimal arm is played by Algorithm 2.

Lemma C.9. Suppose that Algorithm 2 is run using the sampling schedule mr from (10) for a time horizon n satisfying
(11). Then, for any suboptimal arm i (i.e., ∆i > 0), Algorithm 2 satisfies:

E [Ti(n)] ≤ 1 +
211

3
log

(
12

π2
K2n3

)(
1

∆if̄min
i (ui − 1)

)2

,

where f̄min
i (r) is as defined in Definition C.2.

Proof. We begin by decomposing E [Ti(n)] as follows:

E [Ti(n)] = E [Ti(n)1{i ̸∈ Aui+1}] + E [Ti(n)1{i ∈ Aui+1}] ,

where ui is as defined in Definition C.2. Then, by Lemma C.8, and since Ti(n) ≤ n deterministically by definition,

E [Ti(n)1{i ∈ Aui+1}] ≤ nPr [i ∈ Aui+1] ≤ 1.

For the remaining term, whenever arm i is removed at round ui + 1, and since there are at most n rounds (since more than
one arm is pulled during each round), we have:

E [Ti(n)1{i ̸∈ Aui+1}] ≤
min{ui,n}∑

r=1

mr =

min{ui,n}∑
r=1

22r+5 log

(
12

π2
K2r2n

)
≤ 27

3
log

(
12

π2
K2n3

)
22ui .

Now, by definition of ui in Definition C.2, we know that i ∈ Uui , i.e., ∆if̄
min
i (ui − 1) ≤ 2−(ui−1)+1. Therefore,

2ui ≤ 4
∆if̄min

i (ui−1)
, which implies:

E [Ti(n)] ≤ 1 +
211

3
log

(
12

π2
K2n3

)(
1

∆if̄min
i (ui − 1)

)2

,

as claimed.

Finally, using Lemma C.9, we can establish Theorem C.4.
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Proof of Theorem C.4. Plugging in Lemma C.9 to the regret decomposition from (1), we obtain:

Rν,π(n) =
∑

i:∆i>0

∆iE [Ti(n)]

≤
∑

i:∆i>0

∆i

(
1 +

211

3
log

(
12

π2
K2n3

)(
1

∆if̄min
i (ui − 1)

2))

=
∑

i:∆i>0

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if̄min
i (ui − 1)

2 ,

as claimed in (12).

(13) follows by decomposing the divergence decomposition in two parts: for a fixed ∆, note that we can write

Rν,π(n) =
∑

i:0<∆i≤∆

∆iE [Ti(n)] +
∑

i:∆i>∆

∆iE [Ti(n)]

≤ ∆
∑

i:0<∆i≤∆

E [Ti(n)] +
∑

i:∆i>∆

∆iE [Ti(n)]

≤ n∆+
∑

i:∆i>∆

∆iE [Ti(n)] .

Choosing ∆ = maxi̸∈L∗

√
211K log( 12

π2 K2n3)
3nf̄min

i (ui−1)2
and applying Lemma C.9, we obtain:

Rν,π(n) ≤ max
i ̸∈L∗

√
211nK log

(
12
π2K2n3

)
3f̄min

i (ui − 1)
2 +

∑
i:∆i>∆

∆i +
211

3
log

(
12

π2
K2n3

)
1

∆if̄min
i (ui − 1)

2

≤ K +max
i ̸∈L∗

√
211nK log

(
12
π2K2n3

)
3f̄min

i (ui − 1)
2 +

∑
i:∆i>∆

211

3
log

(
12

π2
K2n3

)
1

∆f̄min
i (ui − 1)

2

≤ K +max
i ̸∈L∗

√
211nK log

(
12
π2K2n3

)
3f̄min

i (ui − 1)
2 +

∑
i:∆i>∆

√
211n log

(
12
π2K2n3

)
3K

min
j ̸∈L∗

f̄min
j (uj − 1)

f̄min
i (ui − 1)

2

≤ K + 2max
i ̸∈L∗

√
211nK log

(
12
π2K2n3

)
3f̄min

i (ui − 1)
2 .

We further simplify this expression as follows. Recalling the definition of f̄min
i (r) from Definition C.2:

f̄min
i (r) = f̄i (r | U1, . . . , Ur)

=
1

mr

∑
ℓ∈[mr]

f

(
T 0
i +

∑
r′<r mr′ + (ℓ− 1)

tbias0 +
∑

r′<r|Ur′ |mr′ + |Ur|(ℓ− 1)bi(Ur)

)
.

Observing that, since [K] = U1 ⊇ Ur′ ⊇ Ur for every r′ < r by definition, and hence also since bi(Ur) =
∑

j∈Ur
1{j <
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i} ≤ bi(Ur′) ≤ bi(U1) = i− 1,

T 0
i +

∑
r′<r mr′ + (ℓ− 1)

tbias0 +
∑

r′<r|Ur′ |mr′ + |Ur|(ℓ− 1) + bi(Ur)

≥
T 0
i +

∑
r′<r mr′ + (ℓ− 1)

tbias0 +K
∑

r′<r mr′ +K(ℓ− 1) + (i− 1)

≥ T 0
i

tbias0 + (i− 1)

tbias0 + (i− 1)

tbias0 +K
∑

r′<r mr′ +K(ℓ− 1) + (i− 1)

+

∑
r′<r mr′ + (ℓ− 1)

K
(∑

r′<r mr′ + (ℓ− 1)
) (1− tbias0 + (i− 1)

tbias0 +K
∑

r′<r mr′ +K(ℓ− 1) + (i− 1)

)
≥ min

{
T 0
i

tbias0 + i− 1
,
1

K

}
≥ T 0

min

tbias0 +K − 1
.

Therefore, since f(·) is non-decreasing by Assumption 2.1, it follows that

f̄min
i (r) ≥ f

(
min

{
T 0
i

tbias0 + i− 1
,
1

K

})
≥ f

(
T 0
min

tbias0 +K − 1

)
.

Plugging in this bound to the above expression, we conclude that:

Rν,π(n) ≤ K + 2

√√√√√211nK log
(
12
π2K2n3

)
3f
(

T 0
min

tbias0 +K−1

)2 .

which gives (13).

and using the fact that f̄min (ui1 − 1) ≤ f̄min (ui − 1) (since f (x) is nondecreasing in x and Ur+1 ⊆ Ur for all r, and
thus f̄min (r) is increasing as a function of r) yields the claim.

D. Asymptotic instance-dependent lower bound – Deferred proofs
We show the following lower bound for any “reasonable” algorithm for our setting:

Definition 5.1 (Consistent policy). Let E be a set of unbiased bandit environments ν with bias model following Assump-
tion 2.1 with a fixed and common set of initial biases

{
T 0
i

}
i∈[K]

and reweighting function Wi(t) = f
(
Tbias
i (t−1)/(tbias−1)

)
.

We call a family of bandit policies {πn}n≥1 consistent for an environment class E (with its associated bias model) if
there are constants8 C > 0 and a ∈ (0, 1) such that, for all n ≥ 1 and ν ∈ E , the regret of policy πn is bounded as:
Rν,πn

(n) ≤ C · na.

When the dependence of πn on n is clear from context, we adopt a slight abuse of notation and call the policy π consistent.

Theorem D.1 (Formal statement of Theorem 5.2). Fix any K > 1, initial biases
{
T 0
i

}
i∈[K]

, and time horizon n ≥ 1.
Consider the following environment class:

EN =
{
ν = (νi)i∈[K] : νi = N (µi, 1) for some ∆i ∈ [0, 1]

}
.

Consider any instance ν such that, for some constants γ ∈ (0, 1) and c, c′ ≥ 0, there is a subset of suboptimal arms
Ac,c′ ⊂ [K] satisfying:

|Ac,c′ |≥ γK and log

(
∆i

∆i

)
≤ c log(K)c

′
∀i, j ∈ Ac,c′ .

8Note that this constant C may depend on the common environment parameters of E such as K, the initial biases T 0
i , and the bias

function f (·).
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Let νbias be the associated biased environment which satisfies Assumption 2.1 where the mean reweighting function f (·)
additionally satisfies − log(f (2/γK)) ≤ c log(K)c

′
. Let π be any consistent bandit policy for EN (with constants C > 0

and a ∈ (0, 1) as in Definition 5.1). Then, for any bandit policy π and any ε ∈ (0, 1−µmax

∆max
], there is a set B′ ⊆ |Ac,c′ | such

that |B′|≥ |Ac,c′ |/4 and parameter β′ = O(1/γ(log(K/γ) + c log(K)c
′
)) such that:

Rν,π(n) ≳ f

(
β′

K

)−2 ∑
i∈B′:∆i>0

γ(1− a) log(n)

∆i
+

∑
i ̸∈B′:∆i>0

(1− a) log(n)

∆i
. (26)

In particular, whenever ∆max/∆min ≤ c and ν has a unique optimal arm i∗, then we may take Ac,0 = [K] \ {i∗} and
γ = (K−1)/K, and we obtain the simplified regret bound:

Rν,π(n) ≳ f

(
β′

K

)−2 ∑
i:∆i>0

log(n)

∆i
. (27)

Remark 5.3 (Comparison to standard bandit regret lower bound). We note that in the standard, unbiased setting, Lai &
Robbins (1985) established a lower bound for Gaussian bandits of the form Rν,π(n) ≥

∑
i:∆i>0

2 log(n)
∆i

−O(1). They also
gave an algorithm with regret asymptotically matching their lower bound. Our lower bound shows that, at least in the setting
where the maximum ratio of (nonzero) suboptimality gaps is not too small, then the regret in the biased setting we study
must be at least a factor (roughly) f (O(log(K)/K))

−2 larger than in the standard setting.
Corollary 5.4 (Comparison of Theorem 4.1 and Theorem 5.2). Under the conditions in Theorems 4.1 and 5.2a, suppose
additionally that the bias model satisfies the following: for any x ∈ (0, 1) and µ ∈ (1, 1/x), there is a constant L′ > 0 such
that f (µx) ≤ µL′

f (x) . Then, for sufficiently large time horizons, the regret bound of Algorithm 1 in Theorem 4.1 matches
Theorem 5.2 up to a multiplicative O(log(K)2L

′
) factor.

Proof. The corollary is an immediate consequence of the fact that, from the additional assumption on the bias model f (·),

f

(
c log(K)

K

)
= f

(
15c log(K)

1

15K

)
≤ (15c log(K))

L′
f

(
1

15K

)
.

Remark D.2 (A comment on the additional assumption in Corollary 5.4). Many natural examples of functions satisfying
Assumption 2.1 also satisfy the assumption from Corollary 5.4. For example, f (x) = min {xα, c} is max

{
α(ρmin)

α−1, 1
}

-
Lipschitz for every c ∈ [0, 1] and also satisfies the assumption in Corollary 5.4. However, not all functions satisfying
Assumption 2.1 also satisfy this additional assumption. For example, consider:

f (x) =


1

K100 if x ∈ [0, β/K](
x− β

K + 1
K10

)10
if x ∈ (β/K, 1]

for a constant c ∈ (1, log(K)). Notice that this function is 10-Lipschitz, nondecreasing, and also − log(f (β/K)) =
O(log(K)) (thus satisfying all assumptions from Assumption 2.1 as well as the additional assumption in Corollary 5.4 from
Theorem 5.2). However, for β < β′ = O(log(K)c

′
) and any constant L′,

f (β
′
/K)

f (β/K)
=

(
β′−β
K + 1

K10

)10
1

K100

= K10(β′ − β)10 ≫ (β′)L
′
.

D.1. Notation overview

We briefly discuss some notation that will be used throughout the proofs. Given an (unbiased) stochastic bandit environment
ν = (νi)i∈[K] and a bias model satisfying Assumption 2.1, we will use νbias to denote the associated environment with
biased feedback. A bandit policy interacts with νbias sequentially over n rounds, selecting an action At ∈ [K] and observing
feedback Yt sampled according to the associated bias model. We denoteHn = (U0,A1, Y1, U1 . . . ,An, Yn, Un) to be the
n-round interaction history between the policy π and environment νbias, where Ut−1 denotes any additional randomness
used by the policy π in selecting action At. Fn = σ {Hn} is the associated sigma algebra. We write Prνbias,π [·] and
Eνbias,π [·] as the probability and expectations induced by the interactions between policy π and environment νbias.
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D.2. Proofs

Our proof begins by generalization of (Kaufmann et al., 2016, Lemma 1) and (Garivier et al., 2019, Eq. (8)).

Lemma D.3 (A divergence decomposition for biased environments; Formal statement of Lemma 5.5). Fix a time horizon
n ≥ 1, and let ν ∈ EN be an environment with associated biased environment νbias. Fix any i ∈ [K] which is suboptimal in
ν, and let ν(i) ∈ EN be an environment satisfying ν

(i)
j = νj for every j ̸= i. Let π be any consistent bandit policy satisfying

Definition 5.1. Let τi ≤ n be a stopping time w.r.t. the filtration Ft. Let Zi ∈ [0, 1] be any Fτi -measurable random variable.
Then,

DKL(νi∥ν(i)i ) E
νbias,π

∑
t∈[τi]

Wi(t)
21{At = i}

 = DKL(Pr
Hτi

νbias,π
∥PrHτi

νbias,(i),π
) (28)

≥ kl

(
E

νbias,π
[Zi] , E

νbias,(i),π
[Zi]

)
. (29)

Before proving Lemma 5.5, we discuss a couple of immediate applications of this result to our setting. From Lemma 5.5,
we have the following immediate consequence:

Claim D.4 (Formal statement of Claim 5.6). Consider the same setting as in Lemma 5.5, where arm i is suboptimal in ν.
Choose ν(i) satisfying ν

(i)
j = νj for j ̸= i and ν

(i)
i = N (µi + (1 + ε)∆i, 1) for any ε > 0 such that µi + (1 + ε)∆i ≤ 1.

Then, for any consistent policy π (according to Definition 5.1),

E
νbias,π

[Ti(n)] ≥
2

(1 + ε)2∆2
i

((
1− C

∆in1−a

)
log

(
ε∆in

1−a

C

)
− log(2)

)
=

2(1− a)

(1 + ε)2∆2
i

log (n)−O(1). (30)

If, in addition, π has the property that Tbias
i (t−1)
tbias−1

≤ β′

K for every t ∈ (n0, τi] for any stopping time n0 ≤ τi ≤ n w.r.t.
Ft = σ {Ht} such that Eνbias,π [τi] ≥ cn for c ∈ (0, 1), then:

E
νbias,π

[Ti(n0, τi)]

≥ f

(
β′

K

)−2
2

(1 + ε)2∆2
i

((
c− C

∆in1−a

)
log

(
ε∆in

1−a

C

)
− log(2)− (1 + ε)2∆2

i

2
E

νbias,π
[Ti(n0)]

)
≥ f

(
β′

K

)−2
2c(1− a)

(1 + ε)2∆2
i

(
log (n)− (1 + ε)2∆2

i

2c(1− a)
E

νbias,π
[Ti(n0)]−O(1)

)
(31)

≥ f

(
β′

K

)−2
2c(1− a)

(1 + ε)2∆2
i

(
log (n)− (1 + ε)2∆2

i

2c(1− a)
n0 −O(1)

)
, (32)

where f (x) is as defined in Assumption 2.1.

Proof. Note that Tbias
i (t−1)
tbias−1

≤ 1 deterministically, and:

kl (p, q) = p log

(
1

q

)
+ (1− p) log

(
1

1− q

)
+ (p log(p) + (1− p) log(1− p))

≥ p log

(
1

q

)
− log(2), (33)

which follows from the facts that p log(p) + (1− p) log(1− p) ≥ − log(2) and (1− p) log
(

1
1−q

)
≥ 0. Thus Lemma 5.5

together with (33) implies that, for any stopping time τi and any Fτi -measurable Zi:

DKL(νi∥ν(i)i ) E
νbias,π

[Ti(τi)] ≥ E
νbias,π

[Zi] log

(
1

Eνbias,′ ,π [Zi]

)
− log(2). (34)
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which is essentially the result of (Garivier et al., 2019, Eq. (8)). In particular, let us choose ν
(i)
i = N (µi + (1 + ε)∆i, 1),

τi = n, and

Zi =
n− Ti(n)

n
=

∑
j ̸=i Tj(n)

n
.

Then (34) implies:

(1 + ε)2∆2
i

2
E

νbias,π
[Ti(n)] ≥

(
1− Eνbias,π [Ti(n)]

n

)
log

(
n∑

j ̸=i Eνbias,(i),π [Ti(n)]

)
− log(2)

≥
(
1− C

∆in1−a

)
log

(
ε∆in

1−a

C

)
− log(2), (35)

where, in the first line, we used the fact that DKL(N (µ, 1)∥N (µ′, 1)) = (µ−µ′)2

2 and, in the last line, we used the fact that,
by assumption on π,

∆i E
νbias,π

[Ti(n)] ≤ Rν,π(n) ≤ Cna, and (36)

ε∆i

∑
j ̸=i

E
νbias,(i),π

[Tj(n)] ≤
∑
j ̸=i

(∆j + ε∆i) E
νbias,(i),π

[Tj(n)] ≤ Rν(i),π(n) ≤ Cna, (37)

which establishes the first part of the claim.

For the second part of the claim, we begin by recalling that, since Tbias
i (t−1)
tbias−1

≤ β′
/K for all t ∈ (n0, τi] by assumption on π,

we have that, by Assumption 2.1, Wi(t) = f
(

Tbias
i (t−1)
tbias−1

)
≤ f

(
β′

K

)
for all t ∈ (n0, τi] (since f (x) is nondecreasing in x).

Using this bound together with the (trivial) bound Wi(t) ≤ 1, we obtain:

E
νbias,π

∑
t∈[τi]

Wi(t)
21{At = i}

 ≤ E
νbias,π

 ∑
t∈[n0]

1{At = i}

+ E
νbias,π

[
τi∑

t=n0+1

Wi(t)
21{At = i}

]

≤ E
νbias,π

[Ti(n0)] + f

(
β′

K

)2

E
νbias,π

[Ti(n0, τi)] . (38)

Now, let us choose

Zi =
τi − Ti(τi)

n
=

∑
j ̸=i Tj(τi)

n
,

which, we note is almost the same as the choice of Zi used in proving (30), except modified to guarantee that Z is
Fτi -measurable. Then, using (33), we have that:

kl

(
E

νbias,π
[Zi] , E

νbias,(i),π
[Zi]

)
+ log(2)

≥
∑

j ̸=i Eνbias,π [Tj(τi)]

n
log

(
n∑

j ̸=i Eνbias,(i),π [Tj(τi)]

)

=
Eνbias,π [τi]− Eνbias,π [Ti(τi)]

n
log

(
n∑

j ̸=i Eνbias,(i),π [Tj(τi)]

)

≥
cn− Eνbias,π [Ti(n)]

n
log

(
n∑

j ̸=i Eνbias,(i),π [Tj(n)]

)
,

where, in the last line, we used the fact that Ti(τi) ≤ Ti(n) and Eνbias,π [τi] ≥ cn. Therefore, by plugging in the above
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bound and (38) to Lemma 5.5, we obtain:

(1 + ε)2∆2
i

2

(
E

νbias,π
[Ti(n0)] + f

(
β′

K

)2

E
νbias,π

[Ti(n0, τi)]

)

≥ DKL(νi∥ν(i)i ) E
νbias,π

∑
t∈[τi]

Wi(t)
21{At = i}


≥ DKL( E

νbias,π
[Z] ∥ E

νbias,(i),π
[Z])

≥
cn− Eνbias,π [Ti(n)]

n
log

(
n∑

j ̸=i Eνbias,(i),π [Tj(n)]

)
,

which, after lower-bounding the RHS above using (36) and rearranging, is (31). (32) follows immediately from (31), using
the fact that Ti(n0) ≤ n0.

Proof of Lemma D.3. Our proof extends the arguments used in proving (Garivier et al., 2019, Eq. (8)) and (Kaufmann et al.,
2016, Lemma 1) to biased feedback settings. We start by recalling (Garivier et al., 2019, Lemma 1):

Lemma D.5 (Lemma 1, (Garivier et al., 2019)). Let (Ω,F) be a measurable space equipt with probability measures P1,P2,
and let Z : Ω→ [0, 1] be a F-measurable function. Denote E1 and E2 be the expectations under P1 and P2, respectively.
Then,

DKL(P1∥P2) ≥ kl (E1[Z],E2[Z]) ,

where kl (p, q) = p log
(

p
q

)
+ (1− p) log

(
1−p
1−q

)
denotes the KL-divergence between two Bernoulli random variables with

means p and q.

We will apply Lemma D.5 as follows: let νbias and νbias,′ be two biased bandit instances (both having the same initial
biases

{
T 0
i

}
i∈[K]

), let n ∈ N be a time horizon, and let π be a bandit policy (possibly depending on n). Let Ω = Rnk

and F = B(Ω) denotes the Borel σ-algebra on Ω, and let Prνbias,π and Prνbias,′ ,π be the probability measures on (Ω,F)
induced by the n-round interaction between the bandit policy π and the environment νbias and νbias,′ , respectively. Let
Ht = (Ua

0 , A1, Y1, . . . , U
a
t−1, At, Yt, U

a
t ) denote the interaction history (plus any auxiliary randomness Ua

t , sampled from
Uniform ([0, 1]) WLOG, used by the policy π when selecting action At) until time t. Then, let τ ∈ [n] be a stopping time
w.r.t. the filtration Ft = σ {Ht}, and take PrHτ

νbias,π
and PrHτ

νbias,′ ,π
to be the pushforward measures ofHτ under Pν,π and

Pν′,π , respectively. Thus, by Lemma D.5, we have that, for any Fτ -measurable random variable Z:

DKL(Pr
Hτ

νbias,π
∥PrHτ

νbias,′ ,π
) ≥ kl

(
EHτ

νbias,π
[Z],EHt

νbias,′ ,π
[Z]
)

(39)

Now, our claim follows by a standard application of Wald’s lemma and the divergence decomposition (similar to the
arguments, e.g., in (Lattimore & Szepesvári, 2020, Lemma 15.1 and Exercise 15.7)) to the LHS of (39). Indeed,
since DKL(ν

bias
i,t ∥ν

bias,′

i,t ) < ∞ for all i, t, and denoting pνbias,π(·) (resp., pνbias,′ ,π(·)) as the density of PrHτ

νbias,π
(resp.,

PrHτ

νbias,′ ,π
), we can write the KL divergence as follows:

DKL(Pr
Hτ

νbias,π
∥PrHτ

νbias,′ ,π
)

= EHτ

νbias,π

[
log

(
pνbias,π(Hτ )

pνbias,′ ,π(Hτ )

)]

= EHτ

νbias,π

[
log

(
pνbias,π(U

a
0 )
∏

t∈[τ ] pνbias,π(At | Ht−1)pνbias,π(Yt | Ht−1, At)pνbias,π(U
a
t | Ht−1, At, Yt)

pνbias,′ ,π(U
a
0 )
∏

t∈[τ ] pνbias,′ ,π(At | Ht−1)pνbias,′ ,π(Yt | Ht−1, At)pνbias,′ ,π(U
a
t | Ht−1, At, Yt)

)]
.
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First, notice that Ua
t is sampled i.i.d Uniform ([0, 1]) in both environments, so these terms in the above expression cancel.

Further, by definition of the bandit policy π, given a fixed observation history Ht−1, the action At in environment νbias

and νbias,′ is the same (since At = πt(Ht−1)). That is, pνbias,π(At | Ht−1) = pνbias,′ ,π(At | Ht−1) for all t,Ht−1, At.
Therefore, the above expression simplifies to:

DKL(Pr
Hτ

νbias,π
∥PrHτ

νbias,′ ,π
) = EHτ

νbias,π

[
log

( ∏
t∈[τ ] pνbias,π(Yt | Ht−1, At)∏
t∈[τ ] pνbias,′ ,π(Yt | Ht−1, At)

)]

= EHτ

νbias,π

∑
t∈[τ ]

log

(
pνbias,π(Yt | Ht−1, At)

pνbias,′ ,π(Yt | Ht−1, At)

) .

Now, since τ ≤ n is a stopping time w.r.t. Ft, the event {τ ≥ t} ∈ Ft−1. Further, At = πt(Ht−1) is Ft−1-measurable
since Ft−1 = σ {Ht−1}. Thus, applying the tower rule of expectations and the fact that

∑
i∈[K] 1{At = i} = 1:

DKL(Pr
Hτ

νbias,π
∥PrHτ

νbias,′ ,π
) =

∑
t∈[n]

EHτ

νbias,π

[
log

(
pνbias,π(Yt | Ht−1, At)

pνbias,′ ,π(Yt | Ht−1, At)

)
1{τ ≥ t}

]

=
∑
t∈[n]

∑
i∈[K]

EHτ

νbias,π

[
log

(
pνbias,π(Yt | Ht−1, At = i)

pνbias,′ ,π(Yt | Ht−1, At = i)

)
1{τ ≥ t, At = i}

]

=
∑
t∈[n]

∑
i∈[K]

EHτ

νbias,π

[
EHτ

νbias,π

[
log

(
pνbias,π(Yt | Ht−1, i)

pνbias,π(Yt | Ht−1, i)

)
| Ft−1

]
1{τ ≥ t, At = i}

]
.

Finally, observing that9

EHτ

νbias,π

[
log

(
pνbias,π(Yt | Ht−1, i)

pνbias,′ ,π(Yt | Ht−1, i)

)
| Ft−1

]
= DKL(ν

bias
i,t ∥ν

bias,′

i,t )

= DKL(N (µiWi(t), 1) ∥N (µ′
iWi(t), 1)),

and, recalling that:

DKL(N (xµ, 1)∥N (xµ′, 1)) =
(xµ− xµ′)2

2
= x2DKL(N (µ, 1)∥N (µ′, 1)) ∀x, µ, µ′ ∈ R,

we conclude that:

DKL(Pr
Hτ

νbias,π
∥PrHτ

νbias,′ ,π
) =

∑
t∈[n]

∑
i∈[K]

DKL(νi∥ν′i)E
Hτ

νbias,π

[
Wi(t)

21{τ ≥ t, At = i}
]

=
∑
i∈[K]

DKL(νi∥ν′i)E
Hτ

νbias,π

∑
t∈[τ ]

Wi(t)
21{At = i}

 .

Together with (39), this establishes that, for any Fτ -measurable Z,

∑
i∈[K]

DKL(νi∥ν′i) E
νbias,π

∑
t∈[τ ]

Wi(t)
21{At = i}

 ≥ kl

(
E

νbias,π
[Z] , E

νbias,′ ,π

[Z]

)
.

In particular, whenever ν′ = νbias,(i), where ν
(i)
j = νj for all j ̸= i, then since DKL(νj∥ν(i)j ) = 0, the above simplifies to:

DKL(νi∥ν′i) E
νbias,π

∑
t∈[τ ]

Wi(t)
21{At = i}

 ≥ kl

(
E

νbias,π
[Z] , E

νbias,′ ,π

[Z]

)
,

as claimed.
9Note that, in the equation below, we adopt a slight abuse of notation. Indeed, the KL-divergence between νbias

i,t and νbias,′

i,t is taken
conditioned on the filtration Ft−1, as the LHS of the expression makes clear.
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Notice that (30) gives the standard bandit lower bound. This shows the intuitive fact that our biased setting is at least as
hard as the unbiased stochastic bandit setting. However, to obtain our stronger lower bound, we will exploit the fact that
Tbias
i (t−1)
tbias−1

cannot be close to 1 for all arms simultaneously. Indeed, a pigeonholing argument shows that:

Lemma 5.7 (Size of the small bias set). Consider a bandit policy π interacting in an environment ν. Let us denote, for any
t ∈ [n] and β > 1,

St(β) =
{
i ∈ [K] : T

bias
i (t)/tbias ≤ β/K

}
.

Then, |St(β)|≥ (1− 1/β)K.

Proof. By definition of Ti(t) and the set St(β):

t =
∑
i∈[K]

Ti(t) ≥
∑

i∈St(β)c

Ti(t) =
∑

i∈St(β)c

T bias
i (t)− T 0

i >
βtbias

K
|St(β)

c|−
∑

i∈St(β)c

T 0
i .

We may rearrange the above inequality to conclude that:

|St(β)
c|<

K(t+
∑

i∈St(β)c
T 0
i )

βtbias
≤ K

β
,

Since |St(β)
c|= K − |St(β)|, we obtain the claimed result.

Notice that, while Lemma 5.7 guarantees that a constant fraction of arms have a ratio smaller than O(1/K), it says nothing
about how this set evolves over time. To make use of (31), we need to identify a subset of arms which have a small ratio for
many time steps. In the next result, we show that this is, in fact, possible:

Lemma D.6 (A small bias set which is stable over time; formal (generalized) statement of Lemma 5.8). Let π be any bandit
policy interacting in an environment νbias with initial biases

{
T 0
i

}
i∈[K]

and suboptimality gaps ∆i. For constants c, c′ ≥ 0,
let Ac,c′ be any subset of suboptimal arms such that

Ac,c′ =

{
i, j ∈ [K] : log

(
∆i

∆j

)
≤ c log(K)c

′
}

Let St(β) (for β > 1) be the set from Lemma 5.7. Fix any n0 ∈ [n], and define

S̃n0
(β; c, c′) := Sn0

(β) ∩ Ac,c′ .

Fix any K
|Ac,c′ |

< β < β′. Then, for any α ∈ (0, 1), there exists a set of arms B := B(n0, c, c
′, β, β′, α) ⊆ S̃n0(β; c, c

′)

such that |B|= |S̃n0(β; c, c
′)|−αK, and each arm i ∈ B satisfies one of the following:

Case 1. Tbias
i (t)
tbias ≤ β′

K ∀t ∈ [n0, n). Let B1,i denote the event that this case occurs.

Case 2. Ti(n0, n) ≥
(β′−β)(n0+

∑
i∈[K] T

0
i )

K exp(αβ′). Let B2,i denote the event that this case occurs.

This proof, and subsequent ones, will rely on the following definition:

Definition D.7 (The first large bias time). Let K
|Ac,c′ |

< β < β
′
, n0 ∈ [n], and Sn0(β) be as in Lemma 5.7. For each

i ∈ [K], we define the following stopping time:

τi(β
′
) = min

{
t ≥ n0 :

T bias
i (t)

tbias
>

β
′

K
or t = n

}
.

When β
′

is clear from context, we will sometimes abuse notation by writing this time as τi.

Notice that τi is adapted to the filtration Ft. Using this notation, we will first state a stronger bound than Lemma D.6, and
use it to establish that claim.
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Lemma D.8. Let i1, . . . , i|S̃n0
(β;c,c′)| be an ordering on the arms in S̃n0

(β; c, c′) (the set from Lemma D.6) satisfying

τij (β
′
) ≤ τij+1(β

′
) for each j < |S̃n0(β; c, c

′)|. Then, each arm ij ∈ S̃n0
(β; c, c′) satisfies one of the following:

τij (β
′
) = n or Tij (n0, τij (β

′
)) ≥ (β

′ − β)(tbias0 + n0)

K
exp

(
β

′
j

K

)
,

where τi(β′) is the stopping time from Definition D.7 and Ti(a, b) =
∑b

t=a+1 1{At = i} = Ti(b)− Ti(a) is the number of
times policy π plays arm i during t ∈ (a, b].

We first show how Lemma D.6 follows directly from Lemma D.8:

Proof of Lemma D.6. Consider ij ∈ S̃n0
(β; c, c′) for j ≥ αK. By Lemma D.8, there are two cases: in the first, we have

that:

Tij (n0, n) ≥ Tij (n0, τij ) ≥
(β′ − β)(tbias0 + n0)

K
exp

(
β′j

K

)
≥ (β′ − β)(tbias0 + n0)

K
exp (αβ′) ,

which is the first case of Lemma 5.8. Otherwise, Lemma D.8 implies that τij = n. Recalling Definition D.7, this implies:

T bias
i (t− 1)

tbias − 1
≤ β′

K
∀t ∈ (n0, n],

which is the second condition of Lemma 5.8. Thus, taking

B = {ij ∈ Sn0
(β) : αK < j ≤ |Sn0

(β)|} ,

and noticing that |B|= |Sn0
(β)|−αK, we obtain the claimed result.

We now establish Lemma D.8.

Proof of Lemma D.8. Let us assume, for the notational simplicity of this proof only, that S̃n0
(β; c, c′) ={

1, 2, . . . , |S̃n0
(β; c, c′)|

}
, and that each arm i ∈ S̃n0

(β; c, c′) is removed from this set before i + 1 (i.e., τi ≤ τi+1

for all i, i+ 1 ∈ S̃n0(β; c, c
′)). Indeed, this is always true up to a relabelling of the arm indices.

Let us denote, for any i, j ∈ [K]:

xi,j =

τj∑
t=n0+1

1{At = i}.

Notice that xi,i = Ti(n0, τi). Intuitively, xi,j represents the number of times arm i is played on the interval (n0, τj ], i.e.,
before arm j has bias larger than β′

/K for the rth time after n0.

Fix any arm i ∈ S̃n0
(β; c, c′), and let us assume that τi < n (since otherwise, the claim follows trivially). Then, by definition

of the xi,js, we know that

τi − n0 =

τi∑
t=n0+1

∑
j∈[k]

1{At = j} =
∑
j∈[k]

xj,i.

Further, since τj ≤ τi for every j ≤ i ∈ S̃n0
(β; c, c′) (by our assumed ordering of the arms):

∑
j≤i

xj,i =
∑
j≤i

τi∑
t=n0+1

1{At = j} ≥
∑
j≤i

τj∑
t=n0+1

1{At = j} =
∑
j≤i

xj,j .
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Thus, by definition of τi, and since xj,i ≥ 0 for all i, j, we may use the above bounds to conclude:

β
′

K
<

T bias
i (τi)

tbias0 + τi
=

T bias
i (n0) + xi,i

tbias0 + n0 +
∑

j∈[K] xj,i
≤ T bias

i (n0) + xi,i

tbias0 + n0 +
∑

j≤i xj,i
≤ T bias

i (n0) + xi,i

tbias0 + n0 +
∑

j≤i xj,j

Rearranging this expression, we have that:(
1− β

′

K

)
xi,i >

β′(tbias0 + n0)

K

(
1− K

β′
T bias
i (n0)

tbias0 + n0
+

∑
j<i xj,j

tbias0 + n0

)
.

Thus, as long as β′ < K, then, since i ∈ S̃n0(β; c, c
′) (i.e., Tbias

i (n0)

tbias0 +n0
≤ β

K ),

xi,i >
β′(tbias0 + n0)

K − β′

(
1− β

β′ +

∑
j<i xj,j

tbias0 + n0

)
=

(β
′ − β)(tbias0 + n0)

K − β′ +
β

′

K − β′

∑
j<i

xj,j .

It is a technical exercise (see Lemma D.9) to show that the above bound implies that:

xi,i >
(β

′ − β)(tbias0 + n0)

K
exp

(
β

′
i

K

)
,

which is the claimed bound.

In the following, we establish a technical result used in the proof of Lemma D.8.
Lemma D.9. Let 1 < β < β′ < K, and let t > 0. Suppose that:

xi,i >
(β′ − β)t

K − β′ +
β′

K − β′

∑
j<i

xj,j ∀i ∈ [K]. (40)

Then, for every i ∈ [K], we have that:

xi,i >
(β′ − β)t

K
exp

(
β′i

K

)
. (41)

Proof. We first prove that

xi,i >
(β′ − β)t

K − β

i−1∑
j=0

(
i− 1

j

)(
β′

K − β′

)j

. (42)

(41) follows from (42) by first noting that, by the Binomial identity, the summation in (42) can be written as
i−1∑
j=0

(
i− 1

j

)(
β′

K − β′

)j

=

(
1 +

β′

K − β′

)i−1

=
K − β′

K

(
1 +

β′

K − β′

)i

≥ K − β′

K
exp

(
β′i

K

)
.

where, in the last line, we used the fact that 1 + x ≥ exp
(

x
1+x

)
for any x > −1.

We thus focus on proving (42). The proof proceeds by induction on i. The case of i = 1 is immediate from (40). Assuming
the claim holds for 1, . . . , i, we have that, using (40):

xi+1,i+1 >
(β′ − β)t

K − β′ +
β′

K − β′

i∑
j=1

xj,j

>
(β′ − β)t

K − β′ +

i∑
j=1

(β′ − β)t

K − β

j−1∑
ℓ=0

(
j − 1

ℓ

)(
β′

K − β

)ℓ+1

=
(β′ − β)t

K − β′

1 +

i−1∑
ℓ=0

(
β′

K − β′

)ℓ+1 i∑
j=ℓ+1

(
j − 1

ℓ

) ,
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where in the last step, we exchange the order of summation. Then, by the hockey-stick identity:

i∑
j=ℓ+1

(
j − 1

ℓ

)
=

(
i

ℓ+ 1

)
,

we obtain:

xi+1,i+1 >
(β′ − β)t

K − β′

(
1 +

i−1∑
ℓ=0

(
β′

K − β′

)ℓ+1(
i

ℓ+ 1

))

=
(β′ − β)t

K − β′

i∑
ℓ=0

(
β′

K − β′

)ℓ(
i

ℓ

)
.

To complete the proof, it will be useful to “derandomize” the set B, which is accomplished by another pigeonholing
argument.

Lemma D.10 (Derandomizing the set from Lemma D.6). For α ∈ (0, 1), let B := B(n0, β, β
′, c, c′, α) and S̃n0

(β; c, c′)

be the (random) sets from Lemma D.6 satisfying |B|≥ |S̃n0
(β; c, c′)|−αK for some α ∈ (0, 1). Then, there exists a

deterministic set B′ := B′(n0, β, β
′, c, c′, α) ⊆ [K] such that |B′|≥ 1

1−α/2

(
Eνbias,π

[
|S̃n0

(β; c, c′)|
]
− 3αK

2

)
and, for

each i ∈ B′:

Pr
νbias,π

[B1,i or B2,i] ≥ α/2,

where B1,i and B2,i are the events defined in Lemma D.6.

Proof. By Lemma D.6, there is a set B ⊆ [K] such that:∑
i∈[K]

1{B1,i or B2,i} ≥
∑
i∈B

1{B1,i or B2,i} =
∑
i∈B

1 = |B|

Denote B′ as the (possibly empty) set of all arms i satisfying Prνbias,π [B1,i or B2,i] ≥ α/2. Then, taking expectations of the
above, and using linearity of expectation, we obtain:

E
νbias,π

[|B|] ≤
∑
i∈B′

Pr
νbias,π

[B1,i or B2,i] +
∑

i∈[K]\B′

Pr
νbias,π

[B1,i or B2,i]

≤
∑
i∈B′

1 +
∑

i∈[K]\B′

α/2

= |B′|+α

2
(K − |B′|).

Rearranging the above, and using the fact that, by Lemma D.6, |B|≥ |S̃n0
(β; c, c′)|−αK, we conclude that |B′|≥

1
1−α/2

(
E
[
|S̃n0

(β; c, c′)|
]
− 3αK/2

)
, as claimed.

Now that we have derandomized the set B, we are almost ready to conclude our proof. First, we show the following:

Lemma D.11 (Properties of the derandomized set from Lemma D.10; Restatement of Lemma 5.9). Consider a policy π
interacting in environment νbias with initial biases

{
T 0
i

}
i∈[K]

. Let Ac,c′ be the set from Lemma D.6 for some c, c′ ≥ 0.
Fix any K/|Ac,c′ | < β < β′, n0 ∈ [n], α ∈ (0, 1). Let B′ := B′(n0, β, β

′, c, c′, α) be the set from Lemma D.10 and

S̃n0(β; c, c
′) be the set from Lemma D.6 satisfying |B′|≥ 1

1−α/2 (E
[
|S̃n0(β; c, c

′)|
]
− 3αK/2). Then, for every i ∈ B′, one

of the following holds:

Case 1’. Eνbias,π [τi(β
′)] ≥ αn

4

Case 2’. Eνbias,π [Ti(n0, n)] ≥
α(β′−β)(n0+

∑
i∈[K] T

0
i )

4K exp(αβ′)
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where τi(β
′) is the stopping time from Definition D.7, and Ti(n0, n) =

∑n
t=n0+1 1{At = i} = Ti(n) − Ti(n0) is the

number of times policy π plays arm i during t ∈ (n0, n].

Proof. Recall that, by Lemma D.10,

2max

{
Pr

νbias,π
[B1,i] , Pr

νbias,π
[B2,i]

}
≥ Pr

νbias,π
[B1,i] + Pr

νbias,π
[B2,i] ≥ Pr

νbias,π
[B1,i or B2,i] ≥

α

2
.

Now, if Prνbias,π [B1,i] ≥ α
4 , then, recalling that B1,i (the first event in Lemma D.6) implies τi = n:

E
νbias,π

[τi] ≥ E
νbias,π

[τi1{B1,i}] = nPr [B1,i] ≥
αn

4
.

Otherwise, recalling that B2,i (the event from Lemma D.6) implies a lower bound on Ti(n0, n),

E
νbias,π

[Ti(n0, n)] ≥ E
νbias,π

[Ti(n0, n)1{B1,i}] ≥
(β′ − β)(tbias0 + n0)

K
exp(αβ′)Pr [B1,i]

≥ α(β′ − β)(tbias0 + n0)

4K
exp(αβ′).

We are now ready to prove Theorem D.1.

Proof of Theorem D.1. Recall the set Ac,c′ from Lemma D.6. Let ∆max(Ac,c′) = maxi∈Ac,c′ ∆i and ∆min(Ac,c′) =

mini∈Ac,c′ :∆i>0 ∆i. Notice that, by definition of Ac,c′ , log (∆max(Ac,c′ )/∆min(Ac,c′ )) ≤ c log(K)c
′

Let us take:

β =
2K

|Ac,c′ |
and α =

|Ac,c′ |
6K

and β′ =
1

α

(
2 log

(
∆max(Ac,c′)

∆min(Ac,c′)

)
+ log(4K/α)− 2 log

(
f

(
β

K

)))
,

and n0 =
α(1− a) log(n)

4(1 + ε)2∆max(Ac,c′)2
,

where a is the exponent in the consistency condition from Definition 5.1, and ε ∈ (0, (1−µmax)/∆max]. Taking γ ∈ (0, 1)
satisfying |Ac,c′ |= γK, we have that the above parameter choices satisfy:

K

|Ac,c′ |
=

1

γ
<

2

γ
= β <

6

γ
< β′,

and α ∈ (0, 1), so our choices of parameters satisfy the conditions in the results of this section. By Lemma 5.7 and definition
of S̃n0

(β; c, c′) = Sn0
(β) ∩ Ac,c′ (from Lemma D.6), we know that

|S̃n0
(β; c, c′)|≥ |Sn0(β)|−|A

c
c,c′ |≥ (1− 1/β)K − |[K] \ Ac,c′ |=

|Ac,c′ |
2

,

where, in the last line, we used our choice of β. Recall the set B′ := B′(n0, β, β
′, c, c′, α) be the set from Lemma D.10,

where |B′|≥ 1
1−α/2

(
Eνbias,π

[
|S̃n0

(β; c, c′)|
]
− 3αK

2

)
. Then, by the previous observation and our choice of α,

|B′| ≥ 1

1− α/2

(
E

νbias,π

[
|S̃n0

(β; c, c′)|
]
− 3αK

2

)
≥ 1

1− α/2

(
1

2
|Ac,c′ |−

3αK

2

)
=

3K

12K − |Ac,c′ |
|Ac,c′ |

≥ |Ac,c′ |
4

.
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Fix any arm i ∈ B′ ⊆ Ac,c′ , and construct the alternative environment ν(i) as in Claim D.4. We use Lemma D.11 to lower
bound Eνbias,π [Ti(n)]. There are two cases.

Case 1’: Eνbias,π [τi(β
′)] ≥ αn/4. Recall that, by definition of τi(β′) in Definition D.7, Tbias

i (t−1)
tbias−1

≤ β′
/K for all t ∈

(n0, τi(β
′)]. Thus, by (31) in Claim D.4 (taking c← α/4 in the notation of that equation), and since n0 = α(1−a) log(n)

4(1+ε)2∆max(Ac,c′ )
2 ,

and since ∆max(Ac,c′) ≥ ∆i by definition of i ∈ Ac,c′ , we have that:

E
νbias,π

[Ti(n)] ≥ f

(
β′

K

)−2
α(1− a)

2(1 + ε)2∆2
i

(
log (n)− 2(1 + ε)2∆2

i

α(1− a)
n0 −O(1)

)
≥ f

(
β′

K

)−2
α(1− a)

2(1 + ε)2∆2
i

(
log (n)

2
−O(1)

)
≥ f

(
β′

K

)−2
α(1− a− o(1)) log(n)

4(1 + ε)2∆2
i

.

Case 2’: Otherwise, by our choice of β, β′, and n0, we directly conclude, using the lower bound from Lemma D.11, that

E
νbias,π

[Ti(n)] ≥
α(β′ − β)(tbias0 + n0)

4K
exp(αβ′)

≥ f

(
β

K

)−2(
∆max(Ac,c′)

∆min(Ac,c′)

)2

n0

≥ f

(
β

K

)−2
α(1− a) log(n)

4(1 + ε)2∆2
i

≥ f

(
β′

K

)−2
α(1− a) log(n)

4(1 + ε)2∆2
i

,

where, in the second line, we used the fact that β′ − β > 1 and tbias0 ≥ 0. In the penultimate line, we used the fact that
∆min(Ac,c′) ≤ ∆i for all i ∈ Ac,c′ . In the final line, we used the fact that f (x) is nondecreasing in x by definition. Observe
that we obtain, up to vanishing factors, the same bound in Cases 1’ and 2’. Thus, repeating this argument for each arm
i ∈ B′, using the bound in (30) from Claim D.4 to bound the remaining arms i ̸∈ B′, and plugging in the resulting bounds
to the regret decomposition (1), we obtain the claimed regret lower bound.

E. Linear regret of UCB when biased structure is ignored
Theorem E.1. Consider the UCB policy, which first selects each arm once, then, for each n ≥ t > K, computes a upper
confidence estimate for each arm i ∈ [K]:

UCBi,t = µ̂i,t−1 +

√
2 log(t)

Ti(t− 1)
where µ̂i,t−1 =

∑
s∈[t−1] Yt1{At = i}

Ti(t− 1)
.

then selects an arm At as follows:

At =

{
t if t ∈ [K]

argmaxi∈[K] UCBi,t otherwise.
(UCB)

Then, there is a 2-armed Bernoulli bandit instance νbias under bias model (2) with unbiased means µ1 = .9 > .8 = µ2 and
arm biases T 0

1 = 10 and T 0
2 = 162161.5 such that, for any n ≥ 16207, (UCB) suffers linear regret: Rν,UCB(n) ≥ .098n.

Remark E.2 (On bias initialization). Given the result of Theorem E.1, one might wonder if linear regret is inevitable, even
when policy is initially biased towards the optimal arm 1 (i.e., T 0

1 ≥ T 0
2 ). Whenever the initial biases are constant and

the environment is Bernoulli, then (UCB) must suffer linear regret, and this follows straightforwardly from the proof of
Theorem E.1. Indeed, with a constant probability, starting at any initial biases, (UCB) can pull the suboptimal arm 2 the
majority of time steps over any constant-length time window (this can happen, e.g., if the samples from arm 2 are always
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arm 1
0

1

arm 1 arm 2

∆

∆bias(t)

Environment ν, νbias Coupled Environment ν̃st

arm 2

∆st

Expected mean of real reward in ν, ν̃st

Expected mean of biased reward
in νbias = (Real mean) × Fraction
Optimal arm in ν/ν̃st, and νbias,

Figure 5: A depiction of the environment construction for Theorem E.1 at t = 1. The left side of the figure shows the means in the
original environments ν,νbias. The right side shows the “frozen” environment ν̃st used for our proof. Notice that the biased optimal arm
is arm 2, not the true optimal arm 1. Further, ∆̃st < ∆bias(1).

1, and samples from 1 are always 0 in this window). After a sufficiently large constant initialization window w when
T bias
1 (w) ≪ T bias

2 (w), we can apply the same arguments as in the proof of Theorem E.1 to show that, in this case too,
Rν,UCB(n) = Ω(n) when n is sufficiently large.

E.1. Environment construction

Fix a 2-armed Bernoulli bandit environment ν, where 1 denotes the optimal arm, and 2 denotes the suboptimal arm, and
µ1 > µ2. Let νbias be the associated biased Bernoulli environment, where we take the initial arm biases to be T 0

1 < T 0
2 (we

will choose these parameters explicitly later in the proof). Denote the mean of arm i in νbias at time t as µbias
i (t). Notice

that, by construction, and recalling the notation tbias0 = T 0
1 + T 0

2 , we have that:

T 0
1

tbias0

µ1 = µbias
1 (1) < µbias

2 (1) =
T 0
2

tbias0

µ2,

so that, at time t = 1, the suboptimal arm 2 appears optimal.

Given this environment, we construct a static, unbiased Bernoulli bandit environment ν̃st, with means denoted as µ̃st
i , such

that:

µbias
1 (1) ≤ µ1

T̃ 0
1

t̃st0
= µ̃st

1 < µ̃st
2 = µ2

T 0
2

t̃st0
≤ µbias

2 (1),

where T 0
1 ≤ T̃ 0

1 < µ2

µ1
T 0
2 and t̃st0 = T̃ 0

1 + T 0
2 . In particular, in ν̃st arm 2 (the suboptimal arm from νbias) is optimal.

Intuitively, since the “observable” suboptimality gap in νbias at time t = 1 is smaller than that of ν̃st, UCB in the static
environment should pull arm b less often than in νbias, at least as long as:

µbias
1 (t) ≤ µ̃st

1 < µ̃st
2 ≤ µbias

2 (t).

Refer to Figure 5 for a graphic depicting our environment construction.

E.2. Proofs

Intuitively, since the “observable” suboptimality gap in νbias at time t = 1 is larger than that of ν̃st, UCB in the static
environment should pull arm 2 less often than in νbias, at least as long as µbias

1 (t) ≤ µ̃st
1 < µ̃st

2 ≤ µbias
2 (t). We define the

event that condition holds for all times in [t] as:

Bt =
⋂
s∈[t]

{
µbias
1 (s) ≤ µ̃st

1 < µ̃st
2 ≤ µbias

2 (s)
}

(43)

Our goal is to construct an coupling between these two environments such that, whenever Bt is true, then arm 1 is played
more often in ν̃st than in νbias. Towards this goal, we are able to show the following:
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Lemma E.3 (Stochastic dominance). Let T̃i(s) (resp., Ti(i)) denote the number of times arm i was played in ν̃st (resp.,
νbias) over [s]. Then, there exists a coupling between (UCB) in environments νbias and ν̃st such that, for any t, whenever
Bt is true, then T̃1(s) ≥ T1(s) (thus also T̃2(s) ≤ T2(s)) for all s ≤ t.

We will defer the proof of Lemma E.3 until later, and focus for now on consequences of this result. We first show it is
possible to construct a sufficient event B̃R for Bn to occur. This event depends only on the dynamics of (UCB) in the
unbiased environment ν̃st, unlike the event Bn, and thus it will be easier to analyze:

Lemma E.4 (Simplifying the event Bt). Let 0 = t0 < t1 < . . . < tR < tR+1 = n be the sequence of times such that

t1 = T̃ 0
1 − T 0

1 + 1 and ti+1 = ti + 1 ∀i ∈ [R]. Fix ε =
T̃ 0
1

t̃st0
, and denote

B̃R =

R⋂
r=0

{
T̃1(tr) ≤ εtr

}
. (44)

Then, under the same coupling from Lemma E.3, we have that B̃R ⊆ Bn.

To make use of Lemma E.4, we recall a standard concentration bound for (UCB) from (Audibert et al., 2009):

Theorem E.5 (Theorem 8, (Audibert et al., 2009)). Consider the UCB algorithm (UCB) interacting with a 2-armed
(unbiased) stochastic bandit instance ν = (ν1, ν2), such that the support of each νi is [0, 1] and arm 2 is optimal. Then, for
any n ≥ 1 and x ≥ 1 + 8 log(n)

∆2
1

,

Pr [T1(n) > x] ≤ n

− 4x

1+
8 log(n)

∆2
1

+1

+
x−3

3
.

Notice that Lemma E.4 allows us translate the condition Bn in the biased environment νbias to a condition B̃R in the unbiased
environment ν̃st. Using the fact that (UCB) is an anytime algorithm, we may apply Theorem E.5 for n = t1, t2, . . . , tR.
That is,

Pr
[
T̃1(n) ≤ εn and Bn

]
≥ Pr

[
T̃1(n) ≤ εn and B̃R

]
≥ 1−

R+1∑
r=1

Pr
[
T̃1(tr) > εtr

]

≥ 1−
R+1∑
r=1

t

− 4εtr

1+
8 log(tr)

(∆̃st
1 )2

+1

r +
t−3
r

3ε3
. (45)

Using the above results, we establish the following:

Lemma E.6 (Explicit selection of environment parameters). Suppose that the environment ν has means µ1 = .9 > .8 = µ1.
Then, taking νbias and ν̃st as defined above with:

T 0
1 = 10, T̃ 0

1 = 16126, and T 0
2 = 161261.5.

Then,

Pr [T2(n) ≥ .99n] ≥ .99.

Proof. Notice first that Lemma E.3 implies that

Pr [T2(n) ≥ (1− ε)n] = Pr [T1(n) ≤ εn] ≥ Pr [T1(n) ≤ εn and Bn] ≥ Pr
[
T̃1(n) ≤ εn and Bn

]
.

Further, by combining Lemma E.4 with the above, we have that:

Pr [T2(n) ≥ (1− ε)n] ≥ Pr
[
T̃1(n) ≤ εn and B̃n

]
≥ 1−

R+1∑
r=1

Pr
[
T̃1(tr) > εtr

]
.
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Applying Theorem E.5, the above implies:

Pr [T2(n) ≥ (1− ε)n] ≥ 1−
R+1∑
r=1

t

− 4εtr

1+
8 log(tr)

(∆̃st
1 )2

+1

r +
t−3
r

3ε3
.

Therefore, let us choose t1 is chosen to satisfy:

4εt1

1 + 8 log(t1)

(∆̃st
1 )2

− 1 ≥ 3 or, equivalently, εt1 ≥ 1 +
8 log(t1)

(∆̃st
1 )

2
.

Noting that the function f(t) = εt− 1− 8 log(t)

(∆̃st
1 )2

is non-increasing for εt ≥ 8

(∆̃st
1 )2

, then, assuming that:

εt1 ≥ max

{
8

(∆̃st
1 )

2
, 1 +

8 log(t1)

(∆̃st
1 )

2

}
, (46)

the above simplifies to

Pr [T2(n) ≥ (1− ε)n] ≥ 1−
(
1 +

1

3ε3

) R∑
r=1

t−3
r ≥ 1−

(
1 +

1

3ε3

)∫ ∞

t1−1

t−3dt = 1−
1 + 1

3ε3

2(t1 − 1)2

To guarantee that Pr [T2(n) ≥ (1− ε)n] > 1− δ, as long as (46) is satisfied, it suffices to take:

2(1− δ)(t1 − 1)2 > 1 +
1

3ε3
. (47)

Thus, by the choices of t1 = T̃ 0
1 − T 0

1 + 1 and ε =
T̃ 0
1

T̃ 0
1 +T 0

2

from Lemma E.4, the conditions (46) and (47) can be rewritten
as:

T̃ 0
1 (T̃

0
1 − T 0

1 + 1)

T̃ 0
1 + T 0

2

≥ 1 +
8

(∆̃st
1 )

2
max

{
log(T̃ 0

1 − T 0
1 + 1), 1

}
and 2(1− δ)(T̃ 0

1 − T 0
1 )

2 > 1 +
(T̃ 0

1 + T 0
2 )

3

3(T̃ 0
1 )

3
,

where ∆̃st = µ2
T 0
2

T̃ 0
1 +T 0

2

− µ1
T̃ 0
1

T̃ 0
1 +T 0

2

(notice that ∆̃st = Ω(1) whenever T 0
1 ≫ T̃ 0

2 ). Thus, the conditions above are satisfied
when:

T 0
1 ≪ T̃ 0

1 ≪ T 0
2 ≪ (T̃ 0

1 )
2.

Plugging in:

µ1 = .9 > .8 = µ2 and T 0
1 = 10, T̃ 0

1 = 16216, T 0
2 = 162161.5,

and thus

ε =
1

1 +
√
16216

≈ .007, t1 = 16207, µbias
1 (1) ≈ 4× 10−6, µ̃st

1 ≈ .007, µ̃st
2 ≈ .793, µbias

2 (1) ≈ .799,

the above implies that

Pr [T2(n) ≥ .99n] ≥ Pr [T1(n) ≥ (1− ε)n] ≥ 1−
1 + 1

3ε3

2(t1 − 1)2
≥ .99,

as claimed.
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Notice that Theorem E.1 follows immediately from Lemma E.6, since

Rν,UCB(n) = ∆2E [T2(n)] ≥ .1E [T2(n)1{T2(n) ≥ .99n}]
≥ .099nPr [T2(n) ≥ .99n]

≥ .098n,

as claimed. Thus, we will conclude by proving Lemmas E.3 and E.4.

Proof of Lemma E.4. We remark that the only property of the coupling that we use in this proof is the result of Lemma E.3.
Thus, we will proceed in this proof without explicitly describing the coupling.

Further, since

µbias
2 (t) ≥ µ̃st

2 ⇐⇒
T 0
2 + T2(t− 1)

T 0
2 + T 0

1 + t− 1
≥ T 0

2

T 0
2 + T̃ 0

1

⇐⇒ T̃ 0
1

T 0
2 + T̃ 0

1

≥ T 0
1 + T1(t− 1)

T 0
2 + T 0

1 + t− 1

⇐⇒ µ̃st
1 ≥ µbias

1 (t),

to prove our claim, it suffices to show that B̃R ⊆
{
µbias
1 (t) ≤ µ̃st

1

}
.

To begin, we observe that, by choice of t1, Bt1 (defined in (43)) is true deterministically. Indeed, we have that, for any t:

µbias
1 (t) =

T 0
1 + T1(t− 1)

T 0
1 + T 0

2 + t− 1
µ1 ≤

T 0
1 + t− 1

T 0
1 + T 0

2 + t− 1
µ1

Thus, since the RHS above is nondecreasing in t1 ≥ 1, we conclude µbias
1 (t) ≤ µ̃st

1 =
T̃ 0
1

T̃ 0
1 +T 0

2

for all t ≤ t1 = T̃ 0
1 − T 0

1 + 1

(and, thus also that Bt1 is true).

Now, we show that, for any r ∈ [0, R], if Btr is true and T̃1(tr) ≤ εtr (where ε =
T̃ 0
1

T̃ 0
1 +T 0

2

), then Btr+1
is also true. Notice

that this establishes our claim that B̃tR ⊆ Bn, since Bt1 is deterministically true. We proceed by induction on r. In the base
case of r = 0 follows immediately from the fact that Bt1 is deterministically true, as we just showed. Now, assume the
claim holds at some r ≥ 0, i.e., that Btr is true and T̃1(tr) ≤ εtr. Then, by Lemma E.3, it follows that T1(tr) ≤ εtr. Thus,
since tr+1 = tr + 1,

µbias
1 (tr+1) = µ1

T 0
1 + T1(tr+1 − 1)

T 0
1 + T 0

2 + tr+1 − 1
= µ1

T 0
1 + T1(tr)

T 0
1 + T 0

2 + tr
≤ µ1

T 0
1 + εtr

T 0
1 + T 0

2 + tr
.

Thus, to show that µbias
1 (tr+1) ≤ µ̃st

1 , it suffices to show:

T 0
1 + εtr

T 0
1 + T 0

2 + tr
≤ T̃ 0

1

T̃ 0
1 + T 0

2

.

Observing that:

T 0
1 + εtr

T 0
1 + T 0

2 + tr
=

T 0
1

T 0
1 + T 0

2

(
T 0
1 + T 0

2

T 0
1 + T 0

2 + tr

)
+ ε

(
tr

T 0
1 + T 0

2 + tr

)
≤ max

{
T 0
1

T 0
1 + T 0

2

, ε

}
,

the claim follows by our choice of ε = T̃ 0
1

T̃ 0
1 +T 0

2

.

It remains only to prove Lemma E.3.

Proof of Lemma E.3. We describe the coupling construction in Algorithm 3. Before we begin, let us introduce some notation
that will be used throughout the proofs. LetHbias

t (resp.,Hst
t ) denote the observation history of (UCB) in environment νbias

(resp., ν̃st) through time t, i.e.,:

Hbias
t = (Abias

s , Y bias
s )s∈[t] and Hst

t = (Ãst
s , Ỹ

st
s )s∈[t].
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Algorithm 3 Coupling construction

Require: Time horizon n ∈ N, unbiased Bernoulli environment ν = (ν1, ν2) with means 0 < µ2 < µ1 < 1. Associated
biased environment νbias with initial biases (T 0

1 , T
0
2 ). Static environment parameters µ̃st

1 , µ̃
st
2 and T̃ 0

1 such that B1 (the
event from (43)) is true, i.e.,

µbias
1 (1) ≤ µ1

T̃ 0
1

T̃ 0
1 + T 0

2

= µ̃st
1 < µ̃st

2 = µ2
T 0
2

T̃ 0
1 + T 0

2

≤ µbias
2 (1).

Two algorithm instances of (UCB) associated with νbias and ν̃st, with associated UCB indices UCBbias
i,t and ŨCB

st

i,t,

empirical means µ̂bias
i,t and ̂̃µst

i,t, and actions Abias
t and Ãst

t respectively.
Ensure: At each time t ∈ [n], produce samples satisfying:

Y bias
t ∼ Bernoulli(µbias

Abias
t

(t)) and Ỹ st
t ∼ Bernoulli(µ̃st

Ãst
t

),

such that Y bias
t ⊥⊥

{
Y bias
s

}
s<t
| Abias

t and Ỹ st
t ⊥⊥

{
Ỹ st
s

}
s<t
| Ãst

t .

1: Let t← 1, and let Qst,Qbias be two empty FIFO queues
2: while the event Bt (defined in Equation (43)) is True do
3: Compute Abias

t and Ãst
t (use a common tiebreaking rule for the UCB indices).

4: if Both environments select arm 1 (i.e., Abias
t = 1 = Ãst

t ) then
5: Since Bt is true, µbias

1 (t) ≤ µ̃st
1 . Thus, we draw samples as:

Ỹ st
t ∼ Bernoulli(µ̃st

1 ) and Y bias
t = Bernoulli(µ

bias
1 (t)/µ̃st

1 )Ỹ
st
t

6: else if Both environments select arm 2 (i.e., Abias
t = 2 = Ãst

t ) then
7: Since Bt is true, µ̃st

2 ≤ µbias
2 (t). Thus, we do the reverse of the previous case:

Y bias
t ∼ Bernoulli(µbias

2 (t)) and Ỹ st
t = Bernoulli(µ̃

st
2/µbias

2 (t))Y bias
t

8: else if Abias
t = 2, Ãst

t = 1 then
9: Note T2(·) increases but T̃2(·) does not. This is the good case for our analysis. Take:

Ỹ st
t ∼ Bernoulli(µ̃st

1 ) and Y bias
t ∼ Bernoulli(µbias

2 (t))

10: Add Ỹ st
t to Qst and Y bias

t to Qbias

11: else if Abias
t = 1, Ãst

t = 2 and Qbias,Qst are both non-empty then
12: Note T̃2(·) increases but T2(·) does not. This is the trickier case for our analysis.
13: Remove samples Ỹ st

t′ and Y bias
t′ from Qst and Qbias, respectively.

14: Since Bt′ and Bt are true (since t′ < t), thus µ̃st
2 ≤ µbias

2 (t′) and µbias
1 (t) ≤ µ̃st

1 , take:

Ỹ st
t = Bernoulli(µ̃

st
2/µbias

2 (t′))Y bias
t′ and Y bias

t = Bernoulli(µ
bias
1 (t)/µ̃st

1 )Ỹ
st
t′

15: else if Abias
t = 1, Ãst

t = 2 and Qbias or Qst is empty then
16: Break out of loop
17: end if
18: Update t← t+ 1
19: end while
20: Draw samples independently for every remaining t:

Ỹ st
t ∼ Bernoulli(µ̃st

Ãst
t

) and Y bias
t ∼ Bernoulli(µbias

Abias
t

(t))
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Let Fbias
t = σ

{
Hbias

t

}
and F st

t = σ {Hst
t } denote the associated σ-algebras generated by this interaction history.

Correctness of coupling. By construction of Algorithm 3, we note that, whenever Bt is false, the coupling is trivially
valid, since the samples are drawn independently. Similarly, whenever Bt is true and Abias

t = 2, Ãst
t = 1 or Abias

t = 1,
Ãst

t = 2 and one of the queues Qst,Qbias is empty at t, the samples are also drawn independently. In the case when both
environments select the same action, notice that Ỹ st

t and Y bias
t are not independent. However, their respective marginal

distributions are Bernoulli with mean µ̃st
Ãst

t

and µbias
Abias

t
(t), respectively, since in the case when Abias

t = 1 = Ãst
t :

E
[
Ỹ st
t | Ft−1

]
= µ̃st

1 and E
[
Y bias
t | Ft−1

]
= E

[
Bernoulli(

µbias
1 (t)

µ̃st
1

)Ỹ st
t | Ft−1

]
=

µbias
1 (t)

µ̃st
1

µ̃st
1 ,

and, similarly, when Abias
t = 2 = Ãst

t :

E
[
Y bias
t | Fbias

t−1

]
= µbias

2 (t) and E
[
Ỹ st
t | F st

t−1

]
= E

[
Bernoulli(

µ̃st
2

µbias
2 (t)

)Y bias
t | F st

t−1

]
=

µ̃st
2

µbias
2 (t)

µbias
2 (t).

Thus, Algorithm 3 produces valid samples in these cases. Finally, in the case when Abias
t = 2, Ãst

t = 1, and Qbias,Qst are
non-empty at t, let us denote Ỹ st

t′ and Y bias
t′ as the samples removed from Qst and Qbias, where t′ < t denotes the time these

samples were originally added to the queue. Then,

E
[
Ỹ st
t | Fbias

t−1

]
= E

[
Bernoulli(

µ̃st
2

µbias
2 (t′)

)Y bias
t′ | F st

t−1

]
=

µ̃st
2

µbias
2 (t′)

E
[
Y bias
t′ | F st

t−1

]
.

Now, of course, Y bias
t′ is measurable w.r.t. Fbias

t′ (hence also in Fbias
t−1 since t′ < t) by definition. However, since each

sample Y bias
t′ added to Qbias is used at most once to compute a single Ỹ st

t , it follows that Y bias
t′ is not measurable w.r.t

F st
t−1. Moreover, when a sample is added to Qbias at t′, it must be the case that Abias

t′ = 2 by construction. It follows that
E
[
Y bias
t′ | F st

t−1

]
= µbias

2 (t′), and thus that Ỹ st
t has the correct marginal distribution. A symmetric argument shows that

Y bias
t also has the correct marginal distribution in this case. We conclude, therefore, that Algorithm 3 is a valid coupling.

Establishing the claim under this coupling. Note that we wish to show that, as long as Bt is true, then T̃1(s) ≥ T1(s) for
all s ≤ t. We will prove the claim via induction on s. At time s = 1, the claim is true trivially, since (UCB) deterministically
selects arm 1 by definition. Now, suppose the claim holds for 1, . . . , s, but not at time s+1. If this were true, then it must be
that T1(s) = T̃1(s), and Abias

s+1 = 1 and Ãst
s+1 = 2 (indeed, this is the only way to have T1(s) ≤ T̃1(s) and T1(s) > T̃1(s)).

This implies that:

ŨCB
st

1,s+1 − UCBbias
1,s+1 = ̂̃µst

1,s +

√
2 log(s+ 1)

T1(s)
− µ̂bias

1,s −

√
2 log(s+ 1)

T1(s)

= ̂̃µst

1,s − µ̂bias
1,s

=

∑
ℓ∈[s] Ỹ

st
ℓ 1{Ãst

ℓ = 1} − Y bias
ℓ 1{Abias

ℓ = 1}
T1(s)

Let us now examine Ỹ st
ℓ 1{Ãst

ℓ = 1} − Y bias
ℓ 1{Abias

ℓ = 1} for each ℓ ≤ s. Whenever Ãst
ℓ = 1 = Abias

ℓ , then Algorithm 3
guarantees that Ỹ st

ℓ ≥ Y bias
ℓ . Whenever Abias

ℓ = 1 and Ãst
ℓ = 2, then there are two cases:

Case 1: if Qst is non-empty at time ℓ, then let us denote ℓ′ as the index of the sample from this queue used at time ℓ. By
definition of Algorithm 3, Abias

ℓ′ = 2 and Ãst
ℓ′ = 1. Thus:

Ỹ st
ℓ′ 1{Ãst

ℓ′ = 1}︸ ︷︷ ︸
=1

−Y bias
ℓ′ 1{Abias

ℓ′ = 1}︸ ︷︷ ︸
=0

+Ỹ st
ℓ 1{Ãst

ℓ = 1}︸ ︷︷ ︸
=0

−Y bias
ℓ 1{Abias

ℓ = 1}︸ ︷︷ ︸
=1

= Ỹ st
ℓ′ − Y bias

ℓ
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By construction of Algorithm 3, Ỹ st
ℓ′ ≥ Y bias

ℓ .

Case 2: if Qst is empty at time ℓ, then, WLOG, let us assume ℓ is the first such time when this happens. It follows then that
T1(ℓ− 1) = T̃1(ℓ− 1) (indeed, T̃1(ℓ− 1)− T1(ℓ− 1) measures the length of the queue at time ℓ− 1). Since Abias

ℓ = 1

and Ãst
ℓ = 2, we thus have that:

T1(ℓ)− T̃1(ℓ) = T1(ℓ− 1)− T̃1(ℓ− 1)︸ ︷︷ ︸
=0

+1{Abias
ℓ = 1}︸ ︷︷ ︸
=1

−1{Ãst
ℓ = 1}︸ ︷︷ ︸
=0

> 0,

which contradicts the induction hypothesis that T1(ℓ) ≤ T̃1(ℓ). Therefore, we conclude that Case 2 cannot happen as long
as Bt is true. Taking the results of these cases together, we conclude that∑

ℓ∈[s] Ỹ
st
ℓ 1{Ãst

ℓ = 1} − Y bias
ℓ 1{Abias

ℓ = 1}
T1(s)

≥ 0 and thus ŨCB
st

1,s+1 ≥ UCBbias
1,s+1

By symmetric arguments, we also have that:

UCBbias
2,s+1 ≥ ŨCB

st

2,s+1

Additionally, by assumption, Ãst
s+1 = 2, so

ŨCB
st

2,s+1 ≥ ŨCB
st

1,s+1

However, these inequalities imply that:

UCBbias
2,s+1 ≥ ŨCB

st

2,s+1 ≥ ŨCB
st

1,s+1 ≥ UCBbias
1,s+1

Therefore, either (i) all inequalities are equalities, in which case the algorithms make the same decisions (since they use the
same tiebreaking rule by Algorithm 3), or (ii) one of the inequalities is strict. In either case, it must be that Abias

s = 2, which
contradicts our assumption! Thus, the claim is established.

F. Details on experiment setup
Here, we give additional details on the experiments included in the main body of our paper. All experiments were performed
locally on a Mac operating system, using Python 3.9 and PyCharm. In each of the plots below, we average our results and
display error bars representing the standard deviation of the estimated quantity.

F.1. Ignoring the biased feedback

In Figure 3, we demonstrate empirically that ignoring the bias structure of our problem leads to linear regret for many
standard bandit algorithms, such as UCB1 (Auer et al., 2002), EXP3 (Auer et al., 1995), and EXP-IX (Kocák et al.,
2014). We run each of these algorithms on a 2-armed Bernoulli bandit instance, where µ1 = .4 < .6 = µ2, with
bias structure Wi(t) =

Tbias
i (t−1)
tbias−1

, where the initial number of arm plays for each arm are: T 0
2 = 10, and we vary

T 0
1 ∈ {1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 70, 90, 200}. The time horizon is n = 20, 000. Each experiment is repeated r = 50

times. The x-axis of the plot is the initial reweighting for arm 1, T 0
1

T 0
1 +T 0

2
. The y-axis is the empirical probability of the

suboptimal arm (arm 1) being pulled more than n/2 times, i.e., 1
r

∑
ℓ∈[r] 1{T1(n) > n/2 on experiment repeat r}.

F.2. The impacts of debiasing samples

In Figure 4, we demonstrate the challenges for regret minimization for UCB when the bias model is known. Given the
bias model WAt(t) and biased feedback Yt, an algorithm can, by (2), obtain unbiased samples from the reward distribution

of arm At by computing Zt,At
= YtWAt

(t)−1. For this experiment, we take Wi(t) =
Tbias
i (t−1)
tbias−1

. Thus, even though the

sample is unbiased, the variance scales up by a factor of
(

tbias−1
Tbias
i (t−1)

)2
. Moreover, even when Yt has bounded support,

Zt,At may have a support that scales with the time horizon. We consider a 2-armed Bernoulli bandit instance, where
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µ1 = .4 < .6 = µ2, and the initial number of times each arm is played is T 0
1 = 100, T 0

2 = 10. We consider a time horizon
n = 200, 000, and repeat each experiment 40 times. We run UCB-V (Audibert et al., 2007) in two configurations: (i) one
in which it observes the true rewards Xt,At as feedback (i.e., this is the standard bandit setting with no biases), and (ii)
one in which the algorithm knows the bias model, and uses the debiased samples Zt to compute its estimates. We use the
recommended parameter settings from Corollary 1 of that paper. We remark that UCB-V assumes a uniform upper-bound
on the rewards. In case (i), this upper bound is 1 (since the rewards are Bernoulli), but in (ii), since the algorithm uses the
debiased feedback, the samples used by the algorithm have potentially unbounded support. For this reason, we slightly
modify this algorithm to adaptively estimate the support size for each arm based on the largest sample value observed for
that arm so far. For each of these algorithms, we plot the empirical E[T1(t)]√

t
as t varies from 1 to 200, 000.

F.3. Failure of other optimistic algorithms

In Figures 6 and 7, we compare the performance of Algorithm 1 against two alternative algorithms, Efficient-UCBV
(Mukherjee et al., 2018), and an implementation of LUCB (Jamieson & Nowak, 2014). We note that, unlike the phased
elimination algorithm used in our paper (Algorithm 1), neither of these algorithms are phased, but instead use optimistic
estimates of the arm means for arm selection and elimination at each round. Our experimental results suggest that neither
of these algorithms is well-suited for our problem setting, as both suffer linear regret even in a simple biased Gaussian
environment for which our algorithm succeeds. This experiment highlights the challenging nature of designing algorithms
which provably succeed in our biased setting. Indeed, many optimistic algorithms which work well in standard, unbiased
bandit settings fail in our setting.

F.4. Suboptimal arm pull scaling

In Figures 8 and 9, we demonstrate the scaling of the expected number of suboptimal arm pulls for varying suboptimality
gaps, where we fix the mean of the suboptimal arm and vary the mean of the optimal arm. Figure 8 shows that, as the
suboptimality gap increases, the expected number of suboptimal arm pulls decreases, as expected. Moreover, the change
points occur when the suboptimality gap normalized by the number of arms is 2−i. This is because the means of the
observed feedback for each arm is (roughly) the true mean divided by K before the first arm is eliminated. Figure 9 shows
that the expected plays of the suboptimal arm scales proportionally to ∆−2, as predicted by our theory. Note that the step
patterns in this plot are a standard consequence of the phases in our phased elimination algorithm.

F.5. Sensitivity to Lipschitz constant

In Figure 10, we investigate the sensitivity of Algorithm 1 to the Lipschitz constant. We consider a standard Gaussian bandit
environment under bias model f(x) = xα for α ∈ [1, 4.5]. We observe that, for a fixed time horizon, increasing the value of
a eventually causes the algorithm to fail. However, increasing the time horizon causes a corresponding shift in the point of
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failure to a larger value of α.

F.6. Sensitivity to initial arm pull gap

In Figure 11, we investigate the sensitivity to the difference in initial arm pulls in the same setting as in the previous
experiment, with bias model f(x) = x. Similarly as in the last experiment, for a fixed time horizon, increasing the gap in
initial biases eventually causes the algorithm to fail, but this failure point occurs later when the time horizon is increased.
Figures 9 and 10 demonstrate the purpose of our requirement that n is sufficiently large in Theorem C.4.

F.7. Sensitivity to number of arms for different bias models

In Figure 12, we compare the (normalized and square root of) the regret of Algorithm 1 for various bias models, as we
increase the number of arms K. We observe that the bias model f(x) = x2 has a significantly larger regret scaling than the
other bias models, and this difference becomes more pronounced as K increases. The scaling in the sigmoid bias function
f(x) = (1 + exp(−x))−1 is larger than the unbiased setting (f(x) = 1), but does not depend on K, since the sigmoid
function is bounded on [1/2, 1] for x ≥ 0.
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