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ABSTRACT

It has been observed that Deep Neural Networks (DNNs) are vulnerable to transfer
attacks in the query-free black-box setting. However, the previous studies on
transfer attack commonly assume that the white-box surrogate models possessed
by the attacker and the black-box victim models are trained on the same dataset,
which means the attacker implicitly knows the label set and the input size of the
victim model. However, this assumption is usually unrealistic as the attacker may
not know the dataset used by the victim model, and further, the attacker needs to
attack any randomly encountered images that may not come from the same dataset.
Therefore, in this paper we define a new Generalized Transferable Attack (GTA)
problem where we assume the attacker has a set of surrogate models trained on
different datasets (with different label sets and image sizes), and none of them is
equal to the dataset used by the victim model. We then propose a novel method
called Image Classification Eraser (ICE) to erase classification information for any
encountered images from arbitrary dataset. Extensive experiments on Cifar-10,
Cifar-100, and TieredImageNet demonstrate the effectiveness of the proposed
ICE on the GTA problem. Furthermore, we show that existing transfer attack
methods can be modified to tackle the GTA problem, but with significantly worse
performance compared with ICE.

1 INTRODUCTION

It has been observed that by adding human imperceptible adversarial perturbations to clean input data,
even well-trained deep neural networks (DNNs) can be fooled with a high probability (Szegedy et al.,
2014; Goodfellow et al., 2014; Carlini & Wagner, 2017; Lin et al., 2020). As a result, the security
and robustness of DNNs have attracted growing attention from both academia and industry (Uesato
et al., 2018; Croce & Hein, 2020b; Sriramanan et al., 2020; Haizhong et al., 2020). Existing methods
for generating adversarial examples, also known as “attacks”, can be categorized by the following
different threat models: white-box (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016), query-
based black-box (Brendel et al., 2018; Ilyas et al., 2018; Cheng et al., 2018), and query-free black-box
attack (Liu et al., 2017; Papernot et al., 2017). As Table 1 shows, in the white-box attack setting, the
attacker can access all information of the victim model while in query-based or query-free black-box
setting, the victim model is hidden from the attacker.

In this paper, we consider the query-free black-box setting, where the victim model is black-box
and no queries can be made (Wu et al., 2020c; Wang & He, 2021). Even in this restricted setting, it
has been shown that DNN models are still vulnerable due to the existence of transfer attacks (Wu
et al., 2018; 2020c; Naseer et al., 2019; Demontis et al., 2019), which leverage one or a few surrogate
white-box models to construct adversarial examples and transfer them to the victim model. Despite
of the fact that previous works have demonstrated the effectiveness of transfer attacks (Papernot et al.,
2017; Guo et al., 2020) and much efforts have been made recently to improve transfer attacks (Li
et al., 2020c; Wang & He, 2021), they commonly made an implicit assumption that surrogate models
and the victim model are trained on the same dataset, and the successful results commonly rely
on this assumption. This means the attacker knows the input resolution and label set of the victim
model. For example, when the victim model and images are from Cifar-10 (Krizhevsky et al., 2009),
they assume the surrogate model is also trained on Cifar-10 instead of ImageNet (Deng et al., 2009).

However, in practical situations, the test image (and victim model) can come from any dataset; the
attackers won’t know which dataset is being used and it is unlikely to retrain a new surrogate model
for each new dataset. To tackle this more practical setting, we need to assume the surrogate models
and victim model are trained on different datasets. We denote this challenging setting as generalized
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Table 1: The information that the attack methods can access.
Attack Setting Information of the target model that can be accessed

White-Box All information (network architecture, network weight, gradient, score,
prediction, input-resolution, output-dimension, output-classes, etc.)

Query-based Black-Box Limited information (prediction, score, input-resolution, image classes)

Query-free Black-Box Limited information (input-resolution, image classes)

Generalized Transferable Attack Non information (/)

transferable attack (GTA) setting because the attacker needs to be generalizable to attack images
from unknown datasets and any models predicting these images. Table 1 illustrates the difference
between GTA and the previous attack settings.

Under the GTA setting, we aim at investigating whether DNNs are still vulnerable and whether there
exists new attacks in this setting to break DNN models. Although none of the previous transfer
attack paper considers attacking across datasets, with some careful modifications on the attack loss
and rescaling techniques, it is possible to extend existing transfer attacks to this new setting (we
will discuss these modifications in Section 4.1). Unfortunately, as will be seen in the experimental
results, even with these modifications the existing transfer attacks suffer from very poor attack success
rates due to the mis-match of label set and input size between source and target models. To tackle
these challenges, we propose a novel method called Image Classification Eraser (ICE) which builds
a generalized attacker by a meta-learning framework (Finn et al., 2017; Mishra et al., 2018; Qin
et al., 2021b; Liu et al., 2019b). ICE requires no assumption on the dataset of the victim model, and
furthermore, it allows multiple white-box surrogate models trained on different datasets, with various
label sets and input sizes. Extensive experiments on Cifar-10 (Krizhevsky et al., 2009), Cifar-100,
and TieredImageNet (Ren et al., 2018a) demonstrate that the proposed ICE outperforms the modified
transfer attack methods on the GTA problem. In particular, given the source dataset Cifar-10 and the
source models ResNet-18 and MobileNet-V1 trained on Cifar-10, ICE improves the average attack
success rate on Cifar-100 images by about 17.0%, compared with existing transfer attack methods.

2 BACKGROUND

Existing adversarial attack methods (Ganeshan et al., 2019; Croce & Hein, 2020a; Wu et al., 2020b; Li
et al., 2020b; Kaidi et al., 2019; Maksym et al., 2020; Xiao et al., 2021; Zhang et al., 2021) can mainly
be categorized into white-box, query-based black-box, and query-free black-box attacks. Among
the three kinds of attacks, white-box attack (Kurakin et al., 2016) is the most effective one because
all information of the target model can be leveraged to generate adversarial examples. Query-based
black-box attack assumes that some information of the target model is hidden to users and the users
can only query the target model and access the hard-label or soft-label predictions. Researchers have
proposed many query-based black-box attack methods (Chen et al., 2017; Cheng et al., 2020; Huang
& Zhang, 2020; Gao et al., 2020) and have shown that adversarial examples can still be effectively
generated only based on predictions. The most recently developed query-based methods mainly
focus on improving the querying efficiency and reducing the query counts (Cheng et al., 2019; Li
et al., 2020a; Du et al., 2020; Wang et al., 2020; Yuan et al., 2021). The query-free black-box attack
further assumes that the target model’s prediction is also hidden to users. In this challenging situation,
researchers usually generate adversarial examples by attacking surrogate models (Dong et al., 2019;
Xie et al., 2019). Then, by leveraging the transferability of adversarial examples (Papernot et al.,
2016; Tramèr et al., 2017; Nathan et al., 2020), we can directly use the adversarial examples to attack
the target model without querying (Huang et al., 2019; Zhou et al., 2018; Lu et al., 2020). However,
exising works commonly assume the surrogate model and victim model are trained on the same
dataset, which indicates that the attacker implicitly knows the dataset, input size, and label set used in
the victim model.

The level of information that the attacker can leverage reduces from white-box to query-free black-box
attacks. However, existing methods still need to know some information of the target model, which
is summarized in Table 1. In this paper, instead of following the above three adversarial attack
directions, we consider a novel and more challenging problem called generalized transferable attack
(GTA). GTA can be described as the following attack scene. We have the resources of: 1) some
source datasets. 2) some source models trained on the source datasets. With these resources, we can
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obtain an attacker. Then, given a randomly intercepted image, we are required to directly leverage the
attacker to disturb the image so that any unknown target models that predict this image will make
wrong predictions for the disturbed image. Note that the image is randomly intercepted and it is
normal that the source datasets do not contain the image category of the randomly intercepted image.
Further, both the resolution of the image and that of the target model cannot be known in advance.

3 METHODOLOGY

In GTA, we assume the source models can be trained on several datasets that are different from
the victim model. Suppose we have m source image classification datasets denoted as D1, D2, ...,
Dm. Different datasets have different label sets, with potentially different label sizes and image
shapes. For each source dataset Dk, we have Nk trained models denoted as MDk

= {M1
Dk

, M2
Dk

,
..., MNk

Dk
}. With these resources, we can build a model A(MD1

,MD2
, ...,MDk

), which may be a
simple ensemble of all source models or a new model obtained by using the sources. Then, given
any encountered image x in the inference time, we generate an adversarial image via the formulation
x̂ = f(A(MD1

,MD2
, ...,MDk

), x), where f is a gradient-based attack to obtain x̂ by attacking A.
The goal of GTA is that any unknown model M that takes x as input will be fooled by x̂, which can
be formulated as M(x̂) 6= M(x).

A traditional way in transfer attack is to build the model A as the ensemble of all surrogate mod-
els (Dong et al., 2018; Wu et al., 2020a). However, since source models can have different input
shapes and label spaces in the GTA setting, it is nontrivial to ensemble them into a single model.
Furthermore, a naive ensemble may not optimize the performance for generalized transfer attack.
Therefore, we propose a novel method called image classification eraser (ICE) to obtain a single
model A that optimizes the performance of GTA attack using meta-learning (Finn et al., 2017; Qin
et al., 2020; Javed & White, 2019). This model can be understood as a universal surrogate model and
to distinguish it from the naively assembled model, it will be denoted as Uθ in the rest of this paper,
where θ is the model parameter. It is expected that by confusing the model Uθ with function f (PGD
in our work), we can obtain an adversarial example for the image x to fool an unknown target model.
The design of our method aims to address the following issues in generalized transfer attack:

1) We cannot predict the category of a randomly encountered image x in advance, so no ground-truth
information can be leveraged. This means the commonly used cross-entropy loss which needs the
ground-truth label cannot be directly used in GTA. We therefore use entropy instead of cross-entropy
for the attack. Eq. 1 shows the formulations of cross-entropy CE(d, y) and entropy L(d), where d is
a vector that denotes the prediction distribution and y is the one-hot ground-truth label. d = Softmax(logit)

L(d) = −dT · log(d)
CE(d, y) = −yT · log(d)

(1)

Entropy of any distribution denotes the degree of disorder, randomness, or uncertainty of the distribu-
tion. Therefore, by maximizing the entropy, we can obtain a perturbation that makes the input image
hard to be classified without using the ground-truth label. Furthermore, the entropy loss also enables
us to flexibly set the output dimension of model Uθ without knowing the number of categories of any
dataset. In the experiments, we set the output dimension of Uθ to 1000 by default and investigate the
impact of the output dimension on its performance in an ablation study.

2) Random encountered images may have diverse shapes. For example, the image-shapes from
different datasets (e.g., Cifar-10 and ImageNet) differ from each other. Therefore, the model Uθ must
be capable of directly handling images with different shapes without resizing images. To guarantee
this point, we set the network architecture of model Uθ to a fully convolutional network without
flattened and fully-connected layers. All down-sampling operations are implemented by max-pooling
and average-pooling. We will show details of the network architecture in Section A.1.

3.1 IMAGE CLASSIFICATION ERASER

To optimize the model Uθ, we use all source models from source datasets to simulate unknown target
models and develop a novel bi-level training framework (Finn et al., 2017; Liu et al., 2019b; Ren et al.,
2018b; Liu et al., 2019a). Each bi-level training iteration contains an inner-loop and an outer-loop
optimization. In the inner-loop, by confusing model Uθ with gradient ascent, we generate adversarial
examples for any source images and feed them into the source models to simulate the GTA process.
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Figure 1: (a) The training framework of the proposed ICE. Different images sampled from different
source datasets are used to mimic randomly encountered images and are simultaneously fed into
Uθ. By maximizing the prediction entropy of model Uθ for the input images, we obtain adversarial
images. To evaluate how confusing the generated adversarial images are, we feed them into the
source models and measure the cross-entropy loss. Finally, we optimize Uθ by maximizing the source
models’ cross-entropy losses. (b) The testing pipeline of the proposed ICE.

In the outer-loop, we evaluate how the source models are being confused by the adversarial examples
generated in the inner-loop, and optimize the model Uθ by maximizing the cross-entropy loss of the
source models. Details of the inner-loop and outer-loop can be described as the follows.

Inner-Loop. Given any source dataset Dk and any image xDk
∈ Dk, we simulate it as a randomly

encountered image and conduct a GTA process to xDk
. Specifically, we firstly feed xDk

into Uθ and
obtain the prediction Uθ(xDk

), and then we generate adversarial example x̂Dk
by maximizing the

entropy of Uθ(xDk
). To enable the gradient back-propagating in the bi-level optimization framework,

we follow the transferable attack method MTA (Qin et al., 2021a) to maxmize the model Uθ’s
prediction entropy via one-step Customized PGD (Customized FGSM). The reason why we use
Customized FGSM instead of multi-step Customized PGD will be described in Section 4.5.4. Then,
we can formulate x̂Dk

as{
g(θ) = ∇xDk

L(Uθ(xDk
))

x̂Dk
=Clip

(
xDk

+ εc ·
(
γ1 · g(θ)

sum(abs(g(θ)))+γ2 ·
2
π ·arctan( g(θ)

mean(abs(g(θ))) )+sign(g(θ))
)) (2)

where both γ1 and γ2 are set to 0.01 by default. εc determines the perturbation scale. L(Uθ(xDk
))

is the entropy of Uθ(xDk
), and g(θ) is the gradient of the entropy w.r.t xDk

based on the current
parameter θ. Clip is the function that clips each pixel value of the image into the range of [0, 255].

Algorithm 1: Training of the Image Classification Eraser
input: Source datasets D={D1,D2, ...,Dm}, Source
models MDk

={M1
Dk
,M2
Dk
, ...,MNk

Dk
} for each dataset Dk.

output: Optimized weight θ.
1 : while not done do
2 : for each Dk ∈ D do
3 : Sample a mini data batch (XDk

, YDk
) ∈ Dk

4 : Obtain adversarial examples X̂Dk
via Eq. 2

5 : for each Mj
Dk
∈MDk

do
6 : Obtain adversarial loss LjDk

for X̂Dk
via Eq. 3.

7 : end for
8 : end for
9 : θ=θ+α·∇θ

(
1
m

∑m
k=1(

1
Nk

∑Nk

j=1 L
j
Dk

)
)

10: end while
11: return θ

Outer-Loop. We evaluate how
the perturbed image x̂Dk

fools
each simulated unknown target
model Mj

Dk
∈ MDk

by calcu-
lating the adversarial loss

ljDk
=CE(Mj

Dk
(x̂Dk

), yDk
), (3)

where j ∈ [1, Nk]; yDk
is

the groundtruth of xDk
; CE

is the cross-entropy function.
Mj
Dk

(x̂Dk
) is the target model’s

prediction for x̂Dk
. A larger

adversarial loss ljDk
will indi-

cate a higher possibility that
the simulated unknown target
model Mj

Dk
is fooled by the per-

turbed image x̂Dk
. Note that the

groundtruths of all source images are accessible when we training the model Uθ, so we use cross-
entropy instead of entropy used in inner-loop to calculate the loss in outer-loop. The ablation study in
Section 4.5.5 validates the necessity of the cross-entropy for the outer-loop.

4



Under review as a conference paper at ICLR 2022

To ensure that the classification information of each image xDk
∈ Dk can be erased by attacking

model Uθ and the perturbed image x̂Dk
is confusing for the simulated unknown target model Mj

Dk

to predict, we optimize the model Uθ by maximizing the adversarial loss ljDk
by the following SGD

update:
θ = θ + α · ∇θljDk

, (4)

where α is the learning rate. ljDk
is differentiable w.r.t θ because ljDk

depends on x̂Dk
and x̂Dk

depends on θ. In our experiment, we optimize the model Uθ by simultaneously maximizing the
adversarial losses on all source models from all source datasets in each iteration, which is summarized
in Algorithm 1. This procedure will enforce Uθ having the property that the adversarial examples
constructed by attacking it are more transferable to images from different datasets.

3.2 INFERENCE PROCEDURE AND EVALUATION

Given any clean image x that will be fed into an unknown target model M, we evaluate the proposed
ICE with the following steps. 1) Directly feed the image x into model Uθ and generate the adversarial
example x(T ) by maximizing the entropy for T gradient ascent steps. The i-th step is formulated as{

δ(i−1) = sign
(
∇x(i−1)L(Uθ(x(i−1))),

x(i) = clip(x(i−1) + ε
T · δ

(i−1)),
(5)

where x(0) = x and δ(i−1) is the perturbation generated in the i-th step. ε/T is the L∞ perturbation
scale in each step. 2) Generate the adversarial example x̂ by the formulation x̂ = clip(x + ε ·
sign(x(T ) − x)). We call this step ‘Sign-Projection’ (SP). The reason why we use SP is that it
enlarges the average distortion of each pixel without amplifying the L∞ norm of the perturbation,
which improves the GTA success rate. Ablation study in Section 4.5.1 will show that SP improves
both ICE and the baselines introduced in Section 4.1. 3) Feed the adversarial example x̂ and the clean
image x into the unknown target model and get its predictions M(x̂) and M(x). 4) The GTA process
is successful if M(x̂) 6= M(x). The evaluation pipeline is also illustrated in Figure 1b, where the
green arrows indicate the second step.

4 EXPERIMENTAL RESULTS
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Figure 2: Inference pipeline of PGD-based baselines.

In this section, we conduct several exper-
iments to evaluate the proposed method
for conducting generalized transferable at-
tacks. Three datasets Cifar-10 (Krizhevsky
et al., 2009), Cifar-100, and TieredIma-
geNet (Ren et al., 2018a) are used to build
the testing scenes of GTA. Both Cifar-10
and Cifar-100 contain 60,000 images with
the resolution of 32×32. TieredImageNet
is a subset sampled from ImageNet (Deng
et al., 2009). The default image resolu-
tion in TieredImagenet is 84x84. We split
TieredImageNet into two datasets. The training set of TieredImageNet is treated as one dataset and
is denoted as TieredT84. The validation and the testing sets with all images resized into 56×56
resolution are treated as another dataset, denoted as TieredV 56. For either TieredT84 or TieredV 56,
we use the first 1200 images of each category to compose the training set and use the last 100 images
to compose the testing set. Overall, we have four datasets Cifar-10, Cifar-100, TieredT84, and
TieredV 56 that will be used in our experiments. More details of TieredT84, and TieredV 56 will be
shown in Section A.2.

4.1 HOW TO USE TRANSFER ATTACK BASELINES FOR GTA?
GTA is a novel adversarial attack problem and few existing methods can be directly used as baselines.
Considering that transfer attack is the most similar problem to GTA, we deploy several transferable
adversarial attack methods including MI (Dong et al., 2018), DI (Xie et al., 2019), TI-DIM (Dong
et al., 2019), SGM (Wu et al., 2020a), AEG (Bose et al., 2020), IR (Wang et al., 2021), and MTA (Qin
et al., 2021a) on GTA as baselines for the proposed ICE. Except for AEG and MTA, all the other
baselines are implemented on the GTA problem with the inference pipeline described below. The
detailed implementations of AEG and MTA will be introduced in Section A.3.
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1) Since the source models trained on different source datasets commonly have different input shapes,
we firstly resize the testing image x to the input shapes of all source models and then feed the resized
images to the source models, respectively. Then the inference of x on one source model Mj

Dk
can

be formulated as y(0,j)Dk
= Mj

Dk
(x

(0,j)
Dk

), where x(0,j)Dk
= resize(x, resolution(Mj

Dk
)). 2) Because

we cannot access the category of the image x in advance, no ground-truth label can be leveraged to
perturb the resized image. Therefore, for each source model, we generate adversarial perturbation
by maximizing the entropy (as used in our ICE) for T gradient ascent steps. The i-th step can be
formulated as 

y
(i−1,j)
Dk

= Mj
Dk

(x
(i−1,j)
Dk

),

δ
(i−1,j)
Dk

= sign
(
∇
x
(i−1,j)
Dk

L(y(i−1,j)Dk
)),

x
(i,j)
Dk

= clip(x(i−1,j)Dk
+ ε

T · δ
(i−1,j)
Dk

),

(6)

where y(i−1,j)Dk
is the source model’s output and x(i,j)Dk

and δ(i−1,j)Dk
are the adversarial example and

the perturbation generated in the i-th step, respectively. 3) We resize all the adversarial examples
to the original shape of the image x and average fuse all adversarial examples to one image xadv
following the formulation xadv = 1

m ·
∑m
k=1 ·

(
1
Nk
·
∑Nk

j=1 resize(x(T,j)Dk
, resolution(x))

)
. 4) We

generate adversarial example x̂ by the formulation x̂ = clip(x + ε · sign(xadv − x)), which is the
SP step defined in Section 3.2. 5) We feed the adversarial example x̂ and the clean image x into the
unknown target model M and get its predictions. 6) The GTA process is successful if M(x̂) 6= M(x).
The evaluation of the PGD-based baselines is also illustrated in Figure 2, where the green arrows
denote the third and fourth steps.

4.2 EXPERIMENTAL SETTINGS

1) Source and Target models. On each dataset, we train several models including ResNet-18, -34 (He
et al., 2016), SeResNet-26 (Hu et al., 2018), VGG-16 (Simonyan & Zisserman, 2015), MobileNet-
V1 (Howard et al., 2017), MobileNet-V3 (Howard et al., 2019), and DenseNet-26 (Huang et al.,
2017). The training details and the architectures of these models will be introduced in Section A.4.
These models will be used as the source and target models in the following GTA testing experiments.

2) Hyper-parameters. In the training phase of ICE, we train Uθ for 50,000 iterations with batch size
of 64 for each source dataset. Learning rate α is set to 0.01. εc is set to 3000 and is periodically
decayed by 0.9× for every 3000 iterations. In the inference phase of ICE and all the baselines, we set
ε to 15 and set T to 10 for ICE and other PGD-based baselines. In Section A.5.1, We will show the
experimental results with ε = 8, where ICE still outperforms the baselines with significant margins.

3) Evaluation Metric. We use the attack success rate to denote the GTA performance. Because
attacking the images that are wrongly classified by the target model is meaningless, we only attack
the images that are correctly classified by the target model.

4.3 GENERALIZED TRANSFERABLE ATTACK TO CIFAR-100
In this subsection, we perform GTA experiments on Cifar-100, which means we try to perturb
Cifar-100 images to fool the target victim models. The models MobileNet-V3, VGG-16, ResNet-18,
ResNet-34, SeResNet-26, and DenseNet-26 trained on Cifar-100 are used as victims to calculate the
GTA success rate. All experimental results are reported in Table 2.

In the first experiment (the first row of Table 2), we use ResNet-18 and Cifar-10 as the source model
and the source dataset, respectively, and conduct GTA on the testing images from Cifar-100. It is
observed that among all baselines, FGSM performs the best. A possible underlying reason is that
adversarial perturbations generated by multi-step gradient ascent tends to overfit the source model
and source dataset. It can also be seen that the proposed ICE outperforms existing methods on the
GTA problem. For instance, compared with FGSM, the average attack success rate on the six target
models is improved by about 11.5%.

In the second experiment (the second row of Table 2), we consider the case where there are two
source models – ResNet-18 and MobileNet-V1 trained on Cifar-10. Experimental results indicate
that most of the baselines cannot leverage the additional source model MobileNet-V1 to boost their
performances. In contrast, the proposed ICE can efficiently make use of the additional source model
to improve its performances. For instance, by adding the MobileNet-V1 source model, the average
attack success rate across 6 models of FGSM is decreased by about 0.7% while the success rate of
ICE is improved by about 11.6%.

6



Under review as a conference paper at ICLR 2022

Table 2: GTA success rates on Cifar-100.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
(ResNet-18)

FGSM 47.7% 64.2% 59.1% 57.6% 59.1% 73.1%
PGD 37.3% 50.9% 43.2% 44.5% 45.7% 61.5%
DI 39.3% 54.9% 47.2% 46.1% 49.5% 64.7%
MI 45.4% 62.3% 56.3% 56.6% 57.5% 72.1%

TI-DIM 51.0% 45.6% 48.0% 47.7% 47.5% 55.3%
IR 48.3% 62.1% 60.5% 58.8% 59.1% 73.7%

AEG 51.3% 61.7% 61.2% 59.5% 58.9% 66.4%
MTA 42.3% 49.5% 45.0% 45.1% 44.2% 60.0%
ICE 54.9% 67.3% 71.5% 64.0% 61.2% 83.5%

Cifar-10
(ResNet-18

+MobileNet-V1)

FGSM 49.2% 63.3% 57.9% 56.4% 58.9% 72.5%
PGD 39.6% 52.8% 45.1% 44.6% 47.9% 62.9%
DI 42.1% 55.2% 46.2% 45.5% 49.8% 65.0%
MI 47.4% 62.7% 57.1% 56.1% 58.3% 72.1%

TI-DIM 51.5% 43.6% 45.5% 46.0% 46.1% 52.6%
IR 52.6% 63.8% 60.3% 58.8% 59.0% 74.9%

AEG 55.8% 65.3% 65.0% 62.8% 63.9% 71.2%
MTA 45.2% 54.1% 51.1% 49.8% 49.2% 62.6%
ICE 55.2% 79.6% 79.9% 77.5% 72.7% 84.3%

Cifar-10
+ TieredT84

(ResNet-18)

FGSM 33.0% 47.3% 38.6% 37.2% 40.5% 58.7%
PGD 39.0% 52.2% 41.7% 41.3% 46.8% 64.9%
DI 39.1% 52.3% 41.7% 41.4% 47.3% 64.2%
MI 42.7% 57.0% 48.2% 47.7% 52.5% 68.1%

TI-DIM 55.1% 48.2% 50.5% 50.6% 49.8% 58.1%
IR 44.0% 58.1% 51.9% 50.4% 52.9% 69.5%

AEG 50.9% 64.6% 58.2% 55.6% 58.5% 70.3%
MTA 43.6% 56.7% 47.5% 47.7% 51.3% 68.0%
ICE 57.0% 76.2% 77.5% 76.8% 69.3% 83.3%

Cifar-10
+ TieredV 56

(ResNet-18)

FGSM 33.7% 48.5% 38.9% 38.7% 41.6% 58.2%
PGD 40.1% 54.9% 44.3% 43.5% 48.9% 65.7%
DI 40.5% 55.0% 44.7% 43.5% 49.0% 65.9%
MI 45.5% 60.3% 50.2% 48.9% 53.8% 70.6%

TI-DIM 51.4% 48.0% 49.4% 49.5% 48.6% 58.9%
IR 44.7% 59.2% 54.0% 53.5% 53.9% 70.1%

AEG 51.5% 62.3% 58.9% 56.4% 57.1% 68.3%
MTA 43.3% 60.8% 50.0% 50.3% 53.5% 70.2%
ICE 52.7% 76.9% 79.8% 78.0% 69.5% 84.9%

Cifar-10
+ TieredT84

+ TieredV 56

(ResNet-18)

FGSM 45.3% 59.6% 49.9% 48.2% 53.4% 70.0%
PGD 40.6% 54.7% 42.8% 42.1% 45.6% 65.8%
DI 40.6% 54.9% 42.9% 42.2% 48.6% 66.0%
MI 45.0% 58.9% 48.1% 47.0% 54.0% 69.2%

TI-DIM 54.3% 48.7% 50.1% 51.3% 49.8% 58.7%
IR 48.9% 57.5% 51.2% 50.8% 56.2% 70.1%

AEG 47.7% 63.8% 56.0% 53.1% 57.5% 71.7%
MTA 40.6% 61.3% 49.2% 50.1% 53.6% 69.7%
ICE 56.3% 83.2% 90.1% 87.3% 80.1% 92.4%

In the third experiment, we use two ResNet-18 models trained on Cifar-10 and TieredT84 respectively
as the source models, and use Cifar-10 and TieredT84 as the source datasets. It is interesting that the
baselines’ performances in this experiment are commonly worse than their performances in the first
experiment. The possible reason for this result is that the resolution of the images from TieredT84 is
84×84, which differs greatly from the resolution of Cifar-100. As a comparison, ICE’s performances
in this experiment are much better than its performances in the first experiment, which indicates that
ICE can efficiently make use of all the resources to improve the performance in spite of the difference
among the source datasets.

In the fourth experiment, we use two ResNet-18 models respectively trained on Cifar-10 and TieredT56

as the source models. It is observed that most of the baselines’ performances in this experiment
are slightly better than their performances in the third experiment. For instance, compared with the
performances in the third experiment, the performance of FGSM in this experiment is improved by
about 1.7%. The possible reason for this result is that compared with the resolution of TieredT84, the
resolution of TieredV 56 is more closer to the resolution of Cifar-100. In this experiment, the proposed
ICE still outperforms all baselines with clear margins.

In the fifth experiment, we use three ResNet-18 models respectively trained on Cifar-10, TieredT84

and TieredV 56 as the source models. It is clear that ICE’s performances can be further improved
by using more source datasets, while the baselines cannot efficiently utilize the additional source
models to achieve better performances. AEG performs the best among all baselines with the average
attack success rate of 58.3%. Compared with AEG, ICE promotes the average attack success rate
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Table 3: The GTA success rates on Cifar-10, TieredT84, and TieredV 56.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

-Cifar-10
(ResNet-18)

FGSM 21.3% 28.3% 33.0% 30.2% 26.2% 47.9%
PGD 17.7% 24.7% 28.4% 25.7% 22.0% 43.2%
DI 17.6% 24.8% 28.4% 25.7% 22.0% 43.3%
MI 20.6% 28.7% 33.2% 30.2% 26.1% 47.8%

TI-DIM 15.5% 18.5% 22.2% 19.5% 17.6% 25.2%
IR 19.8% 28.3% 32.3% 29.7% 26.5% 47.9%

AEG 24.4% 38.5% 41.2% 40.9% 31.3% 52.1%
MTA 22.5% 39.1% 41.2% 39.6% 32.6% 53.0%
ICE 36.3% 45.5% 61.0% 53.6% 48.5% 65.5%

-TieredT84

(ResNet-18)

FGSM 56.5% 62.1% 83.5% 77.2% 67.3% 88.7%
PGD 50.1% 53.3% 75.5% 68.8% 57.5% 83.0%
DI 50.5% 53.3% 75.5% 69.5% 57.5% 83.6%
MI 58.2% 61.8% 82.6% 77.1% 66.4% 88.3%

TI-DIM 56.8% 52.6% 77.3% 71.1% 57.5% 80.9%
IR 52.5% 56.8% 79.3% 72.7% 62.9% 87.5%

AEG 47.8% 45.6% 56.0% 55.7% 51.0% 64.5%
MTA 42.2% 43.8% 53.2% 52.5% 50.6% 60.5%
ICE 52.3% 73.0% 90.8% 89.6% 73.8% 93.5%

-TieredV 56

(ResNet-18)

FGSM 65.7% 69.8% 78.1% 75.0% 75.1% 86.9%
PGD 59.5% 65.8% 74.1% 70.9% 71.1% 85.8%
DI 59.3% 65.8% 74.3% 71.1% 70.9% 85.6%
MI 64.6% 68.0% 76.2% 73.9% 73.7% 86.5%

TI-DIM 63.2% 60.0% 71.2% 69.3% 65.8% 76.9%
IR 59.7% 67.1% 74.3% 73.2% 69.0% 83.5%

AEG 57.0% 67.2% 72.7% 70.3% 72.0% 78.6%
MTA 48.0% 63.9% 66.7% 64.2% 65.9% 72.5%
ICE 72.0% 83.5% 91.7% 88.2% 85.3% 93.3%

by about 39.9%, which is a bigger margin than the margin in the first experiment. This experiment
further indicates that ICE is more effective than baselines to leverage all the resource to solve the
GTA problem.

4.4 GENERALIZED TRANSFERABLE ATTACK TO CIFAR-10, TIEREDT84, AND TIEREDV 56

We have performed GTA on Cifar-100 in the previous subsection. Now we show ICE still outperforms
baselines when using other datasets as target images. Table 3 reports the experimental results. There
are four datasets in total (Cifar-10, Cifar-100, TieredT84, and TieredV 56), and each row (denoted
as -target) shows the experiment when conducting GTA on the target dataset by using ResNet-18
trained on the other three datasets as source models. For example, the ‘-Cifar10’ row denotes the
experiment that utilizing the datasets Cifar-100, TieredT84, and TieredV 56 and the three respectively
trained ResNet-18 models to conduct GTA to the images from Cifar-10. Table 3 does not show the
‘-Cifar100’ row because the corresponding results have been shown in the last row of Table 2. It is
clear that given three datasets and the models trained on the three datasets, ICE performs the best to
attack unknown images from other datasets.

4.5 ABLATION STUDY

Here we conduct several ablation studies to verify the effect of each setting or component in our work.
Note that the source model and source dataset used in all ablation experiments are ResNet-18 and
Cifar-10, and the target dataset is Cifar-100.

4.5.1 THE EFFECT OF SP
When evaluating ICE and baselines on the GTA problem, we use the trick SP (the third step in
Section 3.2) to improve their performances. Here we validate the effectiveness of SP by removing it,
which means we directly use the adversarial example x(T ) generated in the second step in Section
3.2 and xadv generated in the third step in Section 4.1 to attack the target models. Table 4 reports the
experimental results. It is clear that without SP, the performances of ICE and baselines are greatly
damaged. The reason is that SP enlarges the average perturbation scale of each pixel, which possibly
is an important factor for GTA. More analyses about SP will be shown in Section A.7.

4.5.2 USING PSEUDO LABEL WITH CROSS-ENTROPY LOSS?
Section 4.1 introduces that for ICE and all baseline methods, we generate adversarial examples by
maximizing the entropy. Here we use pseudo label with cross-entropy loss to generate adversarial
examples. Then the perturbation generated in each gradient ascent step can be reformulated as
δ = sign

(
∇x(i−1)CE(y, argmax(y))

)
, where y is the softmax prediction and argmax(y) is used as
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Table 4: Ablation GTA experiments on Cifar-100.
Setting Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

w/o SP

PGD 7.0% 13.9% 12.3% 11.7% 12.6% 19.1%
DI 6.9% 13.0% 11.7% 10.7% 12.1% 18.5%
MI 33.8% 50.9% 45.3% 45.0% 45.0% 60.7%

TI-DIM 10.0% 8.0% 8.5% 8.3% 8.9% 12.1%
ICE 21.9% 23.6% 23.3% 20.0% 22.1% 35.1%

Pseudo

PGD 38.9% 53.0% 45.2% 44.9% 48.1% 63.3%
DI 40.9% 53.5% 46.0% 45.1% 50.1% 64.2%
MI 47.3% 62.4% 57.3% 56.2% 57.5% 72.2%

TI-DIM 47.3% 41.5% 42.6% 43.6% 43.9% 51.3%
ICE 39.1% 55.8% 53.6% 48.9% 46.3% 70.8%

Default

PGD 37.3% 50.9% 43.2% 44.5% 45.7% 61.5%
DI 39.3% 54.9% 47.2% 46.1% 49.5% 64.7%
MI 45.4% 62.3% 56.3% 56.6% 57.5% 72.1%

TI-DIM 51.0% 45.6% 48.0% 47.7% 47.5% 55.3%
ICEen 39.3% 49.0% 46.5% 42.6% 52.9% 66.3%

ICE 54.9% 67.3% 71.5% 64.0% 61.2% 83.5%

pseudo label. x(i−1) is the adversarial image we obtained after i − 1 gradient ascent steps. The
corresponding experimental results on Cifar-100 are shown in Table 4. It can be seen that for most
of the baselines, the pseudo label together with cross-entropy loss perform almost consistent with
entropy in GTA. For the proposed ICE, the cross-entropy loss damages the performance, which is
probably caused by the fact that ICE is trained with entropy but not cross-entropy.

4.5.3 OUTPUT DIMENSION OF ICE
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Figure 3: All experiments in this figure use Cifar-10 and
ResNet-18 as the source dataset and the source model. (a):
ICE’s GTA results on six target models trained on Cifar-100
with different output dimensions. (b): ICE’s GTA results on
six target models trained on Cifar-100 with different numbers
of T in the training phase.

We set the output dimension of ICE
as 1,000 by default. Here we show
how the output dimension affects the
results in Figure 3a. We can see that
the average attack success rates on the
six target models will rise when the
output dimension is increased from 30
to 300, and will become stable when
the output dimension > 300.

4.5.4 CUSTOMIZED
FGSM OR CUSTOMIZED PGD?
Eq. 2 shows that we use Customized
FGSM to perturb the input image in
the inner-loop. We conduct an exper-
iment to show why we use Customized FGSM instead of Customized PGD (Qin et al., 2021a).
Customized PGD is a multi-step Customized FGSM. In this experiment, we increase the number
of gradient ascent steps from 1 to 5. Figure 3b shows the experimental results. It is clear that the
performances of ICE will be damaged by the increase of the number of gradient ascent steps. The
possible reason for this phenomenon is that multi-step gradient ascent in the inner-loop makes the
model Uθ hard to be optimized in the outer-loop.

4.5.5 USING ENTROPY IN OUTER-LOOP?
We use entropy to calculate the loss (Eq. 2) in the inner-loop of ICE but use cross-entropy (Eq. 3) in
the outer-loop. Here we conduct another experiment to show the necessity of the cross-entropy in the
outer-loop by replacing cross-entropy with entropy. We denote this version as ICEen and report its
results in Table 4. The comparison between ICE and ICEen demonstrates that cross-entropy used in
the outer-loop is necessary for ICE to achieve better performances.

5 CONCLUSION

In this paper, we propose the Generalized Transfer Attack (GTA) problem which is more challenging
and more realistic than existing transfer attacks. To solve this novel problem, we modify some
transferable adversarial attack methods and propose a novel Image Classification Eraser method.
Experiments on several datasets demonstrate that existing transferable adversarial attack methods can
be modified to tackle the GTA problem, and the proposed ICE performs the best on GTA.
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6 ETHICS STATEMENT

Our work reveals the robustness issue of DNNs on the generalized transferable attack problem. The
target models that use unseen label sets and unknown input shapes can be attacked by the proposed
ICE method with high possibility. ICE is promising to evaluate the security of DNNs, and can be used
to improve the robustness of DNNs, and has little potential negative societal impacts. Section A.8
and Figure 5 show that ICE tends to disturb images sampled from different categories with similar
patterns, which may help researchers to better understand the robustness issue of DNN.

7 REPRODUCIBILITY STATEMENT

We provide our code in supplemental material and describe all the experimental settings in Section 4.2
and Appendix. The datasets we used are detailed in Sections 4 and A.2. The hyperparameter settings
and the network structure are clear. The training of all source and target models are detailed in
Section A.4, and the corresponding network architecture descriptions of these models can be found
in Section A.4 and our code. The implementations of all baselines are described in Sections 4.1 and
A.3. Overall, our work is easy to reproduce and follow.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

As mentioned in Section 3 of the main body, the proposed ICE should be able to handle images with
different resolutions because we cannot know the image shape in advance. Therefore, we build a
fully convolutional neural network shown in Figure 4 as the backbone of ICE. The parameters M1,
M2, M3, and M4 are set to 32, 64, 128, and 256, respectively.

A.2 MORE DETAILS OF TIEREDT84 AND TIEREDV 56

For either TieredT84 or TieredV 56, we use the image ID to rank all images of each category and
use the first 1200 images of each category to compose the training set and use the last 100 images
to compose the testing set. For example, the IDs of the two images ‘n01530575 5.JPEG’ and
‘n01530575 23.JPEG’ from the ‘n01530575’ category are 5 and 23.

A.3 ADDITIONAL IMPLEMENTATION DETAILS OF BASELINES

Some implementation details of baselines have been introduced in the main body. Here we introduce
the additional implementation details of baselines.

MI: Parameter µ of MI is set to 1.

DI:. We use the code1 to implement DI in all our experiments. We set ’FLAGS.image resize’ to 36,
64, or 96, when the resolution of the input image is 32, 56, or 84, respectively. The input diverse
possibility p is set to 1.0.

TI-DIM:. We use the code2 to implement TI-DIM in all our experiments.

IR:. We use the code3 to implement IR in all our experiments. The hyper-parameter ‘args.grid scale’
and ‘args.sample grid num’ are set to 1 and 16, respectively, for all experiments.

AEG. We implement AEG in our experiment by referring to the code4. Given each source dataset
Dk and the corresponding source models trained on it, we adversarially train a perturbation generator
together with a critic. The generator can be denoted as Gk. For example, for the experiment ‘-Cifar-
10’, we train three generators on the three datasets Cifar-100, TieredT84 and TieredV 56, and denote
them as G1, G2, G3, respectively. The architecture of all generators is the encoder-decoder defined
in Tab.7 of AEG’s paper. Note that considering ground-truth label is unavailable in inference, we do
not use the label as the additional input signal for the decoder when training the generators. Each
generator’s input-size is the same with the image-shape of the training dataset. On either Cifar-10 or
Cifar-100, we train the generator and the critic for 500 epochs with the learning rate of 0.001. On
either TieredT84 or TieredV 56, we train the generator and the critic for 120 epochs with the learning
rate of 0.001.

In the inference phase, we use the following steps to evaluate AEG on generalized transferable
attack. 1) Resize the testing clean image x to the input shapes of all generators and then feed
the resized images to all generators, respectively. 2) Obtain the perturbations generated by the
generators, which can be formulated as δk = Gk

(
resize(x, resolution(Gk))

)
. 3) Average fuse all the

generated perturbations with the formulation δ = 1
m

∑m
s=1 δk. 4) Obtain the adversarial example

x̂ = x+ ε · sign(δ), where ε = 15. 5) Feed x and x̂ into the unknown target model M, and get the
predictions. 6) The generalized transferable attack is successful if M(x) 6= M(x̂).

MTA. We refer to the MTA paper to implement it on the generalized transferable attack problem.
Given each source dataset Dk and the corresponding source models trained on it, we train a meta-
surrogate model, which can be demoted as Sk. Each meta-surrogate model’s input-size is the same
with the image-shape of the training dataset. We train the meta-surrogate models on all the source

1https://github.com/cihangxie/DI-2-FGSM
2https://github.com/dongyp13/Translation-Invariant-Attacks
3https://github.com/xherdan76/A-Unified-Approach-to-Interpreting-and-Boosting-Adversarial-

Transferability
4https://github.com/joeybose/Adversarial-Example-Games
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Figure 4: (a) The network architecture of the proposed ICE. It is composed of four cascaded residual
blocks, one convolutional layer, and one softmax layer. (b) The inner structure of the residual block.
Orange cube denotes convolutional layer and the number on it denotes the number of filters of the
convolutional layer. ‘Pool’ in the last residual block is global average pooling and ‘Pool’ in all the
other residual blocks are max-pooling with both stride and pooling size set to 2.

datasets with the following settings. On either Cifar-10 or Cifar-100, we train the meta-surrogate
model for 50,000 iterations with the parameter εc and number of attack steps Tt in Customized
PGD set to 1600 and 7, respectively. On either TieredT84 or TieredV 56, we train the meta-surrogate
model for 70,000 iterations with the parameter εc and number of attack steps Tt set to 2100 and 4,
respectively. On each training dataset, εc is exponentially decayed by 0.9× for every 4000 iterations.
The learning rate and the batch size are set to 0.001 and 64, respectively.

We use the following steps to evaluate MTA on generalized transferable attack. 1) Resize the testing
clean image x to the input shapes of all meta-surrogate models and feed the resized images to all
meta-surrogate models, respectively. Then the inference of x on the meta-surrogate model SDk

can
be formulated as y(0)Dk

= SDk
(x

(0)
Dk

), where x(0)Dk
= resize(x, resolution(SDk

)). 2) Because we cannot
access the category of the image x in advance, no ground-truth label can be leveraged to perturb
the resized image. Therefore, for each meta-surrogate model, we generate adversarial perturbation
by maximizing the entropy (as used in our ICE) for T gradient ascent steps. The i-th step can be
formulated as 

y
(i−1)
Dk

= SDk
(x

(i−1)
Dk

),

δ
(i−1)
Dk

= sign
(
∇
x
(i−1)
Dk

L(y(i−1)Dk
)),

x
(i)
Dk

= clip(x(i−1)Dk
+ ε

T · δ
(i−1)
Dk

),

(7)

where y(i−1)Dk
is the meta-surrogate model’s output and x(i)Dk

and δ(i−1)Dk
are the adversarial example

and the perturbation generated in the i-th step, respectively. 3) Resize all the adversarial examples
to the original shape of the image x and average fuse all adversarial examples to one image xadv
following the formulation xadv = 1

m ·
∑m
k=1 ·

(
1
Nk
·
∑Nk

j=1 resize(x(T )
Dk
, resolution(x))

)
. 4) Generate

adversarial example x̂ by the formulation x̂ = clip(x + ε · sign(xadv − x)), which is the SP step
defined in Section 3.2 of the main-body. 5) Feed the adversarial example x̂ and the clean image
x into the unknown target model M and get its predictions. 6) The GTA process is successful if
M(x̂) 6= M(x).

A.4 TRAINING DETAILS OF SOURCE AND TARGET MODELS

On each of the dataset Cifar-10, Cifar-100, TieredT84, and TieredV 56, we train the seven models
ResNet-18, -34, SeResNet-26, VGG-16, MobileNet-V1, MobileNet-V3, and DenseNet-26. The
network architectures of all the seven models are defined in the public GitHub repository5. We use
consistent hyper-parameters to train all the models for 80,000 iterations without data augmentation.
The learning rate, L2 weight decay, and batch size are set to 0.01, 1e-5, and 128, respectively. Table 5
shows the seven models’ accuracies on the four datasets.

5https://github.com/yxlijun/cifar-tensorflow
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Table 5: Accuracies of source and target model on the four datasets.
Dataset Mobile-Net-V1 MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10 82.0% 80.0% 92.9% 91.8% 92.6% 88.3% 91.2%
Cifar-100 48.0% 43.9% 68.5% 68.0% 69.3% 61.7% 64.6%
TieredT84 38.1% 35.3% 46.9% 47.0% 49.9% 48.9% 44.6%
TieredV 56 34.9% 32.1% 46.3% 45.9% 48.1% 43.2% 46.0%

A.5 ADDITIONAL EXPERIMENTS

A.5.1 SMALLER PERTURBATION

Here we report another generalized transferable attack experiment on Cifar-100. In this experiment,
we test whether the proposed ICE is sensitive to the perturbation scale by changing ε from the default
15 to 8. The source datasets are Cifar-10, TieredT84, and TieredT56. The source models are three
ResNet-18 models respectively trained on the three source datasets. Table 6 shows the experimental
results. It is observed that the ICE outperforms baselines with a significant margin. In lots of cases,
the attack success rate of ICE is more than twice as much as that of baselines, which further indicates
the effectiveness of the proposed ICE.

Table 6: GTA success rates on Cifar-100 with ε=8.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
+ TieredT84

+ TieredV 56

(ResNet-18)

FGSM 18.3% 29.9% 22.3% 22.1% 24.2% 39.7%
PGD 16.4% 25.9% 19.3% 18.8% 21.3% 36.0%
DI 16.5% 25.8% 19.3% 18.9% 21.5% 36.1%
MI 17.5% 28.5% 21.6% 21.2% 23.7% 39.5%

TI-DIM 25.6% 20.1% 21.3% 21.8% 21.3% 27.6%
IR 21.0% 30.6% 25.5% 24.9% 25.0% 42.2%

AEG 21.1% 29.7% 23.5% 22.8% 27.6% 38.0%
MTA 17.2% 26.5% 21.0% 21.3% 23.8% 35.3%
ICE 26.9% 49.9% 62.4% 58.2% 46.1% 72.2%

A.5.2 ATTACKING ROBUST MODELS

We performed a new experiment to conduct generalized transfer attack on robust models. In this
experiment, we use ResNet-18 and Cifar-10 as the source model and the source dataset, and disturb
the images from Cifar-100. The target models are adversarially trained ResNet-18 and ResNet-34
on Cifar-100, which can be denoted as ResNet-18adv and ResNet-34adv, respectively. To obtain
ResNet-18adv , we firstly use the normally trained ResNet-18 to generate adversarial examples for all
training examples with FGSM (ε=15), and then retrain ResNet-18 on all the clean training images and
the adversarial images. We obtain ResNet-34adv in a similar way. The two models finally achieve
approximately 46.9% and 47.3% testing accuracies on Cifar-100. The generalized transfer attack
results on ResNet-18adv and ResNet-34adv are reported in Table 7. Obviously, though all the methods
perform not well to attack adversarially trained models, ICE can still show its advantage in this
experiment.

Table 7: GTA success rates on robust Cifar-100 models.
Resource Method ResNet-18adv ResNet-34adv

Cifar-10
(ResNet-18)

FGSM 11.1% 12.9%
PGD 9.7% 10.1%
DI 11.0% 11.6%
MI 10.8% 11.8%

TI-DIM 16.7% 15.9%
IR 13.8% 13.1%

ICE 16.9% 17.5%

A.5.3 RE-IMPLEMENT PGD-BASED BASELINES WITH KL DIVERGENCE

In Section 4.3, the PGD-based baselines disturb input images by maximizing the entropy loss
of source models. In Section 4.5.2, the PGD-based baselines disturb input images by maxi-
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mizing the cross-entropy loss of source models, where the perturbation noise is formulated as
δ = sign

(
∇x(i−1)CE(y, argmax(y))

)
. argmax(y) is regarded as the pseudo label for the input. Here

we re-implement PGD-based baselines with KL divergence, which means the baselines disturb the
input images by maximizing the KL divergence between the predict distribution y and y0, where
y0 is the distribution predict for the original clean image x. The perturbation generated in each
gradient ascent step can be reformulated as δ = sign

(
∇x(i−1)KL(y, y0)

)
. In this experiment, we

use ResNet-18 and Cifar-10 as the source model and source dataset, and use Cifar-100 as the target
dataset. The generalized transfer attack results on MobileNet-V3, VGG-16, ResNet-18, ResNet-34,
SeResNet-26, and DenseNet-16 are reported in Table 8. The comparison between the results here
and those in Table 2 demonstrate that the KL divergence cannot improve baselines.

Table 8: GTA success rates on Cifar-100 with KL divergence.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
(ResNet-18)

FGSM 49.3% 63.3% 57.9% 56.5% 58.8% 72.5%
PGD 39.6% 52.5% 45.0% 44.5% 48.0% 62.7%
DI 41.2% 54.6% 46.5% 45.9% 50.0% 64.2%
MI 47.3% 62.6% 56.9% 56.1% 58.2% 72.4%

TI-DIM 50.6% 43.1% 45.6% 45.9% 46.9% 52.4%

A.5.4 OPTIMIZE A SINGLE ADVERSARIAL IMAGE

In our previous experiments, we implement PGD-based baselines with the pipeline introduced in
Section 4.1. Here we re-implement PGD-based baselines with a new pipeline. The new pipeline uses
T gradient ascent iterations to disturb the input image, and the i-th iteration contains the following
three steps.

1) We resize the image x(i−1) to the input shapes of all source models and then feed the resized
images to the source models, respectively. x(i−1) is the perturbed image generated in the i − 1

iteration and x(0) = x. Then the inference of x(i−1) on one source model Mj
Dk

can be formulated
as yjDk

= Mj
Dk

(xjDk
), where xjDk

= resize(x(i−1), resolution(Mj
Dk

)) is the resized image for the
source model Mj

Dk
.

2) We calculate the prediction losses of all the source models with the formulation L = 1
m ·∑m

k=1 ·
(

1
Nk
·
∑Nk

j=1 L(y
j
Dk

)
)
, where L is entropy.

3) We disturb the input image x(i−1) with the formulation x(i) = clip(x(i−1) + ε
T · δ), where

δ = sign
(
∇x(i−1)L

)
.

After T iterations, we obtain the disturbed image x(T ), and feed it and the clean image x into the
unknown target model M and get its predictions. The GTA process is successful if M(x(T )) 6= M(x).

We perform another experiment to evaluate how the re-implemented PGD-based baselines perform
on GTA. In this experiment, Cifar-10, TieredT84, and TieredV 56 are used as source datasets, and three
ResNet-18 respectively trained on the three datasets are used as the source models. The experimental
results on the target models MobileNet-V3, VGG-16, ResNet-18, ResNet-34, SeResNet-26,and
DenseNet-26 are reported in Table 9. Compared with the results in the last row of Table 2, optimizing
a single image improves FGSM and MI, but damages DI and TI-DIM.

Table 9: GTA success rates of the PGD-based baselines re-implemented with new pipeline. Target
dataset is Cifar-100.

Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
+ TieredT84

+ TieredV 56

(ResNet-18)

FGSM 47.5% 63.2% 56.3% 55.5% 58.2% 72.6%
PGD 38.8% 53.6% 43.1% 43.1% 47.5% 64.6%
DI 38.6% 53.9% 43.3% 42.8% 47.7% 64.7%
MI 46.2% 62.8% 53.8% 52.7% 56.6% 71.9%

TI-DIM 47.9% 43.8% 44.9% 45.1% 44.2% 54.0%
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A.5.5 ATTACKING FINE-GRAINED CLASSIFICATION MODELS

We performed a novel experiment to evaluate whether the proposed method can be used to disturb
the images from fine-grained classification dataset. In this experiment, the source dataset and source
model are Cifar-10 and ResNet-18 respectively, and the target dataset is CUB, which is a fine-grained
image classification dataset and differs greatly from Cifar-10. The target models are ResNet-18 and
DenseNet-26 trained on CUB. The two target models use a consistent input resolution of 112x112
and achieve approximately 54.9% and 48.3% accuracies. The attack success rates on the two target
models are reported in Table 10.

Table 10: GTA success rates on CUB models.
Resource Method ResNet-18 DenseNet-26

Cifar-10
(ResNet-18)

FGSM 22.7% 32.6%
PGD 17.2% 10.1%
DI 49.2% 72.5%
MI 22.0% 30.7%

TI-DIM 62.8% 73.4%
ICE 65.1% 87.0%

A.5.6 USING KNOWLEDGE DISTILLATION TO TRAIN A SINGLE MODEL

In this experiment, we use Cifar-10, TieredT84, and TieredV 56 as source datasets, and use three
ResNet-18 respectively trained on the source datasets as source models. First, we build another model
G that has three heads corresponds to the three source datasets. The backbone of G is the same
with that of the proposed ICE. The first head that has 10 output nodes is used to classify Cifar-10
images. The second head which has 351 output nodes is used to classify TieredT84 images. The third
head which has 257 output nodes is used to classify TieredV 56 images. Second, we use the three
source models and three datasets to train G with offline knowledge distillation. The model G obtain
test accuracies of 97.5%, 61.7%, and 70.3% on Cifar-10, TieredT84, and TieredV 56, respectively.
Finally, we use the model G to disturb the images from Cifar-100. The GTA success rates on the
target models MobileNet-V3, VGG-16, ResNet-18, ResNet-34, SeResNet-26, and DenseNet-26 are
reported in Table 11.

Table 11: GTA success rates when using a single trained model. Target dataset is Cifar-100.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
+ TieredT84

+ TieredV 56

(ResNet-18)

FGSM 46.4% 59.6% 51.0% 51.4% 55.1% 70.6%
PGD 36.9% 49.6% 40.3% 40.1% 43.4% 61.3%
MI 43.9% 56.6% 47.6% 47.3% 52.4% 68.4%
TI 49.2% 43.7% 45.9% 46.5% 44.6% 54.4%

A.5.7 COMPARISON BETWEEN ICE AND UAP

Here we implement UAP (Zhang et al., 2021) and compare it with the proposed ICE. In this
experiment, we use Cifar-10 and ResNet-18 as the source dataset and the source model, and optimize
the universal adversarial perturbation by minimizing the cosine similarity between f(x) and f(x+ δ),
where f is the ResNet-18 model. x and δ are the clean image and the perturbation. Then we use the
trained δ to disturb the images from Cifar-100 and attack Cifar-100 models. L∞ perturbation scale of
δ is set to 15/255, which is consistant to the default setting in our work. The attack success rates on
the target models MobileNet-V3, VGG-16, ResNet-18, ResNet-34, SeResNet-26, and DenseNet-26
are reported in Table 12. It is obvious that ICE outperforms UAP in most testing scenes.

Table 12: Comparison between UAP and ICE. Target dataset is Cifar-100.
Resource Method MobileNet-V3 VGG-16 ResNet-18 ResNet-34 SeResNet-26 DenseNet-26

Cifar-10
(ResNet-18)

UAP 53.6% 66.8% 68.2% 66.5% 59.3% 77.0%
ICE 54.9% 67.3% 71.5% 64.0% 61.2% 83.5%
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A.6 COMPUTATIONAL COST

We conduct all experiments on Tesla P40 GPU. The training cost of the proposed ICE is determined
by the batch size, the backbone, the used source datasets, the source models, and etc.. The number
of parameters of ICE is determined by the backbone. The parameter settings have been introduced
in Section 4.2 in the main-body. The backbone which contains about 7.7M parameters is shown in
Figure 4. With the source datasets Cifar-10, TieredT84, and Tiered56, and with the three corresponding
ResNet-18 source models, training the model Uθ costs about 4.9T FLOPs per iteration. With the
source datasets Cifar-10 and TieredT84, and with the two corresponding ResNet-18 source models,
training the model Uθ costs about 3.5T FLOPs per iteration.

In inference, the cost of ICE is determined by the backbone, the size of the testing image, and the
number of gradient ascent steps T , which is set to 10 in our work. The inference cost of PGD-based
baselines depends on the size of the testing image, the source models, and the number of gradient
ascent steps T . When the testing image comes from Cifar-100, ICE costs approximately 1.2G
FLOPs per gradient ascent step per image, while the PGD-based baseline MI, DI, or TI-DIM cost
approximately 10.2G FLOPs, which indicates that ICE is much more efficient than PGD-based
baselines in inference.

A.7 MORE ANALYSE ABOUT SP

The ablation study shown in Section 4.5.1 demonstrates that the trick SP in this paper is important for
all methods to achieve better generalized transferable attack success rates. It is also observed that
without SP, MI performs the best among all the methods. This is because MI utilizes gradient momen-
tum to improve the attack success rate, and the momentum will enlarge the average perturbation scale
of each pixel while keeping the L∞ of the perturbation map unchanged, which plays a similar role to
SP. For instance, without SP, the average perturbation scale of each pixel of the adversarial examples
generated via MI is approximately 11. As a comparison, for the other PGD-based methods and ICE,
the average perturbation scale of each pixel of the generated adversarial examples is no more than 9.

A.8 VISUALIZATION

We visualize some generated adversarial examples and the corresponding noise maps in Figure 5.
The corresponding clean images are sampled from TieredT84, and the source datasets are Cifar-10,
Cifar-100, and TieredV 56, and the source models are three ResNet-18 respectively trained on the
source datasets. It is very interesting to see that the perturbation noise generated by ICE differs
greatly from those generated by the other methods. The possible reason for this phenomenon is that
ICE is trained to maximize the prediction entropy without using labels. In other words, ICE needs to
disturb the input image without knowing the ground-truth classification information, which forces
ICE to learn some perturbation pattern that correlates little with ground-truth information.

In Figure 5, we can see that ICE generates similar perturbation noises for different input images,
which means ICE may learn a perturbation pattern that is generalizable across different image
categories. In our opinion, learning a generalizable perturbation pattern may is a straightforward way
for ICE to solve generalized transfer attack. The visualization may remind us that it is possible to
find a universal perturbation pattern that can solve generalized transfer attack, which can be regarded
as another contribution of ICE. The visualization may also help us to understand and improve the
robustness of DNNs.
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Figure 5: Some adversarial examples for clean images from TieredT84. The adversarial examples
are generated via PGD, MI, DI, TI-DIM, AEG, MTA, and the proposed ICE with ε = 15.
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