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Abstract
Computational approaches in historical linguis-001
tics have been increasingly applied during the002
past decade and many new methods that im-003
plement parts of the traditional comparative004
method have been proposed. Despite these in-005
creased efforts, there are not many easy-to-use006
and fast approaches for the task of phonological007
reconstruction. Here we present a new frame-008
work that combines state-of-the-art techniques009
for automated sequence comparison with novel010
techniques for phonetic alignment analysis and011
sound correspondence pattern detection to al-012
low for the supervised reconstruction of word013
forms in ancestral languages. We test the014
method on a new dataset covering six groups015
from three different language families. The re-016
sults show that our method yields promising017
results while at the same time being not only018
fast but also easy to apply and expand.019

1 Introduction020

Phonological reconstruction is a technique by021

which words in ancestral languages, which may022

not even be reflected in any sources, are restored023

through the systematic comparison of descendant024

words (cognates) in descendant languages (Fox,025

1995). Traditionally, scholars apply the technique026

manually, but along with the recent quantitative027

turn in historical linguistics, scholars have increas-028

ingly tried to automate the procedure. Recent auto-029

matic approaches for linguistic reconstruction, be030

they supervised or unsupervised, show two major031

problems. First, the underlying code is rarely made032

publicly available, which means that they cannot033

be further tested by applying them to new datasets.034

Second, the methods have so far only been tested035

on a small amount of data from a limited num-036

ber of language families. Thus, Bouchard-Côté037

et al. (2013) report remarkable results on the re-038

construction of Oceanic languages, but the source039

code has never been published, and the method040

was never tested on additional datasets. Meloni041

et al. (2021) report very promising results for the 042

automated reconstruction of Latin from Romance 043

languages, using a new test set derived from a 044

dataset originally provided by Dinu and Ciobanu 045

(2014), but they again do not share their source 046

code and only part of the data. Bodt and List 047

(2021) experiment with the prediction of so far un- 048

elicited words in a small group of Sino-Tibetan lan- 049

guages, but they do not test the suitability of their 050

approach for the reconstruction of ancestral lan- 051

guages. Jäger (2019) presents a complete pipeline 052

by which words are clustered into cognate sets and 053

ancestral word forms are reconstructed, but the 054

method is only tested on a very small dataset of 055

Romance languages. 056

With increasing efforts to unify and standardize 057

lexical datasets from different sources (Forkel et al., 058

2018), more and more datasets that could be used 059

to test methods for automated linguistic reconstruc- 060

tion have become available. Additionally, thanks 061

to the huge progress which techniques for auto- 062

mated sequence comparison have made in the past 063

decades (Kondrak, 2000; Steiner et al., 2011; List, 064

2014), it is much easier today to combine existing 065

methods into new frameworks that tackle individ- 066

ual tasks in computational historical linguistics. 067

In this study, we present a new framework for au- 068

tomated linguistic reconstruction which combines 069

state-of-the-art methods for automated sequence 070

comparison with fast machine-learning techniques 071

and test it on a newly compiled test set that covers 072

multiple language families. 073

Name Source Subgroup L C W
Bai Wang (2004) Bai 10 467 2892
*Burmish Gong and Hill (2020) Burmish 9 235 821
*Karen Luangthongkum (2020) Karen 11 365 3231
Lalo Yang (2011) Lalo (Yi) 8 1239 7522
Purus Carvalho (2020) Purus 4 206 724
Romance Meloni et al. (2021) Romance 6 4147 18806

Table 1: Datasets used in this study (L=Languages,
C=Cognate Sets, W=Word Forms *=new data prepared
for this study).
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2 Materials074

For the experiments reported here, a new cross-075

linguistic collection of six datasets from three lan-076

guage families (Sino-Tibetan, Purus, and Indo-077

European) was created. Data were both taken from078

previous sources and retro-standardized specifi-079

cally for this study. The datasets, along with their080

sources and some basic information regarding the081

number of languages (L), cognate sets (C), and082

word forms (W) are listed in Table 1. The collec-083

tion offers a rather diverse selection, in which the084

amount of data varies both with respect to the num-085

ber of word forms, cognate sets, and languages.086

3 Methods087

3.1 Workflow088

The new framework can be divided into a training089

and a prediction stage. The training consists of four090

steps. In step (1), the cognate sets in the training091

data are aligned with a multiple phonetic alignment092

algorithm. In step (2), the alignments are trimmed093

by merging sounds in the ancestral language into094

clusters which would leave no trace in the descen-095

dant languages (§ 3.2). In step (3), the alignments096

of the descendant languages are enriched by cod-097

ing for context that might condition sound changes098

(§ 3.3). In step (4) the enriched alignment sites are099

assembled and fed to a classifier for training.100

The prediction consists of three steps. Given a101

cognate set as input, the word forms are aligned102

with the help of the same algorithm for multiple103

alignment used in the training phase in step (1).104

In step (2), the alignment is enriched using the105

same method applied in the training phase and then106

passed to the classifier to predict the word form in107

the ancestral language in step (3).108

Figure 1 illustrates the workflow with an exam-109

ple from Romance (words taken from Meloni et al.110

2021). This workflow is flexible with respect to111

individual methods used for individual steps. For112

phonetic alignment, we use the Sound-Class-Based113

Phonetic Alignment (SCA) algorithm (List, 2012),114

which is the current state-of-the-art method, but115

any other method that yields multiple alignments116

could be used. The same holds for the trimming117

procedure, (see § 3.2), the enrichment procedure,118

(see § 3.3), or the classifier (see § 3.4).119

3.2 Trimming Alignments120

Using multiple alignments to predict ancestral or121

new words is nothing new and has essentially been122

practised by classical historical linguists for a long 123

time (Grimm, 1822). That multiple alignments 124

can also be used in computational frameworks has 125

been demonstrated by List (2019a), who inferred 126

correspondence patterns from phonetic alignments 127

and later used these correspondence patterns to 128

predict words missing from the data. One problem 129

not considered in this approach, however, is that 130

correspondence patterns can only be inferred for 131

those cases in which descendant languages have a 132

residue for a given sound in the ancestral language. 133

In those cases where the sound has been lost, a 134

prediction is not possible. 135

This problem is illustrated in Figure 2, where the 136

Latin ending [E] has no reflex sound in either of the 137

descendant languages in the sample, yielding an 138

alignment column that is completely filled with gap 139

symbols. Our solution to deal with this problem is 140

to post-process the multiple alignments in the train- 141

ing procedure by merging those columns which 142

show only gaps in the descendant languages with 143

the preceding alignment column. This is illustrated 144

in Figure 3, where the Latin ending is now repre- 145

sented as a single sound unit [r.E]. This trimming 146

procedure is justified by the fact that correspon- 147

dence patterns preceding lost sounds usually con- 148

vey enough information to be distinguished from 149

those patterns in which no sound has been lost. 150

3.3 Coding Context 151

Previous alignment-based approaches to automated 152

word prediction have made exclusive use of the in- 153

formation provided by individual correspondence 154

patterns derived from phonetic alignments (List, 155

2019a). While this has shown to yield already sur- 156

prisingly good results, we know well that sound 157

change often happens in certain phonetic environ- 158

ments. For example, we know that the initial posi- 159

tion of a word is typically much stronger and less 160

prone to change than the final position (Geisler, 161

1992). Similarly, consonants in the syllable on- 162

set position (preceding a vowel) also tend to show 163

different types of sound change compared to con- 164

sonants in the syllable offset (List, 2014). Last not 165

least, certain sound changes may be due to “long- 166

range dependencies”, or supra-segmental features 167

like tone, which is typically marked in the end of a 168

morpheme in the phonetic transcription of South- 169

East Asian languages. In order to allow a classifier 170

to make use of this information, our framework 171

allows to enrich the phonetic alignments further, 172
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Figure 1: Workflow for the new framework for word prediction and linguistic reconstruction based on gap-free
alignments and sound correspondence patterns.

1 2 3 4 5 6 7

Latin k - eː n aː r ɛ
↑ ↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a - -

Spanish θ - e n a ɾ -

Portuguese s j - - a ɹ -

Figure 2: Prediction problems when ancestral segments
in multiple alignments do not show reflexes in the de-
scendant languages.

by deriving contextual information from individ-173

ual phonetic alignments and adding it to the corre-174

spondence patterns that are then used to train the175

classifier. An example for this procedure is given176

in Figure 5, where the phonetic alignment is given177

in traversed form, with each row corresponding178

to one correspondence pattern. While the infor-179

mation from correspondence patterns alone would180

only account for the first three columns of the ma-181

trix, three additional types of phonetic context have182

been added. Thus, column P indicates whether a183

pattern occurs in the beginning (^), the end ($) or184

the middle (-) of a word form. Column S provides185

information on the syllable structure following List186

(2014), and the remaining columns provide infor-187

mation on the first (Ini) and last (Fin) sound in188

each of the three languages, respectively. Enrich-189

1 2 3 4 5 6

Latin k - eː n aː r.ɛ
↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a -
Spanish θ - e n a ɾ
Portuguese s j - - a ɹ

Figure 3: Trimming alignments by merging sounds in
the ancestral languages in those cases where an align-
ment column does not have sound reflexes in the descen-
dant languages.

ing alignments should be done in a careful way, in 190

order to avoid an over-fitting of the classifier. In 191

our experiments, we report the results for the full 192

coding shown in Figure 5, and contrast it with the 193

coding including columns P and S (ignoring the 194

initial and final sound coding), as well as the raw 195

alignment without additional enrichment. 196

3.4 Classifiers 197

Our approach is very flexible with respect to the 198

choice of the classifier. In order to keep the ap- 199

proach fast, we decided to restrict our experiments 200

to the use of a Support Vector Machine (SVM) with 201

a linear kernel, since SVMs have been successfully 202

applied in recent approaches in computational his- 203

torical linguistics dealing with different classifica- 204

tion tasks (Jäger et al., 2017; Cristea et al., 2021). 205

We compare this approach with the graph-based 206

method based on correspondence patterns (hence- 207

ford called CorPaR) presented by List (2019a). 208

3.5 Evaluation 209

Most scholars tend to report only the edit distance 210

– also called Levenshtein distance (Levenshtein, 211

1965) – between the predicted and the attested 212

string, both normalized by the length of the longer 213

string and in unnormalized form. However, report- 214

ing the edit distance alone has the disadvantage 215

that systematic differences between predicted and 216

attested forms may be penalized too high, which is 217

why we follow List (2019b) in computing B-Cubed 218

F-scores (Amigó et al., 2009) of the alignments of 219

source and target sequences, which measure the 220

difference between two classifications. 221

3.6 Implementation 222

The new framework is implemented as a plugin 223

for the LingRex Python package (List and Forkel, 224

2021) and allows to use classifiers from the Scikit- 225

Learn Python package (Pedregosa et al., 2011). 226
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Figure 4: Comparing the results for selected coding techniques and classifiers on individual datasets.

Ro Sp Pt P S Ini Lt

1 tʃ θ s 1 C ^ → k

2 - - j 2 C - → -

3 i e - 3 v - → eː

4 n n - 4 C - → n
5 a a a 5 v - → aː
6 - ɾ ɹ 6 c $ → r.ɛ

Figure 5: Enriching a phonetic alignment by coding
various forms of context.

4 Results227

In order to evaluate the framework, we tested two228

classifiers, a Support Vector Machine, and the229

CorPaR classifier (see § 3.4). Furthermore, we230

tested three different forms of alignment enrich-231

ment by coding individual positions of all align-232

ment columns (Pos), prosodic structure (Str), as233

well as initial and final alignment columns (IF).234

For each test, we ran 100 trials in which 90% of the235

data were used for training and 10% for evaluation.236

Table 2 shows the results for a selection of com-237

binations between the three techniques for align-238

ment enrichment (a full list is provided in Appendix239

A.2). As can be seen, the SVM classifier outper-240

forms the CorPaR method, although the differences241

are not very large. While the impact of the align-242

ment enrichment techniques on the results is not243

very large, we still find that they enhance the results244

in all SVM trials, while the raw coding of the po-245

sition (Pos) leads to lower scores for the CorPaR246

classifier in our test set. For the SVM classifier,247

coding for prosodic structure (Str) and initial and248

final alignment columns (StrIni) yields the best249

results with respect to the normalized edit distance250

and the B-Cubed F-scores, while Ini coding out-251

performs the other techniques for the CorPaR clas-252

sifier. From these results, we can see that alignment253

enrichment is a promising technique that deserves254

further exploration, but we do not think that the 255

current codings are the last word on the topic. 256

Classifier Analysis ED NED BC
SVM PosStrIni 0.7832 0.1656 0.8040
SVM StrIni 0.7859 0.1648 0.8064
SVM Str 0.7931 0.1651 0.8058
SVM Ini 0.8171 0.1685 0.8013
SVM none 0.8351 0.1720 0.7971
CorPaR PosStrIni 0.8920 0.1847 0.7755
CorPaR StrIni 0.8498 0.1758 0.7902
CorPaR Str 0.8873 0.1773 0.7895
CorPaR Ini 0.8242 0.1707 0.7961
CorPaR none 0.9180 0.1819 0.7860

Table 2: Results for edit distance, normalized edit dis-
tance, and B-Cubed F-Scores on all datasets.

Figure 4 compares the results for four coding 257

techniques on individual datasets. As can be seem 258

from the figure, the impact of the coding techniques 259

varies quite drastically across datasets. This shows 260

that it would be premature to rule out any of the 261

techniques tested here directly, but rather calls for 262

a careful selection of alignment enrichment tech- 263

niques dependent on the language family one wants 264

to investigate. 265

5 Conclusion 266

In this study, we have presented a new framework 267

for supervised phonological reconstruction, which 268

is implemented in the form of a small Python pack- 269

age. The new framework has the advantage of 270

being easy to use, easy to extend, and fast to apply, 271

while at the same time yielding promising results 272

on a newly compiled collection of datasets from 273

three different languages families. Given that our 274

framework can be easily extended,we hope that it 275

will provide a solid basis for future work on phono- 276

logical reconstruction in computational historical 277

linguistics. 278
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A Appendix387

A.1 Source Code and Data388

The new data collection along with the source code and the data needed to replicate the results reported in389

this study have been uploaded to the Open Science Framework, where they can be accessed from the link390

https://osf.io/myvqu/?view_only=11a008ae989f4e649743801c6734c2b1.391

A.2 Table of Results (Aggregated)392

Classifier Analysis ED NED BC
SVM PosStrIni 0.7832 0.1656 0.8044
SVM PosStr 0.7791 0.1646 0.8053
SVM PosIni 0.8064 0.1689 0.8003
SVM StrIni 0.7859 0.1648 0.8064
SVM Pos 0.8002 0.1671 0.8020
SVM Str 0.7931 0.1651 0.8058
SVM Ini 0.8171 0.1685 0.8013
SVM - 0.8351 0.1720 0.7971
CorPaR PosStrIni 0.8920 0.1847 0.7755
CorPaR PosStr 0.9050 0.1847 0.7746
CorPaR PosIni 0.8844 0.1825 0.7772
CorPaR StrIni 0.8498 0.1758 0.7902
CorPaR Pos 0.9021 0.1822 0.7794
CorPaR Str 0.8873 0.1773 0.7895
CorPaR Ini 0.8242 0.1707 0.7961
CorPaR - 0.9180 0.1819 0.7860

393

A.3 Table of Results for Individual Datasets394

A.3.1 SVM395

DATASET PosStrIni StrIni Str Ini -
Bai 0.7963 0.7994 0.7976 0.7989 0.7942
Burmish 0.8952 0.9012 0.8994 0.8974 0.8800
Karen 0.8654 0.8688 0.8709 0.8669 0.8673
Lalo 0.7501 0.7494 0.7493 0.7475 0.7470
Purus 0.7691 0.7784 0.7847 0.7784 0.7819
Romance 0.7501 0.7411 0.7328 0.7186 0.7122

396

A.3.2 CorPaR397

DATASET PosStrIni StrIni Str Ini -
Bai 0.7562 0.7759 0.7767 0.7834 0.7856
Burmish 0.8981 0.9129 0.9127 0.9111 0.8944
Karen 0.8733 0.8700 0.8783 0.8765 0.8756
Lalo 0.7111 0.7104 0.7154 0.7181 0.7177
Purus 0.7021 0.7552 0.7680 0.7637 0.7721
Romance 0.7122 0.7168 0.6859 0.7236 0.6705

398
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