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Abstract

Computational approaches in historical linguis-
tics have been increasingly applied during the
past decade and many new methods that im-
plement parts of the traditional comparative
method have been proposed. Despite these in-
creased efforts, there are not many easy-to-use
and fast approaches for the task of phonological
reconstruction. Here we present a new frame-
work that combines state-of-the-art techniques
for automated sequence comparison with novel
techniques for phonetic alignment analysis and
sound correspondence pattern detection to al-
low for the supervised reconstruction of word
forms in ancestral languages. We test the
method on a new dataset covering six groups
from three different language families. The re-
sults show that our method yields promising
results while at the same time being not only
fast but also easy to apply and expand.

1 Introduction

Phonological reconstruction is a technique by
which words in ancestral languages, which may
not even be reflected in any sources, are restored
through the systematic comparison of descendant
words (cognates) in descendant languages (Fox,
1995). Traditionally, scholars apply the technique
manually, but along with the recent quantitative
turn in historical linguistics, scholars have increas-
ingly tried to automate the procedure. Recent auto-
matic approaches for linguistic reconstruction, be
they supervised or unsupervised, show two major
problems. First, the underlying code is rarely made
publicly available, which means that they cannot
be further tested by applying them to new datasets.
Second, the methods have so far only been tested
on a small amount of data from a limited num-
ber of language families. Thus, Bouchard-Coté
et al. (2013) report remarkable results on the re-
construction of Oceanic languages, but the source
code has never been published, and the method
was never tested on additional datasets. Meloni

et al. (2021) report very promising results for the
automated reconstruction of Latin from Romance
languages, using a new test set derived from a
dataset originally provided by Dinu and Ciobanu
(2014), but they again do not share their source
code and only part of the data. Bodt and List
(2021) experiment with the prediction of so far un-
elicited words in a small group of Sino-Tibetan lan-
guages, but they do not test the suitability of their
approach for the reconstruction of ancestral lan-
guages. Jiager (2019) presents a complete pipeline
by which words are clustered into cognate sets and
ancestral word forms are reconstructed, but the
method is only tested on a very small dataset of
Romance languages.

With increasing efforts to unify and standardize
lexical datasets from different sources (Forkel et al.,
2018), more and more datasets that could be used
to test methods for automated linguistic reconstruc-
tion have become available. Additionally, thanks
to the huge progress which techniques for auto-
mated sequence comparison have made in the past
decades (Kondrak, 2000; Steiner et al., 2011; List,
2014), it is much easier today to combine existing
methods into new frameworks that tackle individ-
ual tasks in computational historical linguistics.

In this study, we present a new framework for au-
tomated linguistic reconstruction which combines
state-of-the-art methods for automated sequence
comparison with fast machine-learning techniques
and test it on a newly compiled test set that covers
multiple language families.

‘ Name ‘ Source ‘ Subgroup ‘ L ‘ C ‘ w ‘
Bai Wang (2004) Bai 10 | 467 | 2892
*Burmish | Gong and Hill (2020) Burmish 9 | 235 821
*Karen Luangthongkum (2020) | Karen 11| 365 | 3231
Lalo Yang (2011) Lalo (Yi) | 8 | 1239 | 7522
Purus Carvalho (2020) Purus 4 | 206 724
Romance Meloni et al. (2021) Romance | 6 | 4147 | 18806

Table 1: Datasets used in this study (L=Languages,
C=Cognate Sets, W=Word Forms *=new data prepared
for this study).



2 Materials

For the experiments reported here, a new cross-
linguistic collection of six datasets from three lan-
guage families (Sino-Tibetan, Purus, and Indo-
European) was created. Data were both taken from
previous sources and retro-standardized specifi-
cally for this study. The datasets, along with their
sources and some basic information regarding the
number of languages (L), cognate sets (C), and
word forms (W) are listed in Table 1. The collec-
tion offers a rather diverse selection, in which the
amount of data varies both with respect to the num-
ber of word forms, cognate sets, and languages.

3 Methods
3.1 Workflow

The new framework can be divided into a training
and a prediction stage. The training consists of four
steps. In step (1), the cognate sets in the training
data are aligned with a multiple phonetic alignment
algorithm. In step (2), the alignments are trimmed
by merging sounds in the ancestral language into
clusters which would leave no trace in the descen-
dant languages (§ 3.2). In step (3), the alignments
of the descendant languages are enriched by cod-
ing for context that might condition sound changes
(§ 3.3). In step (4) the enriched alignment sites are
assembled and fed to a classifier for training.

The prediction consists of three steps. Given a
cognate set as input, the word forms are aligned
with the help of the same algorithm for multiple
alignment used in the training phase in step (1).
In step (2), the alignment is enriched using the
same method applied in the training phase and then
passed to the classifier to predict the word form in
the ancestral language in step (3).

Figure 1 illustrates the workflow with an exam-
ple from Romance (words taken from Meloni et al.
2021). This workflow is flexible with respect to
individual methods used for individual steps. For
phonetic alignment, we use the Sound-Class-Based
Phonetic Alignment (SCA) algorithm (List, 2012),
which is the current state-of-the-art method, but
any other method that yields multiple alignments
could be used. The same holds for the trimming
procedure, (see § 3.2), the enrichment procedure,
(see § 3.3), or the classifier (see § 3.4).

3.2 Trimming Alignments

Using multiple alignments to predict ancestral or
new words is nothing new and has essentially been

practised by classical historical linguists for a long
time (Grimm, 1822). That multiple alignments
can also be used in computational frameworks has
been demonstrated by List (2019a), who inferred
correspondence patterns from phonetic alignments
and later used these correspondence patterns to
predict words missing from the data. One problem
not considered in this approach, however, is that
correspondence patterns can only be inferred for
those cases in which descendant languages have a
residue for a given sound in the ancestral language.
In those cases where the sound has been lost, a
prediction is not possible.

This problem is illustrated in Figure 2, where the
Latin ending [¢] has no reflex sound in either of the
descendant languages in the sample, yielding an
alignment column that is completely filled with gap
symbols. Our solution to deal with this problem is
to post-process the multiple alignments in the train-
ing procedure by merging those columns which
show only gaps in the descendant languages with
the preceding alignment column. This is illustrated
in Figure 3, where the Latin ending is now repre-
sented as a single sound unit [r.€]. This trimming
procedure is justified by the fact that correspon-
dence patterns preceding lost sounds usually con-
vey enough information to be distinguished from
those patterns in which no sound has been lost.

3.3 Coding Context

Previous alignment-based approaches to automated
word prediction have made exclusive use of the in-
formation provided by individual correspondence
patterns derived from phonetic alignments (List,
2019a). While this has shown to yield already sur-
prisingly good results, we know well that sound
change often happens in certain phonetic environ-
ments. For example, we know that the initial posi-
tion of a word is typically much stronger and less
prone to change than the final position (Geisler,
1992). Similarly, consonants in the syllable on-
set position (preceding a vowel) also tend to show
different types of sound change compared to con-
sonants in the syllable offset (List, 2014). Last not
least, certain sound changes may be due to “long-
range dependencies”, or supra-segmental features
like tone, which is typically marked in the end of a
morpheme in the phonetic transcription of South-
East Asian languages. In order to allow a classifier
to make use of this information, our framework
allows to enrich the phonetic alignments further,
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Figure 1: Workflow for the new framework for word prediction and linguistic reconstruction based on gap-free

alignments and sound correspondence patterns.
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Figure 2: Prediction problems when ancestral segments
in multiple alignments do not show reflexes in the de-
scendant languages.

by deriving contextual information from individ-
ual phonetic alignments and adding it to the corre-
spondence patterns that are then used to train the
classifier. An example for this procedure is given
in Figure 5, where the phonetic alignment is given
in traversed form, with each row corresponding
to one correspondence pattern. While the infor-
mation from correspondence patterns alone would
only account for the first three columns of the ma-
trix, three additional types of phonetic context have
been added. Thus, column P indicates whether a
pattern occurs in the beginning (), the end ($) or
the middle (-) of a word form. Column S provides
information on the syllable structure following List
(2014), and the remaining columns provide infor-
mation on the first (/ni) and last (Fin) sound in
each of the three languages, respectively. Enrich-

2(3|4]|5]|6
Latin k|-|e|nfa|re
rr
Romanian tf-]ifn]a
Spanish 0|l-|leflnlalr
Portuguese | s | j | - | -|a| 1

Figure 3: Trimming alignments by merging sounds in
the ancestral languages in those cases where an align-
ment column does not have sound reflexes in the descen-
dant languages.

ing alignments should be done in a careful way, in
order to avoid an over-fitting of the classifier. In
our experiments, we report the results for the full
coding shown in Figure 5, and contrast it with the
coding including columns P and S (ignoring the
initial and final sound coding), as well as the raw
alignment without additional enrichment.

3.4 Classifiers

Our approach is very flexible with respect to the
choice of the classifier. In order to keep the ap-
proach fast, we decided to restrict our experiments
to the use of a Support Vector Machine (SVM) with
a linear kernel, since SVMs have been successfully
applied in recent approaches in computational his-
torical linguistics dealing with different classifica-
tion tasks (Jager et al., 2017; Cristea et al., 2021).
We compare this approach with the graph-based
method based on correspondence patterns (hence-
ford called CorPaR) presented by List (2019a).

3.5 Evaluation

Most scholars tend to report only the edit distance
— also called Levenshtein distance (Levenshtein,
1965) — between the predicted and the attested
string, both normalized by the length of the longer
string and in unnormalized form. However, report-
ing the edit distance alone has the disadvantage
that systematic differences between predicted and
attested forms may be penalized too high, which is
why we follow List (2019b) in computing B-Cubed
F-scores (Amigo et al., 2009) of the alignments of
source and target sequences, which measure the
difference between two classifications.

3.6 Implementation

The new framework is implemented as a plugin
for the LingRex Python package (List and Forkel,
2021) and allows to use classifiers from the Scikit-
Learn Python package (Pedregosa et al., 2011).
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Figure 4: Comparing the results for selected coding techniques and classifiers on individual datasets.
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Figure 5: Enriching a phonetic alignment by coding
various forms of context.

4 Results

In order to evaluate the framework, we tested two
classifiers, a Support Vector Machine, and the
CorPaR classifier (see § 3.4). Furthermore, we
tested three different forms of alignment enrich-
ment by coding individual positions of all align-
ment columns (Pos), prosodic structure (Str), as
well as initial and final alignment columns (IF).
For each test, we ran 100 trials in which 90% of the
data were used for training and 10% for evaluation.

Table 2 shows the results for a selection of com-
binations between the three techniques for align-
ment enrichment (a full list is provided in Appendix
A.2). As can be seen, the SVM classifier outper-
forms the CorPaR method, although the differences
are not very large. While the impact of the align-
ment enrichment techniques on the results is not
very large, we still find that they enhance the results
in all SVM trials, while the raw coding of the po-
sition (Pos) leads to lower scores for the CorPaR
classifier in our test set. For the SVM classifier,
coding for prosodic structure (St r) and initial and
final alignment columns (St rIni) yields the best
results with respect to the normalized edit distance
and the B-Cubed F-scores, while Ini coding out-
performs the other techniques for the CorPaR clas-
sifier. From these results, we can see that alignment
enrichment is a promising technique that deserves

further exploration, but we do not think that the
current codings are the last word on the topic.

| Classifier | Analysis | ED [ NED | BC |
SVM PosStrIni | 0.7832 | 0.1656 | 0.8040
SVM StrIni 0.7859 | 0.1648 | 0.8064
SVM Str 0.7931 | 0.1651 | 0.8058
SVM Ini 0.8171 | 0.1685 | 0.8013
SVM none 0.8351 | 0.1720 | 0.7971
CorPaR | PosStrIni | 0.8920 | 0.1847 | 0.7755
CorPaR Strlni 0.8498 | 0.1758 | 0.7902
CorPaR | Str 0.8873 | 0.1773 | 0.7895
CorPaR | Ini 0.8242 | 0.1707 | 0.7961
CorPaR none 0.9180 | 0.1819 | 0.7860

Table 2: Results for edit distance, normalized edit dis-
tance, and B-Cubed F-Scores on all datasets.

Figure 4 compares the results for four coding
techniques on individual datasets. As can be seem
from the figure, the impact of the coding techniques
varies quite drastically across datasets. This shows
that it would be premature to rule out any of the
techniques tested here directly, but rather calls for
a careful selection of alignment enrichment tech-
niques dependent on the language family one wants
to investigate.

5 Conclusion

In this study, we have presented a new framework
for supervised phonological reconstruction, which
is implemented in the form of a small Python pack-
age. The new framework has the advantage of
being easy to use, easy to extend, and fast to apply,
while at the same time yielding promising results
on a newly compiled collection of datasets from
three different languages families. Given that our
framework can be easily extended,we hope that it
will provide a solid basis for future work on phono-
logical reconstruction in computational historical
linguistics.
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A Appendix
A.1 Source Code and Data

The new data collection along with the source code and the data needed to replicate the results reported in
this study have been uploaded to the Open Science Framework, where they can be accessed from the link
https://osf.io/myvqu/?view_only=11a008ae989f4e649743801c6734c2bl.

A.2 Table of Results (Aggregated)

Classifier ~Analysis ED NED BC
SVM PosStrIni  0.7832 0.1656 0.8044
SVM PosStr 0.7791 0.1646 0.8053

SVM PosIni 0.8064 0.1689 0.8003
SVM StrIni 0.7859 0.1648 0.8064

SVM Pos 0.8002 0.1671 0.8020
SVM Str 0.7931 0.1651 0.8058
SVM Ini 0.8171 0.1685 0.8013
SVM - 0.8351 0.1720 0.7971

CorPaR PosStrIni  0.8920 0.1847 0.7755
CorPaR PosStr 0.9050 0.1847 0.7746
CorPaR PoslIni 0.8844 0.1825 0.7772
CorPaR Strlni 0.8498 0.1758 0.7902

CorPaR Pos 0.9021 0.1822 0.7794
CorPaR  Str 0.8873 0.1773 0.7895
CorPaR Ini 0.8242 0.1707 0.7961
CorPaR - 0.9180 0.1819 0.7860

A.3 Table of Results for Individual Datasets

A3.1 SVM
DATASET PosStrlni StrIni Str Ini -
Bai 0.7963 0.7994 0.7976 0.7989 0.7942
Burmish 0.8952 0.9012 0.8994 0.8974 0.8800
Karen 0.8654 0.8688 0.8709 0.8669 0.8673
Lalo 0.7501 0.7494 0.7493 0.7475 0.7470
Purus 0.7691 0.7784 0.7847 0.7784 0.7819
Romance 0.7501 0.7411 0.7328 0.7186 0.7122

A.3.2 CorPaR
DATASET PosStrlni  Strlni Str Ini -
Bai 0.7562 0.7759 0.7767 0.7834 0.7856
Burmish 0.8981 0.9129 0.9127 009111 0.8944
Karen 0.8733 0.8700 0.8783 0.8765 0.8756
Lalo 0.7111 0.7104 0.7154 0.7181 0.7177
Purus 0.7021 0.7552 0.7680 0.7637 0.7721

Romance 0.7122 0.7168 0.6859 0.7236 0.6705
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