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Abstract

Open-vocabulary object detection (OVDet) aims to detect novel categories based
on textual descriptions, allowing models to generalize beyond the categories seen
during training. However, achieving robust open-vocabulary detection poses sig-
nificant challenges in aligning text descriptions with specific image regions and
capturing spatial relationships between related regions. Most existing methods
focus on aligning regions with categorical labels, often overlooking interactions
between neighboring regions, limiting their ability to form a precise correspon-
dence between text descriptions and image content. We propose AlignDet, which
incorporates an attentive masking strategy to address these challenges. By masking
irrelevant regions in the image, our model focuses on the most relevant areas for
each text concept, leading to fine-grained region-word correspondences. Addition-
ally, our soft association strategy allows multiple regions to align with a single text
concept, capturing spatial relationships between neighboring or related regions of
the image more effectively. Extensive experiments demonstrate that our model
consistently surpasses existing methods across various benchmarks.

1 Introduction

Traditional object detection models are limited by their reliance on large-scale, class-specific annota-
tions and their inability to generalize beyond a fixed set of predefined categories [26, 39, 43]. This
dependence on predefined labels makes these models rigid and inflexible in real-world scenarios
where the number and variety of object categories are vast and often unknown. Open-vocabulary
object detection (OVDet) has emerged as a promising direction, moving beyond the closed-set
paradigm of conventional object detection [1, 8, 40, 46]. OVDet leverages vision-language models
(VLMs), which integrate language as a supervisory signal, reducing the reliance on comprehensive
object annotations. This shift allows models to generalize beyond a fixed set of object categories
and detect novel objects based on textual descriptions. Recent work has made progress by using
pre-trained VLMs, such as CLIP and ALIGN [12, 16], which are trained on large-scale image-text
pairs. For example, ViLD [8] uses embeddings from CLIP to perform object detection without
the need for class-specific annotations. While these models perform well at recognizing general
image-level features, they struggle with object-level detection, making them less effective for de-
tecting small or occluded objects [33]. However, achieving robust open-vocabulary detection is
not only to classify objects from textual descriptions but also to accurately align these descriptions
with specific image regions. This requires fine-grained region-text alignment and the ability to
capture spatial relationships between related regions. Recognizing the importance of region-level
detection, GLIP and MDETR [14, 17] shifted the focus from image-level recognition to phrase
grounding. These models integrate text and image features early in the detection pipeline, aligning
text descriptions with specific regions in the image. However, these methods introduce increased
model complexity, making them computationally intensive and difficult to scale for large datasets [21].
Other methods [6, 7, 11, 17, 37] attempted to enhance OVDet by using large-scale image-text pairs
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Figure 1: Region-word alignment for open-vocabulary object detection on CC12M [3]. The model
aligns textual concepts with their respective regions, and detailed explanations are provided in 4.

from the web, generating pseudo-labels to provide region-level supervision where manual annotations
are unavailable. However, the quality of these pseudo-labels is often limited, as the detectors that
generate them are trained on a narrow set of human-annotated data. As a result, these models can
struggle to generalize to unseen categories, and the high computational cost of processing large-scale,
high-resolution images further limits their scalability. Despite advancements in phrase grounding
and pseudo-labeling, achieving accurate region-word alignment remains a challenge. Recent efforts
[20, 33, 36, 37] focus on directly improving region-word correspondence by aligning text concepts
with image regions, enhancing detection accuracy across various scales. However, many of these
methods still neglect the interactions between multiple regions related to a single text description,
which is crucial for complex scenes where several regions may represent one object or concept.

We propose AlignDet, an end-to-end framework for open-vocabulary object detection that avoids
the need for expensive annotations or distilling from classification-based models. The core idea
is to use an attentive masking strategy that focuses on relevant image regions, ignoring irrelevant
ones (see Fig. 2). Specifically, we treat image region features as one set and word embeddings
as another, using dot-product similarity to compute region-word alignment scores. By using these
scores, the model can determine the most relevant regions for each textual concept. Considering that
a single text concept may correspond to multiple regions, our model allows each textual concept
to be associated with all relevant regions. Our main contributions are: 1 proposing AlignDet, an
end-to-end open-vocabulary detection framework that leverages large image-text pairs; 2 employing
a unified training approach integrating grounding data [14], detection data [28], and image-text pairs
[3]; 3 we adopt an attentive masking strategy to select appropriate image regions for each textual
concept, guiding the contrastive learning process and enabling precise alignment between visual and
textual information. 4 To capture inter-regional interactions that is often overlooked in prior work,
our model uses a soft assignment strategy that handles multiple regions corresponding to a single
textual concept. Our experiments on benchmark datasets validate the effectiveness of AlignDet. With
a standard ATSS [43] detector and Swin-T [19] backbone, AlignDet achieves a decent zero-shot AP
of 34.1% on the LVIS [9], outperforming DetCLIP and GLIPv2 by 20% and 16%, respectively, and
showing competitive performance with VLDet (34.1%). In the rare categories, our model surpasses
CODet with a +1.1 improvement, highlighting its strength in detecting underrepresented objects.

2 Related Work

Vision-language pre-training has gained significant traction by aligning image and text representations
from large-scale image-text datasets [23, 27, 30, 44]. Recent advancements such as CLIP [23] and
ALIGN [12] have shown impressive zero-shot performance in image classification. These vision-
language models (VLMs) use contrastive learning [15] on large-scale image-text pairs from the
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Figure 2: This architecture diagram illustrates open-vocabulary object detection using visual and
textual information. The model employs a text encoder to convert textual descriptions into phrase
embeddings (fT ), and a visual encoder to extract proposal embeddings (fR), which identify potential
regions of interest within the images from images. These embeddings are aligned through a matching
process, facilitating contrastive learning and enabling effective word-region alignment.

web to align image and text embeddings. Inspired by the ability of VLMs, open-vocabulary object
detection (OVDet) has emerged as a natural extension, aiming to recognize objects from unseen
categories using image-text pairs. This trend marks a shift toward improving the generalization
ability of object detectors by leveraging multi-modal knowledge. The early adoption of VLMs in
OVDet was demonstrated by [40], which pretrained VLMs on image-caption pairs and transferred
these features to a supervised object detector. This method laid the foundation for using VLMs in
object detection. Further, ViLD [8] advanced the field by distilling the knowledge of CLIP into
object detectors. By aligning the detector’s visual embeddings with CLIP’s image embeddings, ViLD
enabled the recognition of novel object categories using text prompts.

Following these pioneering efforts, the focus shifted towards improving region-word alignment, a
critical aspect of OVDet that enables models to associate textual descriptions with specific image
regions accurately [18, 22, 32, 33]. Early methods by Zhong et al.[45] and Gao et al. [7] used pre-
trained VLMs like CLIP to generate pseudo-region annotations, which were then used as training data
for object detectors. While this improved text-image alignment, it also highlighted the necessity for
enhanced localization [18]. Building on this trend, DetCLIP [37] integrated region proposal networks
with CLIP, providing one of the first models capable of refining object detection without extensive
retraining. DetCLIPv2 [36] takes this further by scaling up OVDet pre-training through improved
word-region alignment, highlighting the growing importance of aligning textual descriptions with
image regions for effective detection. In parallel, DePro [5] introduced automatic prompt learning
to effectively integrate CLIP class embeddings into fine-grained detection, and Detic [46] enhanced
performance on novel classes by supervising the largest region proposals with image classification
labels. However, these approaches rely heavily on expensive annotations or complex two-stage
architectures, which limit their scalability.

A notable breakthrough in this area is BARON [33], which shifted the focus from individual re-
gion alignment to aggregating multiple regions, enhancing detection performance by considering
broader image context. CoDet [20] uses co-occurrence guided region-word alignment, leveraging
the relationships between object regions within an image to achieve more precise and contextually
aware detections. Similarly, [22] introduced region-level attention mechanisms, enabling a better
understanding of spatial relationships by considering neighboring regions for improved alignment.
[42] provided an in-depth analysis of how existing detection models handle region-word alignment
tasks, revealing the limitations in current approaches. Moreover, the importance of fine-grained
region-word correspondence is also emphasized in [2], which underscores that OVDet models need to
improve their ability to differentiate between visually similar objects and their textual descriptions, a
gap that previous models struggled to address. Unlike these models, we propose a model that directly
align image regions and words (phrases) through an attentive masking strategy.
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3 Proposed Model

Our model integrates data from various sources, including grounding, detection, and visual-textual
pairs, to create a robust open-world object detection framework. We begin by presenting a unified
data representation for training with diverse supervision types (Section 3.1). For visual-textual pairs
without instance annotations, we use an attentive masking strategy to identify relevant image regions
for each textual concept (Section 3.2). Finally, we detail our training objectives in Section 3.3.

3.1 Data Representation

In our proposed model, each data sample is represented as a triplet (xI , {bi}Ni=1, {cj}Sj=1), in which,
xI ∈ R3×h×w represents the image, {bi|bi ∈ R4}Ni=1 denotes the group of N bounding boxes, and
T = {cj} is the set of concept names or textual embeddings. This unified representation allows the
model to flexibly handle various types of data and effectively address the unique challenges posed by
each type. For detection, our model distinguishes between semantically similar categories. Instead
of solely relying on categorical labels (e.g., dog), we incorporate negative samples in the form of
semantically related but incorrect categories (e.g., wolf, fox). This helps the model learn the visual
distinctions between similar objects, improving its performance on novel or ambiguous categories.
In grounding tasks, the model associates specific words or phrases in a caption with regions in the
image. We use hierarchical concept embeddings, where positive samples {cj}pos contain objects
explicitly mentioned in the caption, and negative samples are selected from unrelated concepts (those
not present in the caption). For image-text pairs without instance-level annotations, {bi}Ni=1 = ∅, the
model only has access to the caption and noun phrases extracted from it. This setup allows the model
to rely on the text description to infer relevant regions in the image.

Similar to previous approaches [18, 20, 36, 37], our model architecture consists of an image encoder
and a text encoder. The image encoder processes the input image xI to generate region proposals R =
{ri}Ki=1 along with their region features f i

R ∈ RK×D, where K is the number of region proposals and
D is the feature dimension. The text encoder processes the text concepts {c1, c2, . . . , cS}, producing
a set of embeddings fT ∈ RS×D. Once both the image region features and text embeddings are
obtained, we calculate a similarity matrix W ∈ RK×S = fR · [fT ]T , which captures the alignment
between each image region and each text concept. For tasks with available annotations, we define an
alignment matrix Y ∈ {0, 1}K×S , that indicates the correct alignment between the image regions
and text concepts. However, for image-text pairs without instance-level annotation, we introduce the
following strategy to address the challenge of identifying relevant regions.

3.2 Image-Text Pairs Representation

When working with large-scale image-text datasets, such as web-crawled data where instance-level
annotations are missing, it becomes challenging for the model to identify which regions in the image
are relevant to the text. Simple contrastive learning methods which rely on global image-text matching
(comparing the entire image to the entire text), often fail to capture the fine-grained relationships
[7, 18, 36, 42]. This becomes especially problematic when multiple objects are present, and only a
subset is relevant to the text description. To address this issue, we propose an Attentive Masking
(AM) strategy that enables the model to focus on the most relevant image regions for each word or
concept in the text. Given an image-text pair (xI , xT ), where xI is the image and xT is the associated
text, we extract a set of noun phrases T = {cj}Sj=1 from the text. The model processes this pair
using the following steps. The image encoder generates region proposals R = {ri}Ki=1 and their
features fR ∈ RK×D, where K is the number of regions in the image. The text encoder extracts text
embeddings fT ∈ RS×D for the concepts {cj}Sj=1, where S is the number of text concepts (tokens).
To align these image regions with the text concepts, we compute the similarity between each image
region and all text embeddings. Specially, for the i-th region, the highest similarity across all text
embeddings (c1, c2, . . . , cS) is selected

Wi =
S

max
j=1

wij , where wij = ⟨f j
T , f

i
R⟩ (1)

to represent the correlation/alignment with the text. WThese similarity scores {W1,W2, . . . ,WK}
are used to create a mask (Mk ∈ {0, 1}) that indicates whether the i-th image region is relevant
(Mk = 1); or not (Mk = 0). After masking irrelevant regions, we align the remaining regions with
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the text concepts. In many cases, a single text concept may correspond to multiple image regions. To
handle this, we modify the alignment strategy to allow soft associations between text concepts and
image regions. Instead of selecting only one region per concept, we compute a softmax-weighted
sum over the similarity scores of all regions for each text concept

W (xI , xT ) =
1

S

S∑
j=1

k∑
i=1

Aj,i · wj,i, (2)

where, Aj,i =
exp(wj,i/τ)∑K
t=1 exp(wj,t/τ)

is the softmax weight over region similarities for the j-th con-
cept. This method allows each concept to align with multiple regions, improving the handling of
neighboring region effects.

Contrastive Learning. Based on the obtained region-word alignment, we employ contrastive
learning to refine the model’s ability to associate image regions with corresponding text concepts.
During training, we consider a batch of N image-text pairs {xi

I , x
i
T }Ni=1 and their corresponding

representations {f i
R, f

i
T }Ni=1. The contrastive loss encourages correct word-region alignments by

maximizing the similarity between correctly matched pairs while minimizing the similarity between
incorrect or mismatched pairs. This loss for a batch of image-text pair is defined as

Lcont = − 1

N
log

exp(W (xi
I , x

i
T )/τ)∑N

j=1 exp(W (xj
I , x

j
T )/τ)

(3)

This focuses on text-to-image alignment, ensuring that the i-th text xi
T is more similar to its cor-

responding image xi
I than to other images. τ is a temperature hyperparameter that controls the

sharpness of the softmax distribution. Incorporating this alignment strategy allows the model to
capture fine-grained relationships between the image regions and text concepts, making it effective in
cases where multiple objects are present, but only a subset of them is relevant to the text.

Proposal Selection. The goal of proposal selection is to identify the most informative regions
(proposals) in an image to compute similarities with the given textual concepts. Several methods
(like RPN [24] and FCOS [31]) can achieve this by using objectness scores found in object detectors.
However, they lack direct consideration of textual information, which is crucial for open-vocabulary
object detection [33]. To ensure that the selected regions are valuable for contrastive learning, we use a
scoring function that considers both visual and textual information: ok = σ(Wvfp[k]+WtfT [j]+ b),
where, fp[k] is the feature of the k-th region proposal, and fT [j] is the embedding of the j-th text
concept. σ(x) = 1/(1 + e−x) ensuring the output score ok falls between 0 and 1. By learning the
combination of visual and textual information, the model can more accurately identify regions that are
both visually distinctive and contextually relevant to the text. After computing ok for all proposals,
we can rank the regions and select the top-K proposals based on their scores.

3.3 Training Objective

Our model is built on the ATSS detector, enhanced with a transformer-based text encoder that provides
textual embeddings to enrich the detection process, following the approach in [36, 37]. Additionally,
the training objectives for our model are tailored to different tasks: detection, grounding, and image-
text pair alignment. For detection, the total loss is a combination of the matching/alignment loss (Lalg),
regression loss (αLreg), and centerness loss (βLcent). For grounding data, we use only the alignment
loss (Lalg). This is because grounding annotations often have inaccurate bounding boxes, making
regression and centerness losses less reliable. When dealing with text-image pairs, we incorporate a
contrastive loss (λLconst) to align visual regions with textual descriptions. For these tasks, we use
specific loss functions like focal loss for Lalg, cross-entropy (CE) for Lcenter, and for the regression
loss Lreg we used GIoU [25]. In our training process, high-resolution images with small batch sizes
are used for detection and grounding tasks, while for visual-textual pairs, we use low-resolution
images with large batch sizes to enhance efficiency and increase the number of negative samples.

4 Experiments

To explore a large-scale generalized setting for open-vocabulary object detection, we conduct experi-
ments across multiple datasets. Specially, for detection, we use Objects365v2 [28] dataset, containing
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Model AP APr APc APf

1 class 27.9 26.8 28.2 28.5
2 IoU 29.8 29.1 30.2 30.3
3 cent. 30.5 28.5 30.8 30.4

4 ok, b=0.4 28.7 27.5 29.6 30.8
5 ok, b=0 31.6 29.6 31.9 31.7
6 ok, b=0.1 31.2 30.4 31.5 31.1

(a) Comparison of different proposal selection strategies.
Our model with b = 0 achieves the optimal results.

Model AP APr APc APf

bbox 30.1 28.9 37.3 30.8
one-to-one 31.6 29.6 31.9 31.7

one-to-many 31.2 31.5 30.9 31.5

(b) Region-text matching strategies. One-
to-one, pairing each text concept with the
closest region, which shows the best fixed AP.
The one-to-many strategy shows significant
improvement in rare categories.

Nb. AP APr APc APf

25 30.2 29.6 30.4 30.6
50 30.9 30.3 30.5 31.2

100 31.6 29.6 31.9 31.7
200 31.1 29.5 30.7 31.4

(c) Number of proposals, where k =
100 achieves the best performance.

λ AP APr APc APf

0.05 30.7 29.6 29.8 31.2
0.2 31.6 29.6 31.9 31.7
0.5 30.8 29.3 31.2 30.4
1 29.1 27.4 28.7 29.5

(d) Effect of contrastive loss weight.
(λ = 0.2) gives the best results.

η AP APr APc APf

1 30.5 28.7 30.1 30.0
0.5 31.6 29.6 31.9 31.7
0.2 31.2 29.5 31.3 30.8
0.05 28.7 27.3 28.9 29.5

(e) Effect of temperature parameter.
η = 0.5 shows the best results.

Table 1: Ablation experiments using the Swin-T backbone trained on Objects365+CC3M dataset.
Fixed AP (%) is reported on LVIS minival5k for rare (r), common (c), and frequent (f) categories.

approximately 0.66M images. For grounding, we use the GoldG [14] dataset, which has been refined
by excluding images from the COCO to avoid overlap with the LVIS [9] dataset, ensuring a fair
zero-shot evaluation. In terms of image-text pairs, we use a combined dataset from Conceptual
Captions: CC12M [3], which includes 12M pairs, and CC3M [29], consisting of 3M pairs.

Implementation details. We use the Swin-Transformer [19] as the visual encoder and a pretrained
FILIP model [38] for the text encoder, with a maximum token length of 16 to ensure efficient training
and inference. Our training process varies depending on the type of data. For example, for detection
and grounding, we use high-resolution inputs 1280× 800 and a smaller batch size, setting to 128 for
Swin-T and 256 for Swin-L models. In contrast, for image-text pairs, we use lower-resolution inputs
(320× 320) but increase the batch size significantly to 6144 (192 images per GPU for Swin-T and 96
for Swin-L), which also helps reduce the computational cost associated with processing large-scale
image-text pairs. The hyperparameters in the training objective are set as follows: α = 2, β = 0.8,
and λ = 0.2 in the loss equation. By default, all models are trained for 12 epochs to ensure adequate
learning without overfitting. The masking ratios set to 50%. In line with previous work [5, 20, 37, 41],
we evaluate the zero-shot performance of our model on the LVIS [9] dataset, which consists of
1203 categories. We use the Fixed AP [4] on the LVIS minival5k throughout our experiments. We
also conduct evaluations on the ODinW13 dataset [17] with 13 diverse downstream detection tasks.
This evaluation on ODinW allows us to test our model’s ability to generalize to new domains and
distributions. Unlike the ViLD protocol [8], which splits LVIS into seen and unseen categories and
partially relies on LVIS data for training, we adopt the GLIP [41] procedure, which does not assume
any prior knowledge about downstream tasks, providing a realistic open-world evaluation setting.

Ablation Study. We conduct ablation experiments on the LVIS minival5k dataset to evaluate
the effects of different strategies and settings on zero-shot object detection performance. Table 1a
determines the best strategy for selecting region proposals for contrastive learning. We compare the
following: classification and IoU scores [13, 35] are generated by adding an additional head after the
regression branch, while, the centerness score [31] that is used in the ATSS detector [43] favors the
proposals near the object center. Among these scores, centerness and IoU outperform classification,
achieving 30.5 and 29.8 AP, respectively, showing a 7-8% improvement over classification (27.9).
We also consider three different settings of our model (in section 3.2): i) our model with b = 0
(row5) serves as a neutral baseline, focusing solely on the of visual and textual features, yielding the
highest AP of 31.6. ii) Our model (with b = 0.1) (row6), defining a slight positive bias results in a
competitive AP of 31.2, which is still higher than traditional methods but indicates a 2% decrease
compared to the optimal setting of b = 0. iii) Our model with b = 0.4 (row4), shows a slight drop
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Data AP / APr / APc / APf

Obj [28] 29.3 / 25.1 / 27.5 / 30.4
Obj + CC3M [29] 31.6 / 29.6 / 31.9 / 31.7

Obj + GoldG [14] + CC3M 37.9 / 36.5 / 38.1 / 39.4

(a) Impact of additional data on detection perfor-
mance, using Objects365 (Obj), GoldG and CC3M.

Model LVIS minival ODinW-13

AP APr APc APf mAP

GLIP [17] SW × × × × 65.2
GLIPv2 [41] SW 50.1 × × × 66.5
MQ-GLIP [34] SW 50.4 43.8 52.6 50.3 68.3
AlignDet (ours) SW 50.6 44.1 53.2 50.8 69.1

(b) Fine-tuning results using Swin-T backbone (SW).

Table 2: (a) Improvement in detection performance using additional data. (b) Transfer learning
evaluation, reporting Fixed AP (%) on LVIS and mAP on ODinW-13 datasets.

Method Backbone AP APr APc APf Avg AP

ViLD [8] ResNet50 25.5 16.6 24.6 30.3 24.3
DetPro [5] ResNet50 25.9 19.8 25.6 28.9 25.1
Detic [46] ResNet50 30.9 19.5 − − −
BARON [33] ResNet50 29.5 23.2 29.3 32.5 28.6
CoDet [20] ResNet50 30.7 23.4 30.0 34.6 29.7
VLDet [18] ResNet50 30.1 21.7 29.8 34.3 29.0
AlignDet (Ours) ResNet50 30.2 23.7 30.1 34.3 29.5

Detic [46] Swin-B 38.4 23.9 40.2 42.8 36.3
DetCLIP [37] Swin-T 28.4 25.0 27.0 31.6 28.0
GLIP [17] Swin-T 26.5 21.3 21.7 31.2 25.2
GLIPv2 [41] Swin-T 29.7 − − − −
DetCLIPv2 [36] Swin-T 32.8 31.0 31.7 34.8 32.6
VLDet [18] Swin-T 34.1 27.5 32.7 35.1 32.4
CoDet [20] Swin-B 39.2 29.4 39.5 43.0 37.8
MQ-GLIP-T [34] Swin-T 30.4 21.0 27.5 34.6 28.4
AlignDet (Ours) Swin-T 34.1 30.5 32.1 36.2 33.2

Table 3: Open-vocabulary object detection results on LVIS dataset for different backbones: ResNet50
[10] and Swin [19]. The average AP (Avg AP) is calculated to provide an overall performance
summary. Our model achieves comparative performance along other state-of-the0arts methods.

in performance compared to the other variations. Table 1b evaluates different region-text matching
strategies. The first row matches each text concept to the region with the maximum bounding box
overlap, which shows decent performance in frequent categories (28.9). The one-to-one strategy pairs
each text concept with the region having the highest similarity, resulting in the best overall AP of
31.6. One-to-many, allows each text concept to match with multiple regions, aggregating similarities
across all these regions, yielding an AP of 31.2, slightly lower than the one-to-one strategy. Table 1c
explores the impact of the number of proposals (k). Using 100 proposals yields the highest AP of
31.6. Increasing k to 200 introduces more low-quality candidates, slightly decreasing performance.
Reducing k to 25 limits the extracted regions, resulting in a significant drop in performance. Tables
1d and 1e evaluates the effect of contrastive loss λ and different temperature η values. The standard
settings (λ = 1, η = 0.07) from classic contrastive learning [38] are not optimal for our model. Our
experiments found that λ = 0.2 and η = 0.5, enhance the performance.

Exploiting Extra Data. Table 2a shows the impact of using different pretraining datasets on the
model’s performance. Training on Objects365 alone results in an overall AP of 29.3. However, by
adding the conceptual captions (CC3M), the AP increases to 31.6, which is an 8% improvement. This
enhancement is especially notable in rare categories, where AP rises from 25.1 to 29.6, representing
a significant gain of 19%. Furthermore, incorporating the GoldG along with Objects365 and CC3M,
dramatically boosts the overall AP to 37.9, marking a 31% improvement over Objects365 alone. The
results show that the inclusion of extra data significantly enhances the model’s effectiveness.

Cross-dataset Transfer. We evaluate the transferability of our model by fine-tuning it on downstream
tasks: the LVIS dataset with 1203 categories, and ODinW-13, which contains 13 detection tasks.
As shown in Table 2b, AlignDet achieves an AP of 50.6 on LVIS, outperforming MQ-GLIP-T and
showing strong performance across rare, common, and frequent categories. On ODinW-13, AlignDet
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Figure 3: Comparison of detection results between AlignDet (bottom row) and GLIPv2 (top row) on
COCO’s validation set. The heatmaps (left) illustrate attention over both seen and novel categories,
while the bounding boxes (right) highlight the detected objects. Green boxes indicate novel categories,
and red boxes represent base categories. Our method demonstrates strong open-vocabulary capability
and correctly detects challenging samples such as the occluded elephant and a small dog among the
flock of sheep, even when these objects are not seen in training. In contrast, the heatmaps reveal that
GLIPv2 struggles to effectively detect novel objects, where the model’s focus is less precise.

attains an mAP of 69.1, surpassing GLIPv2 by +2.6. The superior performance on ODinW-13
demonstrates the model’s ability to generalize across diverse detection tasks.

Result of LVIS OVDet Benchmark. We compare our model with state-of-the-art open-vocabulary
detectors in Table 3, using both ResNet50 and Swin backbones. Our model uses a simple yet effective
attentive masking strategy, yielding competitive results in open-vocabulary object detection. With
a ResNet50 backbone, we achieve an average AP of 29.5, which is competitive with models like
VLDet (29.0) and CoDet (29.7). When using a more advanced Swin-T backbone, AlignDet achieves
an Avg AP of 33.2, which is higher than VLDet (32.4) and MQ-GLIP-T (28.4). While CoDet, with its
heavier Swin-B architecture, achieves a higher Avg AP of 37.8, AlignDet remains highly competitive,
especially in rare categories (APr), where it reaches 30.5, surpassing other models and tackling the
critical challenge of recognizing rare objects in open-vocabulary detection.

Visualization . Fig. 1 demonstrates the effectiveness of AlignDet in aligning words with image
regions across diverse contexts on the CC12M dataset [3]. For each textual concept, the model
selects the best-matching region based on the highest similarity score (detailed in Section 3.2). For
example, in example (b), our model accurately detects and aligns multiple entities– person, bicycle,
and cow–highlighting interactions between humans and animals in an outdoor setting. In example
(d), AlignDet correctly identifies specific food items on the plate, such as pasta, broccoli, and carrots,
which shows the model’s capacity for recognizing fine-grained categories that are not annotated in the
detection datasets. These capabilities are critical for open-world detectors but are not fully captured
by standard benchmarks such as LVIS [9]. We further visualize the detection results of AlignDet
(bottom row) and GLIPv2 (top row), in Fig. 3. The images are taken from COCO’s validation set.
AlignDet generates focused and precise responses at locations corresponding to both seen and unseen
object categories, while GLIPv2 tends to produce weaker or diffused responses. Notably, AlignDet
excels at detecting multiple objects associated with a single textual concept. For example, the model
accurately detects a person and a flock of sheep when prompted with the concept dog, even though
the dog is much smaller and positioned far from the sheep. This illustrates the model’s ability to
capture fine-grained object relationships, a key requirement for open-vocabulary detection tasks.

5 Conclusion

We proposed AlignDet, a framework for open-vocabulary object detection that leverages extensive
image-text data through a unified training approach. By employing a region-word alignment strategy
and attentive masking, AlignDet effectively captures fine-grained relationships between image regions
and textual concepts, significantly improving detection accuracy, particularly for novel or unseen
categories. Our experiments demonstrate its superior performance and scalability, highlighting a
promising direction for open-world detection by leveraging diverse, large-scale visual-textual pairs.
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