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ABSTRACT

This paper studies Learning from Imperfect Human Feedback (LIHF), addressing
the potential irrationality or imperfect perception when learning from comparative
human feedback. Building on evidences that human’s imperfection decays over
time (i.e., humans learn to improve), we cast this problem as a concave-utility
continuous-action dueling bandit but under a restricted form of corruption: i.e.,
the corruption scale is decaying over time as tρ−1 for some “imperfection rate”
ρ ∈ [0, 1]. With T as the total number of iterations, we establish a regret lower
bound of Ω(max{

√
T , T ρ}) for LIHF, even when ρ is known. For the same set-

ting, we develop the Robustified Stochastic Mirror Descent for Imperfect Dueling
(RoSMID) algorithm, which achieves nearly optimal regret Õ(max{

√
T , T ρ}).

Core to our analysis is a novel framework for analyzing gradient-based algorithms
for dueling bandit under corruption, and we demonstrate its general applicability
by showing how this framework can be easily applied to obtain corruption-robust
guarantees for other popular gradient-based dueling bandit algorithms. Our theo-
retical results are validated by extensive experiments.

1 INTRODUCTION

Many real-world problems, such as personalized recommendation (Yue & Joachims, 2009; Immor-
lica et al., 2020; Yao et al., 2022) and fine-tuning generative models (Bai et al., 2022; Casper et al.,
2023; Han et al., 2024), require learning from human feedback. Expressing preferences as numer-
ical values or concrete functions is generally challenging for humans. Therefore, an approach that
has achieved significant real-world success is to learn humans’ preferences by eliciting their com-
parative feedback between two options (Bai et al., 2022). A natural theoretical framework capturing
such learning task is the seminal dueling bandits framework introduced by Yue & Joachims (2009).
The dueling bandit problem features a sequential online learning problem, during which a pair of
actions are selected at each round and only their comparison result is revealed to the learner. The
comparison outcome between two actions is modeled using a utility function of actions, alongside
a link function that determines the probability of each action winning based on their utility differ-
ence. This modeling approach is termed as utility-based dueling bandit and achieves great success
in generating summaries closely aligned with human preferences (Stiennon et al., 2020).

However, human feedback is often imperfect, a crucial factor that has been largely overlooked in
previous studies of dueling bandit. As we are all aware of, humans are not always rational (Pos-
ner, 1997) neither perfectly know our preferences (Pu et al., 2012). A powerful framework that can
capture this problem is robust bandit learning under adversarial corruption (Bogunovic et al., 2020;
Saha & Gaillard, 2022; Di et al., 2024). However, assuming fully adversarial feedback from a regu-
lar human seems over-pessimistic at the first glance, hence might make our algorithm development
overly conservative. Indeed, ample behavioral studies show that humans often refine their prefer-
ences through interactions with the system, navigating a complex tradeoff between exploration and
exploitation (Cohen et al., 2007; Wilson et al., 2014). Furthermore, their response errors may exhibit
systematic patterns that depend on their past consumption history, rather than merely random noise.
Though the sources of imperfections vary a lot in human feedback, one common finding in these
studies is that the feedback’s imperfection tends to decrease over time, as humans interact more with
the system (Cohen et al., 2007; Wilson et al., 2014; Immorlica et al., 2020; Yao et al., 2022). This
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premise is the core motivation of this work, which studies dueling bandit learning under corruption
that can be arbitrary but have decaying scales.

Our Model and Contributions. We cast Learning from Imperfect Human Feedback (LIHF) as a
concave-utility continuous-action dueling bandit learning problem under adversarial utility corrup-
tion yet with decaying scale – formally, the scale is upper bounded by O(tρ−1) at round t, for some
ρ ∈ [0, 1] (hence the total amount of attack within time T is O(T ρ)). A fundamental research ques-
tion that motivates our study is whether LIHF is fundamentally easier than learning under arbitrarily
corrupted feedback.

Our first main technical result hints on a potentially negative answer to the above question. We prove
a strong regret lower bound of Ω(dmax{

√
T , T ρ}) under LIHF, where d is the action’s dimension.

This bound holds even when the decaying rate of imperfection index ρ is known. This lower bound
has the same order as recent lower bounds of dueling bandits under (the harder) arbitrary corruption
(Agarwal et al., 2021; Di et al., 2024), thus hinting that learning from imperfect human feedback
may be no easier than learning from arbitrary adversarial corruption. Notably, however, we use the
phrase “hint”, while not an affirmative claim, because our setting with continuous action space and
concave utility function is different from the K-armed bandits setting of Agarwal et al. (2021) and
linear utility function case of Di et al. (2024). Therefore, neither their lower bounds nor their proof
techniques are directly applicable to our setting with corruption to strictly concave utilities; see more
discussions and comparisons below.

Our second main result is an efficient algorithm with regret upper bound Õ(dmax{
√
T , T ρ}) that

matches the above lower bound, up to logarithmic terms, in the same setting (i.e., decaying corrup-
tion level tρ−1 with known ρ). Unlike previous corruption-robust dueling bandit algorithms based
on robust K-armed bandits (Agarwal et al., 2021) or robustified LinUCB (Di et al., 2024), our algo-
rithm is a gradient-based algorithm that is built upon the recent Noisy Comparison-based Stochastic
Mirror Descent (NC-SMD) of Kumagai (2017). This is natural for our setup with continuous ac-
tions and strictly concave utility. While our algorithm itself can be viewed a natural generalization
of Kumagai (2017), its analysis is highly non-trivial and much more complex, due to the necessity
of accounting for corruption. Our main technical contribution is a new framework for analyzing the
regret of gradient-based algorithms under arbitrary corruption. This framework introduces a novel
regret decomposition lemma for dueling bandits, which upper bounds total regret by combining de-
cision regret and feedback error due to corruption, based on quantifying bias in gradient estimation.
It yields a tight analysis of our new algorithm and also implies regret bounds for popular existing
algorithms in (even fully) adversarial corruption settings, such as the dueling bandit gradient descent
(DBGD, Yue & Joachims (2009)). These upper bounds are looser than our lower bound for the
LIHF setting. It is an intriguing open question to understand whether these upper bounds under
arbitrary corruption are tight, or the lower bound under arbitrary corruption may be stronger than
our lower bound under LIHF. Finally, we conduct simulations which validate our theory.

Comparisons with Related Works. Since multiple recent works (Agarwal et al., 2021; Saha &
Gaillard, 2022; Di et al., 2024) study dueling bandits under arbitrarily adversarial corruption , it is
worthwhile to discuss the key difference between these works and ours. The first key difference
is the setting, which leads to fundamentally different algorithms hence analysis. Specifically, our
setting with continuous action space and a completely unknown concave utility function is motivated
by addressing problems from modern recommender systems where the action (i.e., contents) space
is extremely large, not enumerable, thus often embedded as high-dimensional continuous vectors
(Chen et al., 2019; 2021). This setting and our techniques are crucially different from earlier works.
Agarwal et al. (2021); Saha & Gaillard (2022) consider theK-arm dueling bandit setting and utilizes
the reduction of Ailon et al. (2014) from dueling bandits to multi-K-armed bandits (MAB); (Di
et al., 2024) considers linear utility setting where the unknowns is a parameter vector θ, and utilizes
techniques from linear contextual bandits based on the optimism principle. The methods all rely
on parameter estimation which are not applicable to our setting with arbitrary concave utilities.
Moreover, they often need to enumerate all actions to identify the best one under optimism, which
are not computationally efficient for our setting with continuous action space. This is why our
algorithm is gradient-based and falls within the family of stochastic mirror descent. To the best of our
knowledge, this is the first time a corruption-robust algorithm is developed for dueling bandits with
continuous actions and strictly concave utilities, which is also why it is necessary for us to develop
a new analysis framework. Additionally, we also note that dueling bandits with strictly concave

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

utility and linear utility are generally not comparable, both in terms of their problem difficulties and
methodologies. A strictly more general situation is the concave utility case (no need to be strongly
concave), however the best upper bound so far for general concave utility is O(T 3/4) (Flaxman
et al., 2005; Yue & Joachims, 2009), which are considerably worse than the O(T 1/2) for linear and
for strongly concave utility.

The second main difference between our work and previous is the more restricted class of adversar-
ial environments. Our model is motivated by imperfect human feedback whereas previous studies
are motivated by arbitrarily adversarial adversaries. Finally, a more subtle difference is that the cor-
ruption in our model is on utility with motivations from learning from imperfect human feedback,
whereas corruption in all previous settings directly flip the comparison outcome. These two dif-
ferences lead to a very different proof techniques of our lower bound. Our proof is more involved
because the adversary has limited capability to alter the comparison outcomes. Specifically, the
corruption are decaying; moreover, a constant amount of utility corruption only slightly shifts the
outcome probability whereas in previous settings each corruption completely changes the outcome.

2 THE PROBLEM OF LEARNING FROM IMPERFECT HUMAN FEEDBACK

Notation. For a positive integer T , we use [T ] to denote {1, 2, . . . , T}. We use standard asymptotic
notations including O(·), Ω(·), Θ(·). We use Õ(·), Ω̃(·), Θ̃(·) to hide logarithmic factors. We use
∥ · ∥2 to define L2 norm, ∥ · ∥∞ to define infinity norm, and λmax(·) to denote maximum eigenvalue.

Motivated by alignment of machine learning models with human preferences (Bai et al., 2022), we
study learning from comparative human feedback within the seminal dueling bandit framework (Yue
& Joachims, 2009) but account for “imperfections” in human feedback, as described below.

Basics of Continuous Dueling Bandits. We consider the dueling bandit framework with continuous
action set A ⊂ Rd (Yue & Joachims, 2009). At each round t ∈ [T ], the learner chooses two actions
at, a

′
t to present to some human agent, henceforth denoted as the “user”. The user receives utility

µ(at), µ(a
′
t) from the two actions respectively, and will pick one of these actions following a link

function σ(·). In the absence of corruption, the user selects action at with probability σ(µ(at) −
µ(a′t)) and chooses action a′t otherwise. Since the comparison outcome has less errors compared
to the exact utility value while still carries useful information about the underlying utility function
µ, this form of human feedback has been widely used for learning human preferences (Ailon et al.,
2014; Maystre & Grossglauser, 2017; Bengs et al., 2021; Bai et al., 2022). Following standard
assumptions in this field (Yue & Joachims, 2009; Kumagai, 2017), we also assume

1. the action set A is a convex compact set that contains the origin, has non-empty interior,
and is contained in a d-dimensional ball of radius R;

2. the utility function µ : A → R is strongly concave and twice-differentiable. The following
constants are useful for our algorithm analysis: µ is Lµ-Lipschitz, α-strongly concave,1
κ-smooth, bounded, Rµ := supa,a′∈A µ(a) − µ(a′), and a∗ := argmaxa∈A µ(a) is the
unique optimal within A;

3. the link function σ : R → [0, 1] is smooth, rotation-symmetric (i.e. σ(x) = 1 − σ(−x)),
and concave for R+. Since Rµ is finite, there exists positive lσ1 , Lσ1 and Rσ2 such that
lσ1 ≤ σ′ ≤ Lσ1 on [−Rµ, Rµ], and the second derivative is bounded above by Rσ2 and Lσ2 -
Lipschitz on [−Rµ, Rµ]. For a more detailed discussion on the generality of the modeling
assumptions, please refer to Appendix A.

A broad range of natural link functions satisfy our assumptions, including the standard logistic
distribution function, the cumulative standard Gaussian distribution function, and the linear function.
This distinguishes our work from some prior studies, working with concrete link function formats
such as logistic function (Maystre & Grossglauser, 2017; Saha, 2021; Xu et al., 2024) or the linear
function (Ailon et al., 2014; Chen & Frazier, 2017; Zimmert & Seldin, 2018; Lin & Lu, 2018).

Modeling Imperfect Human Feedback as a Restricted Form of Adversarial Corruption. To
incorporate imperfect human feedback, we study a generalization of the dueling bandit framework

1µ is α-strongly concave for some α > 0 if µ(x) ≥ µ(y)+ ⟨∇µ(x), x−y⟩+ α
2
∥y−x∥22 for any x, y ∈ A.
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above, by introducing a corruption term, c(a, a′), to the utility difference. Formally, let a ≻ a′

represent the event where the user chooses a over a′. The probability of this event in the presence of
corruption c(a, a′) is denoted by P̂(a ≻ a′), expressed as P̂(a ≻ a′) := σ(µ(a)− µ(a′) + c(a, a′)).
We denote the user’s preferential feedback under corruption as F̂(a, a′), referred to as imperfect
dueling feedback. Mathematically, F̂(a, a′) follows a binomial distribution with mean P̂(a ≻ a′),
as expressed by the following equation.

F̂(a, a′) :=

{
1 w.p. P̂(a ≻ a′)

0 w.p. 1− P̂(a ≻ a′)

The “hat” notation in F̂ and P̂ is to emphasize the presence of corruption. When there is no corrup-
tion, we use P(a ≻ a′) := σ(µ(a) − µ(a′)) to represent the probability of the event a ≻ a′, and
F(a, a′) to denote the corresponding dueling feedback.

We remark that the term c(a, a′) above is often called “strong corruption” in the literature of adver-
sarial corruption because it can be introduced after observing actions a and a′ and the corruption
function, c(·), can depend on µ and past actions (Bogunovic et al., 2020; He et al., 2022; Di et al.,
2024). The only difference between our model and the above works on adversarial corruption is a
natural restriction to the scale of the corrupted term c(a, a′). Our motivation is that human feedback,
while imperfect, should not be arbitrarily adversarial and tends to improve as human agent interact
with the learner. This motivates our following definition of imperfect human feedback.

Definition 2.1 (ρ-Imperfect Human Feedback). The human feedback is said to be ρ-imperfect for
some ρ ∈ [0, 1] if there exists a constant Cκ such that corruption ct(at, a′t) satisfies |ct(at, a′t)| ≤
Cκt

ρ−1,∀t ∈ [T ].2

The definition shows that ρ-imperfect human feedback is mathematically equivalent to a restricted
form of strong adversarial corruption to user utility functions. The total corruption is bounded by∑T
t=1 |ct(at, a′t)| ≤ CκT

ρ, which is a key parameter influencing the intrinsic difficulty of the learn-
ing problem. We thus cast the Learning from Imperfect Human Feedback (LIHF) problem as dueling
bandits under strong corruption but with decaying scales. For clarity, we use “arbitrary adversarial
corruption” as corruption without decaying constraints and “ρ-Imperfect Human Feedback” as cor-
ruption with decaying constraints, as described in Definition 2.1. Through this modeling, we aim to:
first create a more optimistic framework for LIHF compared to arbitrary adversarial corruption, and
second, explore LIHF’s intrinsic difficulty to achieve more efficient learning guarantees than those
possible under arbitrary adversarial corruption. We direct readers to Appendix B for a more com-
prehensive discussion on challenges in developing robust algorithms for continuous dueling bandits
with generally concave utility under arbitrary adversarial corruption.

Several points are worth noting about Definition 2.1. While we are not the first to model imperfect
human feedback, we are the first to apply it to dueling bandits with strictly concave utilities. Recent
works, motivated by recommendation systems, have explored learning user preferences from imper-
fect feedback (Immorlica et al., 2020; Yao et al., 2022; Wang et al., 2023). These studies assume
that users do not know their true expected reward θi for each choice i (i.e., arm) and instead behave
based on an estimated reward θ̂t,i at time t. The utility difference |θi − θ̂t,i| = ct is modeled as
a decreasing function of time, tρ−1, indicating that users improve their preference estimates over
time. By viewing the human utility µ(a) as the average reward, our modeling of ρ-Imperfect Hu-
man Feedback shares the same spirit; it captures imperfect yet gradually improving human feedback
(e.g., due to inaccuracies in utility perception or initial ignorance of true preferences). As one of our
motivations, when generative models like ChatGPT learn to create personalized content, the user
could undergo a process of preference refinement during interactions with the model. Additionally,
our model differs from recent corruption-robust dueling bandit studies (Komiyama et al., 2015; Saha
& Gaillard, 2022; Di et al., 2024), which corrupt realized outcomes (e.g., flipping a′ ≻ a to a ≻ a′)
and are motivated by adversaries like malicious users or fraudulent clicks (Deshpande & Montanari,
2013; Lykouris et al., 2018). In contrast, our model focuses on utility corruption caused by imperfect
perception of true utility, not outcome manipulation.

2All our results naturally applies to ρ < 0, which is a significantly easier situation since accumulated
corruption is a constant in that case. Therefore, we will not explicitly consider it in this paper.
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Learning goal: regret minimization by Learning from ρ-Imperfect Human Feedback (ρ-
LIHF). The goal of the learner is to optimize her sequential actions to minimize the following
dueling regret in the ρ-LIHF problem:

RegT := E

(
T∑
t=1

σ(µ(a∗)− µ(at)) + σ(µ(a∗)− µ(a′t))− 1

)
. (1)

This regret measure has been extensively studied in prior literature (Yue & Joachims, 2009;
Komiyama et al., 2015; Kumagai, 2017; Saha & Gaillard, 2022). Other regret measures, such as
the cumulative difference between optimal and obtained utility, are also considered. We discuss the
equivalence of various regret measures in Lemma D.1.

3 THE INTRINSIC LIMIT OF LIHF

In this section, we study the intrinsic limit of learning from ρ-Imperfect Human Feedback. We are
particularly interested in understanding whether learning from this restricted version of corrupted
feedback is fundamentally “easier” than learning from arbitrarily adversarial corruption. Somewhat
surprisingly, the answer seems to be no, as illustrated by the following lower bound result.

Theorem 3.1. There exists a ρ-Imperfect Human Feedback (see Definition 2.1), strongly con-
cave utility function µ, and link function σ such that any learner has to suffer RegT ≥
Ω
(
dmax{

√
T , T ρ}

)
, even with the knowledge of ρ.

Notably, similar lower bound results have appeared in recent studies on adversarial corruption in
bandits (Bogunovic et al., 2022), including dueling bandits (Agarwal et al., 2021; Di et al., 2024),
showing the same lower bound Ω(dmax{

√
T , T ρ}) (though they often use C := Θ(T ρ) to denote

total corruption budget). However, a few key distinctions are worth noting. First, Theorem 3.1
presents a stronger result, showing that even when corruption decays over time, this structure (which
defines our LIHF problem) does not make learning easier. Second, our corruption targets utility
values, which is quite different from the corruption of comparison outcomes studied in (Agarwal
et al., 2021; Di et al., 2024). In their case, corruption can fully flip comparison outcomes, which
is critical for promoting sub-optimal arms in their lower bound proofs. However, such full control
of the outcome is infeasible in our corruption of only the utility, which only slightly shifts the
comparison probabilities since the scale of the corruption is also upper bounded by O(tρ−1).

The aforementioned difference from previous works (Agarwal et al., 2021; Di et al., 2024) also
render our proof of Theorem 3.1 fundamentally different from (and significantly more involved
than) their proofs. Specifically, due to limited and diminishing corruption power, the corruption
in our LIHF problem are insufficient to completely “mask” the instance as one with a different
sub-optimal arm, which is the key strategy in previous lower bound proofs. Thus, our proof has
to leverage information-theoretic lower bounds of statistical distributions to understand how small-
scale corruption at each round could influence the overall function estimation errors. At the core
of our proof is the following lower bound result for a different, and intuitively easier, problem: the
standard bandit setup with direct reward feedback, as shown in Lemma 3.1 below. We then convert
this lower bound for direct reward feedback to dueling feedback through a linear link function, i.e.
σ(x) = 1+x

2 .

Lemma 3.1 (Lower Bound under Direct Reward Feedback). Consider bandit learning with direct
reward feedback, where reward r(a) := µ(a) + ϵ, ϵ follows standard normal distribution. The
action space A is contained in a d-dimensional unit ball, and µ is µθ(a) := θ⊤a − 1

2∥a∥
2
2, with

θ ∈ Rd, ∥θ∥2 ≤ 1 . Under ρ-Imperfect Human Feedback (Definition 2.1), for any T , d ≤ 1
Cκ
T 1−ρ,

and for any learner, there exists a θ such that under direct reward feedback, even with the knowledge
of ρ3, has to suffer regret RegT := E{

∑T
t=1 µθ(a

∗)− µθ(at)} ≥ d
4CκT

ρ.

Proof Sketch of Lemma 3.1. We aim to show that there exists a corruption strategy such that the
regret incurred by any learner with direct reward feedback is no less than Ω(dT ρ). The formulation
of such a corruption strategy hinges on the observation that the regret incurred by the learner is

3We only consider ρ ≥ 1
2

. If ρ < 1
2

, the lower bound degenerates to Ω(d
√
T ) (Kumagai, 2017).
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bounded below by the sum of the Kullback-Leibler (KL) divergence between the distribution of the
corrupted reward feedback v̂t conditioned on different values of θ. Specifically, let θ be uniformly
drawn from {−β, β}d, for some constant β > 0. Given an action at and index i, conditioned on the
value of the i-th coordinate of θ, θi, if θi > 0, then v̂t is

v̂t = µθ(at) + ct(at|θi > 0) + ξat =

(
− 1

2
∥at∥2 +

∑
j ̸=i

θjat,j

)
+ βat,i + ct(at|θi > 0) + ξ.

Conditioned on θi < 0, the corrupted reward feedback v̂′t is

v̂′t = µθ(at) + ct(at|θi < 0) + ξat =

(
− 1

2
∥at∥2 +

∑
j ̸=i

θjat,j

)
− βat,i + ct(at|θi < 0) + ξ.

The noise ξ follows standard normal distribution. Consider the following corruption strategy
which sets ct(at|θi > 0) := −βat,i and ct(at|θi < 0) := βat,i to minimizes the KL
divergence between v̂t and v̂′t. Together with 1-strongly concavity of µθ, we can establish
E
{∑T

t=1 µθ(a
∗)− µθ(at)

}
≥ 1

2 max
{∑T

t=1(
CκT

ρ−1

β − β)2, dTβ
2

2

}
. Since d ≤ 1

Cκ
T 1−ρ, we

can set β :=
√
CκT

ρ−1
2 to satisfy ∥θ∥2 ≤ 1 and to optimize the aforementioned lower bound. Then

we obtain E
{∑T

t=1 µθ(a
∗)− µθ(at)

}
≥ dCκT

ρ/4. Notice that the corruption level each round
is bounded by β∥at∥∞. In the scenario when the radius of A is upper bounded by β, the corrup-
tion budget each round is bounded by Cκtρ−1. It implies that the corruption is ρ-Imperfect Human
Feedback, completing the proof.

Theorem 3.1 can be proved by converting the lower bound in Lemma 3.1 for direct reward feedback
to dueling feedback (see Lemma C.1). Before concluding this section, we note that the strongly
concave utility function in the lower bound of Theorem 3.1 is not necessary. In particular, Proposi-
tion 1 below shows that similar lower bound applies to linear utilities as well. This result happens to
resolve an open problem posed by Yao et al. (2022) which studies a similar learning from imperfect
user problem with linear utility and dueling feedback (they termed it the “learning from a learning
user” problem), develops a no-regret learning algorithm for that setting, but left the lower bound as
an open problem. Proposition 1 implies that their upper bound’s dependence on T is tight. We direct
readers to Appendix C.1 and C.2 for proof details of Lemma 3.1 and Proposition 1.
Proposition 1. There exists an LIHF instance with ρ-Imperfect Human Feedback (Definition
2.1), linear user utility µ, and link function σ, such that any learner has to suffer RegT ≥
Ω(dmax{

√
T , T ρ}), even with the knowledge of ρ.

4 AN EFFICIENT AND TIGHT ρ-LIHF ALGORITHM

In this section, we present a learning algorithm with a regret upper bound that matches the
Ω(dmax{

√
T , T ρ}) lower bound, up to a logarithmic term, for the ρ-LIHF setting discussed in

Section 3. Our algorithm, Robustified Stochastic Mirror Descent for Imperfect Dueling (RoS-
MID), outlined in Algorithm 1, generalizes the Noisy Comparison-Based Stochastic Mirror De-
scent (NC-SMD) from Kumagai (2017). RoSMID employs a corruption-aware learning rate,
ηρ :=

√
log T/(dTmax{0.5,ρ}), to slow down the learning when the imperfection level ρ is large,

with NC-SMD being the special case with ρ = 0. Although RoSMID may initially seem like a
pretty natural extension of NC-SMD, the choice of optimal ηρ is in fact through careful derivation
from a novel framework for analyzing continuous bandits under utility corruption. We conclude by
demonstrating the applicability of this new framework to analyzing other gradient-based algorithms.

Theorem 4.1. RoSMID satisfies RegT ≤ Õ(dmax{
√
T , T ρ}) for any ρ-LIHF problem.

The main technical contribution underlying this theorem is a novel framework for analyzing contin-
uous dueling bandits with arbitrary strongly concave, yet possibly imperfect or corrupted utilities,
which we believe has independent value. This framework not only enables a tight regret upper
bound analysis, as shown in Theorem 4.1, but also allows us to easily derive regret guarantees for
other dueling bandit algorithms under adversarial corruption, as demonstrated in Subsection 4.1.
While recent works have explored corruption-robust regret analysis for dueling bandits withK arms
(Saha & Gaillard, 2022) or linear utilities (Di et al., 2024), neither their algorithms nor analysis can
be applied to our setting with arbitrary concave utilities in continuous action space.
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Algorithm 1: Robustified Stochastic Mirror Descent for Imperfect Dueling (RoSMID)

Input: Learning rate ηρ :=
√
log T/

(
dTmax{0.5,ρ}), ν-self-concordant function R 4, time

horizon T , tuning parameters λ ≤ lσ1α
2 , ϕ ≥ ((Lσ1 )

3Lσ2/λ)
2

1 Initialize a1 = argmina∈AR(a)
2 for t ∈ [T ] do
3 Update concordant function Rt(a) = R(a) +

ληρ
2

∑t
i=1 ∥a− ai∥2 + ϕ∥a∥2

4 Sample direction ut uniformly at random from a unit sphere Sd

5 Obtain corrupted feedback F̂(a′t, at) ∈ {0, 1}, for at and a′t = at +∇2Rt(at)
−1/2ut

6 Compute the corrupted gradient: ĝt = F̂(a′t, at)d · ∇2Rt(at)
1/2 · ut

7 Set at+1 = ∇R−1
t (∇Rt(at)− ηρĝt)

Output: aT+1

The full proof of Theorem 4.1 is quite involved and is deferred to Appendix D. Here, we outline the
main ideas, divided into four key steps. Step 1-3 are applicable for analyzing continuous dueling
bandits under any form of corruption, whereas last Step 4 is the only step that hinges on the decaying
corruption level assumptions of ρ-LIHF and is also the most involved and novel step.

Proof Sketch. The proof of Theorem 4.1 is divided into four major steps.

Step 1: quantifying bias of gradient estimation in ρ-LIHF

Our proof starts from quantifying the bias of the gradient ĝt caused by ρ-Imperfect Human Feedback,
as shown in the following Lemma 4.1.

Lemma 4.1 (Corrupted Gradients Estimation). The gradient ĝt in Line 6 of Algorithm 1 satisfies

E (ĝt|at) = ∇|a=at P̄t(a)− E (bt|at) .

where P̄t(a) := Ex∈B

[
P(at ≻ a+∇2Rt(at)

− 1
2x)
]

(with B as the unit ball) is the smoothed proba-

bility that at is preferred over any action a , and bt = d
(
P(at ≻ a′t)− P̂(at ≻ a′t)

)
∇2Rt(at)

1
2ut.

Step 2: decomposing regret for dueling bandits into regret of decision and feedback error

Core to our proof is a “regret decomposion” lemma below that upper bounds the regret by two parts:
regret of sub-optimal decision making under uncertainty, referred as regret of decision (first term in
equation 2), and regret due to corruption, referred as feedback error (second term in equation 2).

Lemma 4.2 (Regret Decomposition for Dueling Bandits). The RegT of Algorithm 1 satisfies:

RegT ≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R︸ ︷︷ ︸

Regret of Decision

+2E

{
T∑
t=1

b⊤t (at − a∗T )

}
︸ ︷︷ ︸

Feedback Error

, (2)

where C0 := (2ν + 4Lσ1κ+ 4Rσ2 (L
µ)2 + LµLσ1κ)/λ, and a∗T := 1

T a1 + (1− 1
T )a

∗.

We remark that similar regret decomposition has been shown to be useful for reinforcement learning
which has direct reward feedback (Foster et al., 2023). However, to the best of our knowledge,
Lemma 4.2 is the first to exhibit such a decomposition for dueling feedback, which contains much
sparser information than direct reward feedback as in classic RL or online learning. Hence the
lemma may be of independent interest for future research on dueling bandits under corruption or
erroneous feedback.

Step 3: upper bounding the regret from feedback error

Bounding the regret of decision term in equation 2 is standard. Thus, this step develops a novel
upper bound for bounding the regret from feedback error, as shown below.
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Lemma 4.3 (Feedback Error). The feedback error term in equation 2 can be bounded as follows:

E

{
T∑
t=1

b⊤t (at − a∗T )

}
≤ C1d

√
ηρE

{
T∑
t=1

√
t|ct(at, a′t)|

√
µ(a∗)− µ(at)

}
+ C2dT

ρ + 2d
√
λ
√
ηρT ,

where C1 :=
√

2λ(Lσ)2

α , and C2 := 2LσR
√

supa∈A λmax (∇2R(a)) + 2ϕ.

To our knowledge, such a bound is new for dueling bandits. The less common term in the bound
is
√
µ(a∗)− µ(at). It comes from the strong concavity of the utility function µ, which implies

⟨bt, at − a∗⟩ ≤ ∥bt∥2∥at − a∗∥2 ≤ ∥bt∥2
√

2
α (µ(a

∗)− µ(at)).

Step 4: The iterative regret refinement analysis and resultant optimal learning rate

Our last and also the most intriguing step is to pin down the regret upper bound.
Given the bounds from previous steps, the only remaining term to upper bound is
E
{∑T

t=1

√
t|ct(at, a′t)|

√
µ(a∗)− µ(at)

}
in Lemma 4.3. We can upper bound

√
t|ct(at, a′t)| by

Cκt
ρ− 1

2 under ρ-Imperfect Human Feedback assumption (this is the point where we start to need
the decaying structure in Definition 2.1). This is a tricky question, since this term involving optimal
action a∗ closely connects to the regret RegT itself (see equation 1). This is precisely the motivation
for our analysis approach of “iterative regret refinement”. Concretely, it turns out that a good upper
bound for the term A := E

(∑T
t=1 µ(a

∗)− µ(at)
)

can be leveraged to derive a good upper bound

for term B := E
{∑T

t=1 t
ρ− 1

2

√
µ(a∗)− µ(at)

}
, which can then be leveraged to derive a good

upper bound for the regret RegT , which can be used to refine the original upper bound of term A, at
which point we can re-apply the above refinement process.

Two key factors are essential for the iterative regret refinement mentioned above to result in a tight
bound. The first step is to derive a good upper bound for term B using term A, which is shown in
Lemma 4.4. The second step is to prove that this iterative refinement consistently improves the regret
bound, eventually reaching a limit. This is demonstrated by Lemma 4.5. The choice of learning rate
ηρ =

√
log T

dTmax{1/2,ρ} is crucial in the second step; in a sense, it is the only choice that converges to the

tight regret upper bound Õ
(
dmax{

√
T , T ρ}

)
in the limit, rather than exploding the bound.

Lemma 4.4. If A = E
(∑T

t=1[µ(a
∗)− µ(at)]

)
≤ O(T

1
2+ψ) for some ψ ∈ [0, 12 ), then we must

have B = E
(∑T

t=1 t
ρ− 1

2

√
µ(a∗)− µ(at)

)
≤ O(T− 1

4+
ψ
2 +ρ).

To prove Lemma 4.4, we first bound term B by
∑T
t=1 t

ρ−1/2
√

E[µ(a∗)− µ(at)] using the con-
cavity of the square root function. The key novelty of our proof is to use the Abel’s equation
(Williams, 1963) to re-arrange the term

∑T
t=1 t

ρ−1/2
√
E[µ(a∗)− µ(at)] and establish its con-

nection with another term C =
∑T
t=1

√
E[µ(a∗)− µ(at)]. We finally connect term C with

the term A in the lemma statement, by proving
∑T
t=1

√
E[µ(a∗)− µ(at)] ≤ O(T

3
4+

ψ
2 ) if

E
(∑T

t=1 µ(a
∗)− µ(at)

)
≤ O(T

1
2+ψ) via concavity of square root. Together with the decay scale

tρ−1, which allows tρ−1 − (t+ 1)ρ−1 ≤ tρ−2, we obtain the tight bound O(T− 1
4+

ψ
2 +ρ).5

Armed with Lemma 4.4, we can use it to prove the induction claim (Lemma 4.5). The challenge in
this proof lies in identifying the constant K, which must hold across all iterations, k, of the analysis
to ensure the bound remains stable and does not explode.

Lemma 4.5 (Induction Claim). Consider T >
√
2LµLσ1R and ηρ =

√
log T

dTmax{1/2,ρ} .

If RegT ≤ 144dK
√
log TT ρ+

3
2
−ρ

2k for some integer k, then we must also have

5If corruption ct was arbitrary, then tρ−1/2 is
√
t|ct|, and the bound could deteriorate to O(T

2ρ
3 ) in the first

T ρ rounds.
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RegT ≤ 144dK
√
log TT ρ+

3
2
−ρ

2k+1 . K is a instance-dependent constant, where K :=

max
{
C0,

C2Cκ√
log T

, (LσCκ)
2, 2

√
λRCκL

σ
}

, C0 and C2 defined in Lemma 4.2 and 4.3 respectively,

4.1 ADDITIONAL APPLICATIONS OF OUR REGRET ANALYSIS FRAMEWORK

To showcase useful applications of the new regret analysis framework above for proving Theorem
4.1, in this subsection we employ the framework to study continuous dueling bandits under arbi-
trary and agnostic corruption — i.e., remove decaying constraints on ct and ρ is unknown to the
learner. We analyze natural variants of RoSIMD, which apply to strongly concave utilities, and the
well-known algorithm Dueling Bandit Gradient Descent (DBGD) (Yue & Joachims, 2009), which
apply to general concave utilities. The proofs of these results are direct applications of the analysis
from Steps 1-3 outlined above (without Step 4, since it is the only one requiring knowledge of ρ
and decaying corruption). Additionally, we present these results to offer a set of principled bench-
mark algorithms for the experiments in Section 5. One thing to highlight is that our robustified
algorithms retain the same computational complexity as the originals, ensuring added robustness
without compromising efficiency. For further details, see Appendix G.1.
Proposition 2 (Efficiency-Robustness Tradeoff in RoSMID). If the total corruption level satisfies∑T
t=1 |ct(at, a′t)| ≤ O(T ρ), then for any α ∈ [ 12 , 1), if the utility function is strongly concave, for a

sufficiently large round T , by choosing learning rate η =
√
log T
2d T−α

1. (Robustness) RoSMID incurs RegT ≤ Õ(dTα +
√
dT

1
2 (1−α)+ρ + dT ρ).

2. (Efficiency) There exists a strongly concave utility function µ and a link function σ such
that RegT suffered by RoSMID is at least Ω (Tα) in scenario without corruption.

Proposition 3 (Efficiency-Robustness Tradeoff in DBGD). If the total corruption level satisfies∑T
t=1 |ct(at, a′t)| ≤ O(T ρ), then for any α ∈ (0, 14 ], if utility function µ is generally concave, for a

sufficiently large round T , choosing γ = R√
T

and δ =
√
2Rd√

13LσLµTα
for DBGD

1. (Robustness) RegT incurred by DBGD satisfies RegT ≤ O(
√
dT 1−α +

√
dTα+ρ).

2. (Efficiency) There exists a linear utility function µ and a link function σ such that RegT
suffered by DBGD is at least Ω

(
T 1−α) in scenario without corruption.

Both propositions illustrate the tradeoff between learning efficiency and robustness to adversarial
corruption, achieved through their tunable learning rate ηρ, γ, δ (learning rate in DBGD is γδ

d ; we
direct reader to Algorithm 3 for detail). Specifically, greater tolerance for agnostic corruption (i.e.,
larger α in Proposition 2) results in worse regret in non-corrupt settings. A similar robustness-
accuracy trade-off has been studied in classification problems with adversarial examples, both em-
pirically (Tsipras et al., 2018) and theoretically (Zhang et al., 2019). However, to our knowledge,
this is the first formal analysis of such a trade-off in online learning. While expanding the confi-
dence region for UCB-type algorithms to handle agnostic corruption in linear contextual dueling
bandits increases tolerance for corruption but worsens regret—sharing a similar idea of a trade-
off (Di et al., 2023)—it’s unclear if this approach necessarily reduces efficiency. In contrast, our
work demonstrates that adjusting learning rates in gradient-based algorithms to enhance robustness
against agnostic corruption inevitably decreases efficiency when no corruption is present. In partic-
ular, the efficiency statements in both propositions can be interpreted as algorithm-dependent lower
bounds, concretely demonstrating that for certain problem instances, increasing robustness neces-
sarily decreases the learning efficiency of the algorithm. In fact, the “efficiency-robustness tradeoff”
is inherent under unknown adversarial attacks. Lemma E.1 in the appendix shows that algorithms
that learn faster tend to be more vulnerable to unknown corruption. However, the nature of this
tradeoff varies across different algorithms. It is a very intriguing and fundamental open question to
study what the optimal tradeoff is under unknown adversarial corruption and how to achieve it.

5 EXPERIMENTS
In this section, we validate our theoretical analysis of RoSMID and DBGD under ρ-Imperfect Hu-
man Feedback through simulations. We also compare their performance against two baseline algo-

9
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rithms: Doubler and the heuristic algorithm, Sparring, proposed by Ailon et al. (2014). For Sparring,
we use bandit gradient descent (Flaxman et al., 2005) as the black-box bandit algorithm. We direct
readers to Appendix G for implementation details.

Experiment Setup. We consider a standard experiment setup, which adopts a strongly concave
utility µθ(a) := θ⊤a − 1

2∥a∥
2
2, and a logistic link function σ(x) = 1

1+exp(−x) . We choose d = 5,
and T = 105. Our action space A is a d-dimensional ball with radius R = 10. The preference
parameter θ is randomly sampled from the surface of A. In our problem setting, the optimal action
a∗ = θ and µθ(a∗) = 50. We simulate ρ-Imperfect Human Feedback for ρ ∈ [0.5, 1].

Figure 1: Robustness of RoS-
MID for ρ-LIHF

Results and Discussion. Figure 1 presents a log-log plot of regret
versus iteration, t, which the order of regret in T is represented by
the slope of the line. Each line represents the average over five trials
with different random seeds, and each line corresponds to a distinct
value of ρ. The shaded region indicates ± one standard deviation.
In the legend, “o” denotes the estimated order of regret. We estimate
it using least squares on the last 1% of the data. Figure 1 supports
Theorem 4.1, as for ρ ∈ [0.5, 1), the estimated slope is less than ρ,
suggesting that the choice of ηρ =

√
log T

dTmax{1/2,ρ} for RoSMID results
in a regret bound of at most Õ(T ρ).

Figure 2 compares the performance of our proposed algorithms,
variants of DBGD and RoSMID, with two baseline algorithms,
Sparring and Doubler, in the setting when ct is arbitrary and ag-
nostic. We set the parameter α = 1/4 for DBGD and α = 1/2 for
RoSMID. When ρ is unknown to the algorithms, these parameter
choices enable DBGD and RoSMID to tolerate O(T 3/4) levels of
unknown corruption, since the slope estimates are less than 1, implying sublinear regret, aligning
with our theoretical predictions. Experimentally, RoSMID demonstrates the best performance un-
der strongly concave utility functions. Sparring performs comparably to RoSMID, despite being a
heuristic approach without theoretical guarantees. In contrast, Doubler exhibits the worst perfor-
mance, likely because its theoretical guarantees are only applicable to linear link functions, which
differs from our experimental setup. We direct readers to Appendix G for experiment results with
other choice of α for efficiency-robustness tradeoff.

Figure 2: For each algorithm, we tested its performance under ρ-Imperfect Human feedback with
ρ = 0.5, 0.6, 0.75. For each ρ, we presented a line plot of the average regret over five simulations,
accompanied by ± one standard deviation shown by the shaded region. In the legend, o denotes the
estimated line slope, calculated using least squares on the last 1% of the data.

6 CONCLUSION

In conclusion, this paper enhances the understanding of continuous dueling bandits by addressing ρ-
Imperfect Human Feedback with concave utilities. We established fundamental regret lower bounds,
introduced the RoSMID algorithm with nearly optimal performance, and developed a novel regret
analysis framework that highlights the inherent efficiency-robustness trade-off in gradient-based
algorithms. Our experimental results corroborate the theoretical predictions. A promising future
direction is the development of an algorithm that achieves Õ(d

√
T + dT ρ) regret for continuous

dueling bandits with strongly concave utilities under arbitrary adversarial corruption. Additionally,
incorporating contextual information to better model real-world scenarios could further enhance the
applicability and robustness of these algorithms. We left these directions for future research.
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Appendix to Learning from Imperfect Human Feedback: A Tale
from Corruption-Robust Dueling

A DISCUSSION ON THE GENERALITY OF MODELING ASSUMPTIONS

The assumptions of a continuous action space are standard in the online convex optimization litera-
ture (Flaxman et al., 2004; Yue & Joachims, 2009; Shamir, 2013; Kumagai, 2017). Moreover, they
are particularly natural for today’s preference learning for recommendation systems since languages,
texts, videos are mostly processed as embedding vectors which are continuous by nature. We as-
sumed strong concave utility functions. This is standard due to at least two reasons. First, there is
already a rich literature studying online optimization of strongly convex or concave functions, and
our work subscribes to that rich literature (Shamir, 2013; Kumagai, 2017; Wan et al., 2022; Saha
et al., 2022). Second, strongly concave utilities functions capture essential properties like diminish-
ing marginal returns and risk-averse behavior. These characteristics align closely with real-world
scenarios in economics, behavioral studies, and decision-making processes. Strongly concave func-
tions are frequently utilized in economic literature for modeling utility functions such as the “indirect
utility function” (Montrucchio, 1987; Sorger, 1995; Venditti, 1997), which represents the maximum
utility a consumer can achieve based on a specific income level and set of prices. Our assumption
on the link function aligns with those in Kumagai (2017) but is slightly stronger than those in Yue &
Joachims (2009). Nevertheless, it encompasses many natural link functions, including the sigmoid
function, the cumulative Gaussian distribution function, and the linear function, more general than
merely sigmoid link functions (Maystre & Grossglauser, 2017; Saha, 2021; Xu et al., 2024) or linear
link function (Ailon et al., 2014; Chen & Frazier, 2017; Zimmert & Seldin, 2018; Lin & Lu, 2018),
as assumed in some earlier works.

B CHALLENGES IN DEVELOPING ROBUST ALGORITHMS FOR CONTINUOUS
DUELING BANDITS WITH GENERALLY CONCAVE UTILITY UNDER
CORRUPTION INDUCED BY STRONG ADVERSARY

There is a line of work that studies bandits under corruption by a weak adversary (Lykouris et al.,
2018; Gupta et al., 2019; Agarwal et al., 2021; Zimmert & Seldin, 2021; Saha & Gaillard, 2022; Wei
et al., 2022), where the corruption is introduced before observing the agent’s actions. This research
develops efficient algorithms that achieve sublinear regret without requiring prior knowledge of
the total corruption. Specifically, for corruption induced by a weak adversary, Wei et al. (2022)
adopts the idea of model selection and introduces a robust framework called Corruption-Robustness
through Balancing and Elimination (COBE). This framework allows an algorithm designed for a
known corruption level to be adapted for scenarios with an unknown corruption level. Notably, in the
case of weak adversaries, Zimmert & Seldin (2021); Saha & Gaillard (2022) develop “best-of-both-
world’ algorithms, which achieve optimal performance under both begin and corrupted settings.

However, for corruption induced by a strong adversary—where the corruption occurs after observing
the agent’s actions (the scenario considered in our setting)—it may not be possible to develop a best-
of-both-world algorithm. This limitation arises because, for any algorithm that does not know the
total corruption, there exists a problem instance where the algorithm suffers linear regret (Bogunovic
et al., 2020; Kang et al., 2024). To achieve sublinear regret in such settings, it is crucial for the
algorithm to have precise knowledge of the total corruption or at least an accurate estimation of its
upper bound.

For cases with known corruption, nearly optimal algorithms are proposed for various settings, in-
cluding stochastic linear bandits in discrete action spaces (Bogunovic et al., 2020), Gaussian process
bandits (Bogunovic et al., 2022), linear contextual bandits (He et al., 2022), Lipschitz bandits (Kang
et al., 2024), and linear contextual dueling bandits (Di et al., 2024). These approaches typically rely
on phase elimination techniques to eliminate suboptimal arms or Upper Confidence Bound (UCB)-
based algorithms to pull optimal arms with high probability. The success of these methods heavily
depends on constructing precise utility estimates to guide decision-making.

However, for learning from nonlinear utility, constructing utility estimates under dueling feedback is
a very challenging problem, as only preferential (directional) information is available. This limited
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information motivates the exploration of a new approach: robust gradient-based algorithms. Zim-
mert & Seldin (2021) and Saha & Gaillard (2022) utilize robust stochastic mirror descent algorithms
to update the probability distribution for samplingK arms. However, it is difficult to efficiently gen-
eralize this design to continuous action spaces, as it requires transforming the probability vector into
a probability density function and efficiently managing its updates and approximations. While Yue
& Joachims (2009) and Kumagai (2017) exploits dueling bandit gradient descent and stochastic mir-
ror descent and achieves sublinear regret for continuous dueling bandits, their performance under
corruption remains unexplored. It is a nontrivial question and still remains an interesting open prob-
lem of developing robust and computationally efficient algorithms for continuous dueling bandits
with generally concave utility functions under corruption induced by strong adversaries.

C PROOFS FOR THEOREM 3.1

Theorem (Theorem 3.1 restated). There exists a ρ-Imperfect Human Feedback (see Definition 2.1),
strongly concave utility function µ, and link function σ such that any learner has to suffer RegT ≥
Ω
(
dmax{

√
T , T ρ}

)
, even with the knowledge of ρ.

Proof. Before showing the regret lower bound proof for Theorem 3.1, let’s first establish the follow-
ing Lemma C.1, which builds the connection between regret incurred under bandit reward feedback
and dueling feedback. This proof is inspired by Theorem 6 in Yao et al. (2022). To prove Lemma
C.1, in addition to RegT , we introduce a new metric to measure the performance of algorithm under
dueling feedback, which we coin functional regret RegFO

T , defined as follows.

RegFO
T := E

{
T∑
t=1

µ(a∗)− µ(at) + µ(a∗)− µ(a′t)

}
. (3)

Lemma C.1. Given a utility function µ, if the regret lower bound for algorithm with bandit reward
feedback is Reg, then any learner with dueling feedback has to suffer regret RegFO

T ≥ 2Reg.

Proof. We prove our claim by contradiction. Let (a0,t, a1,t) be the pair of recommendation at round
t. Suppose RegFO

T < 2Reg. As a result, at least one of the following inequality must hold:

E

{
T∑
t=1

µ(a∗)− µ(a0,t)

}
≤ Reg;

E

{
T∑
t=1

µ(a∗)− µ(a1,t)

}
≤ Reg.

(4)

Consider a principal who can observe the interaction between a user and the learner L, then we can
construct two algorithms L0 and L1 as follows.

Algorithm 2: Algorithm Li
Input: the time horizon T

1 for t ≤ T do
2 Call the learner L to generate two candidates (a0,t, a1,t).
3 Present (a0,t, a1,t) to user and received the feedback.
4 Return user feedback to the learner L and update L.

Output: the sequential decision {ai,t}Tt=1

From equation 4, we know that at least one of {L0,L1} achieves an expected regret lower than Reg.
However, we know all algorithm with bandit feedback with utility function µ has to occur regret at
least Reg, contradiction. Therefore, Lemma C.1 must hold, which completes the proof.

Next, we prove Theorem 3.1. First, consider the case ρ ≤ 0.5. Given that the utility function is
strongly concave, by applying Lemma C.2, we have Reg = 0.02min{T, d

√
T}. From Lemma C.1,
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we also obtain RegFO
T ≥ 0.04min{T, d

√
T}. Using the linear link function σ(x) = 1

2 + 1
2x, it

follows that RegT ≥ 0.02min{T, d
√
T} ≥ Ω(dmax{

√
T , T ρ}), completing the proof.

Lemma C.2 (Theorem 6 in (Shamir, 2013)). Let the number of rounds T be fixed. Then for any
learner, there exists a quadratic function of the form µθ(a) := θ⊤a− 1

2∥a∥
2 which is minimized at

θ and ∥θ∥2 ≤ 0.5 such that

E

(
T∑
t=1

µθ(a
∗)− µθ(at)

)
≥ 0.02min

{
T, d

√
T
}
.

Now, let’s focus on the scenario when ρ > 0.5. In essence, we want to extend Lemma C.2 to the
scenario in presence of adversarial corruption induced by ρ-Imperfect Human Feedback. If we can
show the regret lower bound can be generalized to Ω(dT ρ), then applying the same technique which
uses Lemma C.1 to connect regret suffered under bandit reward feedback and regret suffered under
dueling feedback and choose linear link function to connect RegFO

T and RegT , we will get the desired
regret lower bound. The extension of Lemma C.2 is proven at section C.1.

C.1 PROOF FOR LEMMA 3.1

Lemma (Lemma 3.1 restated). Consider bandit learning with direct reward feedback, where reward
r(a) := µ(a) + ϵ, ϵ follows standard normal distribution. The action space A is contained in a
d-dimensional unit ball, and µ is µθ(a) := θ⊤a − 1

2∥a∥
2
2, with θ ∈ Rd, ∥θ∥2 ≤ 1 . Under ρ-

Imperfect Human Feedback (Definition 2.1), for any T , d ≤ 1
Cκ
T 1−ρ, and for any learner, there

exists a θ such that under direct reward feedback, even with the knowledge of ρ, has to suffer regret
RegT := E{

∑T
t=1 µθ(a

∗)− µθ(at)} ≥ d
4CκT

ρ.

Proof. To prove Lemma 3.1, we aim to prove that there exists a corruption strategy such that the
regret incurred by any learner with imperfect dueling feedback is not less than Ω(dT ρ). The for-
mulation of such a corruption strategy hinges on the observation that when the utility function µθ
adopts the quadratic form parameterized by θ, specifically µθ(a) = θ⊤a − 1

2∥a∥
2
2, which is both

smooth and strongly concave, then the regret incurred by the learner is bounded below by the sum
of the Kullback-Leibler (KL) divergence between the distribution of the corrupted reward feedback
obtained at round t, denoted v̂t, t ∈ [T ], conditioned on different possible values of θ. (see Lemma
C.4). Assume that θ is uniformly drawn from {−β, β}d, given an action at, conditioned on θi > 0,
the corrupted reward feedback v̂t is

v̂t = µθ(at) + ct(at|θi > 0) + ξ =

−1

2
∥at∥2 +

∑
j ̸=i

θjat,j

+ βat,i + ct(at|θi > 0)

︸ ︷︷ ︸
µ1

+ξ. (5)

Conditioned on θi < 0, the corrupted reward feedback v̂t is

v̂t = µθ(at) + ct(at|θi < 0) + ξ =

−1

2
∥at∥2 +

∑
j ̸=i

θjat,j

− βat,i + ct(at|θi < 0)

︸ ︷︷ ︸
µ2

+ξ. (6)

We use ct(at|θi > 0) and ct(at|θi < 0) to empathize the fact that the magnitude and sign of
corruption can be dependent on θ. ξ follows a standard Gaussian distribution. Therefore, v̂t in
Equation 5 follows N(µ1, 1). v̂t in Equation 6 follows N(µ2, 1). By using Lemma C.3, we have

DKL(N(µ1, 1)||N(µ2, 1)) = (µ1 − µ2)
2.

Lemma C.3 (KL Divergence for Normal Distribution). Let N(µ, σ2) represent a Gaussian distri-
bution variable with mean µ and variance σ2. Then

DKL(N(µ1, σ
2)||N(µ2, σ

2)) =
(µ1 − µ2)

2

2σ2
.
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To optimize the lower bound in Lemma C.4, the adversary selects ct(at|θi > 0) and ct(at|θi < 0)
to minimize the difference between µ1 and µ2. Consider the following corruption strategy: when
θi > 0, set ct(at|θi > 0) = −βat,i; when θi < 0, set ct(at|θi < 0) = βat,i. This strategy ensures
that µ1 = µ2.

Next step is to determine the value of β. Notice that the corruption budget is CκT ρ. To execute the
corruption strategy described above, it requires

T∑
t=1

|ct(at)| ≤ β

T∑
t=1

∥at∥∞ ≤ CκT
ρ. (7)

Therefore, by exploiting the fact that µθ is 1-strongly concave, we establish another lower bound for
the regret by

E

{
T∑
t=1

µθ(a
∗)− µθ(at)

}
≥ 1

2
E

{
T∑
t=1

∥at − θ∥22

}

≥ 1

2
E

{
T∑
t=1

(∥at∥∞ − β)2

}

≥ 1

2

T∑
t=1

(CκT
ρ−1/β − β)2.

Since |at,i − θi| ≥ ||at,i| − β| for all i, we obtain the second inequality. By utilizing the corruption
constraint equation 7, we derive the last inequality, which is minimized when ∥at∥∞ = CκT

ρ−1

β for
all t. Together with Lemma C.4, we have:

E

{
T∑
t=1

µθ(a
∗)− µθ(at)

}
≥ 1

2
max

{
T∑
t=1

(CκT
ρ−1/β − β)2,

dTβ2

2

}
. (8)

We select β to optimize the lower bound in Equation equation 8. Since d ≤ 1
Cκ
T 1−ρ, we can set β =

√
CκT

ρ
2−

1
2 to satisfy ∥θ∥2 ≤ 1. Then we obtain E

{∑T
t=1 µθ(a

∗)− µθ(at)
}
≥ dCκT

ρ/4. Notice
that the corruption level each round is bounded by β∥at∥∞. Consider the scenario when the radius
of the action space A is upper bounded by β, then the corruption budget each round is bounded
by Cκt−1+ρ, which satisfies the definition of ρ-Imperfect Human Feedback, which completes the
proof.

Lemma C.4. Let’s consider the utility function µθ(a) := θ⊤a − 1
2∥a∥

2
2. Let v̂1, v̂2, . . . , v̂T be a

sequence of corrupted reward feedback obtained by a learner. Then there exists a θ ∈ Rd, ∥θ∥2 ≤ 1,
uniformly drawn from {−β, β}d, such that the regret suffered by the learner is

E

{
T∑
t=1

µθ(a
∗)− µθ(at)

}
≥ dTβ2

4

1−

√√√√1

d

d∑
i=1

T∑
t=1

Dt,i

 .

Dt,i := sup{θj}j ̸=i DKL
(
P(v̂t|θi > 0, {θj}j ̸=i, {v̂l}t−ll=1)||P(v̂t|θi < 0, {θj}j ̸=i, {v̂l}t−ll=1)

)
. DKL is

the KL divergence between two distributions.

Proof. Using the similar argument in Shamir (2013), assume that the learner is deterministic: at is a
deterministic function of the realized corrupted reward feedback v̂1, v̂2, . . . , v̂t−1 at a1, a2, . . . , at−1.
This assumption is without loss of generality, since any random learners can be seen as a random-
ization over deterministic learning algorithms. Thus a lower bound which holds uniformly for any
deterministic learner would also hold over a randomization. To lower bound equation 9, we use
Lemma C.5, which relates this to the question of how informative are the query values (as measured
by Kullback-Leibler divergence) for determining the sign of θ’s coordinates. Intuitively, the more
similar the query values are, the smaller is the KL divergence and the harder it is to distinguish the
true sign of θi, leading to a larger lower bound. In addition, we are facing a powerful adversary who
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has the complete knowledge of the problem and is able to add corruption on the query value to make
they are even more similar, which resulting a even smaller KL divergence, consequently, an even
larger lower bound. Let āT := 1

T

∑T
t=1 at represent the average action, we have

E

{
T∑
t=1

µθ(a
∗)− µθ(at)

}
= TE

{
1

T

T∑
t=1

µθ(a
∗)− µθ(at)

}
≥ TE (µθ(a

∗)− µθ(āT ))

≥ TE
(
1

2
∥āT − θ∥2

)
= TE

(
1

2

d∑
i=1

(āi − θi)
2

)

≥ E

(
β2T

2

d∑
i=1

Iāiθi<0

)
(9)

≥ dTβ2

4

1−

√√√√1

d

d∑
i=1

T∑
t=1

Dt,i

 .

We get the second inequality by using the fact that µθ is 1-strongly concave. We get the last inequal-
ity by using Lemma C.5, which completes the proof.

Lemma C.5 (Lemma 4 in (Shamir, 2013)). Let θ be a random vector, none of those coordinates
is supported on 0. Let v̂1, v̂2, . . . , v̂T be a sequence of values obtained by a deterministic learner
returning a point āT (so that the action at is a deterministic function of v̂1, . . . , v̂t−1 and āT is a
deterministic function of v̂1, . . . , v̂T ). Then we have

E

(
d∑
i=1

Iāiθi

)
≥ d

2

1−

√√√√1

d

d∑
i=1

T∑
t=1

Dt,i

 ,

where Dt,i = sup{θj}j ̸=i DKL
(
P(v̂t|θi > 0, {θj}j ̸=i, {v̂l}t−ll=1)||P(v̂t|θi < 0, {θj}j ̸=i, {v̂l}t−ll=1)

)
,

DKL represents the KL divergence between two distributions.

C.2 PROOF FOR PROPOSITION 1:

Proposition (Proposition 1 restated). There exists an LIHF instance with ρ-Imperfect Human Feed-
back (Definition 2.1), linear user utility µ, and link function σ, such that any learner has to suffer
RegT ≥ Ω(dmax{

√
T , T ρ}), even with the knowledge of ρ.

Proof. The proof structure is very similar to the lower bound proof in Theorem 3.1. We start by
discussing the value of ρ. Consider the scenario when ρ ≤ 0.5. Applying Lemma C.6 and C.1
together with linear link function, we have RegT ≥ Ω(dmax{

√
T , T ρ}), which completes the

proof.

Lemma C.6 ((Dani et al., 2008)). Let A = [−1, 1]d and Θ = [−T− 1
2 , T− 1

2 ]d. Consider the linear
reward function rt = θ⊤At + ϵt, ϵt is independent standard Gaussian noise. Then for any learner,
there exists a vector θ ∈ Θ such that

RegT (A, θ) ≥
exp(−2)

8
d
√
T .

Now, let’s focus on the scenario when ρ > 0.5 and the essence is to extend Lemma C.6 to the
scenario in presence of ρ-Imperfect Human Feedback, which is shown in Lemma C.7
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Lemma C.7. Assume that the action space A ⊂ [−1, 1]d. Given ρ-Imperfect Human Feedback
(Definition 2.1), for stochastic linear bandit, there exists a θ ∈ [−CκT ρ−1, CκT

ρ−1]d such that any
learner even with the knowledge of ρ has to suffer regret no less than d

8CκT
ρ.

Proof. The proof extends Lemma C.6 to a scenario in presence of corruption. We want to construct
a parameter family and a corruption strategy such that for all algorithm, it will occur at least Ω(dT ρ)
regret. Consider the action set A ∈ [−1, 1]d and Θ = {−β, β}d. For any learner, we can lower
bound its regret by

RegT (A, θ) = Eθ

[
T∑
t=1

d∑
i=1

(sign(θi)− ati)θi

]

≥ β

d∑
i=1

Eθ

[
T∑
t=1

I{sign(ati) ̸= sign(θi)}

]

≥ Tβ

2

d∑
i=1

Pθ

(
T∑
t=1

I{sign(ati) ̸= sign(θi)} ≥ T

2

)
Let’s denote

pθi = Pθ

(
T∑
t=1

I{sign(ati) ̸= sign(θi)} ≥ T

2

)
Let i ∈ [d] and θ ∈ Θ be fixed, and let θ′j = θj , for j ̸= i and θ′i = −θi. Then using Lemma C.8,
we have

pθi + pθ′i ≥
1

2
exp

(
−E

[
T∑
t=1

DKL(Pat , P
′
at)

])
.

Pat is the distribution of corrupted reward observed by the learner after playing action at when
reward parameter is θ. Similarly, P ′

at is the distribution of corrupted observed by the learner after
playing action at when the reward parameter is θ′.

Lemma C.8 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the same
measurable space (Ω,F). Let A ∈ F be any arbitrary event and Ac is the complement of A. Then
we have

P(A) +Q(Ac) ≥ 1

2
exp (−DKL(P,Q)) . (10)

In presence of adversarial corruption, for θ, the corrupted reward is

r̂t =
∑
j ̸=i

atjθj + atiθi + ct(at|θ) + ϵt. (11)

For θ′, we have
r̂t =

∑
j ̸=i

atjθj − atiθi + ct(at|θ′) + ϵt. (12)

Consider the corruption strategy such that ct(at|θ) = −at,iθi in equation 11 and ct(at|θ′) = at,iθi
in equation 12. This is achievable since we assume the adversary has complete knowledge of the
problem instance. By doing so, the corrupted reward r̂t are from the same distribution regardless
whether the preference parameter is θ or θ′. This is because θ and θ′ only differs in the i-th co-
ordinate with the magnitude β, and this difference could be masked by the corruption, resulting in
E
[∑T

t=1DKL(Pat , P
′
at)
]
= 0, which makes it indistinguishable by the learner. Notice that execut-

ing such a corruption strategy requires total corruption budget
T∑
t=1

|ct(at)| ≤ β

T∑
t=1

∥at∥∞ ≤ CκT
ρ. (13)

Choose β = CκT
ρ−1, Equation equation 13 holds. Therefore, we have

pθi + pθ′i ≥
1

2
.
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Applying an ”averaging hammer” over all θ ∈ Θ, which satisfies |Θ| = 2d, we get

∑
θ∈Θ

1

|Θ|

d∑
i=1

pθi =
1

|Θ|

d∑
i=1

∑
θ∈Θ

pθi ≥
d

4
.

This implies that there exists a θ ∈ Θ such that
∑d
i=1 pθi ≥

d
4 . Therefore we have

RegT (A, θ) ≥
dCκ
8
T ρ,

which completes the proof. We want to highlight that the corruption level each round |ct(at)| is
bounded by β∥at∥∞ ≤ CκT

ρ−1 ≤ Cκt
ρ−1,∀t, satisfying definition of ρ-Imperfect Human Feed-

back.

D PROOF FOR THEOREM 4.1

Theorem (Theorem 4.1 restated). RoSMID satisfies RegT ≤ Õ(dmax{
√
T , T ρ}) for any ρ-LIHF

problem.

Proof. At the beginning of the proof, we formally define self-concordance (see Definition D.1). The
input, ν-self-concordant function R, serves as a regularizor in RoSMID (see Algorithm 1).

Definition D.1. (Self-concordance.) A function R : int(A) → R is self-concordant if it satisfies

1. R is three times continuously differentiable, convex, and approaches infinity along any
sequence of points approaching the boundary of int(A).

2. For every h ∈ Rd and x ∈ int(A), |∇3R(x)[h, h, h]| ≤ 2
(
h⊤∇2R(x)h

) 3
2 holds, where

|∇3R(x)[h, h, h] := ∂3R
∂t1∂t2∂t3

(x+ t1h+ t2h+ t3h)|t1=t2=t3=0.

In addition to these two conditions, if for every h ∈ Rd and x ∈ int(A), |∇R(x)⊤h ≤
ν

1
2 (h⊤∇2R(x)h)

1
2 | for a positive real number ν, R is ν-self-concordant.

Additionally, we remind the reader of the standard assumptions (Yue & Joachims, 2009; Kumagai,
2017) used in our analysis.

1. the action set A is a convex compact set that contains the origin, has non-empty interior,
and is contained in a d-dimensional ball of radius R;

2. the utility function µ : A → R is strongly concave and twice-differentiable. The following
constants are useful for our algorithm analysis: µ is Lµ-Lipschitz, α-strongly concave, κ-
smooth, bounded Rµ := supa,a′ µ(a) − µ(a′), and a∗ := argmaxa∈A µ(a) is the unique
optimal within A;

3. the link function σ : R → [0, 1] is smooth, rotation-symmetric (i.e. σ(x) = 1 − σ(−x)),
and concave for any x ≥ 0. For the ease of analysis: let lσ1 [resp. Lσ1 ] denote the lower
[resp. upper] bound of the first-order derivative of σ. σ isLσ-Lipschitz and its second-order
derivative σ′′ is Lσ2 -Lipschitz and upper bounded by Rσ2 .

Under these assumption, Lemma D.1 implies RegT defined in equation 1 and RegFO
T defined in

equation 3 has the same order.

Lemma D.1 (Lemma 12 in Kumagai (2017)). With RegFO
T defined in equation 3, we have

RegT
Lσ1

≤ RegFO
T ≤ RegT

lσ1
. (14)
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In the following, we show the proof. The main proof can be divided into four key steps. Step 1 is
natural, which quantifies the bias in gradient estimation by RoSMID due imperfect feedback from
corrupted utilities. Building on this, Step 2 develops a regret decomposition lemma for dueling
bandits under corruption, decomposing the regret into two components: regret from sub-optimal
decisions and regret from feedback error. Techniques from previous analyses of continuous dueling
bandits handle the sub-optimal decision regret, thus in Step 3, we focus on deriving new techniques
to bound the regret from feedback error, a unique challenge in our setting. We identify a tight upper
bound for this error. Finally, Step 4, the only step relying on the decaying corruption level in ρ-
imperfect human feedback, uses this assumption, along with the carefully chosen learning rate ηρ
and an iterative regret refinement process, to ensure the tightness of the analysis in Step 3, thus
completing the proof.

Step 1: quantifying bias of gradient estimation in ρ-LIHF

Our proof starts from quantifying the bias of the gradient ĝt caused by ρ-imperfect human feedback,
as shown in the following Lemma 4.1.

Lemma (Lemma 4.1 restated). The gradient ĝt in Line 6 of Algorithm 1 satisfies

E (ĝt|at) = ∇|a=at P̄t(a)− E (bt|at) .

where P̄t(a) := Ex∈B

[
P(at ≻ a+∇2Rt(at)

− 1
2x)
]

(with B as the unit ball) is the smoothed prob-

ability that at is preferred over any action a, and bt = d
(
P(at ≻ a′t)− P̂(at ≻ a′t)

)
∇2Rt(at)

1
2ut.

Proof. If we do not have corruption (i.e. the probability for observing noisy comparative feedback
F(a, a′) = 1 is based on true cost difference µ(a) − µ(a′)), then the uncorrupted gradient gt :=
F(a′t, at)d∇2Rt(at)

1/2ut should be an unbiased estimate of ∇P̄t(at), i.e.

E(gt|at) = ∇P̄t(at).

We use ∇P̄t(at) as a shorthand of ∇|a=at P̄t(a). We use Pt(a) as a shorthand of Pt(a) := σ(µ(at)−
µ(a)) equivalent to P(at ≻ a), and P̂t(a) := σ(µ(at)− µ(a) + ct(at, a

′
t)), equivalent to P̂(at ≻ a)

under our modelling assumption. The proof is similar to Lemma 2.1 in Flaxman et al. (2005). Using
the Law of total expectation, we have

E(gt|at) = Eut [E(gt|at, ut)]

= Eut
(
dE(Pt(at +∇2Rt(at)

− 1
2ut)∇2Rt(at)

1
2ut|at, ut)

)
= dE(Pt(at +∇2Rt(at)

− 1
2ut)∇2Rt(at)

1
2ut|at)

= ∇Ex∈B

(
Pt(at +∇2Rt(at)

− 1
2x|at)

)
= ∇P̄t(at).

We get the second inequality by using the definition of F(a′t, at). We use the Stroke’s Theorem to
get the second last equality. The gradient which we get to perform gradient descent ĝt is corrupted.
If we let a′t = at +∇2Rt(at)

− 1
2ut, we have

E(ĝt|at) = Eut(E(ĝt|at, ut))

= Eut
(
dE(P̂t(a′t)∇2Rt(at)

1
2ut|at, ut)

)
= dE

(
P̂t(a

′
t)∇2Rt(at)

1
2ut|at

)
= dE

([
Pt(a

′
t) + P̂t(a

′
t)− Pt(a

′
t)
]
∇2Rt(at)

1
2ut|at

)
= ∇Ex∈B

(
Pt(at +∇2Rt(at)

− 1
2x|at)

)
+ dE

[(
P̂t(a

′
t)− Pt(a

′
t)
)
∇2Rt(at)

1
2ut|at

]
= ∇P̄t(at) + dE

[(
P̂t(a

′
t)− Pt(a

′
t)
)
∇2Rt(at)

1
2ut|at

]
= E(gt|at) + dE

[(
P̂t(a

′
t)− Pt(a

′
t)
)
∇2Rt(at)

1
2ut|at

]
.
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We get the second last equality by using the fact that gt is unbiased, which we proved earlier. If we
defined bt as

bt := d
(
Pt(at +∇2Rt(at)

− 1
2ut)− P̂t(at +∇2Rt(at)

− 1
2ut)

)
∇2Rt(at)

1
2ut,

we get
E(gt|at) = E(ĝt|at) + E [bt|at] .

Step 2: decomposing regret for dueling bandits into regret of decision and feedback error

Core to our proof is a “regret decomposion” lemma below that upper bounds the regret by two parts:
regret of sub-optimal decision making under uncertainty, referred as regret of decision (first term in
equation 2), and feedback error (second term in equation 2).

Lemma (Lemma 4.2 restated). The RegT of Algorithm 1 satisfies:

RegT ≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R︸ ︷︷ ︸

Regret of Decision

+2E

{
T∑
t=1

b⊤t (at − a∗T )

}
︸ ︷︷ ︸

Feedback Error

,

where C0 := (2ν + 4Lσ1κ+ 4Rσ2 (L
µ)2 + LµLσ1κ)/λ, and a∗T := 1

T a1 + (1− 1
T )a

∗.

Proof. The cornerstone of the analysis below is to separate the impact of bt from the total regret.

RegT ≤ 2E

[
T∑
t=1

(Pt(at)− Pt(a
∗
T )

]
+
LµLσ1κ

ληρ
+ 2LµLσ1R

≤ 2

(
E

{
T∑
t=1

(P̄t(at)− P̄t(a
∗
T ))

}
+ E

{
T∑
t=1

(Pt(at)− P̄t(at))

}
+ E

{
T∑
t=1

(P̄t(a
∗
T )− Pt(a

∗
T ))

})
+
LµLσ1κ

ληρ
+ 2LµLσ1R

≤ 2E

{
T∑
t=1

(P̄t(at)− P̄t(a
∗
T ))

}
+

4Lσ1κ+ 4Rσ2 (L
µ)2 + LµLσ1κ

ληρ
log T + 2LµLσ1R.

We get the first inequality by using Lemma D.2. We get the last inequality by because

P̄t(a)− Pt(a) ≤
Lσ1κ+Rσ2 (L

µ)2

2
∥∇2Rt(at)

− 1
2ut∥2 ≤ Lσ1κ+Rσ2 (L

µ)2

ληρt
,

and

E

{
T∑
t=1

(Pt(at)− Pt(a
∗
T ))

}
≤ E

{
T∑
t=1

(P̄t(at)− P̄t(a
∗
T ))

}
+ 2

Lσ1κ+Rσ2 (L
µ)2

ληρ
log T.

Lemma D.2 (Lemma 5 in Kumagai (2017)).

RegT ≤ 2E

[
T∑
t=1

(Pt(at)− Pt(a
∗
T )

]
+
LµLσ1κ

ληρ
+ 2LµLσ1R.

Then it remains to bound E{
∑T
t=1 P̄t(at)− P̄t(a

∗
T )}. And we have the following.

E{P̄t(at)− P̄t(a
∗
T )} ≤ E

[
∇P̂⊤

t (at)(at − a∗T )−
Lσ1α

4
∥at − a∗T ∥2

]
= E

[
g⊤t (at − a∗T )−

Lσ1α

4
∥at − a∗T ∥2

]
= E

[
(ĝt + bt)

⊤(at − a∗T )−
Lσ1α

4
∥at − a∗T ∥2

]
= E

[
ĝ⊤t (at − a∗T )−

Lσ1α

4
∥at − a∗T ∥2

]
+ E{b⊤t (at − a∗T )},
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where the first and second equality is resulted from Lemma 4.1. Using the definition of at+1 in
Algorithm 1, we have

∇Rt(at+1)−∇Rt(at) = ηρĝt.

Therefore we have

E
[
ĝ⊤t (at − a∗T )−

Lσ1α

4
∥at − a∗T ∥2

]
=

1

ηρ
E
[
(∇Rt(at+1)−∇Rt(at))

⊤(at − a∗T )−
Lσ1αηρ

4
∥at − a∗T ∥2

]
=

1

ηρ
E
[
DRt

(a∗T , at) +DR(at, at+1)−DRt
(a∗T , at+1)−

Lσ1αηρ
4

∥at − a∗T ∥2
]
.

DR(a, b) is the Bregman divergence associated with R, defined by

DR(a, b) = R(a)−R(b)−∇R(b)⊤(a− b).

Then we can get equation 15 by using Lemma D.3, D.4, D.5.

E

{
T∑
t=1

(P̄t(at)− P̄t(a
∗
T ))

}
≤ ν log(T )

ηρ
+ 4d2ηρT + E{

T∑
t=1

b⊤t (at − a∗T )}. (15)

Lemma D.3 (Lemma 10 in Kumagai (2017)). Let R∗
t (a) = supx∈Rd x

⊤a − Rt(a) denote the
Frenchel dual of Rt. Then we have
T∑
t=1

E
[
ĝ⊤t (at − a∗T )−

Lσ1α

4
∥at − a∗T ∥2

]
≤ 1

ηρ

(
R(a∗T )−R(a1) + E

[
T∑
t=1

DR∗
t
(∇Rt(at)− ηρĝt,∇Rt(at))

])
.

Lemma D.4 (Lemma 11 in Kumagai (2017)). When ηρ ≤ 1
2d , we have

DR∗
t
(∇Rt(at)− ηρĝt,∇Rt(at)) ≤ 4d2η2ρ.

Lemma D.5 (Lemma 4 in Hazan & Levy (2014)). R(a∗T )−R(a1) ≤ ν log(T ).

If we let C0 := (2ν + 4Lσ1κ+ 4Rσ2 (L
µ)2 + LµLσ1κ)/λ, we have

RegT ≤ 2ν log(T )

ηρ
+ 8d2ηρT + 2E

{
T∑
t=1

b⊤t (at − a∗T )

}
+

4Lσ1κ+ 4Rσ2 (L
µ)2 + LµLσ1κ

ληρ
log T + 2LµLσ1R

=
C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R︸ ︷︷ ︸

Regret of Decision

+2E

{
T∑
t=1

b⊤t (at − a∗T )

}
︸ ︷︷ ︸

Feedback Error

,

which completes the proof.

Step 3: upper bounding the regret from feedback error

Bounding the regret of decision term in equation 2 is standard. Thus, this step develops a novel
upper bound for bounding the regret from feedback error, as shown below.

Lemma (Lemma 4.3 restated). The feedback error term in equation 2 can be bounded as follows:

E

{
T∑
t=1

b⊤t (at − a∗T )

}
≤ C1d

√
ηρE

{
T∑
t=1

√
t|ct(at, a′t)|

√
µ(a∗)− µ(at)

}
+ C2dT

ρ + 2d
√
λ
√
ηρT ,

where C1 :=
√

2λ(Lσ)2

α , and C2 := 2LσR
√

supa∈A λmax (∇2R(a)) + 2ϕ.

Proof. In the following, we will analyze the expected cumulative sum of the bias bt on the to-
tal regret, which is E

{∑T
t=1 b

⊤
t (at − a∗T )

}
. By Cauchy-Schwartz inequality, b⊤t (at − a∗T ) ≤

∥bt∥2∥(at − a∗T )∥2. We can bound the ∥bt∥2 by the following.

b⊤t bt = d2
(
Pt(at +∇2Rt(at)

− 1
2ut)− P̂t(at +∇2Rt(at)

− 1
2ut)

)2
u⊤t ∇2Rt(at)ut

≤
(
Pt(at +∇2Rt(at)

− 1
2ut)− P̂t(at +∇2Rt(at)

− 1
2ut)

)2
d2λmax(∇2Rt(at)).
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We get the first equality by Lemma 4.1. We get the inequality by using the fact ∥ut∥2 = 1. If we let
a′t = at +∇2Rt(at)

− 1
2ut, then we have

|Pt(a′t)− P̂t(a
′
t)| = |σ(f(at)− f(a′t))− σ(f(at)− f(a′t) + ct(at, a

′
t))|

≤ min (2, Lσ|ct(at, a′t)|) .

We get the first equality by using the definition of Pt(at) and P̂t(at). We get the first inequality by
using the Lipschitz property of σ. Therefore, we have

∥bt∥2 ≤ d
√
λmax(∇2Rt(at))min {2, Lσ|ct(at, a′t)|} .

If we use λ∗R := supa∈A λmax

(
∇2R(a)

)
, then we have

λmax(∇2Rt(at)) = λmax(∇2R(at)) + ληρt+ 2ϕ ≤ λ∗R + 2ϕ+ ληρt.

Therefore we have

E

{
T∑
t=1

b⊤t (at − a∗T )

}
≤ E

{
T∑
t=1

∥bt∥2∥at − a∗T ∥2

}

≤ E

{
T∑
t=1

(d
√
λmax(∇2Rt(at))min (2, Lσ|ct(at, a′t)|))∥at − a∗T ∥2

}

≤ E

{
T∑
t=1

(d
√
λ∗R + 2ϕ+ ληρtmin (2, Lσ|ct(at, a′t)|))∥at − a∗T ∥2

}

≤ E

{
T∑
t=1

(d
√
λ∗R + 2ϕmin (2, Lσ|ct(at, a′t)|) ∥at − a∗T ∥2

}
+ E

{
T∑
t=1

(d
√
ληρtmin (2, Lσ|ct(at, a′t)|) ∥at − a∗T ∥2

}

≤ 2RdLσ
√
λ∗R + 2ϕT ρ + d

√
ληρE

{
T∑
t=1

√
tmin (2, Lσ|ct(at, a′t)|) ∥at − a∗T ∥2

}
(16)

≤ 2RdLσ
√
λ∗R + 2ϕT ρ + 2d

√
ληρT + d

√
ληρE

{
T∑
t=1

√
tmin (2, Lσ|ct(at, a′t)|) ∥at − a∗∥2

}
(17)

≤ 2RdLσ
√
λ∗R + 2ϕT ρ + 2d

√
ληρT + d

√
ληρE

{
T∑
t=1

√
tmin (2, Lσ|ct(at, a′t)|)min

(
2R,

√
2

α
(µ(a∗)− µ(at))

)}
.

(18)

We get equation 16 by using the fact that ∥at − a∗T ∥2 ≤ 2R,
∑T
t=1 |ct(at, a′t)| ≤ T ρ. We get

equation 17 the definition of a∗T , and the fact
√
a+ b ≤

√
a +

√
b. Using the α-strong convexity

of µ, we have ∥at − a∗∥2 ≤ min
(
2R,

√
2
α (µ(a∗)− µ(at))

)
we get the last inequality, which

completes the proof.

Step 4: The iterative regret refinement analysis and resultant optimal learning rate

Lemma (Lemma 4.4 restated). If A = E
(∑T

t=1[µ(a
∗)− µ(at)]

)
≤ O(T

1
2+ψ) for some ψ ∈

[0, 12 ), then we must have B = E
(∑T

t=1 t
ρ− 1

2

√
µ(a∗)− µ(at)

)
≤ O(T− 1

4+
ψ
2 +ρ).

Proof. To prove Lemma 4.4, it is equivalent to prove the following Lemma D.6. If Lemma D.6
holds, let nt =

√
E(µ(a∗)− µ(at)), mt = min (2, Lσ|ct(at, a′t)|), proves Lemma 4.4.

Lemma D.6. Consider
∑T
t=1 n

2
t ≤ C ′T

1
2+α, with constants α ≥ 0, C ′ > 0. In addition, nt is

uniformly upper bounded by a constant K. Specifically, we have 0 ≤ nt ≤ K,∀t. mt ≤ ckt
ρ−1

with constant ck ≥ 0. Then we have
∑T
t=1

√
tmtnt ≤ 5

√
C ′ckT

− 1
4+

α
2 +ρ.
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Proof. Using Abel’s equality (Lemma D.7), we have

T∑
t=1

√
tmtnt ≤

√
T

(
T∑
t=1

mtnt

)

Since we have
∑T
t=1 n

2
t ≤ C ′T

1
2+α and 0 ≤ nt ≤ K,∀t, we have

∑T
t=1 nt ≤

√
C ′T

3
4+

α
2 ,∀t.

Moreover, for t ≥ 1, t−1+ρ − (t+ 1)−1+ρ ≤ tρ−2 holds for all t ≥ 1. This is because

f(t) = t−1+ρ

(
(1 +

1

t
)−1+ρ +

1

t
− 1

)
.

is decreasing over t ≥ 1 and limt→∞ f(t) = 0. Consequently, applying Abel’s Summation Equation
again, we have

T∑
t=1

mtnt =

(
T∑
t=1

nt

)
mT +

T−1∑
t=1

(
t∑
i=1

ni

)
(mt −mt+1)

≤
√
C ′ckT

3
4+

α
2 T−1+ρ +

√
C ′ck

T−1∑
t=1

(
t∑
i=1

ni

)(
t−1+ρ − (t+ 1)−1+ρ

)
≤

√
C ′ckT

3
4+

α
2 T−1+ρ +

√
C ′ck

T−1∑
t=1

(
t∑
i=1

ni

)
t−2+ρ

≤
√
C ′ckT

3
4+

α
2 T−1+ρ +

√
C ′ck

T−1∑
t=1

t
3
4+

α
2 t−2+ρ

≤ 5
√
C ′ckT

− 1
4+

α
2 +ρ.

Since 0 ≤ nt ≤ K,
∑t
i=1 ni is increasing and the increasing rate is upper bound by t. Together

with the constraint
∑T
t=1 nt ≤

√
C ′T

3
4+

α
2 ,
∑T−1
t=1

(∑t
i=1 ni

)
t−

1
2+ρ is optimized when

∑t
i=1 ni

increasing in the speed of
√
C ′t

3
4+

α
2 . Because of this, the second last inequality holds.

Lemma D.7. (Abel’s Summation Equation (Williams, 1963)). For any numbers ak, bk, we have

n∑
k=1

akbk =

(
n∑
k=1

bk

)
an +

n−1∑
k=1

(
k∑
i=1

bi

)
(ak − ak+1).

After establishing Lemma 4.4, we can use it to prove the induction claim (Lemma 4.5). The chal-
lenge in this proof lies in identifying the constant K, which must hold across all iterations of the
analysis to ensure the bound remains stable and does not diverge. This requires careful refinement
of the analysis and calculations.

Lemma (Lemma 4.5 restated). Consider T >
√
2LµLσ1R and ηρ =

√
log T

dTmax{1/2,ρ} .

If RegT ≤ 144dK
√
log TT ρ+

3
2
−ρ

2k for some integer k, then we must also have

RegT ≤ 144dK
√
log TT ρ+

3
2
−ρ

2k+1 . K is a instance-dependent constant, where K :=

max
{
C0,

C2Cκ√
log T

, (LσT ρκ )
2, 2

√
λRCκL

σ
}

, C0 and C2 defined in Lemma 4.2 and 4.3 respectively,

Proof. In the following, we denote

mt := min (2, Lσ|ct(at, a′t)|) , nt := min

(
2R,

√
2

α
(µ(a∗)− µ(at))

)
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Continue from equation 18, we have the following.

The Base Case: When k = 1, let C3 = C2dT
ρ + 2d

√
ληρT , we have

RegT ≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R+ 2C3 + 2d

√
ληρE

(
T∑
t=1

√
tmtnt

)
. (19)

≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R+ 2C3 + 4dR

√
ληρE

{
T∑
t=1

√
tmt

}
(20)

≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R+ 2C3 + 4dR

√
ληρT

(
T∑
t=1

mt

)
(21)

≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R+ 2C3 + 4dLσR

√
ληρCκT

ρ. (22)

We get equation 19 according to Lemma 4.2 and 4.3. We get equation 20 because of E (nt) ≤ 2R.
We get equation 21 by Abel’s Summation Equation (see Lemma D.7). We get equation 22
because of corruption budget. Choosing the learning rate ηρ according to Theorem 4.1, we obtain
RegT ≤ 144

√
log TKdT

ρ+1
2 . This confirms the validity of the claim when k = 1.

The Induction Argument: Let’s assume that the claim holds true for a general step k. In the
following, we will demonstrate that the claim also holds true for step k + 1. Because of Equation

equation 14 and the induction claim, we obtain RegFO
T ≤ 144

lσ1
dK

√
log TT ρ+

3/2−ρ
2k . This suggests

that
T∑
t=1

E (µ(a∗)− µ(at)) ≤
144

lσ1
dK
√

log TT ρ+
3/2−ρ

2k .

By Jensen’s inequality, we have

E(nt) = min

{
2,

√
2

α
E
(√

µ(a∗)− µ(at)
)}

≤
√

2

α

√
E (µ(a∗)− µ(at)).

Therefore we have

E

(
T∑
t=1

√
tmtnt

)
≤
√

2

α

T∑
t=1

√
tmt

√
E (µ(a∗)− µ(at)).

By the definition of ρ-Imperfect Human Feedback, we have |ct(at, a′t)| is upper bounded by
Ckt

−1+ρ.

Therefore, using Lemma 4.4 we can upper bound
√
λ
∑T
t=1

√
tmtnt by

√
λ

T∑
t=1

√
tmtnt ≤ 60Lσ

√
2λ

αlσ1
(log T )0.25Cκ

√
dKT

3
2ρ+

3/2−ρ
2k+1

Since λ ≤ αlσ1 /2, choosing ηρ = 1
d

√
log T
Tρ , we have

RegT ≤ 2d

(
C0 +

C2√
log T

+ 60Cκ
√
KT

3/2−ρ
2k+1

)√
log TT ρ + 12Kd

√
log TT ρ

≤ 144dK
√
log TT ρ+

3/2−ρ
2k+1 .

The claim holds true for step k+1. Therefore, it implies that the claim holds true for all k. Repeating
this process infinitely many times, we obtain

RegT ≤ O
(
d
√
log TT ρ

)
,

which completes the proof when ρ ∈ [0.5, 1].
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E PROOF FOR PROPOSITION 2

Proposition (Proposition 2 restated). If the total corruption level satisfies
∑T
t=1 |ct(at, a′t)| ≤

O(T ρ), then for any α ∈ [ 12 , 1), if the utility function is strongly concave, for sufficiently large
round T , by choosing learning rate ηρ :=

√
log T
2d T−α

1. (Robustness) RoSMID incurs RegT ≤ Õ(dTα +
√
dT

1
2 (1−α)+ρ + dT ρ).

2. (Efficiency) There exists a strongly concave utility function µ and a link function σ such
that RegT suffered by RoSMID is at least Ω (Tα) in scenario without corruption.

E.1 PROOF FOR ROBUSTNESS STATEMENT IN PROPOSITION 2

Proof. From Lemma 4.3, we know

E

{
T∑
t=1

b⊤t (at − a∗T )

}
≤ 2RdLσ

√
λ∗R + 2ϕT ρ + d

√
ληρE

{
T∑
t=1

√
tmin (2, Lσ|ct(at, a′t)|) ∥at − a∗T ∥2

}

≤ 2RdLσ
√
λ∗R + 2ϕT ρ + 2Rd

√
ληρL

σ
T∑
t=1

√
t|ct(at, a′t)|

≤ 2RdLσ
√
λ∗R + 2ϕT ρ + 2Rd

√
ληρTL

σT ρ.

We get the second inequality by using the fact that the diameter of the action space of R. We get the
last inequality by using Abel Summation Equation (see Lemma D.7). Therefore, by Lemma 4.2, we
have

RegT ≤ C0

ηρ
log(T ) + 8d2ηρT + 2LµLσ1R+ 4RdLσ

√
λ∗R + 2ϕT ρ + 4Rd

√
ληρTL

σT ρ.

Choosing ηρ =
√
log T
2d T−α, α ∈ [0.5, 1), we have

RegT ≤ 2dC0

√
log TTα + 4d

√
log TT 1−α + 4RdLσ

√
λ∗R + 2ϕT ρ + 4R

√
dLσ(log T )0.25T

1
2 (1−α)T ρ + 2LµLσ1R

≤ O
(
d
√
log TTα +

√
d(log T )

1
4T

1
2 (1−α)T ρ + dT ρ

)
,

which completes the proof of robustness statement.

E.2 PROOF FOR EFFICIENCY STATEMENT IN PROPOSITION 2

Proof. The robustness statement in Proposition 2 implies that RoSMID could afford agnostic cor-
ruption level O(T

1+α
2 ). If Lemma E.1 holds, this implies that there exists a hard instance which

makes RoSMID incur regret in order of Ω(Tα) in non-corrupt setting. We can prove this by contra-
diction. Assume the efficiency statement in Proposition 2 is not true, which implies that for all µ,
and σ, there exists an ϵ > 0 such that RegT = c0T

α−ϵ, for some constant c0 > 0, we assume ϵ to
be the least possible. In this scenario, when we consider a linear link function σ(x) = 1+x

2 , Lemma
E.1 implies that an agnostic corruption budget 2

√
c0T

1+α−ϵ
2 suffices to induce linear regret, which

contradicts the robustness statement in Proposition 2.

Lemma E.1. For any algorithm G incurs regret RegT ≤ c0T
α, for some constant c0 > 0, on

learning from bandit with reward feedback for strongly concave utilities µ in non-corrupted setting,
then there exists an instance µ such that G will suffer linear regret under agnostic corruption with
budget

√
c0T

1+α
2 .

Proof. Consider the scenario when d = 2, the action space A := {(a1, a2) : a1 ≥ 0, a2 ≥
0, a1 + a2 ≤ 1}, the utility function µθ(a) = ⟨θ, a⟩ − 1

2∥a∥
2
2 with θ := [1, 0]. In this scenario,

the optimal action is a∗ := [1, 0]. Assume that the adversary want to “fool” the algorithm G to
make it believe the θ := [1, 1], with optimal arm a∗ = [ 12 ,

1
2 ], each round, the corruption it should

introduce is ct(at) = at2, where ati is the i-th coordinate value of action at. To make reward
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indistinguishable from these two environments, the total corruption budget which the adversary has
to pay is

∑T
t=1 |at2|. We know that G incurs regret RegT :=

∑T
t=1⟨θ, a∗−at⟩−

1
2∥a

∗∥22+ 1
2∥at∥

2
2 =

1
2 − at1 +

1
2a

2
t1 +

1
2a

2
t2 ≤ c0T

α. Given this constraint, the maximum possible corruption paid by
the adversary to make θ = [1, 1] and θ = [1, 0] indistinguishable is max

∑T
t=1 |at2| =

√
c0T

α+1
2 .

Therefore, for any agnostic corruption no less than
√
c0T

α+1
2 , G can not distinguish θ = [1, 0] and

θ = [1, 1] and has to incur linear regret in either of these environments.

F PROOF FOR PROPOSITION 3:

In this section, we present the regret upper for dueling bandit gradient descent Yue & Joachims
(2009) in presence of arbitrary and agnostic corruption. Before presenting the proof, we make
several remarks. First, in Yue & Joachims (2009), the utility function µ is assumed to be strictly
concave to ensure the uniqueness of the maximizer. However, in scenarios where the maximizer is
unique within the action set for a concave utility function µ, the requirement for “strictness” can
be relaxed. Second, we highlight the notation differences. We use a to denote actions while Yue
& Joachims (2009) uses w. In our proof, we define Pt(a) := σ (µ(at)− µ(a)) to represent the
probability of the event at ≻ a. While in Yue & Joachims (2009), it is denoted as ct(w). Just to
highlight, its corrupted version P̂t(a) := σ (µ(at)− µ(a) + ct(at, a)) is newly introduced in our
paper. Moreover, P̄t(a) := Ex∈B [Pt(PA(a+ δx))] is denoted as ϵ̂t(w) + 1

2 in Yue & Joachims
(2009). The definition of F (PA (at + δut) , at) is same as Xt (PW (wt + δut)) defined in Yue &
Joachims (2009), except different notation. We remark PA(a) represent the projection of action a
on A.

Algorithm 3: Dueling Bandit Gradient Descent (DBGD) (Yue & Joachims, 2009)
Input: Exploration rate δ, exploitation rate γ, initial action a1 = 0 ∈ A.

1 for t ∈ [T ] do
2 Sample unit vector ut uniformly and set a′t = PA (at + δut).
3 Present action pair (at, a′t) to user and receive corrupted dueling feedback F̂(a′t, at).
4 Compute gradient ĝt = −d

δ F̂(a′t, at)ut.
5 Set learning rate η = γδ

d and update at+1 = PA(at − ηĝt).

Proposition (Proposition 3 restated). If the total corruption level satisfies
∑T
t=1 |ct(at, a′t)| ≤

O(T ρ), then for any α ∈ (0, 14 ], if utility function µ is generally concave, for a sufficiently large

round T , choosing γ := R√
T

and δ :=
√
2Rd√

13LσLµTα
for Algorithm 3

1. (Robustness) RegT incurred by Algorithm 3 satisfies RegT ≤ O(
√
dT 1−α +

√
dTα+ρ).

2. (Efficiency) There exists a linear utility function µ and a link function σ such that RegT
suffered by Algorithm 3 is at least Ω

(
T 1−α) in scenario without corruption.

F.1 PROOF FOR ROBUSTNESS STATEMENT IN PROPOSITION 3

Proof. The proof of Theorem 3 builds on the proof of Yue & Joachims (2009), where we extend it to
a setting in presence of agnostic corruption. The proof follows Step 1-3 introduced in Theorem 4.1.
Similarly, in Step 1, we decompose bias in the gradient caused by corruption. Notice that without
corruption, DBGD performs expected gradient ascent, where the gradient gt is defined as follows

gt = −d
δ
F (PA (at + δut) , at)ut.

In the presence of adversarial corruption, the corrupted gradient is

ĝt = −d
δ
F̂ (PA (at + δut) , at)ut.

Therefore, we quantify the bias E(bt|at) in the following lemma.
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Lemma F.1. Let Pt(a) represent the likelihood of action at being preferred over a, where Pt(a) :=
σ(µ(at)−µ(a)). Likewise, the corrupted version is defined as P̂t(a) = σ(µ(at)−µ(a)+ct(at, a)).
The smoothed version of Pt over A is P̄t(a) := Ex∈B [Pt(PA(a+ δx))]. Let a′t = PA(at + δut),

where ut is uniformly sampled from S and ĝt = −d
δ F̂ (a′t, at)ut. Let bt := d

δ

(
P̂t(a

′
t)− Pt(a

′
t)
)
ut.

We have E(ĝt|at) = E(∇P̄t(at)|at)− E(bt|at).

Proof. (Proof for Lemma F.1). Since a′t := PA(at + δut), we have

E(ĝt|at) = Eut(E(ĝt|at, ut))

= −d
δ
Eut

(
E(F̂(a′t, at)ut|at, ut)

)
= −d

δ
E
(
P̂t(a

′
t)ut|at

)
= −d

δ
E
([
Pt(a

′
t) + P̂t(a

′
t)− Pt(a

′
t)
]
ut|at

)
= ∇Ex∈B (Pt(PA(at + δx))|at)−

d

δ
E
[(
P̂t(a

′
t)− Pt(a

′
t)
)
ut|at

]
(23)

= ∇P̄t(at)−
d

δ
E
[(
P̂t(a

′
t)− Pt(a

′
t)
)
ut|at

]
= E(gt|at)−

d

δ
E
[(
P̂t(a

′
t)− Pt(a

′
t)
)
ut|at

]
. (24)

We get the equation equation 23 by using Lemma F.2. We get equation equation 24 by using Lemma
F.3.

Lemma F.2 (Lemma 2 in Yue & Joachims (2009)). Fix δ > 0, over random unit vector u, we have

E[Pt(PA(a+ δu))u] =
δ

d
∇P̄t(a).

Lemma F.3 (Lemma 1 in Yue & Joachims (2009)). EF,u[F(a′t, at)u] = −Eu[Pt(a′t)u].

In Step 2, we decompose regret under dueling bandits into two parts, regret of decision and feedback
error.

Lemma F.4 (Regret Decomposition for DBGD). Define λ := Lσ

Lσ−δLµL2
, L2 is the Lipschitz con-

stant for σ′, γ = R/
√
T , for bt defined in Lemma F.1, we have

RegT ≤ λ

(
2Rd

√
T

δ
+ 13δLσLµT

)
︸ ︷︷ ︸

Regret of Decision

+2λ

T∑
t=1

E
(
b⊤t (at − a∗)

)
︸ ︷︷ ︸

Feedback Error

.

Proof. Because of Lemma F.5, we have

E

[
T∑
t=1

P̄t(at)− P̄t(a
∗)

]
≤

T∑
t=1

E
(
λ∇P̄t(at)(at − a∗) + (3 + λ)δLσLµ

)
= λ

T∑
t=1

E(E(gt|at)⊤(at − a∗)) + (3 + λ)δLσLµT

= λ

T∑
t=1

E(E(ĝt + bt|at)⊤(at − a∗)) + (3 + λ)δLσLµT

= λ

T∑
t=1

E(ĝ⊤t (at − a∗)) + λ

T∑
t=1

E(b⊤t (at − a∗)) + (3 + λ)δLσLµT
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Lemma F.5 (Lemma 4 in Yue & Joachims (2009)). Fix δ ∈ (0, Lσ

LµL2
), for λ defined in Lemma F.4,

we have

E

[
T∑
t=1

P̄t(at)− P̄t(a
∗)

]
≤

T∑
t=1

E
(
λ∇P̄t(at)⊤(at − a∗) + (3 + λ)δLσLµ

)
.

Since at+1 = PA(at − ηĝt), and η = γδ
d , by applying the telescoping sum and because a1 = 0,

∥gt∥2 ≤ G,∀t, we have

λ

T∑
t=1

E
(
ĝ⊤t (at − a∗)

)
≤ λ

(
R2

2η
+
TηG2

2

)
.

Noticing that ∥bt∥2 ≤ d
δ min (2, Lσ|ct(at, a′t)|). Moreover, ∥at − a∗∥2 ≤ 2R. Therefore, in Step 3,

we can control the feedback error by the following.

Lemma F.6.
∑T
t=1 E

(
b⊤t (at − a∗)

)
≤ 2RdLσT ρ/δ.

Proof. (Proof for Lemma F.6).
T∑
t=1

E(bt(at − a∗)) ≤ 2R
d

δ

T∑
t=1

min (2, Lσ|ct(at, a′t)|)

≤ 2R
dLσ

δ

T∑
t=1

|ct(at, a′t)|

= 2R
dLσT ρ

δ
.

Lemma F.7 (Lemma 3 in Yue & Joachims (2009)). RegT ≤ 2E
[∑T

t=1 P̄t(at)− P̄t(a
∗)
]
+

5δLσLµT

Set G = d
δ , and by Lemma F.7, we have

RegT ≤ λ

(
2Rd

√
T

δ
+ 13δLσLµT

)
+ 4R

λdLσT ρ

δ
.

Therefore, by choosing δ :=
√
2Rd√

13LσLµTα
, γ := R√

T
, and T >

( √
2RdLµL2√
13LσLµLσ

)4
, we have

RegT ≤ 2λT
√
26RdLσLµT 1−α + 2Lσ

√
26RdLσLµTα+ρ.

λT = Lσ
√
13LσLµTα

Lσ
√
13LσLµTα−LµL2

√
2Rd

, completes the proof.

F.2 PROOF FOR EFFICIENCY STATEMENT IN PROPOSITION 3

Proof. The robustness statement in Proposition 3 implies that DBGD could afford agnostic cor-
ruption level O(T 1−α). This implies that there exists a hard instance which makes DBGD attain
regret in order of Ω(T 1−α) in non-corrupt setting, formally described as follows. To start a proof by
contradiction, we assume that the efficiency statement in Proposition 3 is false. Specifically, for all
problem instance µ, σ, there exist a ϵ > 0, such that RegT ≤ O(T 1−α−ϵ). We assume ϵ to be the
least possible. In particular, there exists a pair of instance µ, σ such that RegT = c0T

1−α−ϵ, c0 is
a positive constant. In other words, it says that there exists a pair of instance µ, σ such that DBGD
suffers regret in Θ(T 1−α−ϵ).
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Consider the following problem instance. µ(a) = θ⊤a, specifically µ is linear function. Let d = 2
with action set A1 := {(a1, a2) : a1 ≥ 0, a2 ≥ 0, 12a1 + a2 − 1

4 ≤ 0} with θ = [ 12 ,
1
2 ]. The

optimal arm is a1 = [ 12 , 0], which is unique. Let the link function σ(x) = 1
2 + 1

2x. It is easy to
verify that it is rotational symmetric and Lipschitz. Denote RegT as the regret occurred by DBGD
on this problem instance. We know RegT ≤ O(T 1−α−ϵ). Consequently, it implies that a2 is at
most proposed 8c0T

1−α−ϵ times. This is because RegT ≤ c0T
1−α−ϵ and if the proposed action

pair (at, a′t) including a2 at round t, it occurs regret at least 1
8 .

Now consider a different problem instance with the same µ, σ but different action set, which is
A2 := {(a1, a2) : a1 ≥ 0, a2 ≥ 0, 32a1 + a2 − 3

4 ≤ 0}. The optimal arm in this action set
a2 = [0, 34 ], which is also unique. Proposing arm a1 = [ 12 , 0] occurs at least 1

8 regret. Consider an
adversary that pulls the utility of a2 from 3

8 down to 1
8 whenever it is pulled at a cost of ct(At) = 1

4 . It
is equivalent to say that every time when the proposed arm w falls in the region W = {a1 ≥ 0, a2 ≥
0, 12a1 + a2 − 1

4 ≥ 0, 32a1 + a2 − 3
4 ≤ 0}, we assume that the utility is sampled from θ⊤PA1

(w)

and |ct(w)| = |θ⊤PA1
(w) − θ⊤w| ≤ 1

4 . Choosing the total corruption budget as 2c0T 1−α−ϵ, the
adversary can afford to corrupt 8c0T 1−α−ϵ times.

This means that as long as the adversary is corrupting, the utility observed in the first problem
instance is exactly the same as the utility observed in the second problem instance, in which we
pull a2 as most 8c0T 1−α−ϵ. However, a2 is the optimal arm in the second problem instance, which
implies that the regret occurred on the second problem instance is at least T − 8c0T

1−α−ϵ, which is
linear in T . This contradicts the robustness statement in Proposition 3, which says that when agnostic
corruption is 2c0T 1−α−ϵ, the regret upper bound is O(T 1−ϵ), which is sublinear. To reconcile the
conflicts, we must have the efficiency statement in Proposition 3 true to make the agnostic corruption
budget at least Ω(T 1−α) to make the parallel world argument valid.

G ADDITIONAL EXPERIMENTS

In this section, we list all the experiment details. At the beginning, we introduce the regret order
fitting method, and baseline algorithms for comparison.

Fitted Order of Regret. We introduce the methodology that we use to compute the order of RegT
in terms of the number of iteration, T . To fit the order of the regret, we first convert it into log scale.
Then we input the last 1% of data, run linear regression, and use ordinary least squares to estimate
the slope of the line, which is the fitted order of RegT .

Baseline Algorithms. We consider three baseline algorithms for comparison, Doubler (Ailon et al.,
2014) and Sparring (Ailon et al., 2014)

Doubler is the first approach that transforms a dueling bandit problem into a standard multi-armed
bandit (MAB) problem. It operates in epochs of exponentially increasing length: in each epoch, the
left arm is sampled from a fixed distribution, and the right arm is selected using a MAB algorithm
to minimize regret against the left arm. The feedback received by the MAB algorithm is the number
of wins the right arm achieves compared to the left arm. Under linear link assumption, Doubler has
been proven to experience regret as the same order as underlying MAB algorithm. For continuous
action space and general concave utility, we choose Bandit Gradient Descent (BGD, (Flaxman et al.,
2004)), with regret O(T 3/4), as the underlying MAB algorithm.

Sparring initializes two MAB instances and lets them compete against each other. It is a heuristic
improvement over Doubler. Although it does not come with a regret upper bound guarantee, it is
reported to enjoy better performance compared to Doubler (Ailon et al., 2014). We also choose
BGD as the underlying MAB algorithm.

To validate efficiency-robustness trade-off in Proposition 2 and Proposition 3, we try different α
values. In the first row of Figure 3, we consider α = 0.05 for DBGD and α = 0.9 for RoSMID.
We consider ρ ∈ [0.5, 0.95]. According to the theoretical prediction, both DBGD and RoSMID
can tolerate at most O(T 0.95) agnostic corruption, which aligns with experiment results. This is
because the estimated order of regret is less than 1. In the second row of Figure 3, we consider
α = 0.1 for DBGD and α = 0.8 for RoSMID. According to the theoretical prediction, both DBGD
and RoSMID can tolerate at most O(T 0.9) agnostic corruption. From the figure, we can see they
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have smaller fitted order of regret when ρ = 0.5 while at a cost of tolerating smaller magnitude of
agnostic corruption (it has linear regret when ρ = 0.95), which reveals intrinsic tradeoff between
efficiency and robustness.

Figure 3: In the first row, we consider α = 0.05 for DBGD and α = 0.9 for RoSMID. In the second
row, we consider α = 0.1 for DBGD and α = 0.8 for RoSMID. Given the α, for each algorithm,
we tested its performance under ρ-Imperfect Human feedback with ρ = 0.5, 0.8, 0.95. For each ρ,
we presented a line plot of the average regret over five simulations, accompanied by ± one standard
deviation shown by the shaded region. In the legend, o denotes the estimated line slope, calculated
using least squares on the last 1% of the data.

G.1 COMPUTATIONAL COMPLEXITY

Firstly, we emphasize that our robustified algorithm retains the same computational complexity
as the originals. This indicates that incorporating robustness does not compromise computational
efficiency, ensuring the practicality and scalability of the enhanced algorithm for real-world appli-
cations. Specifically, RoSMID has a running time of O(d3T ), where the d3 term arises from the
singular value decomposition. Similarly, the robustified DBGD algorithm runs in O(dT ), assuming
that PA(at + δut) can be efficiently computed through matrix transformations.

As our work is the first to address corruption-robust learning from a continuous-action strictly con-
cave utility, there is no directly comparable literature for this exact setting. However, we provide
relevant comparisons for reference. RCDB (Di et al., 2024), designed for corruption-robust learning
in a linear contextual dueling bandit framework, has a running time of O(K2d2T ), where K is the
number of actions. Similarly, Versatile-DB (Saha & Gaillard, 2022), which addresses dueling bandit
problems in a multi-armed bandit setting under adversarial attacks, has a running time of O(K2T ),
whereK represents the number of arms. K2 comes from solving argmaxx∈S(⟨x,y⟩−f(x)) using
second order Newton methods and f is a convex function.
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