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ABSTRACT

Large language models (LLMs) have revolutionized both academia and industry
by leveraging attention mechanisms to achieve exceptional performance across
diverse tasks. However, the quadratic complexity of attention mechanisms with
respect to the input context length poses a significant challenge for scaling LLMs.
Quantum computing offers computational advantages over classical methods, yet
its application to LLMs remains unexplored. In this work, we employ Grover’s
Search, a fundamental quantum algorithm, to efficiently compute sparse attention
matrices, achieving a polynomial speed-up compared to classical approaches. Ad-
ditionally, the quantum-generated attention matrices exhibit a low-rank structure,
which can be leveraged to develop faster training algorithms for LLMs. We pro-
vide a comprehensive analysis of the algorithm’s error rates and time complexity,
demonstrating its potential to accelerate LLM computations while maintaining ac-
curacy. Our findings indicate that quantum computing offers a promising pathway
for optimizing the performance and scalability of large language models.

1 INTRODUCTION

LLMs (Large Language Models) (Sag, 2018; Vyas et al., 2023; Kirchenbauer et al., 2023; Epasto
et al., 2023) have gained significant attention from numerous researchers in recent years. The suc-
cess of models like OPT (Zhang et al., 2022), PaLM (Chowdhery et al., 2022), GPT-3 (Brown et al.,
2020), Transformer (Vaswani et al., 2017), and BERT (Devlin et al., 2018) has showcased the im-
mense potential of LLMs in various applications across different domains.

The impact of LLMs is far-reaching. They have revolutionized natural language processing tasks
such as machine translation (He et al., 2021), sentiment analysis (Usama et al., 2020), question
answering (Brown et al., 2020; OpenAI, 2023), text summarization, and more. LLMs excel at cap-
turing intricate language patterns, understanding context, and generating coherent and contextually
relevant text (OpenAI, 2023).

The success of Transformer (Vaswani et al., 2017) heavily relies on the multi-head attention algo-
rithm, which plays a crucial role in the computation of LLM models. Models like GPT (Brown et al.,
2020; OpenAI, 2023) have achieved remarkable success by employing a large number of parameters
and leveraging vast amounts of data, which holds great potential for future advancements. However,
this approach raises concerns about the computational running time, necessitating the development
of more efficient algorithms (Brand et al., 2023; Zandieh et al., 2023; Alman & Song, 2023). In
this regard, the emergence of quantum algorithms (Grover, 1996; Shor, 1999; Harrow et al., 2009)
provides a new perspective for addressing this problem.

To demonstrate our design, we will begin by introducing the attention matrix and its classical com-
putation. The attention matrix is a square matrix whose rows and columns are indexed by tokens
(i.e., words), and each entry stores the correlation between the corresponding tokens. Based on an
attention matrix, the importance of each input token in a sequence can be derived, which is used to
generate an output. Specifically, within an attention mechanism, every input token (or query token)
receives a score representing its relevance to the current output token (or key token) being produced.
These scores are computed by comparing the current output state with the input states via a similarity
function.
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The formal definition of the attention matrix is as follows. Let Q ∈ Rn×d be the matrix of n query
tokens and K ∈ Rn×d be the matrix of n key tokens, where each token is represented by a d-
dimensional vector. The attention matrix A is an n-by-n matrix whose (i, j)-th entry is the attention
score between the i-th query token Qi and the j-th key token Kj . The self-attention score of the
i-th query token is defined as the sum of its attention scores for all key tokens (i.e.,

∑n
j=1 Aij),

which quantify the significance of each token in relation to itself. Let D ∈ Rn×n be a diagonal
matrix storing all the self-attention scores, and let V ∈ Rn×d be the value matrix that contains value
vectors associated with the key tokens. The goal of each attention computation is to compute Att,
which is a matrix function of Q, K, and V , defined as follows.

Definition 1.1. Given matrix Q ∈ Rn×d, K ∈ Rn×d, V ∈ Rn×d, the goal of attention computation
is to compute

Att(Q,K, V ) := D−1AV

where A ∈ Rn×n and D ∈ Rn×n is a diagonal matrix A = exp(QK⊤), D = diag(A1n). Here,
exp(·) is applied to each entry of QK⊤, and 1n is a length-n vector where all the entries are ones.

We note that the straightforward classical implementation of computing the above attention matrix
takes O(n2d)-time. In spite of the success of attention mechanisms in many fields (Kitaev et al.,
2020; Daras et al., 2020; Roy et al., 2021; Choromanski et al., 2020; Katharopoulos et al., 2020;
Wang et al., 2020), such an expensive runtime hinders their full potential. Meanwhile, the phe-
nomenon of attention sparsity has been widely discussed by many researchers (Kitaev et al., 2020;
Child et al., 2019; Jaszczur et al., 2021; Chen et al., 2021; Zhang et al., 2023). Therefore, it is natural
to leverage the sparsity of matrices to accelerate the computation process. In this paper, we present
an approximately sparse assumption on matrix A: each row of the matrix QK⊤ contains at most k
elements greater than τ (see Definition 1.2). This assumption is based on a phenomenon observed
in LLM literature (Zhang et al., 2023). We remark that even with this sparsity assumption, any
classical algorithm that can output all of these large entries in QK⊤ for general k and τ still needs
n2−o(1)-time unless the Strong Exponential Time Hypothesis (SETH) is false (see Lemma 8.3).

To accelerate the computation of the attention matrix of LLMs through the construction of a sparse
attention matrix, we use a renowned quantum algorithm: Grover’s search algorithm (Grover, 1996).
It offers a quadratic speedup in the unstructured search problem when compared to classical com-
putation. More specifically, our primary focus is to locating the values larger than τ in the vector
(QK⊤)i,∗ ∈ Rn, where Q ∈ Rn×d and K ∈ Rn×d are defined in Definition 1.1. It can be reduced
to a search problem, where the query oracle Oi is defined as:

Oi|j, 0⟩ := |j, b⟩, b =

{
1 if (QK⊤)i,j ≥ τ,

0 otherwise
∀j ∈ [n].

By the sparsity assumption, for each i ∈ [n], there are at most k indices j such thatOi|j, 0⟩ := |j, 1⟩.
Thus, if we run Grover’s algorithm with the query oracle Oi, it will find all of those indices with
query complexity Õ(

√
nk)1 (see Theorem 3.1). Note that each query to the oracle Oi costs O(d)-

time to evaluate the inner-product (assuming the data are stored in QRAM). Hence, each row of
QK⊤ can be approximately computed in Õ(

√
nkd)-time, and all the large entries of QK⊤ can be

computed in Õ(n1.5k0.5d)-time (see Theorem 1.3).

In addition to the quantum algorithm, we also introduce a classical approach for constructing the
sparse matrix based on some computational geometric data structures. This method is described in
Theorem 1.5.

1.1 OUR RESULTS

Based on the aforementioned analysis, we obtain a quantum algorithm to efficiently output a sparse
attention matrix. The main result of this paper is presented in this section.

We first introduce the definition of a matrix, which characterizes the sparsity pattern in the attention
matrix. Intuitively, this definition is an analogue of soft sparsity (see e.g. (Kusupati et al., 2020)).

1We use Õ(f(n)) to denote O(f(n) · poly log(f(n))).
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Definition 1.2. Let A = exp(QK⊤) ∈ Rn×n be defined in Definition 1.1 and we say A is a
(τ, k)-good matrix if for all i ∈ [n], Si := {j ∈ [n] | (QK⊤)i,j ≥ τ} and |Si| ≤ k.

The following theorem shows a quantum algorithm that can efficiently compute an approximation
B of a (τ, k)-good attention matrix A. In particular, B can be represented as a sparse matrix plus a
rank-one matrix, which is very helpful for LLM computations.
Theorem 1.3 (Quantum algorithm for attention matrix approximation). Let A ∈ Rn×n, Q ∈
Rn×d,K ∈ Rn×d and D ∈ Rn×n be defined as in Definition 1.1. If the following conditions
hold

• A is a (τ, k)-good matrix (Definition 1.2) for some τ ≥ 2 log n and k ∈ [n].

• for each i ∈ [n] and each j ∈ [n], −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si for some η ∈ R+.

Then, there exists a quantum algorithm (implicitly) outputting a matrix B ∈ Rn×n such that

• Part 1. B = B1 +B2, where B1 is k-row sparse2 and B2 is rank-1.

• Part 2. ∥D(A)−1A−D(B)−1B∥∞ = O(η).

• Part 3. it runs in Õ(n · (
√
nkd+ kd)) time.

The proof of Theorem 1.3 is in Section A. In the following, we discuss how the structure of the ap-
proximated attention matrix B improves the efficiency of large language models during the inference
stage. More specifically, by employing our quantum algorithm (Theorem 1.3) as a sub-routine, we
achieve the following result that provides a polynomial speedup compared to the classical O(n2d)-
time approach.

Theorem 1.4 (Informal version of Theorem 6.1). There is an algorithm that takes Õ(n1.5k0.5d +
nkd) time to achieve one attention matrix computation in inference.

In addition to the quantum method, we also provide a classical algorithm to compute the attention
matrix that is still faster than the traditional approach in constant dimension (i.e., d = O(1)). The
key observation is that the quantum part (Grover’s search) of our algorithm in Theorem 1.3 can be
replaced by a computational geometry data structure, at the cost of increased time complexity.
Theorem 1.5 (Classical algorithm for attention matrix approximation). If the following conditions
hold: (1) A is a (τ, k)-good matrix (Definition 1.2) for some τ ≥ 2 log n and k ∈ [n]. (2) For each
i ∈ [n] and each j ∈ [n], −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si for some η ∈ R+. Then there exists a
classic algorithm outputting a matrix B ∈ Rn×n such that

• Part 1. B = B1 +B2, where B1 is k-row sparse and B2 is rank-1.

• Part 2. ∥D(A)−1A−D(B)−1B∥∞ = O(η).

• Part 3. it runs in Õd(nk + n2−1/⌊d/2⌋) time3.

The proof of Theorem 1.5 is in Section B.

2 RELATED WORK

Attention Computation. Several studies have investigated attention computation (Gao et al.,
2023a; Liu et al., 2023b; Li et al., 2023; Sinha et al., 2023; Brand et al., 2023; Alman & Song,
2023; Deng et al., 2023a; Gao et al., 2023c; Zandieh et al., 2023; Wu et al., 2023; Zhang et al.,
2023). (Brand et al., 2023) specifically focuses on dynamic attention computation and introduces an
update and query method inspired by the lazy update idea. (Zandieh et al., 2023) addresses the issue
of quadratic time and memory complexities in sequence length that arise from the dot-product op-
eration in attention computations. They identify that this problem can be transformed into a kernel

2Each row of the matrix has k non-zero entries.
3Here, Õd(·) hides the logc(n) and poly(d) factors, where c = c(d) is some function in d.
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density estimation (KDE) problem. Their approach, KDEformer, approximates attention in sub-
quadratic time while providing provable spectral norm bounds. (Zhou et al., 2021) uses the sparsity
assumption of attention matrix to propose an O (n log (n)) attention mechanism. (Alman & Song,
2023) focuses on exploring the possibility of faster algorithms by implicitly leveraging the attention
matrix. They provide a theoretical explanation for the observed phenomenon that attention compu-
tation is significantly more efficient when the input matrices have smaller entries. The regression
problem in the field of attention computation has also been widely explored (Gao et al., 2023d;a;
Li et al., 2023). (Deng et al., 2023b) also addresses the sparsification of the attention problem and
presents both randomized and deterministic algorithms. Their work suggests that for feature dimen-
sions that are extremely large, it is possible to reduce them to a size nearly linear in the length of
the sentence. (Deng et al., 2023a) focuses on the softmax regression problem in the field of atten-
tion computation. They provide theoretical support for the practical use of the greedy algorithm to
train the softmax function. (Li et al., 2023; Gao et al., 2023b) explore the application of attention
computation in the context of in-context learning.

Classical fast neural network training algorithms (Kitaev et al., 2020) introduces Reformer,
a method aimed at enhancing the efficiency of transformers. Reformer achieves improved memory
utilization and faster processing for long sequences. This is achieved by replacing the dot-product at-
tention mechanism with one that employs locality-sensitive hashing. Additionally, Reformer utilizes
reversible residual layers instead of the conventional residual layers. (Wang et al., 2020) presents
the approximation of the self-attention mechanism using a low-rank matrix. They leverage this
discovery to propose a novel self-attention mechanism, thereby reducing the overall complexity of
self-attention in terms of both time and space. (Gao et al., 2022) accelerates the adversarial training
procedure by utilizing a sublinear number of activated neurons based on the shifted ReLU activation
function.

Quantum algorithms for training neural networks Prior to this paper, there were several works
using quantum computing to improve neural network training. The most related work is (Song
et al., 2021), which proposes a shifted-ReLU sparsifier to reduce the number of activated neurons
in each training iteration and uses Grover’s search to find them. However, their algorithm and anal-
ysis only work for two-layer, fully connected, over-parameterized neural networks. (Allcock et al.,
2020) and (Kerenidis et al., 2019) use quantum inner-product estimation to speed up the training
of feedforward neural networks and convolutional neural networks, respectively. (Zlokapa et al.,
2021; Liu et al., 2023a) proposes quantum training algorithms with exponential speed-ups based on
the quantum linear system solvers. However, these algorithms rely on certain well-conditioning and
sparsity assumptions, which may not align with real-world neural network architectures. We note
that the key difference between our work and all previous works is that we focus on the Transformer
while previous work mostly works on ReLU neural network and improve the efficiency of attention
computation, demonstrating the potential for quantum advantages in LLMs.

Quantum optimization algorithms Optimization is one of the most promising fields for demon-
strating quantum advantages. The famous HHL algorithm (Harrow et al., 2008) can exponentially
speed up the linear system solver. Jordan’s algorithm (Jordan, 2005) can compute the gradient of a
function using Õ(1) quantum queries to the evaluation oracle. And in convex optimization, to im-
plement the separation oracle using the membership oracle, quantum query complexity is Õ(1) (van
Apeldoorn et al., 2020) while classical query complexity is Ω(n). Other than those exponential quan-
tum advantages, a large number of optimization problems benefit from polynomial quantum speed-
ups, including solving linear programming (LP) and semi-definite programming (SDP) (Brandao &
Svore, 2017; Apeldoorn et al., 2017; Brandão et al., 2019; Apeldoorn & Gilyén, 2019; Kerenidis
& Prakash, 2020; Huang et al., 2022), estimating the volume of convex bodies (Chakrabarti et al.,
2019), log-concave sampling (Childs et al., 2022), stochastic convex optimization (Li & Zhang,
2022), etc. Another big class of quantum algorithms for solving optimization problems is the varia-
tional quantum algorithm (Cerezo et al., 2020), including variational quantum eigensolver (Peruzzo
et al., 2014), QAOA (Farhi et al., 2014), and quantum neural network (Beer et al., 2020). These
algorithms require less amount of quantum resources and are easier to implement in the near future.
However, most of them are heuristic and lack rigorous guarantees of performance.
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Quantum machine learning Quantum machine learning (QML) algorithms have been developed
for a wide array of classical ML tasks, such as clustering (Harrow, 2020), boosting (Arunachalam
& Maity, 2020), support vector machine (Rebentrost et al., 2014), principal component analysis
(Lloyd et al., 2014), statistical query learning (Arunachalam et al., 2020). (Cherrat et al., 2022)
quantizes the classical transformer architecture and explores the potential of quantum computing in
machine learning. (Guo et al., 2024) comes up with a method combining transformer architecture
with fault-tolerant quantum computing. (Shi et al., 2024) proposes a quantum self attention mech-
anism to solve the problem that the existing quantum machine learning model lacks self attention
ability when processing high-dimensional data. In addition, quantum algorithms for learning quan-
tum data have increasingly garnered attention in recent years. (See (Anshu & Arunachalam, 2023)
and references therein.) Conversely, QML algorithms can also inspire breakthroughs in classical
ML algorithms. QMSAN enhances self attention mechanisms in natural language processing tasks
through quantum computing (Chen et al., 2025). This was notably illustrated by Tang’s algorithm
for the recommendation system (Tang, 2019). Since then, a long list of quantum-inspired (or so-
called “de-quantized”) algorithms have been proposed for tackling various tasks, such as principal
component analysis (Tang, 2018), low-rank approximation (Gilyén et al., 2018; Chia et al., 2020),
linear regression (Gilyén et al., 2020), etc.

Roadmap We have organized our paper as follows. In Section 3, we introduce the notations and
present some basic mathematical tools used throughout the paper. In Section 4, we introduce some
technical tools for error analysis of our algorithms. In Section 5, we introduce our quantum algo-
rithm for approximating the attention matrix. Our main result about quantum attention computation
in inference is presented in Section 6. In Section 7, we introduce a classical algorithm where the
sparsity matrix is constructed using the half-space reporting data structure. Additionally, a detailed
examination of the fine-grained hardness result pertaining to the computation of large entries in
QK⊤ is included in Section 8. In Section 9, we provide the conclusion of our paper.

3 PRELIMINARY

3.1 NOTATIONS

For any matrix A, we denote the spectral norm of A as ∥A∥, where ∥A∥ := max∥x∥2=1 ∥Ax∥2.
The Frobenius norm of A is denoted as ∥A∥F , and the infinity norm is denoted as ∥A∥∞. In this
notation, Ai,j represents the element in the i-th row and j-th column of matrix A. The determinant
of matrix A is represented as det(A). For a square and symmetric matrix A ∈ Rn×n, we say that A
is positive semi-definite (A ⪰ 0) if for all vectors x ∈ Rn, we have x⊤Ax ≥ 0.

3.2 GROVER’S SEARCH

We state a well-known result about the quadratic quantum speedup for the unstructured search using
Grover’s search algorithm.
Theorem 3.1 (Grover’s search algorithm (Grover, 1996)). Given access to the evaluation oracle
for an unknown function f : [n] → {0, 1}. Let f−1(1) := {i ∈ [n] | f(i) = 1}. Suppose that
|f−1(1)| = k for some unknown number k ≤ n. Then,

• Part 1. We can find all i’s in f−1(1) in Õ(
√
nk)-time quantumly given an evaluation oracle

for f .

• Part 2. If each evaluation of f requires T time, then we can find all i’s in f−1(1) in
Õ(
√
nk) · T time.

4 SPARSITY AND PERTURBATION ERROR

In this section, we conduct an error analysis on attention computation without V using the approx-
imated attention matrix B, which will be useful for both quantum and classical algorithms. To
achieve this, we present some definitions regarding the sparse approximation in Section 4.1. Sec-
tion 4.2 provides some perturbation analysis tools. The main result concerning the error analysis

5
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of attention computation without V is then presented in Section 4.3. The proofs are deferred to
Appendix C.

4.1 SPARSITY DEFINITIONS

Before presenting our method, we introduce a find set. This find set is based on our assumption of
sparsity about (τ, k)−good matrix A, which is further described below.

Definition 4.1 (Find Set). Let Q ∈ Rn×d,K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1.
Given i ∈ [n], the find set is defined as follows:

Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

Definition 4.2. Let A be a (τ, k)-good matrix defined in Definition 1.1 and Si be defined in Defini-
tion 4.1. We define a k-sparse vector Bi,∗ such that |Si| = k, for each j ∈ Si, Bi,j = Ai,j , and for
each j /∈ Si, Bi,j = 1.

The following lemma shows some point-wise approximation guarantees by the sparsity conditions.

Lemma 4.3. If the following conditions hold: For each i ∈ [n], −η ≤ (QK⊤)i,j ≤ 0, for j /∈ Si.
Let τ ≥ 2 log n. Let A be defined in Definition 1.1 and B be defined in Definition 4.2. Then we
have: Part 1. |Ai,j − Bi,j | ≤ 2η for j /∈ Si. Part 2. |Ai,j − Bi,j | = 0 for j ∈ Si. Part 3.
|(A1n)i − (B1n)i| ≤ 2nη. Part 4. (A1n)i ≥ k · exp(τ) ≥ 2n. Part 5. |(A1n)i − (B1n)i| ≤
η · |(A1n)i|.

4.2 PERTURBATION TOOLS

In this section, we provide an error analysis of our sparse attention matrix approximation. We will
begin by examining the error control of each element, followed by an analysis of the error in the
matrix computation.

Lemma 4.4. Let D and A be defined in Definition 1.1. Let B be defined in Definition 4.2. For
i ∈ [n] and j ∈ [n], it follows that

• Part 1. |D(A)i,i −D(B)i,i| ≤ η · |D(B)|i,i

• Part 2. |D(A)i,i −D(B)i,i| ≤ η · |D(A)|i,i.

• Part 3. |Ai,j −Bi,j | ≤ 2 · η.

4.3 RECONSTRUCTION ERROR WITHOUT HAVING V

We bound the error of D−1(A)A now. Later, we will use this to bound the error for D−1(A)AV .

Lemma 4.5. Let D and A be defined in Definition 1.1. Let B be defined in Definition 4.2.

Then it follows that ∥D(A)−1A−D(B)−1B∥∞ = O(η).

5 QUANTUM ALGORITHM FOR ATTENTION MATRIX APPROXIMATION

In this section, we introduce our quantum algorithm for approximately computing the attention
matrix (see Definition 1.1) in Section 5.1 and show its time complexity and approximation guarantee.
Then, we prove our first main result (Theorem 1.3) in Section A.

5.1 QUANTUM ATTENTION MATRIX APPROXIMATION ALGORITHM

In this section, we provide the pseudocode of our quantum algorithm in Algorithm 1 and analyze its
time complexity and approximation guarantee. The proofs are deferred to Section D.

6
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Algorithm 1 Sparse Matrix Construction (Grover’s Search)

1: procedure SPARSEATTENTIONMATRIXQUANTUM(Q ∈ Rn×d,K ∈ Rn×d)
2: for i ∈ [n] do
3: Find all index j using Grover’s Search where (QK⊤)i,j ≥ τ ▷ Theorem 3.1
4: Add all indexes to finding set Si

5: for j ∈ Si do
6: Bi,j ← exp(Qi,∗(Kj,∗)

⊤)
7: end for
8: end for
9: return B

10: end procedure

The following lemma shows the time complexity of Algorithm 1.
Lemma 5.1. For each i ∈ [n], |{j ∈ [n] | (QK⊤)i,j ≥ τ}| ≤ k, and for all j ∈ [n], (QK⊤)i,j ≤ 0
or (QK⊤)i,j ≥ τ . Let A = exp(QK⊤). Then we have

• Part 1. For each i ∈ [n], Algorithm 1 takes Õ(
√
nkd) time to find set

Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

• Part 2. For each i ∈ [n], Algorithm 1 takes Õ(
√
nkd+kd) time to output a k-sparse vector

Bi,∗ such that for each j ∈ Si, Bi,j = Ai,j and for each j /∈ Si, Bi,j = 0.

The following lemma proves the approximation guarantee.
Lemma 5.2. Let B be the output of Algorithm 1 and D(B) := diag(B1n). Let A,D and V be
defined in Definition 1.1. Let ∥V ∥∞ ≤ η. Then, we have

∥D(A)−1AV −D(B)−1BV ∥∞ ≤ O(η2).

6 QUANTUM ATTENTION COMPUTATION

Based on the quantum algorithm for approximating the attention matrix, we will now show that it
can improve the efficiency of the inference stage.
Theorem 6.1 (Faster algorithm for LLM inference, formal version of Theorem 1.4). Let Si be de-
fined in Definition 4.1, Q,K,V be defined in Definition 1.1, and −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si

and i ∈ [n]. Let B be the output of Algorithm 1. Then, there is a quantum algorithm that uses
Õ(n1.5k0.5d + nkd) time in inference to achieve one attention matrix computation (See Defini-
tion 1.1) such that the output Ãtt satisfies:

∥Att(Q,K, V )− Ãtt∥∞ ≤ O(η2).

Due to space constraints, the detailed proof is deferred to Appendix E.

Algorithm 2 Algorithm for Attention Computation

1: procedure SPARSEATTENTIONCOMPUTATION(B ∈ Rn×n,V ∈ Rn×d) ▷ Lemma 6.2
2: D ← diag(B1n)
3: return D−1BV
4: end procedure

Lemma 6.2. Let Q ∈ Rn×d,K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1. Let A be
defined in Definition 1.1. Let B be the output of Lemma 5.1. Let M be a matrix where all entries
are equal to 1. For each i ∈ [n], |{j ∈ [n] | (QK⊤)i,j ≥ τ}| ≤ k. There exists an algorithm (See
Algorithm 2) such that

• Part 1. It outputs D(B)−1BV .

7
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• Part 2. Its computational time complexity is O(nkd).

Because of the limited space, we move the proof to Section E.

7 CLASSICAL ALGORITHM FOR ATTENTION MATRIX APPROXIMATION

In this section, we introduce a classical method for generating a sparse matrix with the (τ, k) as-
sumption in constant dimension. Utilizing the Half-Space Reporting Data Structure (refer to Defi-
nition 7.1), we can efficiently identify the indices where (QK⊤)i,∗ ≥ τ is satisfied.

The definition of the problem of the half-space range reporting is given first, which is important
in the field of computational geometry. The data structure is proposed in (Afshani & Chan, 2009)
whose functions are outlined in Algorithm 4 and complexity is given in Theorem 7.2.

Definition 7.1 (Half-space range reporting). For a set of m points P ⊆ Rd, two operations are
supported:

• INIT(P ): initialize the data structure with points in P .

• QUERY(W ): find each point in P ∩W with W ⊂ Rd as a half-space.

Algorithm 3 Data Structure For Half Space Reporting

1: data structure
2: INIT(P, n, d) ▷ Construct our data structure via P ⊆ Rd, |P | = n
3: QUERY(b, c) ▷ b, c ∈ Rd. Find all the points z ∈ P which satisfies sgn(⟨b, z⟩ − c) ≥ 0
4: end data structure

Theorem 7.2 ((Afshani & Chan, 2009)). For n ∈ N and constant d ∈ N, there exists a classical
data structure using O(n) space to solve the d-dimensional half-space reporting problem with n

points with time complexity as: Tinit(n, d) = O(n log n) and Tquery (n, d, k) = Õ(n1−1/⌊d/2⌋ + k),
where TINIT indicates the time to construct the data structure, TQUERY indicates the cost per query,
and k is the output size.

7.1 CLASSICAL SPARSE ATTENTION MATRIX APPROXIMATION

In this section, we will introduce a classic algorithm that is in contrast to the quantum algorithm.
This algorithm is based on the half-space reporting data structure, which was previously introduced.
In this setting, we will address our problem by considering each vector (QK⊤)i,∗ for i ∈ [n]. The
vectors in Q, denoted as P in Definition 7.1, have a dimension of d. Additionally, we will set b as
each vector in K for i ∈ [n] and set c as τ . Now, let us proceed to describe our method.

Algorithm 4 Sparse Matrix Construction (Half Space Reporting)

1: Members:
2: -Half Space Reporting Data Structure:M ▷ Definition 7.1
3: procedure SPARSITYATTENTIONMATRIX(Q ∈ Rn×d,K ∈ Rn×d) ▷ Lemma 7.3
4: M.INIT(Q,n, d)
5: for i ∈ [n] do
6: b← Ki,∗
7: Si ←M.QUERY(b, τ)
8: for j ∈ Si do
9: Bi,j ← exp(Qi,∗(Kj,∗)

⊤)
10: end for
11: end for
12: return B
13: end procedure
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Lemma 7.3. Let M be the data structure defined in Definition 7.1. For each i ∈ [n], |{j ∈
[n] | (QK⊤)i,j ≥ τ}| ≤ k. For each i ∈ [n], for all j ∈ [n] (QK⊤)i,j ≤ 0 or (QK⊤)i,j ≥ τ and
A = exp(QK⊤). Then we have

• Part 1. There is an algorithm (See Algorithm 4) based onM that takes O(n log n + nk)
time to find all the set for each i ∈ [n] Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

• Part 2. It takes Õ(n2−1/⌊d/2⌋ + nk) time to output a (τ, k)-sparse matrix B.

Because of the limited space, we move the proof to Section F.

Remark 7.4. Our classical algorithm (Algorithm 4) is nearly optimal as shown by an n2−o(1) time
complexity lower bound in Section 8.

8 CLASSICAL FINE-GRAINED LOWER BOUND

In this section, we prove the following fine-grained hardness result for computing the large entries
of QK⊤, assuming it is (τ, k)-good. It follows from a reduction to the Maximum Inner-Product
Problem (Max-IP):
Definition 8.1 (Maximum Inner-Product problem (Max-IP)). For n, d ∈ N, given two sets A,B of
n vectors in {0, 1}d, compute Max-IP(A,B) = maxa∈A,b∈B ⟨a, b⟩.

Chen (Chen, 2020) proved the following fine-grained lower bound for Max-IP assuming Strong
Exponential-Time Hypothesis (SETH):
Theorem 8.2 ((Chen, 2020)). Assuming SETH, there is a constant c such that any exact algorithm
for Max-IP in dimension d = clog

∗n requires n2−o(1)-time.

Then, we prove the following hardness result for attention matrix approximation:
Lemma 8.3. For any n, d ∈ N, k ≤ n, τ ∈ R, suppose Q,K ∈ Rn×d satisfy that (QK⊤)i,∗
contains at most k entries greater than τ for any i ∈ [n]. Then, any classical algorithm that
can output all the entries in QK⊤ with values greater than τ must take n2−o(1)-time, even for
d = 2O(log∗ n).

Owing to limited space, we provide the complete derivation in Appendix G.

9 CONCLUSION

In this work, we presented a novel quantum algorithm for efficiently computing the attention mecha-
nism in large language models (LLMs) under a sparse assumption on the attention matrix. Leverag-
ing Grover’s Search, our method attains a polynomial speed-up over classical algorithms while pre-
serving rigorous approximation guarantees. Specifically, we showed how to identify and exploit the
sparsity of the matrix QK⊤ so that each row has at most k entries above a threshold τ . This approach
reduces the time to construct an approximate attention matrix from O(n2d) to Õ(n1.5

√
kd+ nkd).

Furthermore, the sparse-plus-rank-one decomposition underlying our approximation enables fast
inference by limiting the number of significant components that must be computed, thus lowering
computational overhead without substantially compromising accuracy. We corroborated the effec-
tiveness of our method through a detailed error analysis, showing that the resulting inference outputs
closely align with those obtained by the exact attention computation.

Our results pave the way for several lines of future research. First, the low-rank structure of the
quantum-generated attention matrix opens opportunities for integrating other advanced quantum
subroutines, potentially offering further enhancements to both training and inference stages. Sec-
ond, while our theoretical analysis primarily covers the inference phase, exploring quantum-friendly
optimizations during model training, fine-tuning, or continual learning represents a rich direction for
extending this work. Finally, investigating the interplay between attention sparsity and more sophis-
ticated quantum data access models, such as QRAM designs—could inspire additional improve-
ments in runtime and memory usage. Overall, these directions highlight the potential to broaden the
scope and impact of quantum algorithms within large-scale natural language processing and beyond.
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Appendix
Roadmap In the appendix, we have deferred the inclusion of proofs that were omitted in the main
paper. Specifically, in Section A, we provide the missing proof of Theorem 1.3, in Section B, we
prove the Theorem 1.5, in Section C, we furnish the proof that was initially omitted in Section 4,
thereby concluding the proof of Lemma 4.3 and Lemma 4.4. Moving forward, Section D contains
the proof for Lemma 5.1 and the proof for Lemma 5.2. In Section E, we provide the omitted proof
of Lemma 6.2. In Section F, we provide the omitted proof of Lemma 7.3. In Section G, we provide
the omitted proof of Lemma 8.3.

A PROOF OF THEOREM 1.3

Proof of Theorem 1.3. Proof of Part 1. Based on Lemma 6.2, we can conclude that matrix B can
be divided into two parts. Let B2 be a matrix where all values are equal to 1. It’s easy to see that this
matrix is rank-1. We define B1 := B − B2. Now, we need to demonstrate that B1 is k-row sparse.
According to the (τ, k) assumption in Definition 1.2, we can ensure that each row of the matrix has
k elements with a value of 1. This is due to the fact that exp(0) = 1, and QK⊤ is a k-sparse matrix.
Consequently, each row of B1 contains k zero elements. Therefore, B1 is k-row sparse. The proof
of Part 1 is complete now.

Proof of Part 2.

This result can be derived directly from Lemma 5.2.

Proof of Part 3.

According to Lemma 5.1, for each i ∈ [n], we can obtain a k-sparse vector Bi,∗ in Õ(
√
nkd+ kd),

which leads to a time complexity of Õ(n(
√
nkd+ kd)). The proof is now complete.

B PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Proof of Part 1. Based on Lemma 6.2, we can conclude that matrix B can
be divided into two parts. Let B2 be a matrix where all values are equal to 1. It’s easy to see that this
matrix is rank-1. We define B1 := B − B2. Now, we need to demonstrate that B1 is k-row sparse.
According to the (τ, k) assumption in Definition 1.2, we can ensure that each row of the matrix has
k elements with a value of 1. This is due to the fact that exp(0) = 1, and QK⊤ is a k-sparse matrix.
Consequently, each row of B1 contains k zero elements. Therefore, B1 is k-row sparse.

Proof of Part 2. This result can be derived directly from Lemma 5.2, since the output of the classical
algorithm is exactly the same as the quantum algorithm.

Proof of Part 3. It directly follows from Lemma 7.3.

C OMITTED PROOFS IN SECTION 4

In this section, we provide proofs for the results in Section 4.

Proof of Lemma 4.3. The error analysis based on matrices A and B is proved as follows.

Proof of Part 1. It follows that

|Ai,j −Bi,j | = |Ai,j − 1|
≤ | exp(−η)− 1|
≤ 2η (1)

where the first step follows from Definition 4.1, the second step is due to Condition 1 in the statement
and the third step is based on simple algebra.
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Proof of Part 2. For j ∈ Si, we have

Ai,j = Bi,j . (2)

It simply follows that

|Ai,j −Bi,j | = 0.

Proof of Part 3. For i ∈ [n], we have

|(A1n)i − (B1n)i| ≤
n∑

j=1

|Ai,j −Bi,j |

≤
n∑

j=1

2η

≤ 2nη (3)

where the first step follows from triangle inequality, the second step is based on Eq.(1) and Eq.(2)
and the third step follows from simple algebra.

Proof of Part 4. For i ∈ [n], we have

(A1n)i =
∑
j∈Si

Ai,j +
∑
j /∈Si

Ai,j

≥
∑
j∈Si

Ai,j

≥
∑
j∈Si

exp(τ)

≥ k · exp(τ)
≥ 2n (4)

where the first step is based on simple algebra, the second step follows from simple algebra, the
third step is from Definition 4.1, the forth step is based on the satisfied number, and the last step is
from Condition 1 in the statement.

Proof of Part 5. For i ∈ [n], we have

|(A1n)i − (B1n)i| ≤ 2nη ≤ η · |(A1n)i|

where the first step follows from Eq.(3) and the second step is from Eq.(4).

Proof of Lemma 4.4. We proof each part below.

Proof of Part 1. We have

|D(A)i,i −D(B)i,i| ≤ |(A1n)i − (B1n)i|
≤ η · |(A1n)i|
≤ η · |D(A)|i,i

where the first step is from Definition 1.1, the second step is based on Part 5 of Lemma 4.3 and the
third step is based on Definition 1.1.

Proof of Part 2. The error analysis for this part follows a similar approach as in Part 1. Due to its
similarity, we will omit the details here.
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Proof of Part 3. Based on Part 1. of Lemma 4.3, for j /∈ Si, we have |Ai,j − Bi,j | ≤ 2η. Based
on Part 2. of Lemma 4.3, for j ∈ Si, |Ai,j − Bi,j | = 0. Furthermore, taking into account the
aforementioned findings, we can conclude that |Ai,j −Bi,j | ≤ 2η.

Proof of Lemma 4.5. We first decompose the difference into

∥D(A)−1A−D(B)−1B∥∞
≤ ∥D(A)−1A−D(B)−1A∥∞ + ∥D(B)−1A−D(B)−1B∥∞
= F1 + F2. (5)

Now, we will provide the upper bounds for F1 and F2, respectively. We have

F1 = ∥D(A)−1A−D(B)−1A∥∞
= max

i∈[n],j∈[n]
{|(D(A)−1A−D(B)−1A)i,j |}

= max
i∈[n],j∈[n]

{|Ai,j(D(A)−1
i,i −D(B)−1

i,i )|}

≤ max
i∈[n],j∈[n]

{|Ai,j | · |
D(A)i,i −D(B)i,i
D(A)i,iD(B)i,i

|}

≤ max
i∈[n],j∈[n]

{| ηD(B)i,i
D(A)i,iD(B)i,i

| · |Ai,j |}

= η · max
i∈[n],j∈[n]

{|D(A)−1
i,i | · |Ai,j |}

≤ η (6)

where the first step follows from the definition of F1, the second step is also based on the definition of
infinity norm, the third step is due to simple algebra, the fourth step comes from triangle inequality,
the fifth step is because of Part 1. of Theorem 4.4, the sixth step is due to simple algebra and the
last step is due to Definition 1.1.

We have

F2 = ∥D(B)−1A−D(B)−1B∥∞
= max

i∈[n],j∈[n]
{|(D(B)−1A−D(B)−1B)i,j |}

= max
i∈[n],j∈[n]

{|D(B)−1
i,i | · |A−B|i,j}

≤ 2η · max
i∈[n],j∈[n]

{|D(B)−1
i,i |}

≤ 2η (7)

where the first step comes from the definition, the second step is because of the definition of infinity
form, the third step follows from simple algebra, and the last step is from Part 4 of Lemma 4.3.

By combining the aforementioned findings and conclusions, we can establish the following result.

∥D(A)−1A−D(B)−1B∥∞
= F1 + F2

= O(η)

where the first step follows from Eq. (5) and the second step follows from Eq. (6) and Eq. (7).

D OMITTED PROOFS IN SECTION 5

Proof of Lemma 5.1. Proof of Part 1. For i ∈ [n], we will focus on a vector (QK⊤)i,∗.

Given that j ∈ [d], we define u(j) such that

• u(j) = 1 if (QK⊤)i,j > τ

17
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• u(j) = 0 else.

According to Part 2 of Theorem 3.1, we can use quantum algorithms to efficiently locate all elements
j ∈ [n] for which u(j) = 1.

Give that we compute u(j) in O(d), the time complexity of the quantum algorithm is Õ(
√
nkd).

Proof of Part 2.

Based on the proof above, we will output a sparse vector Bi,∗ here. The time complexity of compute
the sparse vector can be divided into two parts. One is to find the satisfied element in Õ(

√
nkd),

which has been proven above.

Given that k represents the upper bound on the number of satisfied elements, the matrix computation
specifically targets those satisfied elements, resulting in a time complexity of O(kd).

The proof is now complete.

Proof of Lemma 5.2. We have
∥D(A)−1AV −D(B)−1BV ∥∞
≤ ∥D(A)−1BV −D(B)−1BV ∥∞
+ ∥D(A)−1BV −D(A)−1AV ∥∞.

For each (i, j) ∈ [n]× [d], Based on Lemma 4.5, we have
|(D(A)−1BV −D(B)−1BV )i,j |

= |
n∑

l=1

(D(B)−1
i,i −D(A)−1

i,i ) ·Bi,l · Vl,j |

≤
n∑

l=1

|(D(B)−1
i,i −D(A)−1

i,i ) ·Bi,l| · ∥V ∥∞

≤
n∑

l=1

|D(B)i,i −D(A)i,i
D(B)i,iD(A)i,i

Bi,l| · ∥V ∥∞

≤ η ·
n∑

l=1

|D(B)−1
i Bi,l| · ∥V ∥∞

= η · |
n∑

l=1

D(B)−1
i Bi,l| · ∥V ∥∞

= η · ∥V ∥∞
= O(η2) (8)

where the first step follows from simple algebra, the second step is based on the definition of infinity
norm, the third step is because of simple algebra, the forth step is from Lemma 4.4, the fifth step is
because of Definition 1.1, the sixth step is based on Definition 1.1, and the last step is because of
∥V ∥∞ ≤ η.

For each (i, j) ∈ [n]× [d], we have

|(D(A)−1BV −D(A)−1AV )i,j | = |
n∑

l=1

(D(A)−1
i,i (Bi,l −Ai,l) · Vl,j |

≤
n∑

l=1

|(D(A)−1
i,i | · |(Bi,l −Ai,l)| · ∥V ∥∞

= O(η2) (9)
where the first step is based on simple algebra, the second step is because of triangle inequality, and
the last step is based on ∥V ∥∞.

The proof is enhanced by combining Eq. (8) and Eq. (9).
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E OMITTED PROOFS IN SECTION 6

proof of Theorem 6.1. The matrix B serves as an approximation matrix for the output of Algo-
rithm 1. The inference process, which relies on the sparsity matrix, is outlined in Algorithm 2.

To analyze the time complexity of the inference stage, we can break it down into two main parts:

Construction of matrix B: As shown in Lemma 5.1, the time complexity for constructing matrix
B is approximately Õ(n

√
nkd).

Inference with sparsity matrix: Given the sparsity matrix, as per Lemma 6.2, the time complexity
for the inference step is O(nkd). Hence, the overall time complexity for this quantum algorithm in
the inference stage is Õ(n1.5k0.5d + nkd). With this, we conclude our time complexity analysis.
Additionally, based on Lemma 5.2, we can have the following inequality:

∥D(A)−1AV −D(B)−1BV ∥∞ ≤ O(η2).

The theorem is then proved.

Proof of Lemma 6.2. The computation can be divided into two parts

• Part 1. D(B)−1MV .

• Part 2. D(B)−1(B −M)V .

Time Complexity of Part 1. It will take O(nd) to compute MV . And then, the time complexity
of the following step D(B)−1MV is O(nd). The time complexity of the first step is O(nd).

Time Complexity of Part 2. We define

C := (B −M).

According to statement, for each i ∈ [n], we have

{j ∈ [n] | Ci,j ̸= 0}| ≤ k.

It will take O(nkd) to compute CV︸︷︷︸
n×d

.

And D(B)−1CV will take O(nd). The second part will need O(nkd).

By combining the conclusions above, the time complexity is O(nkd+ nd) = O(nkd).

F OMITTED PROOFS IN SECTION 7

Proof of Lemma 7.3. At the beginning of the algorithm, we will first initialize M using
M.INIT(B,n, d), which has a time complexity of O(n log n).

Proof of Part 1. And then, we will query Ki, usingM.QUERY(Ki,∗, τ) for each i ∈ [n], which
has a time complexity of Õ(n2−1/⌊d/2⌋ + nk) in total.

Proof of Part 2. It will take Õ(n log n + nk + n2−1/⌊d/2⌋) = Õ(nk + n2−1/⌊d/2⌋) time to
identify the satisfied elements as mentioned above. The matrix is specifically designed to target
these satisfied elements, and the remaining steps can be done in a time complexity of O(nkd). The
proof is now complete.

G OMITTED PROOFS IN SECTION 8

Proof of Lemma 8.2. We prove a hardness result for an easier task: deciding whether there is at least
one entry in QK⊤ greater than τ .
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Suppose there exists a classical algorithm that solves this problem in n2−ϵ-time. Let A,B ⊂ Rd be
an instance of Max-IP. We construct matrices Q and K using vectors from A and B, respectively.
Then, we do a binary search for Max-IP(A,B). For each candidate value τ , we run the classical
algorithm to decide whether there exists an entry with a value greater than τ . Note that the binary
search takes O(log n) rounds. Hence, Max-IP can be solved in n2−ϵ · log n < n2−o(1) time, which
contradicts the lower bound in Theorem 8.2.

Therefore, no classical algorithm can find all the large entries in QK⊤ in n2−Ω(1)-time.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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