
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUANTUM ATTENTION: FAST ALGORITHMS FOR
SCALABLE COMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have revolutionized both academia and industry
by leveraging attention mechanisms to achieve exceptional performance across
diverse tasks. However, the quadratic complexity of attention mechanisms with
respect to the input context length poses a significant challenge for scaling LLMs.
Quantum computing offers computational advantages over classical methods, yet
its application to LLMs remains unexplored. In this work, we employ Grover’s
Search, a fundamental quantum algorithm, to efficiently compute sparse attention
matrices, achieving a polynomial speed-up compared to classical approaches. Ad-
ditionally, the quantum-generated attention matrices exhibit a low-rank structure,
which can be leveraged to develop faster training algorithms for LLMs. We pro-
vide a comprehensive analysis of the algorithm’s error rates and time complexity,
demonstrating its potential to accelerate LLM computations while maintaining ac-
curacy. Our findings indicate that quantum computing offers a promising pathway
for optimizing the performance and scalability of large language models.

1 INTRODUCTION

LLMs (Large Language Models) (Sag, 2018; Vyas et al., 2023; Kirchenbauer et al., 2023; Epasto
et al., 2023) have gained significant attention from numerous researchers in recent years. The suc-
cess of models like OPT (Zhang et al., 2022), PaLM (Chowdhery et al., 2022), GPT-3 (Brown et al.,
2020), Transformer (Vaswani et al., 2017), and BERT (Devlin et al., 2018) has showcased the im-
mense potential of LLMs in various applications across different domains.

The impact of LLMs is far-reaching. They have revolutionized natural language processing tasks
such as machine translation (He et al., 2021), sentiment analysis (Usama et al., 2020), question
answering (Brown et al., 2020; OpenAI, 2023), text summarization, and more. LLMs excel at cap-
turing intricate language patterns, understanding context, and generating coherent and contextually
relevant text (OpenAI, 2023).

The success of Transformer (Vaswani et al., 2017) heavily relies on the multi-head attention algo-
rithm, which plays a crucial role in the computation of LLM models. Models like GPT (Brown et al.,
2020; OpenAI, 2023) have achieved remarkable success by employing a large number of parameters
and leveraging vast amounts of data, which holds great potential for future advancements. However,
this approach raises concerns about the computational running time, necessitating the development
of more efficient algorithms (Brand et al., 2023; Zandieh et al., 2023; Alman & Song, 2023). In
this regard, the emergence of quantum algorithms (Grover, 1996; Shor, 1999; Harrow et al., 2009)
provides a new perspective for addressing this problem.

To demonstrate our design, we will begin by introducing the attention matrix and its classical com-
putation. The attention matrix is a square matrix whose rows and columns are indexed by tokens
(i.e., words), and each entry stores the correlation between the corresponding tokens. Based on an
attention matrix, the importance of each input token in a sequence can be derived, which is used to
generate an output. Specifically, within an attention mechanism, every input token (or query token)
receives a score representing its relevance to the current output token (or key token) being produced.
These scores are computed by comparing the current output state with the input states via a similarity
function.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The formal definition of the attention matrix is as follows. Let Q ∈ Rn×d be the matrix of n query
tokens and K ∈ Rn×d be the matrix of n key tokens, where each token is represented by a d-
dimensional vector. The attention matrix A is an n-by-n matrix whose (i, j)-th entry is the attention
score between the i-th query token Qi and the j-th key token Kj . The self-attention score of the
i-th query token is defined as the sum of its attention scores for all key tokens (i.e.,

∑n
j=1 Aij),

which quantify the significance of each token in relation to itself. Let D ∈ Rn×n be a diagonal
matrix storing all the self-attention scores, and let V ∈ Rn×d be the value matrix that contains value
vectors associated with the key tokens. The goal of each attention computation is to compute Att,
which is a matrix function of Q, K, and V , defined as follows.

Definition 1.1. Given matrix Q ∈ Rn×d, K ∈ Rn×d, V ∈ Rn×d, the goal of attention computation
is to compute

Att(Q,K, V) := D−1AV

where A ∈ Rn×n and D ∈ Rn×n is a diagonal matrix A = exp(QK⊤), D = diag(A1n). Here,
exp(·) is applied to each entry of QK⊤, and 1n is a length-n vector where all the entries are ones.

We note that the straightforward classical implementation of computing the above attention matrix
takes O(n2d)-time. In spite of the success of attention mechanisms in many fields (Kitaev et al.,
2020; Daras et al., 2020; Roy et al., 2021; Choromanski et al., 2020; Katharopoulos et al., 2020;
Wang et al., 2020), such an expensive runtime hinders their full potential. Meanwhile, the phe-
nomenon of attention sparsity has been widely discussed by many researchers (Kitaev et al., 2020;
Child et al., 2019; Jaszczur et al., 2021; Chen et al., 2021; Zhang et al., 2023). Therefore, it is natural
to leverage the sparsity of matrices to accelerate the computation process. In this paper, we present
an approximately sparse assumption on matrix A: each row of the matrix QK⊤ contains at most k
elements greater than τ (see Definition 1.2). This assumption is based on a phenomenon observed
in LLM literature (Zhang et al., 2023). We remark that even with this sparsity assumption, any
classical algorithm that can output all of these large entries in QK⊤ for general k and τ still needs
n2−o(1)-time unless the Strong Exponential Time Hypothesis (SETH) is false (see Lemma 8.3).

To accelerate the computation of the attention matrix of LLMs through the construction of a sparse
attention matrix, we use a renowned quantum algorithm: Grover’s search algorithm (Grover, 1996).
It offers a quadratic speedup in the unstructured search problem when compared to classical com-
putation. More specifically, our primary focus is to locating the values larger than τ in the vector
(QK⊤)i,∗ ∈ Rn, where Q ∈ Rn×d and K ∈ Rn×d are defined in Definition 1.1. It can be reduced
to a search problem, where the query oracle Oi is defined as:

Oi|j, 0⟩ := |j, b⟩, b =

{
1 if (QK⊤)i,j ≥ τ,

0 otherwise
∀j ∈ [n].

By the sparsity assumption, for each i ∈ [n], there are at most k indices j such thatOi|j, 0⟩ := |j, 1⟩.
Thus, if we run Grover’s algorithm with the query oracle Oi, it will find all of those indices with
query complexity Õ(

√
nk)1 (see Theorem 3.1). Note that each query to the oracle Oi costs O(d)-

time to evaluate the inner-product (assuming the data are stored in QRAM). Hence, each row of
QK⊤ can be approximately computed in Õ(

√
nkd)-time, and all the large entries of QK⊤ can be

computed in Õ(n1.5k0.5d)-time (see Theorem 1.3).

In addition to the quantum algorithm, we also introduce a classical approach for constructing the
sparse matrix based on some computational geometric data structures. This method is described in
Theorem 1.5.

1.1 OUR RESULTS

Based on the aforementioned analysis, we obtain a quantum algorithm to efficiently output a sparse
attention matrix. The main result of this paper is presented in this section.

We first introduce the definition of a matrix, which characterizes the sparsity pattern in the attention
matrix. Intuitively, this definition is an analogue of soft sparsity (see e.g. (Kusupati et al., 2020)).

1We use Õ(f(n)) to denote O(f(n) · poly log(f(n))).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 1.2. Let A = exp(QK⊤) ∈ Rn×n be defined in Definition 1.1 and we say A is a
(τ, k)-good matrix if for all i ∈ [n], Si := {j ∈ [n] | (QK⊤)i,j ≥ τ} and |Si| ≤ k.

The following theorem shows a quantum algorithm that can efficiently compute an approximation
B of a (τ, k)-good attention matrix A. In particular, B can be represented as a sparse matrix plus a
rank-one matrix, which is very helpful for LLM computations.
Theorem 1.3 (Quantum algorithm for attention matrix approximation). Let A ∈ Rn×n, Q ∈
Rn×d,K ∈ Rn×d and D ∈ Rn×n be defined as in Definition 1.1. If the following conditions
hold

• A is a (τ, k)-good matrix (Definition 1.2) for some τ ≥ 2 log n and k ∈ [n].

• for each i ∈ [n] and each j ∈ [n], −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si for some η ∈ R+.

Then, there exists a quantum algorithm (implicitly) outputting a matrix B ∈ Rn×n such that

• Part 1. B = B1 +B2, where B1 is k-row sparse2 and B2 is rank-1.

• Part 2. ∥D(A)−1A−D(B)−1B∥∞ = O(η).

• Part 3. it runs in Õ(n · (
√
nkd+ kd)) time.

The proof of Theorem 1.3 is in Section A. In the following, we discuss how the structure of the ap-
proximated attention matrix B improves the efficiency of large language models during the inference
stage. More specifically, by employing our quantum algorithm (Theorem 1.3) as a sub-routine, we
achieve the following result that provides a polynomial speedup compared to the classical O(n2d)-
time approach.

Theorem 1.4 (Informal version of Theorem 6.1). There is an algorithm that takes Õ(n1.5k0.5d +
nkd) time to achieve one attention matrix computation in inference.

In addition to the quantum method, we also provide a classical algorithm to compute the attention
matrix that is still faster than the traditional approach in constant dimension (i.e., d = O(1)). The
key observation is that the quantum part (Grover’s search) of our algorithm in Theorem 1.3 can be
replaced by a computational geometry data structure, at the cost of increased time complexity.
Theorem 1.5 (Classical algorithm for attention matrix approximation). If the following conditions
hold: (1) A is a (τ, k)-good matrix (Definition 1.2) for some τ ≥ 2 log n and k ∈ [n]. (2) For each
i ∈ [n] and each j ∈ [n], −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si for some η ∈ R+. Then there exists a
classic algorithm outputting a matrix B ∈ Rn×n such that

• Part 1. B = B1 +B2, where B1 is k-row sparse and B2 is rank-1.

• Part 2. ∥D(A)−1A−D(B)−1B∥∞ = O(η).

• Part 3. it runs in Õd(nk + n2−1/⌊d/2⌋) time3.

The proof of Theorem 1.5 is in Section B.

2 RELATED WORK

Attention Computation. Several studies have investigated attention computation (Gao et al.,
2023a; Liu et al., 2023b; Li et al., 2023; Sinha et al., 2023; Brand et al., 2023; Alman & Song,
2023; Deng et al., 2023a; Gao et al., 2023c; Zandieh et al., 2023; Wu et al., 2023; Zhang et al.,
2023). (Brand et al., 2023) specifically focuses on dynamic attention computation and introduces an
update and query method inspired by the lazy update idea. (Zandieh et al., 2023) addresses the issue
of quadratic time and memory complexities in sequence length that arise from the dot-product op-
eration in attention computations. They identify that this problem can be transformed into a kernel

2Each row of the matrix has k non-zero entries.
3Here, Õd(·) hides the logc(n) and poly(d) factors, where c = c(d) is some function in d.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

density estimation (KDE) problem. Their approach, KDEformer, approximates attention in sub-
quadratic time while providing provable spectral norm bounds. (Zhou et al., 2021) uses the sparsity
assumption of attention matrix to propose an O (n log (n)) attention mechanism. (Alman & Song,
2023) focuses on exploring the possibility of faster algorithms by implicitly leveraging the attention
matrix. They provide a theoretical explanation for the observed phenomenon that attention compu-
tation is significantly more efficient when the input matrices have smaller entries. The regression
problem in the field of attention computation has also been widely explored (Gao et al., 2023d;a;
Li et al., 2023). (Deng et al., 2023b) also addresses the sparsification of the attention problem and
presents both randomized and deterministic algorithms. Their work suggests that for feature dimen-
sions that are extremely large, it is possible to reduce them to a size nearly linear in the length of
the sentence. (Deng et al., 2023a) focuses on the softmax regression problem in the field of atten-
tion computation. They provide theoretical support for the practical use of the greedy algorithm to
train the softmax function. (Li et al., 2023; Gao et al., 2023b) explore the application of attention
computation in the context of in-context learning.

Classical fast neural network training algorithms (Kitaev et al., 2020) introduces Reformer,
a method aimed at enhancing the efficiency of transformers. Reformer achieves improved memory
utilization and faster processing for long sequences. This is achieved by replacing the dot-product at-
tention mechanism with one that employs locality-sensitive hashing. Additionally, Reformer utilizes
reversible residual layers instead of the conventional residual layers. (Wang et al., 2020) presents
the approximation of the self-attention mechanism using a low-rank matrix. They leverage this
discovery to propose a novel self-attention mechanism, thereby reducing the overall complexity of
self-attention in terms of both time and space. (Gao et al., 2022) accelerates the adversarial training
procedure by utilizing a sublinear number of activated neurons based on the shifted ReLU activation
function.

Quantum algorithms for training neural networks Prior to this paper, there were several works
using quantum computing to improve neural network training. The most related work is (Song
et al., 2021), which proposes a shifted-ReLU sparsifier to reduce the number of activated neurons
in each training iteration and uses Grover’s search to find them. However, their algorithm and anal-
ysis only work for two-layer, fully connected, over-parameterized neural networks. (Allcock et al.,
2020) and (Kerenidis et al., 2019) use quantum inner-product estimation to speed up the training
of feedforward neural networks and convolutional neural networks, respectively. (Zlokapa et al.,
2021; Liu et al., 2023a) proposes quantum training algorithms with exponential speed-ups based on
the quantum linear system solvers. However, these algorithms rely on certain well-conditioning and
sparsity assumptions, which may not align with real-world neural network architectures. We note
that the key difference between our work and all previous works is that we focus on the Transformer
while previous work mostly works on ReLU neural network and improve the efficiency of attention
computation, demonstrating the potential for quantum advantages in LLMs.

Quantum optimization algorithms Optimization is one of the most promising fields for demon-
strating quantum advantages. The famous HHL algorithm (Harrow et al., 2008) can exponentially
speed up the linear system solver. Jordan’s algorithm (Jordan, 2005) can compute the gradient of a
function using Õ(1) quantum queries to the evaluation oracle. And in convex optimization, to im-
plement the separation oracle using the membership oracle, quantum query complexity is Õ(1) (van
Apeldoorn et al., 2020) while classical query complexity is Ω(n). Other than those exponential quan-
tum advantages, a large number of optimization problems benefit from polynomial quantum speed-
ups, including solving linear programming (LP) and semi-definite programming (SDP) (Brandao &
Svore, 2017; Apeldoorn et al., 2017; Brandão et al., 2019; Apeldoorn & Gilyén, 2019; Kerenidis
& Prakash, 2020; Huang et al., 2022), estimating the volume of convex bodies (Chakrabarti et al.,
2019), log-concave sampling (Childs et al., 2022), stochastic convex optimization (Li & Zhang,
2022), etc. Another big class of quantum algorithms for solving optimization problems is the varia-
tional quantum algorithm (Cerezo et al., 2020), including variational quantum eigensolver (Peruzzo
et al., 2014), QAOA (Farhi et al., 2014), and quantum neural network (Beer et al., 2020). These
algorithms require less amount of quantum resources and are easier to implement in the near future.
However, most of them are heuristic and lack rigorous guarantees of performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Quantum machine learning Quantum machine learning (QML) algorithms have been developed
for a wide array of classical ML tasks, such as clustering (Harrow, 2020), boosting (Arunachalam
& Maity, 2020), support vector machine (Rebentrost et al., 2014), principal component analysis
(Lloyd et al., 2014), statistical query learning (Arunachalam et al., 2020). (Cherrat et al., 2022)
quantizes the classical transformer architecture and explores the potential of quantum computing in
machine learning. (Guo et al., 2024) comes up with a method combining transformer architecture
with fault-tolerant quantum computing. (Shi et al., 2024) proposes a quantum self attention mech-
anism to solve the problem that the existing quantum machine learning model lacks self attention
ability when processing high-dimensional data. In addition, quantum algorithms for learning quan-
tum data have increasingly garnered attention in recent years. (See (Anshu & Arunachalam, 2023)
and references therein.) Conversely, QML algorithms can also inspire breakthroughs in classical
ML algorithms. QMSAN enhances self attention mechanisms in natural language processing tasks
through quantum computing (Chen et al., 2025). This was notably illustrated by Tang’s algorithm
for the recommendation system (Tang, 2019). Since then, a long list of quantum-inspired (or so-
called “de-quantized”) algorithms have been proposed for tackling various tasks, such as principal
component analysis (Tang, 2018), low-rank approximation (Gilyén et al., 2018; Chia et al., 2020),
linear regression (Gilyén et al., 2020), etc.

Roadmap We have organized our paper as follows. In Section 3, we introduce the notations and
present some basic mathematical tools used throughout the paper. In Section 4, we introduce some
technical tools for error analysis of our algorithms. In Section 5, we introduce our quantum algo-
rithm for approximating the attention matrix. Our main result about quantum attention computation
in inference is presented in Section 6. In Section 7, we introduce a classical algorithm where the
sparsity matrix is constructed using the half-space reporting data structure. Additionally, a detailed
examination of the fine-grained hardness result pertaining to the computation of large entries in
QK⊤ is included in Section 8. In Section 9, we provide the conclusion of our paper.

3 PRELIMINARY

3.1 NOTATIONS

For any matrix A, we denote the spectral norm of A as ∥A∥, where ∥A∥ := max∥x∥2=1 ∥Ax∥2.
The Frobenius norm of A is denoted as ∥A∥F , and the infinity norm is denoted as ∥A∥∞. In this
notation, Ai,j represents the element in the i-th row and j-th column of matrix A. The determinant
of matrix A is represented as det(A). For a square and symmetric matrix A ∈ Rn×n, we say that A
is positive semi-definite (A ⪰ 0) if for all vectors x ∈ Rn, we have x⊤Ax ≥ 0.

3.2 GROVER’S SEARCH

We state a well-known result about the quadratic quantum speedup for the unstructured search using
Grover’s search algorithm.
Theorem 3.1 (Grover’s search algorithm (Grover, 1996)). Given access to the evaluation oracle
for an unknown function f : [n] → {0, 1}. Let f−1(1) := {i ∈ [n] | f(i) = 1}. Suppose that
|f−1(1)| = k for some unknown number k ≤ n. Then,

• Part 1. We can find all i’s in f−1(1) in Õ(
√
nk)-time quantumly given an evaluation oracle

for f .

• Part 2. If each evaluation of f requires T time, then we can find all i’s in f−1(1) in
Õ(
√
nk) · T time.

4 SPARSITY AND PERTURBATION ERROR

In this section, we conduct an error analysis on attention computation without V using the approx-
imated attention matrix B, which will be useful for both quantum and classical algorithms. To
achieve this, we present some definitions regarding the sparse approximation in Section 4.1. Sec-
tion 4.2 provides some perturbation analysis tools. The main result concerning the error analysis

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of attention computation without V is then presented in Section 4.3. The proofs are deferred to
Appendix C.

4.1 SPARSITY DEFINITIONS

Before presenting our method, we introduce a find set. This find set is based on our assumption of
sparsity about (τ, k)−good matrix A, which is further described below.

Definition 4.1 (Find Set). Let Q ∈ Rn×d,K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1.
Given i ∈ [n], the find set is defined as follows:

Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

Definition 4.2. Let A be a (τ, k)-good matrix defined in Definition 1.1 and Si be defined in Defini-
tion 4.1. We define a k-sparse vector Bi,∗ such that |Si| = k, for each j ∈ Si, Bi,j = Ai,j , and for
each j /∈ Si, Bi,j = 1.

The following lemma shows some point-wise approximation guarantees by the sparsity conditions.

Lemma 4.3. If the following conditions hold: For each i ∈ [n], −η ≤ (QK⊤)i,j ≤ 0, for j /∈ Si.
Let τ ≥ 2 log n. Let A be defined in Definition 1.1 and B be defined in Definition 4.2. Then we
have: Part 1. |Ai,j − Bi,j | ≤ 2η for j /∈ Si. Part 2. |Ai,j − Bi,j | = 0 for j ∈ Si. Part 3.
|(A1n)i − (B1n)i| ≤ 2nη. Part 4. (A1n)i ≥ k · exp(τ) ≥ 2n. Part 5. |(A1n)i − (B1n)i| ≤
η · |(A1n)i|.

4.2 PERTURBATION TOOLS

In this section, we provide an error analysis of our sparse attention matrix approximation. We will
begin by examining the error control of each element, followed by an analysis of the error in the
matrix computation.

Lemma 4.4. Let D and A be defined in Definition 1.1. Let B be defined in Definition 4.2. For
i ∈ [n] and j ∈ [n], it follows that

• Part 1. |D(A)i,i −D(B)i,i| ≤ η · |D(B)|i,i

• Part 2. |D(A)i,i −D(B)i,i| ≤ η · |D(A)|i,i.

• Part 3. |Ai,j −Bi,j | ≤ 2 · η.

4.3 RECONSTRUCTION ERROR WITHOUT HAVING V

We bound the error of D−1(A)A now. Later, we will use this to bound the error for D−1(A)AV .

Lemma 4.5. Let D and A be defined in Definition 1.1. Let B be defined in Definition 4.2.

Then it follows that ∥D(A)−1A−D(B)−1B∥∞ = O(η).

5 QUANTUM ALGORITHM FOR ATTENTION MATRIX APPROXIMATION

In this section, we introduce our quantum algorithm for approximately computing the attention
matrix (see Definition 1.1) in Section 5.1 and show its time complexity and approximation guarantee.
Then, we prove our first main result (Theorem 1.3) in Section A.

5.1 QUANTUM ATTENTION MATRIX APPROXIMATION ALGORITHM

In this section, we provide the pseudocode of our quantum algorithm in Algorithm 1 and analyze its
time complexity and approximation guarantee. The proofs are deferred to Section D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Sparse Matrix Construction (Grover’s Search)

1: procedure SPARSEATTENTIONMATRIXQUANTUM(Q ∈ Rn×d,K ∈ Rn×d)
2: for i ∈ [n] do
3: Find all index j using Grover’s Search where (QK⊤)i,j ≥ τ ▷ Theorem 3.1
4: Add all indexes to finding set Si

5: for j ∈ Si do
6: Bi,j ← exp(Qi,∗(Kj,∗)

⊤)
7: end for
8: end for
9: return B

10: end procedure

The following lemma shows the time complexity of Algorithm 1.
Lemma 5.1. For each i ∈ [n], |{j ∈ [n] | (QK⊤)i,j ≥ τ}| ≤ k, and for all j ∈ [n], (QK⊤)i,j ≤ 0
or (QK⊤)i,j ≥ τ . Let A = exp(QK⊤). Then we have

• Part 1. For each i ∈ [n], Algorithm 1 takes Õ(
√
nkd) time to find set

Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

• Part 2. For each i ∈ [n], Algorithm 1 takes Õ(
√
nkd+kd) time to output a k-sparse vector

Bi,∗ such that for each j ∈ Si, Bi,j = Ai,j and for each j /∈ Si, Bi,j = 0.

The following lemma proves the approximation guarantee.
Lemma 5.2. Let B be the output of Algorithm 1 and D(B) := diag(B1n). Let A,D and V be
defined in Definition 1.1. Let ∥V ∥∞ ≤ η. Then, we have

∥D(A)−1AV −D(B)−1BV ∥∞ ≤ O(η2).

6 QUANTUM ATTENTION COMPUTATION

Based on the quantum algorithm for approximating the attention matrix, we will now show that it
can improve the efficiency of the inference stage.
Theorem 6.1 (Faster algorithm for LLM inference, formal version of Theorem 1.4). Let Si be de-
fined in Definition 4.1, Q,K,V be defined in Definition 1.1, and −η ≤ (QK⊤)i,j ≤ 0 for j /∈ Si

and i ∈ [n]. Let B be the output of Algorithm 1. Then, there is a quantum algorithm that uses
Õ(n1.5k0.5d + nkd) time in inference to achieve one attention matrix computation (See Defini-
tion 1.1) such that the output Ãtt satisfies:

∥Att(Q,K, V)− Ãtt∥∞ ≤ O(η2).

Due to space constraints, the detailed proof is deferred to Appendix E.

Algorithm 2 Algorithm for Attention Computation

1: procedure SPARSEATTENTIONCOMPUTATION(B ∈ Rn×n,V ∈ Rn×d) ▷ Lemma 6.2
2: D ← diag(B1n)
3: return D−1BV
4: end procedure

Lemma 6.2. Let Q ∈ Rn×d,K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1. Let A be
defined in Definition 1.1. Let B be the output of Lemma 5.1. Let M be a matrix where all entries
are equal to 1. For each i ∈ [n], |{j ∈ [n] | (QK⊤)i,j ≥ τ}| ≤ k. There exists an algorithm (See
Algorithm 2) such that

• Part 1. It outputs D(B)−1BV .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Part 2. Its computational time complexity is O(nkd).

Because of the limited space, we move the proof to Section E.

7 CLASSICAL ALGORITHM FOR ATTENTION MATRIX APPROXIMATION

In this section, we introduce a classical method for generating a sparse matrix with the (τ, k) as-
sumption in constant dimension. Utilizing the Half-Space Reporting Data Structure (refer to Defi-
nition 7.1), we can efficiently identify the indices where (QK⊤)i,∗ ≥ τ is satisfied.

The definition of the problem of the half-space range reporting is given first, which is important
in the field of computational geometry. The data structure is proposed in (Afshani & Chan, 2009)
whose functions are outlined in Algorithm 4 and complexity is given in Theorem 7.2.

Definition 7.1 (Half-space range reporting). For a set of m points P ⊆ Rd, two operations are
supported:

• INIT(P): initialize the data structure with points in P .

• QUERY(W): find each point in P ∩W with W ⊂ Rd as a half-space.

Algorithm 3 Data Structure For Half Space Reporting

1: data structure
2: INIT(P, n, d) ▷ Construct our data structure via P ⊆ Rd, |P | = n
3: QUERY(b, c) ▷ b, c ∈ Rd. Find all the points z ∈ P which satisfies sgn(⟨b, z⟩ − c) ≥ 0
4: end data structure

Theorem 7.2 ((Afshani & Chan, 2009)). For n ∈ N and constant d ∈ N, there exists a classical
data structure using O(n) space to solve the d-dimensional half-space reporting problem with n

points with time complexity as: Tinit(n, d) = O(n log n) and Tquery (n, d, k) = Õ(n1−1/⌊d/2⌋ + k),
where TINIT indicates the time to construct the data structure, TQUERY indicates the cost per query,
and k is the output size.

7.1 CLASSICAL SPARSE ATTENTION MATRIX APPROXIMATION

In this section, we will introduce a classic algorithm that is in contrast to the quantum algorithm.
This algorithm is based on the half-space reporting data structure, which was previously introduced.
In this setting, we will address our problem by considering each vector (QK⊤)i,∗ for i ∈ [n]. The
vectors in Q, denoted as P in Definition 7.1, have a dimension of d. Additionally, we will set b as
each vector in K for i ∈ [n] and set c as τ . Now, let us proceed to describe our method.

Algorithm 4 Sparse Matrix Construction (Half Space Reporting)

1: Members:
2: -Half Space Reporting Data Structure:M ▷ Definition 7.1
3: procedure SPARSITYATTENTIONMATRIX(Q ∈ Rn×d,K ∈ Rn×d) ▷ Lemma 7.3
4: M.INIT(Q,n, d)
5: for i ∈ [n] do
6: b← Ki,∗
7: Si ←M.QUERY(b, τ)
8: for j ∈ Si do
9: Bi,j ← exp(Qi,∗(Kj,∗)

⊤)
10: end for
11: end for
12: return B
13: end procedure

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Lemma 7.3. Let M be the data structure defined in Definition 7.1. For each i ∈ [n], |{j ∈
[n] | (QK⊤)i,j ≥ τ}| ≤ k. For each i ∈ [n], for all j ∈ [n] (QK⊤)i,j ≤ 0 or (QK⊤)i,j ≥ τ and
A = exp(QK⊤). Then we have

• Part 1. There is an algorithm (See Algorithm 4) based onM that takes O(n log n + nk)
time to find all the set for each i ∈ [n] Si := {j ∈ [n] | (QK⊤)i,j ≥ τ}.

• Part 2. It takes Õ(n2−1/⌊d/2⌋ + nk) time to output a (τ, k)-sparse matrix B.

Because of the limited space, we move the proof to Section F.

Remark 7.4. Our classical algorithm (Algorithm 4) is nearly optimal as shown by an n2−o(1) time
complexity lower bound in Section 8.

8 CLASSICAL FINE-GRAINED LOWER BOUND

In this section, we prove the following fine-grained hardness result for computing the large entries
of QK⊤, assuming it is (τ, k)-good. It follows from a reduction to the Maximum Inner-Product
Problem (Max-IP):
Definition 8.1 (Maximum Inner-Product problem (Max-IP)). For n, d ∈ N, given two sets A,B of
n vectors in {0, 1}d, compute Max-IP(A,B) = maxa∈A,b∈B ⟨a, b⟩.

Chen (Chen, 2020) proved the following fine-grained lower bound for Max-IP assuming Strong
Exponential-Time Hypothesis (SETH):
Theorem 8.2 ((Chen, 2020)). Assuming SETH, there is a constant c such that any exact algorithm
for Max-IP in dimension d = clog

∗n requires n2−o(1)-time.

Then, we prove the following hardness result for attention matrix approximation:
Lemma 8.3. For any n, d ∈ N, k ≤ n, τ ∈ R, suppose Q,K ∈ Rn×d satisfy that (QK⊤)i,∗
contains at most k entries greater than τ for any i ∈ [n]. Then, any classical algorithm that
can output all the entries in QK⊤ with values greater than τ must take n2−o(1)-time, even for
d = 2O(log∗ n).

Owing to limited space, we provide the complete derivation in Appendix G.

9 CONCLUSION

In this work, we presented a novel quantum algorithm for efficiently computing the attention mecha-
nism in large language models (LLMs) under a sparse assumption on the attention matrix. Leverag-
ing Grover’s Search, our method attains a polynomial speed-up over classical algorithms while pre-
serving rigorous approximation guarantees. Specifically, we showed how to identify and exploit the
sparsity of the matrix QK⊤ so that each row has at most k entries above a threshold τ . This approach
reduces the time to construct an approximate attention matrix from O(n2d) to Õ(n1.5

√
kd+ nkd).

Furthermore, the sparse-plus-rank-one decomposition underlying our approximation enables fast
inference by limiting the number of significant components that must be computed, thus lowering
computational overhead without substantially compromising accuracy. We corroborated the effec-
tiveness of our method through a detailed error analysis, showing that the resulting inference outputs
closely align with those obtained by the exact attention computation.

Our results pave the way for several lines of future research. First, the low-rank structure of the
quantum-generated attention matrix opens opportunities for integrating other advanced quantum
subroutines, potentially offering further enhancements to both training and inference stages. Sec-
ond, while our theoretical analysis primarily covers the inference phase, exploring quantum-friendly
optimizations during model training, fine-tuning, or continual learning represents a rich direction for
extending this work. Finally, investigating the interplay between attention sparsity and more sophis-
ticated quantum data access models, such as QRAM designs—could inspire additional improve-
ments in runtime and memory usage. Overall, these directions highlight the potential to broaden the
scope and impact of quantum algorithms within large-scale natural language processing and beyond.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Peyman Afshani and Timothy M Chan. Optimal halfspace range reporting in three dimensions. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pp. 180–186.
SIAM, 2009.

Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms
for feedforward neural networks. ACM Transactions on Quantum Computing, 1(1):1–24, 2020.

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

Anurag Anshu and Srinivasan Arunachalam. A survey on the complexity of learning quantum states.
arXiv preprint arXiv:2305.20069, 2023.

Joran van Apeldoorn and András Gilyén. Improvements in quantum sdp-solving with applications.
In ICALP. arXiv preprint arXiv:1804.05058, 2019.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum sdp-solvers:
Better upper and lower bounds. In 2017 IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 403–414. IEEE, 2017.

Srinivasan Arunachalam and Reevu Maity. Quantum boosting. In International Conference on
Machine Learning (ICML), pp. 377–387. PMLR, 2020.

Srinivasan Arunachalam, Alex B Grilo, and Henry Yuen. Quantum statistical query learning. arXiv
preprint arXiv:2002.08240, 2020.

Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel
Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature communi-
cations, 11(1):1–6, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidefinite programs.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 415–
426. IEEE, 2017.

Fernando GSL Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M Svore, and Xiaodi
Wu. Quantum sdp solvers: Large speed-ups, optimality, and applications to quantum learning.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii,
Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational
quantum algorithms, 2020.

Shouvanik Chakrabarti, Andrew M Childs, Shih-Han Hung, Tongyang Li, Chunhao Wang, and
Xiaodi Wu. Quantum algorithm for estimating volumes of convex bodies. arXiv preprint
arXiv:1908.03903, 2019.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Fu Chen, Qinglin Zhao, Li Feng, Chuangtao Chen, Yangbin Lin, and Jianhong Lin. Quantum
mixed-state self-attention network. Neural Networks, 185:107123, 2025.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. The-
ory OF Computing, 16(4):1–50, 2020.

El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and
Yun Yvonna Li. Quantum vision transformers. arXiv preprint arXiv:2209.08167, 2022.

Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
chine learning. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 387–400, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Andrew M Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, and Ruizhe Zhang. Quantum algo-
rithms for sampling log-concave distributions and estimating normalizing constants. Advances in
Neural Information Processing Systems, 35:23205–23217, 2022.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient at-
tention using asymmetric clustering. Advances in Neural Information Processing Systems, 33:
6476–6489, 2020.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023a.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alessandro Epasto, Jieming Mao, Andres Munoz Medina, Vahab Mirrokni, Sergei Vassilvitskii, and
Peilin Zhong. Differentially private continual releases of streaming frequency moment estima-
tions. arXiv preprint arXiv:2301.05605, 2023.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algo-
rithm, 2014.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm.
arXiv preprint arXiv:2208.05395, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from
single softmax regression to multiple softmax regression via a tensor trick. arXiv preprint
arXiv:2307.02419, 2023b.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023c.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023d.

András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018.

András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear
regression. arXiv preprint arXiv:2009.07268, 2020.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, 1996.

Naixu Guo, Zhan Yu, Matthew Choi, Aman Agrawal, Kouhei Nakaji, Alán Aspuru-Guzik, and
Patrick Rebentrost. Quantum linear algebra is all you need for transformer architectures. arXiv
preprint arXiv:2402.16714, 2024.

Aram W Harrow. Small quantum computers and large classical data sets. arXiv preprint
arXiv:2004.00026, 2020.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear sys-
tems of equations. arXiv preprint arXiv:0811.3171, 2008.

Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical review letters, 103(15):150502, 2009.

Weihua He, Yongyun Wu, and Xiaohua Li. Attention mechanism for neural machine translation:
A survey. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 5, pp. 1485–1489. IEEE, 2021.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. A faster quantum algo-
rithm for semidefinite programming via robust ipm framework. arXiv preprint arXiv:2207.11154,
2022.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. Advances in
Neural Information Processing Systems, 34:9895–9907, 2021.

Stephen P Jordan. Fast quantum algorithm for numerical gradient estimation. Physical review
letters, 95(5):050501, 2005.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Iordanis Kerenidis and Anupam Prakash. A quantum interior point method for lps and sdps. ACM
Transactions on Quantum Computing, 1(1):1–32, 2020.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
tional neural networks. In International Conference on Learning Representations, 2019.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Tongyang Li and Ruizhe Zhang. Quantum speedups of optimizing approximately convex functions
with applications to logarithmic regret stochastic convex bandits. Advances in Neural Information
Processing Systems, 35:3152–3164, 2022.

Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yuri Alexeev, Jens Eisert, and Liang Jiang. Towards
provably efficient quantum algorithms for large-scale machine-learning models. arXiv preprint
arXiv:2303.03428, 2023a.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
In ICALP, 2023b.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10(9):631–633, 2014.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love,
Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quan-
tum processor. Nature communications, 5(1):1–7, 2014.

Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
data classification. Physical review letters, 113(13):130503, 2014.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53–68, 2021.

Matthew Sag. The new legal landscape for text mining and machine learning. J. Copyright Soc’y
USA, 66:291, 2018.

Jinjing Shi, Ren-Xin Zhao, Wenxuan Wang, Shichao Zhang, and Xuelong Li. Qsan: A near-term
achievable quantum self-attention network. IEEE Transactions on Neural Networks and Learning
Systems, 2024.

Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-off
between creativity and reality in large language models. arXiv preprint arXiv:2306.02295, 2023.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34:22890–22904, 2021.

Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and supervised
clustering. arXiv preprint arXiv:1811.00414, 2018.

Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 217–228, 2019.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural net-
work. Future Generation Computer Systems, 113:571–578, 2020.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex optimization
using quantum oracles. Quantum, 4:220, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Nikhil Vyas, Sham Kakade, and Boaz Barak. Provable copyright protection for generative models.
arXiv preprint arXiv:2302.10870, 2023.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li,
and Ricardo Henao. Infoprompt: Information-theoretic soft prompt tuning for natural language
understanding. arXiv preprint arXiv:2306.04933, 2023.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen.
H2o: Heavy-hitter oracle for efficient generative inference of large language models. CoRR,
abs/2306.14048, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, 2021.

Alexander Zlokapa, Hartmut Neven, and Seth Lloyd. A quantum algorithm for training wide and
deep classical neural networks. arXiv preprint arXiv:2107.09200, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
Roadmap In the appendix, we have deferred the inclusion of proofs that were omitted in the main
paper. Specifically, in Section A, we provide the missing proof of Theorem 1.3, in Section B, we
prove the Theorem 1.5, in Section C, we furnish the proof that was initially omitted in Section 4,
thereby concluding the proof of Lemma 4.3 and Lemma 4.4. Moving forward, Section D contains
the proof for Lemma 5.1 and the proof for Lemma 5.2. In Section E, we provide the omitted proof
of Lemma 6.2. In Section F, we provide the omitted proof of Lemma 7.3. In Section G, we provide
the omitted proof of Lemma 8.3.

A PROOF OF THEOREM 1.3

Proof of Theorem 1.3. Proof of Part 1. Based on Lemma 6.2, we can conclude that matrix B can
be divided into two parts. Let B2 be a matrix where all values are equal to 1. It’s easy to see that this
matrix is rank-1. We define B1 := B − B2. Now, we need to demonstrate that B1 is k-row sparse.
According to the (τ, k) assumption in Definition 1.2, we can ensure that each row of the matrix has
k elements with a value of 1. This is due to the fact that exp(0) = 1, and QK⊤ is a k-sparse matrix.
Consequently, each row of B1 contains k zero elements. Therefore, B1 is k-row sparse. The proof
of Part 1 is complete now.

Proof of Part 2.

This result can be derived directly from Lemma 5.2.

Proof of Part 3.

According to Lemma 5.1, for each i ∈ [n], we can obtain a k-sparse vector Bi,∗ in Õ(
√
nkd+ kd),

which leads to a time complexity of Õ(n(
√
nkd+ kd)). The proof is now complete.

B PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Proof of Part 1. Based on Lemma 6.2, we can conclude that matrix B can
be divided into two parts. Let B2 be a matrix where all values are equal to 1. It’s easy to see that this
matrix is rank-1. We define B1 := B − B2. Now, we need to demonstrate that B1 is k-row sparse.
According to the (τ, k) assumption in Definition 1.2, we can ensure that each row of the matrix has
k elements with a value of 1. This is due to the fact that exp(0) = 1, and QK⊤ is a k-sparse matrix.
Consequently, each row of B1 contains k zero elements. Therefore, B1 is k-row sparse.

Proof of Part 2. This result can be derived directly from Lemma 5.2, since the output of the classical
algorithm is exactly the same as the quantum algorithm.

Proof of Part 3. It directly follows from Lemma 7.3.

C OMITTED PROOFS IN SECTION 4

In this section, we provide proofs for the results in Section 4.

Proof of Lemma 4.3. The error analysis based on matrices A and B is proved as follows.

Proof of Part 1. It follows that

|Ai,j −Bi,j | = |Ai,j − 1|
≤ | exp(−η)− 1|
≤ 2η (1)

where the first step follows from Definition 4.1, the second step is due to Condition 1 in the statement
and the third step is based on simple algebra.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof of Part 2. For j ∈ Si, we have

Ai,j = Bi,j . (2)

It simply follows that

|Ai,j −Bi,j | = 0.

Proof of Part 3. For i ∈ [n], we have

|(A1n)i − (B1n)i| ≤
n∑

j=1

|Ai,j −Bi,j |

≤
n∑

j=1

2η

≤ 2nη (3)

where the first step follows from triangle inequality, the second step is based on Eq.(1) and Eq.(2)
and the third step follows from simple algebra.

Proof of Part 4. For i ∈ [n], we have

(A1n)i =
∑
j∈Si

Ai,j +
∑
j /∈Si

Ai,j

≥
∑
j∈Si

Ai,j

≥
∑
j∈Si

exp(τ)

≥ k · exp(τ)
≥ 2n (4)

where the first step is based on simple algebra, the second step follows from simple algebra, the
third step is from Definition 4.1, the forth step is based on the satisfied number, and the last step is
from Condition 1 in the statement.

Proof of Part 5. For i ∈ [n], we have

|(A1n)i − (B1n)i| ≤ 2nη ≤ η · |(A1n)i|

where the first step follows from Eq.(3) and the second step is from Eq.(4).

Proof of Lemma 4.4. We proof each part below.

Proof of Part 1. We have

|D(A)i,i −D(B)i,i| ≤ |(A1n)i − (B1n)i|
≤ η · |(A1n)i|
≤ η · |D(A)|i,i

where the first step is from Definition 1.1, the second step is based on Part 5 of Lemma 4.3 and the
third step is based on Definition 1.1.

Proof of Part 2. The error analysis for this part follows a similar approach as in Part 1. Due to its
similarity, we will omit the details here.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof of Part 3. Based on Part 1. of Lemma 4.3, for j /∈ Si, we have |Ai,j − Bi,j | ≤ 2η. Based
on Part 2. of Lemma 4.3, for j ∈ Si, |Ai,j − Bi,j | = 0. Furthermore, taking into account the
aforementioned findings, we can conclude that |Ai,j −Bi,j | ≤ 2η.

Proof of Lemma 4.5. We first decompose the difference into

∥D(A)−1A−D(B)−1B∥∞
≤ ∥D(A)−1A−D(B)−1A∥∞ + ∥D(B)−1A−D(B)−1B∥∞
= F1 + F2. (5)

Now, we will provide the upper bounds for F1 and F2, respectively. We have

F1 = ∥D(A)−1A−D(B)−1A∥∞
= max

i∈[n],j∈[n]
{|(D(A)−1A−D(B)−1A)i,j |}

= max
i∈[n],j∈[n]

{|Ai,j(D(A)−1
i,i −D(B)−1

i,i)|}

≤ max
i∈[n],j∈[n]

{|Ai,j | · |
D(A)i,i −D(B)i,i
D(A)i,iD(B)i,i

|}

≤ max
i∈[n],j∈[n]

{| ηD(B)i,i
D(A)i,iD(B)i,i

| · |Ai,j |}

= η · max
i∈[n],j∈[n]

{|D(A)−1
i,i | · |Ai,j |}

≤ η (6)

where the first step follows from the definition of F1, the second step is also based on the definition of
infinity norm, the third step is due to simple algebra, the fourth step comes from triangle inequality,
the fifth step is because of Part 1. of Theorem 4.4, the sixth step is due to simple algebra and the
last step is due to Definition 1.1.

We have

F2 = ∥D(B)−1A−D(B)−1B∥∞
= max

i∈[n],j∈[n]
{|(D(B)−1A−D(B)−1B)i,j |}

= max
i∈[n],j∈[n]

{|D(B)−1
i,i | · |A−B|i,j}

≤ 2η · max
i∈[n],j∈[n]

{|D(B)−1
i,i |}

≤ 2η (7)

where the first step comes from the definition, the second step is because of the definition of infinity
form, the third step follows from simple algebra, and the last step is from Part 4 of Lemma 4.3.

By combining the aforementioned findings and conclusions, we can establish the following result.

∥D(A)−1A−D(B)−1B∥∞
= F1 + F2

= O(η)

where the first step follows from Eq. (5) and the second step follows from Eq. (6) and Eq. (7).

D OMITTED PROOFS IN SECTION 5

Proof of Lemma 5.1. Proof of Part 1. For i ∈ [n], we will focus on a vector (QK⊤)i,∗.

Given that j ∈ [d], we define u(j) such that

• u(j) = 1 if (QK⊤)i,j > τ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• u(j) = 0 else.

According to Part 2 of Theorem 3.1, we can use quantum algorithms to efficiently locate all elements
j ∈ [n] for which u(j) = 1.

Give that we compute u(j) in O(d), the time complexity of the quantum algorithm is Õ(
√
nkd).

Proof of Part 2.

Based on the proof above, we will output a sparse vector Bi,∗ here. The time complexity of compute
the sparse vector can be divided into two parts. One is to find the satisfied element in Õ(

√
nkd),

which has been proven above.

Given that k represents the upper bound on the number of satisfied elements, the matrix computation
specifically targets those satisfied elements, resulting in a time complexity of O(kd).

The proof is now complete.

Proof of Lemma 5.2. We have
∥D(A)−1AV −D(B)−1BV ∥∞
≤ ∥D(A)−1BV −D(B)−1BV ∥∞
+ ∥D(A)−1BV −D(A)−1AV ∥∞.

For each (i, j) ∈ [n]× [d], Based on Lemma 4.5, we have
|(D(A)−1BV −D(B)−1BV)i,j |

= |
n∑

l=1

(D(B)−1
i,i −D(A)−1

i,i) ·Bi,l · Vl,j |

≤
n∑

l=1

|(D(B)−1
i,i −D(A)−1

i,i) ·Bi,l| · ∥V ∥∞

≤
n∑

l=1

|D(B)i,i −D(A)i,i
D(B)i,iD(A)i,i

Bi,l| · ∥V ∥∞

≤ η ·
n∑

l=1

|D(B)−1
i Bi,l| · ∥V ∥∞

= η · |
n∑

l=1

D(B)−1
i Bi,l| · ∥V ∥∞

= η · ∥V ∥∞
= O(η2) (8)

where the first step follows from simple algebra, the second step is based on the definition of infinity
norm, the third step is because of simple algebra, the forth step is from Lemma 4.4, the fifth step is
because of Definition 1.1, the sixth step is based on Definition 1.1, and the last step is because of
∥V ∥∞ ≤ η.

For each (i, j) ∈ [n]× [d], we have

|(D(A)−1BV −D(A)−1AV)i,j | = |
n∑

l=1

(D(A)−1
i,i (Bi,l −Ai,l) · Vl,j |

≤
n∑

l=1

|(D(A)−1
i,i | · |(Bi,l −Ai,l)| · ∥V ∥∞

= O(η2) (9)
where the first step is based on simple algebra, the second step is because of triangle inequality, and
the last step is based on ∥V ∥∞.

The proof is enhanced by combining Eq. (8) and Eq. (9).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E OMITTED PROOFS IN SECTION 6

proof of Theorem 6.1. The matrix B serves as an approximation matrix for the output of Algo-
rithm 1. The inference process, which relies on the sparsity matrix, is outlined in Algorithm 2.

To analyze the time complexity of the inference stage, we can break it down into two main parts:

Construction of matrix B: As shown in Lemma 5.1, the time complexity for constructing matrix
B is approximately Õ(n

√
nkd).

Inference with sparsity matrix: Given the sparsity matrix, as per Lemma 6.2, the time complexity
for the inference step is O(nkd). Hence, the overall time complexity for this quantum algorithm in
the inference stage is Õ(n1.5k0.5d + nkd). With this, we conclude our time complexity analysis.
Additionally, based on Lemma 5.2, we can have the following inequality:

∥D(A)−1AV −D(B)−1BV ∥∞ ≤ O(η2).

The theorem is then proved.

Proof of Lemma 6.2. The computation can be divided into two parts

• Part 1. D(B)−1MV .

• Part 2. D(B)−1(B −M)V .

Time Complexity of Part 1. It will take O(nd) to compute MV . And then, the time complexity
of the following step D(B)−1MV is O(nd). The time complexity of the first step is O(nd).

Time Complexity of Part 2. We define

C := (B −M).

According to statement, for each i ∈ [n], we have

{j ∈ [n] | Ci,j ̸= 0}| ≤ k.

It will take O(nkd) to compute CV︸︷︷︸
n×d

.

And D(B)−1CV will take O(nd). The second part will need O(nkd).

By combining the conclusions above, the time complexity is O(nkd+ nd) = O(nkd).

F OMITTED PROOFS IN SECTION 7

Proof of Lemma 7.3. At the beginning of the algorithm, we will first initialize M using
M.INIT(B,n, d), which has a time complexity of O(n log n).

Proof of Part 1. And then, we will query Ki, usingM.QUERY(Ki,∗, τ) for each i ∈ [n], which
has a time complexity of Õ(n2−1/⌊d/2⌋ + nk) in total.

Proof of Part 2. It will take Õ(n log n + nk + n2−1/⌊d/2⌋) = Õ(nk + n2−1/⌊d/2⌋) time to
identify the satisfied elements as mentioned above. The matrix is specifically designed to target
these satisfied elements, and the remaining steps can be done in a time complexity of O(nkd). The
proof is now complete.

G OMITTED PROOFS IN SECTION 8

Proof of Lemma 8.2. We prove a hardness result for an easier task: deciding whether there is at least
one entry in QK⊤ greater than τ .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Suppose there exists a classical algorithm that solves this problem in n2−ϵ-time. Let A,B ⊂ Rd be
an instance of Max-IP. We construct matrices Q and K using vectors from A and B, respectively.
Then, we do a binary search for Max-IP(A,B). For each candidate value τ , we run the classical
algorithm to decide whether there exists an entry with a value greater than τ . Note that the binary
search takes O(log n) rounds. Hence, Max-IP can be solved in n2−ϵ · log n < n2−o(1) time, which
contradicts the lower bound in Theorem 8.2.

Therefore, no classical algorithm can find all the large entries in QK⊤ in n2−Ω(1)-time.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

20

	Introduction
	Our Results

	Related Work
	Preliminary
	Notations
	Grover's Search

	Sparsity and Perturbation Error
	Sparsity Definitions
	Perturbation Tools
	Reconstruction Error without Having

	Quantum Algorithm for Attention Matrix Approximation
	Quantum Attention Matrix Approximation Algorithm

	Quantum Attention Computation
	Classical Algorithm for Attention Matrix Approximation
	Classical Sparse Attention Matrix Approximation

	Classical Fine-grained Lower Bound
	Conclusion
	Proof of Theorem 1.3
	Proof of Theorem 1.5
	Omitted Proofs in Section 4
	Omitted Proofs in Section 5
	Omitted Proofs in Section 6
	Omitted Proofs in Section 7
	Omitted Proofs in Section 8

