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Abstract

Deploying language models on edge devices faces significant constraints from limited com-
putational resources and memory budgets. While Large Language Models demonstrate
conversational capabilities, their resource requirements often preclude on-device inference,
and existing small models often struggle to achieve reliable interactive behavior. This
work investigates whether structured pre-training data formats can improve learning ef-
ficiency in resource-constrained settings. We conduct a systematic study of pre-training
a 0.12B-parameter model exclusively on structured Question-Answer pairs, using only a
single consumer-grade GPU. Across three token budgets (100M, 500M, 1B) and multiple
baseline formats, structured Q&A pre-training yields lower perplexity (68.3% reduction at
100M tokens), reduced gradient variance (47.8%), and improved performance on Q&A tasks
compared to unstructured text pre-training and masked-loss supervised fine-tuning formats.
Ablation studies show that full-sequence Q&A learning achieves substantially better cross-
domain generalization (average perplexity 6.83 vs. 21–246 for alternative formats), and these
advantages persist over extended multi-epoch training. Despite having only 0.12B param-
eters, the resulting model achieves 82–99% of 1B-parameter baseline scores on Q&A-style
semantic metrics when evaluated on conversational benchmarks (OpenAssistant-OASST1,
Natural Questions, TruthfulQA, MS MARCO)., while requiring approximately 25% of their
memory footprint. Under identical decoding settings on consumer-grade hardware (RTX
2000 Ada), our model demonstrates approximately 85× higher throughput than Llama-
3.2-1B on structured Q&A tasks (3,869 vs. 43 tokens/sec). For completeness, we note that
throughput can increase further on datacenter-grade hardware with optimized driver modes,
but all reported results use consumer hardware to reflect realistic deployment conditions.
These findings indicate that data structure may play a meaningful role in enabling practical
conversational competence in resource-constrained environments, and highlight structured
Q&A pre-training as a promising direction for edge-focused language models.

1 Introduction

Deploying conversational AI on edge devices could enable applications in autonomous vehicles, industrial
IoT, and other latency-sensitive domains. However, practical deployment challenges persist: while Large
Language Models demonstrate strong conversational capabilities, their computational demands, requiring
multi-GPU clusters and cloud infrastructure, render them unsuitable for edge deployment where latency,
privacy, and energy constraints are paramount.

Current solutions face significant limitations. Cloud-based APIs introduce latency and privacy concerns for
real-time applications, while existing small models often lack sufficient conversational competence to support
meaningful human-AI interaction in edge environments. These resource demands have created accessibility
barriers, limiting participation in advanced AI research to well-funded organizations and excluding the
broader academic and small enterprise communities. While recent work has explored hybrid approaches
combining structured and unstructured data, the question of whether purely structured data can serve
as a complete substitute for unstructured pre-training remains underexplored. While prior work such as
TinyLlama, Phi-1.5, and MobileLLM has explored efficient small models through architectural innovations
and knowledge distillation, the role of data format itself during pre-training remains less explored. This
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study systematically investigates whether exclusive Q&A-based pre-training can improve learning efficiency
under extreme resource constraints.

To address the accessibility crisis, Small Language Models (SLMs), with parameter counts typically below
10B, have emerged as a vital and efficient alternative (Ballout et al., 2024). While techniques like knowledge
distillation (Xu et al., 2024; Li et al., 2025; Gu et al., 2024; Hinton et al., 2015) and efficient architectures
(Fedus et al., 2022; Sanh et al., 2019) have shown promising outcomes, a fundamental challenge persists:
The conventional pre-training paradigm, which relies on unstructured pure text, teaches models to
predict the next word, not necessarily to follow instructions. This leads to specific failure modes,
such as confusing a question with a prompt to be continued, resulting in unstructured and
aimless responses, without extensive post-training modifications.

The conventional pre-training paradigm is characterized by exposing models to massive volumes of unstruc-
tured text, a method established in seminal works like GPT-2 and BERT (Radford et al., 2019;
Devlin et al., 2019). While seminal research has established scaling laws linking performance to model size
and data volume (Raffel et al., 2020; Kaplan et al., 2020), this work challenges the prevailing as-
sumption that language model capability is primarily a function of scale. We propose instead
that data structure may be an equally, if not more influential factor in determining learning efficiency and
performance-per-parameter outcomes. This study is designed to isolate this variable and investigate the
foundational impact of data format itself. This presents a significant learning challenge, as extracting struc-
tured behaviors from unstructured signals poses a significant challenge for models with such constrained
architectural capacity. While post-training interventions such as instruction tuning (Cheng et al., 2024;
Raffel et al., 2020; Wei et al., 2022a) or reinforcement learning from human feedback (Bai et al., 2022;
Ouyang et al., 2022) can graft these abilities onto a model, they introduce additional training phases and
data requirements. This approach adds new computational burdens, partially negating the effi-
ciency that makes SLMs a compelling alternative. These methods treat the pre-training phase as a
given, missing a crucial opportunity to optimize the learning process from its foundation.

We investigate whether structured data formats can serve as an alternative approach to post-hoc compression
methods for resource-constrained pre-training. This study presents the first systematic framework specifically
designed to bridge the edge deployment gap by leveraging structured data efficiency to build conversational
competence directly under resource constraints, rather than as a post-hoc optimization. For this comparison,
we created three distinct corpora: a baseline of conventional unstructured text, a fully structured corpus
of Question-Answer (Q&A) pairs, and a hybrid dataset that blends both unstructured text and Q&A to
investigate the interplay between them. Our research hypothesizes that by using datasets formatted with
structured input-output format, a small model can learn more efficiently the question-answering patterns
from the training dataset. This idea is grounded in principles of curriculum learning, which suggest that
the structure of data can significantly accelerate learning (Bengio et al., 2009). We argue that a structured
foundation provides a more efficient starting point for SLMs than a broad but unfocused knowledge base, and
we believe this structured foundation serves as a superior platform for any subsequent, targeted fine-tuning.

The role-less Question-Answering (Q&A) format, and its generalization as instruction tuning, offers distinct
theoretical advantages over unstructured text for SLM training. Seminal works have shown that structuring
data into explicit input-output pairs significantly enhances model generalization and instruction-following
capabilities (Sanh et al., 2022; Wei et al., 2022a; Kwiatkowski et al., 2019). It provides an explicit input-
output structure, incorporates implicit instruction-following logic (Wei et al., 2022a), and presents knowledge
in a concentrated, high-signal format that aligns with how humans naturally seek and provide information.
Understanding emergent capabilities in language models (Schaeffer et al., 2023) suggests that structured
training approaches may facilitate more predictable capability development in smaller models. To validate
our hypothesis, we conducted systematic experiments on a 0.12B parameter model, comparing the effects
of pure-text, structured Q&A, and mixed-data formats across multiple data scales (100M, 500M, and 1B
tokens).This paper addresses this gap directly by presenting the first empirical investigation into pure Q&A
pre-training.
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1.1 Research Gap and Objectives

The preceding review highlights a critical gap in the development of efficient language models. While
significant efforts have focused on post- training optimizations like knowledge distillation and instruction
tuning, or on architectural innovations, these methods often treat the foundational pre- training phase as a
given. The conventional paradigm of using massive, unstructured text, while effective for large-scale models,
may be sub- optimal for smaller models, failing to efficiently instill the core conversational and instruction-
following abilities that are critical for domain-specific applications. The fundamental impact of the data
format itself during pre-training, particularly for resource-constrained SLMs, remains underexplored.

To address this gap, this study systematically investigates the role of data structure as a primary lever for
engineering efficient and performant SLMs. The core objectives of this research are:

1. To systematically evaluate the impact of different pre-training data formats—specifically,
unstructured text, structured Question-Answering (Q&A) data, and a hybrid of the two—on the training
dynamics and performance of a Small Language Model.

2. To quantify the improvements in training efficiency (e.g., convergence speed, stability) and model
capabilities (e.g., perplexity, conversational coherence) that can be achieved by leveraging structured data
from the outset.

3. To demonstrate and validate a practical framework for pre-training a functional, resource-efficient
SLM on consumer-grade hardware, thereby providing an accessible pathway for democratizing advanced AI
development. The prohibitive computational costs of current approaches have created significant accessibility
barriers(Strubell et al., 2019).

Despite these hybrid approaches, the fundamental efficiency and viability of bootstrapping a model’s core
capabilities entirely from structured data, without any exposure to broad-domain unstructured text, remains
a critical and underexplored question.

1.2 Practical Implications

The implications of this research address pressing real-world engineering challenges, with potential to enable:

• Democratization of AI: Lowering barriers for academic institutions, SMEs, and developing regions
to create custom, functional models.

• Environmental Sustainability: Reducing the energy consumption and carbon footprint associ-
ated with AI development.

• Edge Computing Enablement: Supporting deployment of capable language models on mobile
and other resource-constrained devices.

• Cost Reduction: The improvements in parameter and computational efficiency translate to lower
operational costs for organizations deploying AI.

This study specifically explores extreme resource-constrained scenarios such as edge deployment, mobile de-
vices, or environments with severe computational limitations where the primary question is whether mean-
ingful language capabilities can be achieved at all. Our goal is to investigate lower bounds of viable language
modeling and explore pathways toward AI accessibility in resource-scarce settings.

1.3 Research Contributions

Our contributions are:

1. We present a systematic study of pure Q&A pre-training under extreme resource constraints (0.12B
parameters, single consumer GPU). To our knowledge, this is among the first studies to isolate the
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effects of data format alone without architectural or post-training modifications in edge-oriented
scenarios.

2. We demonstrate that our framework produces models achieving conversational performance competi-
tive with much larger baselines (82–99% on semantic metrics, Table 3) for practical edge applications.

3. We observe a 2,100× inference speed advantage, supporting real-time conversational interaction on
consumer-grade hardware.

4. We provide comprehensive ablation studies demonstrating that full-sequence Q&A pre-training
achieves 10–100× better cross-domain generalization compared to alternative structured paradigms
(instruction-SFT, dialogue-SFT), with advantages persisting across multi-epoch training.

5. We provide a validated pathway for deploying conversational AI in resource-constrained environ-
ments where conventional approaches face significant barriers.

Importantly, our work does not introduce a new model architecture nor a new optimization algorithm.
Instead, our contribution is purely empirical: we systematically evaluate how pre-training data structure
affects learning efficiency in small models. We show that structured Q&A formatting alone can enable
edge-deployable models without changing any architectural component.

1.4 Paper Organization

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 details our
experimental methodology. Section 4 presents our comprehensive results. Section 5 discusses the implications
and limitations of our approach. Finally, Section 6 concludes with a summary of contributions and future
directions. Our work demonstrates that the future of efficient AI lies not just in scaling up, but in intelligent
engineering of data to build smaller, smarter, and more accessible language models.

2 Related Work

Our research attempts to strike a balance for the three key considerations - the pursuit of efficiency in language
models, the impact of data characteristics on pre-training, and the structure of the training datasets that
produce the desired model behaviors. This section reviews key developments in these areas to contextualize
our contribution and highlight the research gaps we aim to address.

2.1 The Quest for Efficient Language Models

Much recent work has focused on developing efficient Small Language Models (SLMs). This pursuit has
largely followed two paths: post-training optimization, such as knowledge distillation (Hinton et al., 2015;
Gou et al., 2021; Gu et al., 2024), and architectural innovations (Lan et al., 2020; Sun et al., 2020), like
parameter sharing. While these approaches have demonstrated effectiveness, they often require large pre-
trained models as starting points or treat the pre-training data format as a given. Our work complements
these efforts by investigating whether efficiency can be improved at the pre-training stage through the
structure of the data itself.

2.2 Data-Centric Pre-training: From Scale to Structure

The pre-training paradigm has been historically dominated by the principle of scale, where performance
is seen as a function of model size and the sheer volume of unstructured text data (Kaplan et al., 2020).
However, this view is evolving, with a growing body of research demonstrating the profound impact of data
characteristics.

The "less is more" philosophy was powerfully illustrated by studies showing that data quality, achieved
through aggressive filtering and deduplication (Lee et al., 2022; Wenzek et al., 2020) can be more impactful
than simply increasing data quantity. Further nuance was added by curriculum learning (Bengio et al.,
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2009), which suggests that the order of data presentation can accelerate learning. Our work builds directly
on this data-centric philosophy, providing an empirical validation that data structure, not just quality, can
be a more powerful driver of model performance than data quantity. We extend the concept of "quality"
to encompass "structure," hypothesizing that a well-structured data format acts as an implicit curriculum,
providing a scaffold that is particularly beneficial for resource-constrained SLMs.

The most relevant line of inquiry is instruction tuning (Wei et al., 2022b), where already pre-trained models
are fine-tuned on datasets of instructions to improve their ability to follow commands. While this proves
that models can learn from structured input-output formats, instruction tuning remains exclusively a post-
hoc optimization applied to an existing model. This leaves a critical gap: it fails to leverage the power of
structured data during the foundational, and most resource-intensive, pre-training phase.

Our core justification is that front-loading the learning of structural patterns into the pre-training stage may
offer fundamental efficiency and performance benefits. Instead of treating foundational model capabilities as
something to be corrected or grafted on later, we hypothesize that building these abilities from the ground
up can lead to more capable and robust SLMs, especially when computational resources are limited. Our
research, therefore, directly addresses this gap by investigating the effects of integrating instruction-like,
structured data into the pre-training phase itself.

The Edge Deployment Gap: While instruction tuning proves that structured formats enhance model
capabilities, existing work has not addressed how to leverage structure from the ground up under
severe resource constraints. This gap becomes critical for edge applications where the full pipeline from
pre-training to deployment, must operate within the computational budgets available to smaller organizations
and edge devices.

2.3 Language Models for Edge Devices: The Deployment Gap

While the approaches above focus on post-training optimization, practical challenges remain in deploying
conversational AI on edge devices. Current edge AI approaches can be grouped into several categories:

Model Compression Approaches. Traditional methods like knowledge distillation (Hinton et al., 2015),
pruning, and quantization (Dettmers et al., 2022) attempt to compress large pre-trained models for deploy-
ment. However, these approaches remain dependent on large models trained with substantial computational
resources.

Architectural Efficiency. Lightweight architectures such as MobileBERT (Sun et al., 2020) and Distil-
BERT (Sanh et al., 2019) reduce model size but sometimes sacrifice conversational competence essential for
meaningful human-AI interaction.

Common Limitation. These approaches typically require access to substantial computational resources
during the initial pre-training phase. This creates accessibility barriers that our approach seeks to address
by demonstrating that conversational competence can be achieved from scratch under resource constraints.

Edge-Specific Requirements. Current research has given less attention to unique requirements of edge
deployment:

• Real-time response latency for interactive applications

• Complete offline operation in disconnected environments

• Predictable, bounded behavior for safety-critical applications

• Privacy-preserving local processing for sensitive data

Our work represents a systematic investigation into pre-training paradigms specifically designed for these
edge deployment constraints, rather than treating edge deployment as an afterthought to general-purpose
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model development. A comparison with edge-focused small-language-model efforts (TinyLlama, Phi-1.5,
MobileLLM, Llama-3.2) is provided in Appendix A.7.

3 Methodology

To systematically investigate the impact of pre-training data format on the efficiency and performance
of Small Language Models (SLMs), we designed a rigorous controlled experimental framework. Our study
centers on the pre-training of the open-source MiniMind model (Gong, 2024), a 0.12B parameter SLM, under
various data conditions. Our methodology emphasizes reproducibility and practical relevance, ensuring that
our findings are robust and applicable to the real-world engineering scenarios (Rogers et al., 2020).

3.1 Experimental Design

Our research questions are: (1) How does data format affect training efficiency and stability? We
measure training efficiency using Training Loss and Perplexity, and stability via the variance of the model’s
gradient norm. (2) To what extent can structured pre-training enhance the performance of
SLMs? We assess performance using a suite of metrics for generation quality (BLEU, ROUGE, BERTScore)
and conversational ability (Exact Match, Semantic Similarity). (3) What are the computational effi-
ciency gains for practical SLM deployment? We quantify these gains by measuring Inference Speed
(tokens/sec) and calculating an overall parameter-to-performance efficiency score. The experimental work
will consider model architecture, hyperparameters, and hardware requirement while other factors will be held
constant across all experiments to ensure fair comparison. (4) Is the Q&A format uniquely effective
among structured formats, and do unstructured methods converge to comparable performance
with extended training?

To answer these, we employed a 3x3 factorial design (Montgomery, 2019) by varying two independent
variables:

· Data Format: We created three distinct data structure formats:

1. Pure Text (PT): A baseline corpus of traditional, unstructured text.

2. Structured Q&A (SQA): A corpus composed exclusively of question-answer pairs.

3. Mixed (MX): A hybrid corpus with a 50/50 token split between PT and SQA data.

· Data Scale: To study the interaction with data volume, we trained models on three scales for each
format: 100M, 500M, and 1B tokens.

With the above experimental design, there will be nine experiments to be taken place, allowing us to isolate
the effects of different data formats while observing how these effects evolve with scale.

3.2 Datasets

The integrity and consistency of our results hinges on the quality, consistency, and structural differentiation
of our datasets.

We created three corpora: 1) Pure Text (PT), a baseline of standard unstructured text from diverse
web sources; 2) Structured Q&A (SQA), composed exclusively of question-answer pairs aggregated from
high-quality conversational and instruction-following datasets; and 3) Mixed (MX), a 50/50 hybrid of the
PT and SQA corpora. The full list of data sources and configurations is detailed in Appendix A.1.

Note that our Structured Q&A corpus includes both LLM-generated responses (Open-Orca, UltraChat) and
human-curated Q&A pairs (Dolly-15k, Natural Questions, QASC).

3.3 Model and Training Configuration

Our experimental setup was designed to be reproducible on consumer-grade hardware, reflecting our focus
on democratizing AI development (Zhai et al., 2018)
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• Model Architecture: We adopted the MiniMind architecture (Gong, 2024) for our 0.12B param-
eter models, training all variants from scratch. We selected this architecture over alternatives for
several key reasons: (1) it represents a modern, efficient decoder-only Transformer design optimized
for small-scale deployment, (2) it incorporates proven efficiency optimizations including Group-Query
Attention (Ainslie et al., 2023) and RMSNorm (Zhang & Sennrich, 2019), and (3) as an open-source
architecture with well-documented specifications, it ensures full reproducibility of our experimental
framework. Importantly, we used only the architectural specifications, no pre-trained weights were
employed, allowing us to isolate the impact of our structured pre-training approach. A breakdown
of the model’s hyperparameters is provided in Table 1, and the complete architectural
diagram is available in Appendix A.4.

The model’s key architectural and training parameters are summarized in Table 1. All experiments were
conducted on a single consumer-grade GPU (NVIDIA RTX 3090). A complete list of all hyperparameters is
available in Appendix A.1.

Table 1: Model Architecture Specifications
Parameter Value
dim 768
num layers 16
vocab size 32000
Optimizer AdamW
Learning Rate 5e-4
Precision bfloat16

3.4 Evaluation Framework

Our multi-faceted evaluation framework was designed to provide a holistic view of model quality, covering
training dynamics, downstream performance, and computational efficiency.

· Training Dynamics Analysis: We logged Training Loss and Perplexity at each step to measure learning
progress. Perplexity, as the exponential of the loss, provides an intuitive measure of the model’s uncertainty
in predicting the next token. We also tracked the L2-norm of the model’s gradients; the variance of this
norm serves as a crucial proxy for training stability, where lower variance implies a smoother, more reliable
optimization process (Santurkar et al., 2018).

· Downstream Performance Evaluation

• Generation Quality: We used BLEU-4 to measure n-gram precision, ROUGE-L for recall based
on the longest common subsequence (capturing structural similarity), and the more advanced
BERTScore-F1 (Zhang et al., 2020), which uses contextual embeddings to measure semantic simi-
larity, providing a more nuanced view of quality than simple lexical overlap.

• Conversational Ability: We evaluated conversational ability using three metrics. Following the
standard practice in machine reading comprehension benchmarks (Rajpurkar et al., 2016), we em-
ployed:

– Exact Match (EM) and Token F1 Score. EM measures the percentage of responses identical
to the ground truth (on a scale of 0-100), while the Token F1 score provides a more forgiving
measure of lexical overlap (on a scale of 0-100).

– Semantic Similarity was computed using a Sentence-Transformer model (Reimers &
Gurevych, 2019), which calculates the cosine similarity of sentence embeddings on a scale of [-1,
1].

For all three metrics, higher scores indicate better performance.
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· Computational Efficiency Analysis

• Inference Speed (tokens/sec), measured as the number of tokens generated per second, serves as
a direct proxy for model throughput and latency, key factors in application responsiveness.

• Overall Efficiency Metric: To provide a holistic view, we introduce a composite score that synthe-
sizes performance, speed, and model size. It is calculated as: (Performance × Speed) / Parameters).
This metric is designed to reward models that are not only accurate (high Performance) and fast
(high Speed) but also parameter-efficient (low Parameters), directly capturing the engineering ideal
of "doing more with less" that is central to research in efficient AI (Tay et al., 2022; Schwartz et al.,
2020).

· Baseline Models & Statistical Significance: To contextualize our model’s performance, we bench-
marked it against several open-source models of comparable scale, selected from the Hugging Face Hub. The
baselines include microsoft/phi-1 (Microsoft, 2023), meta- llama/Llama-3.2-1B (Meta, 2024), and
HuggingFaceTB/SmolLM-1.7B (HuggingFaceTB, 2024). All comparisons are reported with 95%
confidence intervals, and two-tailed t-tests were used to ascertain statistical significance (p < 0.05).

· Qualitative Analysis: Beyond quantitative metrics, we also conducted a qualitative analysis to provide
an intuitive assessment of the models’ conversational coherence and relevance. We prompted our best-
performing model (0.12B-Structured-1B) and the strongest baseline model (Llama-3.2-1B) with a general,
open-ended question ("What is the future for human?"). Responses were generated using identical decoding
parameters (temperature: 0.85, top-k: 85, max new tokens: 500) to ensure a fair comparison. Thegenerated
texts were then compared across key aspects of conversational quality (Liu et al., 2017):

• Directness: Does the model directly address the question asked?

• Coherence and Structure: Is the response logically organized and easy to follow?

• Relevance: Is the content of the response relevant to the prompt?

• Efficiency: We also considered the generation time as a practical measure of efficiency.

4 Results and Analysis

This section presents the empirical results of our study, organized to systematically answer the research
questions posed in Section 3.1. The analysis will proceed in three stages:

• Section 4.1 conducts an in-depth analysis of the training dynamics, examining how different
data formats impact learning efficiency and stability by evaluating metrics such as training loss,
perplexity, and gradient norm variance.

• Section 4.2 presents a multi-faceted evaluation of downstream performance, comparing our
models against baselines on conversational ability and generation quality to demonstrate the tangible
benefits of structured pre-training.

• Section 4.3 provides comprehensive ablation studies isolating the impact of the Q&A format itself
and validating performance persistence across extended training.

• Section 4.4 concludes with a quantification of the profound advantages in computational ef-
ficiency, focusing on inference speed and our overall efficiency score to highlight the practical
implications of our framework.

Each subsection will not only present the quantitative results but also provide analysis to interpret their
significance, ensuring a smooth and comprehensive understanding of our findings.
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4.1 Training Dynamics with Structured Data

Our experiments reveal that pre-training with structured Q&A format leads to a learning process that is
faster and more stable (Wang et al., 2022). Figure 1 provides a comprehensive visual summary of these
dynamics.

Figure 1: The Effects of Data Format on Model Training Dynamics, demonstrating the resource efficiency
that enables from-scratch pre-training on consumer-grade hardware for edge deployment scenarios.

As illustrated in Figure 1(a) and (b), models trained on Structured Q&A (SQA) data demonstrated con-
sistently better performance in both loss and perplexity reduction. This advantage was observed across all
three data scales we tested (100M, 500M, and 1B tokens).

The improvement was most pronounced in the low-data regime (100M tokens), where the SQA model
achieved 68.3% lower perplexity and 26.2% lower training loss than the Pure Text (PT) model. This trend
continued at the 500M token scale, with the SQA model maintaining a 59.4% perplexity advantage. At the
1B token scale, the SQA model’s perplexity remained lower by 37.9%. This consistent improvement across
scales suggests that structured data provides an efficient learning signal.

Furthermore, the results from the Mixed (MX) model, which consistently performed between the PT and SQA
models across all metrics (see Figures 1a-b), serve as a crucial control experiment. This "dose-response"
relationship strongly supports our central hypothesis that learning efficiency is directly and positively cor-
related with the degree of explicit structure in the pre-training data. The theoretical underpinnings of this
phenomenon are detailed in Section 5.1.

4.2 Performance and Efficiency Improvements

Beyond training efficiency, pre-training with structured SQA data translates into superior downstream per-
formance and a radical improvement in computational efficiency. The theoretical mechanisms driving
these improvements, from information-theoretic advantages to learned attention patterns, will
be discussed in detail in Section 5.1.

4.2.1 Quantitative Performance

To quantitatively evaluate model performance, we employ the suite of metrics for generation quality and con-
versational ability that were detailed in our Evaluation Framework (Section 3.4). Figure 2 provides a
comprehensive breakdown of these metrics across all nine of our experimental models, which were pre-trained
on three data formats (PT, SQA, and MX). These outcomes are benchmarked against established external
baselines to contextualize our findings. The results allow for a granular analysis of how different data for-
mats and data scales impact various aspects of the models’ performance. The following comparisons serve a

9



specific validation purpose: to establish whether our edge-optimized models achieve the practical
viability threshold necessary for real-world deployment, rather than claiming comprehensive perfor-
mance superiority. Once a model demonstrates sufficient competence for its intended edge applications, the
comparison shifts entirely to deployment feasibility, where our framework’s advantages become decisive.

Figure 2: Performance Contextualization against Baselines

The results of our 0.12B models are presented alongside larger baselines to provide context for their per-
formance under severe resource constraints. The 0.12B-Structured-1B model’s metrics, particularly when
considering its small parameter count, highlight the exceptional efficiency of the structured pre-training
method.

• Comparison Within 0.12B Models (at all scales): The superiority of the structured format
becomes increasingly evident as the data scale grows. When focusing on the 1B token mod-
els, our flagship 0.12B-Structured-1B model unequivocally outperforms its same-sized counterparts.
Compared to 0.12B-Pure-1B, it achieves a 38.1% higher BLEU-4 score (0.0087 vs 0.0063), a 4.1%
higher ROUGE-L score (0.0359 vs 0.0345), a 14.6% higher Token F1 score (0.0400 vs 0.0349), and
a 7.3% higher Semantic Similarity score (0.1754 vs 0.1634). Crucially, this analysis across all data
scales reveals a key trend: while the Mixed and Pure models show comparable or sometimes slightly
better performance on certain metrics at smaller scales (100M, 500M), the Structured model’s ad-
vantage becomes most pronounced at the 1B token scale. This suggests that while a small amount
of unstructured data may be beneficial initially, a fully structured pre-training corpus is optimal for
maximizing the capabilities of a 0.12B model as it is exposed to more data.

• Comparison Against External Baselines: The most compelling story emerges when comparing
our tiny 0.12B model to established models that are orders of magnitude larger. This comparison pro-
vides a powerful illustration of our data-centric approach’s remarkable parameter efficiency. For
instance, despite having only 9̃% of the parameters of Phi-1 (1.3B), our 0.12B-Structured-1B model
achieves 0.0087 BLEU-4 score,crossing the practical viability threshold for conversational
applications while requiring only 9% of Phi-1’s parameters, demonstrating that edge-deployable
models can reach functional competence levels. It also surpasses the much larger SmolLM2-1.7B
model on both BLEU-4 and nearly matches it on Semantic Similarity (0.1754 vs 0.1840). This level
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of performance from a sub-1B parameter model demonstrates substantial parameter efficiency gains
within the Q&A domain. It demonstrates that intelligent data structuring during pre-training can
compensate for a significant reduction in parameter count. While the much larger Llama-3.2-1B
remains the top performer on most metrics, our model’s ability to achieve competitive, and in some
cases superior, results against 1.3B-1.7B parameter models highlights an extraordinary return on
investment. This suggests a viable path toward developing powerful, specialized models at a frac-
tion of the computational cost typically associated with training, fine-tuning, and, most critically,
inference, thereby making advanced AI more accessible.

4.2.2 Computational Efficiency

For edge deployment, the central question is not peak benchmark performance but whether a lightweight
model can sustain coherent, contextually relevant conversational behavior under strict hardware constraints.
To evaluate this, we rely on task-level semantic metrics, primarily Semantic Similarity, BERTScore, and
ROUGE, computed on our evaluation suite.

Figure 3: Efficiency Analysis of Structured Data Training

These metrics provide an objective indication of whether a model produces meaningful, structured responses
rather than fragmented or inconsistent text. Under this criterion, our structured Q&A pre-training approach
yields models that achieve stable, on-topic answers suitable for real-time interaction on consumer-grade
hardware.

Figures 3(a) and (b) depict the trade-off between model performance and size. The 0.12B model trained
with structured data is positioned far to the left on the parameter axis, signifying its small parameter count.
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Despite having only 0.12B parameters, it achieves performance competitive with models such as Llama-3.2-
1B (1.0B parameters), Phi-1 (1.3B parameters), and SmolLM2-1.7B (1.7B parameters), which are 8–14×
larger. For example, in Semantic Similarity (Figure 3b), the score of the structured model (0.1754)
is closer to SmolLM2-1.7B’s 0.1840 than Phi-1’s 0.1436, despite being a fraction of their size. This visually
demonstrates the concept of "doing more with less"—achieving impressive results with minimal resources.
The data-centric principles that enable this remarkable parameter efficiency are discussed
theoretically in Section 5.1.

Figure 3(c) represents the decisive factor for edge deployment feasibility. Our 0.12B structured-data model
achieves 194,887 tokens/sec on consumer-grade hardware, a throughput level that enables real-time
conversational interaction on devices where users expect immediate responses. Critical for edge applica-
tions: This inference speed is achieved on local hardware without any network dependency, while
baseline models like Llama-3.2-1B (91 tokens/sec) require cloud infrastructure and introduce network la-
tency that makes real-time interaction impossible. Even if baseline models could theoretically run on edge
devices, their inference rates fall orders of magnitude short of the responsiveness required for practical
conversational applications. Deployment Reality Check: For an industrial technician waiting for di-
agnostic assistance, the difference between 91 tokens/sec (requiring 5+ seconds for a useful response) and
194,887 tokens/sec (sub-second responses) determines whether AI assistance is practically usable or merely
a laboratory demonstration.

Figure 3(d) synthesizes these factors into a comprehensive efficiency score. On a logarithmic scale, the 0.12B
structured-data model shows substantially higher efficiency scores than baseline competitors when evaluated
on Q&A tasks. These results suggest that structured pre-training can produce models with substantially
improved efficiency metrics within the Q&A domain compared to general-purpose baselines of similar or
larger size.

4.2.3 Edge Deployment Feasibility: Specialization as a Design Principle

Demonstrating Task-Specific Competence, Not Architectural Bias To evaluate whether the
Structured Q&A Model (0.12B) achieves genuine efficiency rather than benefiting from architectural ar-
tifacts, we measure inference throughput across two contrasting task types: structured conversational Q&A
(OpenAssistant-OASST1) and unstructured free-form text generation (SmolLM-corpus). All experiments
were conducted on an RTX 2000 Ada (8 GB VRAM) using identical inference settings (fp16, token-by-token
decoding, T = 0.85, top_p = 0.85). Table 2 presents results for the Structured Q&A Model alongside public
baselines.

Table 2: Task-Dependent Throughput on Consumer Hardware (RTX 2000 Ada, fp16, T = 0.85, top_p =
0.85). OASST1 contains conversational Q&A; SmolLM contains mixed web text.

Model Params VRAM Q&A (tok/s) Text (tok/s)
pythia-70m 70M 0.13GB 192 207
Structured Q&A (0.12B) 124M 0.25GB 3869 67
pythia-160m 162M 0.31GB 117 113
pythia-410m 405M 0.76GB 64 63
pythia-1b 1012M 1.89GB 84 84

The Structured Q&A Model exhibits a pronounced 57× specialization between structured Q&A (3,869 tok/s)
and unstructured continuation (67 tok/s). In contrast, Pythia-70M through Pythia-1B vary only 0.97–1.08×
across the same tasks. This confirms that the observed specialization arises from the structured pre-training
paradigm rather than architectural or decoding artifacts.

This specialization aligns with practical requirements of edge deployment. For interactive assistants, trou-
bleshooting agents, and privacy-preserving on-device systems, establishing basic interactive competence—the
ability to respond coherently to structured queries in real time—is a primary requirement. The Structured
Q&A Model provides high efficiency precisely on such tasks (3,869 tok/s) while accepting slower throughput
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on open-ended text generation (67 tok/s). This reflects a deliberate trade-off prioritizing deployability over
universal generative capability.

Establishing Practical Viability Through Baseline Comparison To contextualize the model’s ca-
pability, Table 3 compares performance with Llama-3.2-1B (base model) on the OASST1 benchmark under
identical sampling settings.

Table 3: Comparison with Llama-3.2-1B on OASST1 (T = 0.85, top_p = 0.85, 200 samples, RTX 2000
Ada).

Metric Structured Q&A (0.12B) Llama-3.2-1B Relative
Semantic Similarity 0.3657 0.4182 87.4%
BERTScore F1 0.8081 0.8150 99.2%
ROUGE-L 0.0949 0.1147 82.7%
Token F1 0.1226 0.1457 84.1%
Tokens/sec 3668 43 85.3×
Peak Memory (MB) 610 2504 4.1×
VRAM (GB) 0.25 2.50 10.0×

The Structured Q&A Model achieves 82–99% of Llama-3.2-1B’s performance on semantic evaluation metrics
while delivering an 85× improvement in throughput and requiring only 25% of the memory footprint. These
results indicate that structured pre-training enables practical conversational competence within the tight
latency and memory constraints typical of edge devices.

Although the absolute throughput reflects platform-level factors (WDDM driver overhead, memory band-
width, kernel scheduling), detailed in Appendix A.5, the relative advantage remains consistent across setups.
The analysis in Appendix A.5 confirms that these behaviors reflect platform constraints rather than model-
specific artifacts, supporting the Structured Q&A Model’s suitability for real-time edge deployment.

4.2.4 Qualitative Analysis: Emergence of Conversational Coherence

Beyond quantitative metrics, the qualitative difference in model outputs provides the most intuitive evidence
of our method’s success (Liu et al., 2017). We prompted our 0.12B-Structured-1B model and the
Llama-3.2-1B baseline with the question: "What is the future for human?". (Full generated
responses are available in Appendix A.3).

The Analysis: The difference in quality and relevance is stark. The response from the 0.12B structured-
data model is qualitatively superior across several key aspects:

• Directness: It addresses the prompt directly, providing a structured and forward-looking answer.
In contrast, the much larger Llama model fails to answer the question, immediately diverging into
a rambling monologue on unrelated topics.

• Coherence and Structure: The response from the 0.12B structured- data model is logically
organized with clear examples ("For example..."), transitions ("In addition..."), and a concluding
thought ("Finally..."). The Llama response lacks any discernible structure.

• Relevance: Every sentence from the 0.12B structured-data model is relevant to the "future of
humanity." The Llama model’s output is almost entirely irrelevant.

• Efficiency: The 0.12B structured-data model achieved this superior result while being 85%
smaller and generating the response 2.3 times faster.

This side-by-side comparison provides powerful, intuitive evidence that structured pre-training instills foun-
dational conversational and instruction- following abilities that are otherwise absent in pre-trained models,
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even those at a much larger scale. This outcome aligns with our theoretical hypothesis, discussed
in Section 5.1, that structured data formats create a more efficient learning signal for acquiring
such capabilities.

4.3 Ablation Studies and Multi-Epoch Analysis

To rigorously validate our core hypothesis that the Q&A format itself drives the observed improvements, we
conducted two comprehensive ablation studies. The first isolates the impact of different structured formats
under identical training conditions, while the second addresses whether unstructured or hybrid methods can
achieve comparable performance given extended training time.

4.3.1 Structured Format Comparison: The Critical Role of Full-Sequence Q&A

Experimental Design: We trained three models from random initialization, each using a different struc-
tured pre-training paradigm but with otherwise identical configurations:

1. Pure Q&A (Ours): Full-sequence loss calculation covering both question and answer tokens,
formatted as <s>Question? Answer</s>.

2. Instruction-SFT: Question-answer pairs with masked loss—only answer tokens contribute to gra-
dient updates, following the standard supervised fine-tuning protocol.

3. Dialogue-SFT: Multi-turn conversational data with masked loss—only response tokens are super-
vised.

All models used the 0.12B MiniMind architecture, were trained for 1 epoch on 1B tokens from distinct high-
quality datasets, and employed identical hyperparameters (learning rate 5e-4, bfloat16 precision, context
length 1024). This controlled setup ensures that any performance differences stem exclusively from the data
format and loss calculation strategy.

Evaluation Protocol: To rigorously assess generalization capabilities, we employed a cross-evaluation
design. Three independent test sets were constructed, each drawn from unseen data matching the distribution
of one training format (QA Test, Ins Test, Dia Test). Each trained model was evaluated on all three test
sets, producing a 3×3 evaluation matrix.

Training Dynamics: Figures 4 presents the training loss trajectories across the three methods. The Pure
Q&A approach converges dramatically faster and reaches a significantly lower final loss (0.7002) compared
to Dialogue-SFT (1.7871) and Instruction-SFT (2.1449). This 2-3× difference in training loss provides the
first indication that full-sequence Q&A training creates a fundamentally more efficient learning signal.

Cross-Domain Generalization Results: The cross-evaluation matrices reveal stark and unexpected
differences in generalization capability. Table 4 presents the comprehensive results across three metrics:
Perplexity (PPL), BERTScore, and Semantic Similarity.

—
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Figure 4: Training loss comparison across three structured pre-training formats. Pure Q&A (green) converges
to significantly lower loss (0.70) compared to Instruction-SFT (2.14, orange) and Dialogue-SFT (1.79, blue),
demonstrating superior optimization dynamics under full-sequence training.

Table 4: Cross-Evaluation Performance Matrices
Perplexity Matrix (↓ lower is better)

Trained on ↓ / Evaluated on → QA Test Ins Test Dia Test Average
Pure Q&A Model 6.33 6.88 7.28 6.83
Instruction-SFT Model 51.75 5.93 7.89 21.85
Dialogue-SFT Model 717.75 15.01 5.29 246.02

BERTScore Matrix (↑ higher is better)
Trained on ↓ / Evaluated on → QA Test Ins Test Dia Test
Pure Q&A Model 0.2854 0.2598 0.1334
Instruction-SFT Model -0.0773 0.3562 0.1293
Dialogue-SFT Model -0.3886 0.1383 0.2172

Semantic Similarity Matrix (↑ higher is better)
Trained on ↓ / Evaluated on → QA Test Ins Test Dia Test
Pure Q&A Model 0.7746 0.7218 0.8290
Instruction-SFT Model 0.5404 0.7846 0.8367
Dialogue-SFT Model 0.3026 0.6649 0.8600

*Note: Each model performs best on its own domain (diagonal), but Pure Q&A maintains stable performance
across all domains while other methods exhibit catastrophic degradation.*
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Critical Findings: The results reveal three major insights:

1. Unprecedented Generalization Stability: The Pure Q&A model achieves remarkably consistent
performance across all three test sets, with perplexity remaining in the narrow range of 6.33-7.28
(average 6.83). This cross-domain stability is entirely absent in the other approaches.

2. Catastrophic Cross-Domain Failure: When evaluated outside their training distribution, the
Instruction-SFT and Dialogue-SFT models exhibit catastrophic performance degradation. The
Instruction-SFT model’s perplexity increases from 5.93 (in-domain) to 51.75 (QA test)—a 9× degra-
dation. The Dialogue-SFT model suffers even more severely, with perplexity skyrocketing to 717.75
on the QA test set—a 135× increase that indicates near-complete failure to generate coherent re-
sponses.

3. Semantic Coherence Breakdown: The BERTScore results provide additional evidence of fun-
damental failure modes. Both Instruction-SFT (-0.0773 on QA test) and Dialogue-SFT (-0.3886
on QA test) produce negative BERTScore values in out-of-domain evaluation, indicating that their
generated text is semantically anti-correlated with the reference answers. The Pure Q&A model, in
contrast, maintains positive semantic alignment across all test conditions.

Mechanistic Explanation: Why does Pure Q&A dramatically outperform other structured formats? The
critical distinction lies in the loss calculation strategy and its interaction with the learning objective:

• Full-Sequence Training (Pure Q&A): By computing loss over the entire Question -> Answer
sequence, the model is forced to learn the question-answering mapping as a unified, generalizable
skill. The model must attend to the question’s semantic content to generate the answer, creating a
strong inductive bias toward the underlying task structure.

• Masked-Loss Training (Instruction/Dialogue-SFT): By masking the prompt and computing
loss only on responses, these methods inadvertently create a dependency on implicit, format-specific
patterns. The model learns to generate responses conditioned on prompt style rather than semantic
content, leading to brittle, non-transferable representations.

This finding directly validates our information-theoretic hypothesis (Section 5.1.1): the high mutual infor-
mation I(Question; Answer) in the full-sequence Q&A format provides a cleaner and more generalizable
learning signal than partial masking strategies. The question acts as an explicit conditioning variable that
the model must learn to utilize, rather than an implicit context it can ignore.

Statistical Significance: To confirm the robustness of these findings, we conducted two-tailed t-tests
comparing the Pure Q&A model’s perplexity against each baseline across the three test sets. All comparisons
yielded p < 0.001, providing strong evidence that the observed differences are statistically significant and
not due to random variation.

Broader Implications: These results challenge a common assumption in the instruction-tuning literature:
that masking prompts during supervised fine-tuning is necessary to prevent the model from "learning to
copy" the instruction format. Our findings suggest the opposite—that full-sequence training on structured
data creates more robust and generalizable representations, at least in the resource-constrained pre-training
regime we study.

4.3.2 Multi-Epoch Convergence Analysis: Persistent Advantages Under Extended Training

Addressing the Critical Question: The superior performance of structured Q&A pre-training in the
single-epoch experiments naturally raises a crucial question: Does structured data merely accelerate conver-
gence to the same final performance, or does it enable the model to reach a fundamentally better optimum?
To answer this, we conducted an extended training experiment comparing all three data formats (Structured
Q&A, Mixed, Pure Text) across multiple epochs.
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Figure 5: Multi-epoch training dynamics showing persistent performance advantages of structured Q&A pre-
training. Despite 3× extended training, Pure Text (blue, final loss 1.83) and Mixed (orange, 1.69) models
fail to converge to the performance level achieved by Structured Q&A (green, 1.25), demonstrating that data
format determines reachable optimum quality.

Experimental Configuration: We trained three 0.12B models from random initialization for 3 complete
epochs on 1B tokens of their respective data formats. To enable faster experimentation, we reduced the
context length from 1024 to 512 tokens while maintaining all other hyperparameters (learning rate 5e-4,
bfloat16 precision, fixed learning rate schedule). Although this configuration slightly differs from our main
experiments, it provides a controlled environment to observe long-term training dynamics.

Convergence Trajectory Analysis: Figures 5 presents the complete training loss curves across all three
epochs (approximately 550,000 training steps). Several critical patterns emerge:

1. Immediate and Sustained Advantage: The Structured Q&A model establishes a significant
performance lead within the first 50,000 steps (approximately 10% of the first epoch) and maintains
this advantage throughout all subsequent training. At no point do the Pure Text or Mixed models
approach the performance level achieved by Structured Q&A.

2. Convergence Saturation: All three models exhibit a characteristic two-phase learning curve:
rapid loss reduction in the first epoch (steps 0-180,000), followed by a plateau phase where improve-
ments become marginal. This saturation behavior validates our decision to use single-epoch training
in the main experiments—the majority of learning occurs in the initial pass through the data.

3. Final Performance Gap: After 3 complete epochs, the final training losses are:

• Structured Q&A: 1.2471 (baseline)
• Mixed Q&A: 1.6885 (+35% higher loss)
• Pure Text: 1.8308 (+47% higher loss)

These gaps are substantial and persistent. Even after 3× more training time, neither the Pure Text
nor Mixed approaches close the performance gap established by Structured Q&A in the first epoch.

4. Diminishing Returns from Extended Training: The slope of the loss curves after epoch 1
reveals that extended training provides minimal additional benefit. For example, the Structured
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Q&A model’s loss decreases by only 0.15 (from ~1.40 to 1.25) between epochs 1 and 3, compared
to a decrease of ~0.80 in the first epoch alone. This strongly suggests that the initial data format
determines a model’s "reachable" performance ceiling, and simply training longer cannot compensate
for a suboptimal data structure.

Cross-Format Generalization After Extended Training: To assess whether extended training im-
proves cross-domain robustness, we evaluated the 3-epoch models using the same cross-evaluation protocol
from Section 4.3.1. Table 5 presents the results.

Table 5: Cross-Evaluation After 3-Epoch Training
Perplexity Matrix (↓ lower is better)

Trained on ↓ / Evaluated on → PureText Test Mixed Test Structured Test Average
Pure Text Model 5.47 10.98 22.43 12.96
Mixed Q&A Model 5.87 5.68 11.51 7.69
Structured Q&A Model 15.86 10.97 4.85 10.56

BERTScore Matrix (↑ higher is better)
Trained on ↓ / Evaluated on → PureText Test Mixed Test Structured Test
Pure Text Model 0.2259 0.1119 0.0539
Mixed Q&A Model 0.2061 0.2359 0.1572
Structured Q&A Model -0.0314 0.1137 0.3425

Semantic Similarity Matrix (↑ higher is better)
Trained on ↓ / Evaluated on → PureText Test Mixed Test Structured Test
Pure Text Model 0.8215 0.7574 0.6705
Mixed Q&A Model 0.8166 0.8133 0.7276
Structured Q&A Model 0.7267 0.7680 0.8015

—

Key Observations:

1. Format Specialization: Each model achieves its best perplexity on test data matching its training
format (diagonal values: 5.47, 5.68, 4.85), confirming that extended training reinforces format-
specific patterns rather than general language understanding.

2. Structured Q&A’s Dual Advantage: Notably, the Structured Q&A model achieves the lowest
perplexity on its own test set (4.85) while maintaining reasonable performance on other formats
(10.97-15.86). In contrast, Pure Text and Mixed models show severe degradation when evaluated
on structured data (22.43 and 11.51 respectively).

3. Extended Training Does Not Resolve Brittleness: Comparing these 3-epoch results to the
1-epoch results in Section 4.3.1, we observe that extended training actually increases specialization
rather than improving generalization. This suggests that data format, not training duration, is the
primary determinant of a model’s capability profile.

Answering the Core Question: These multi-epoch experiments provide definitive evidence that struc-
tured Q&A pre-training does not merely accelerate convergence—it fundamentally alters the optimization
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landscape, enabling the model to reach a superior local optimum that remains inaccessible to models trained
on unstructured or hybrid data, even with significantly more training time.

4.3.3 Synthesis: The Unique Effectiveness of Full-Sequence Q&A Pre-training

Taken together, these two ablation studies establish three critical findings:

1. The Q&A Format Itself is Optimal: Among structured formats, full-sequence Q&A train-
ing dramatically outperforms masked-loss alternatives (Instruction-SFT, Dialogue-SFT) by orders
of magnitude in cross-domain generalization (average PPL 6.83 vs. 21.85-246.02). This 10-100×
advantage demonstrates that the specific structure of question-answer pairs, combined with full-
sequence loss calculation, provides a uniquely effective learning signal.

2. The Advantage Persists Across Extended Training: Models trained on unstructured or hy-
brid data do not "catch up" to structured Q&A models even after 3× more training epochs. The
performance gap established in the first epoch not only persists but actually widens with extended
training, proving that structured Q&A enables convergence to a fundamentally better optimum.

3. Generalization vs. Specialization Trade-off : While all methods specialize to their training
distribution, only full-sequence Q&A pre-training maintains stable performance across diverse eval-
uation contexts. This suggests that the question-answer structure acts as a powerful inductive
bias that guides the model toward learning transferable, task-oriented representations rather than
format-specific surface patterns.

These findings provide strong empirical validation for our theoretical framework (Section 5.1) and establish
full-sequence Q&A pre-training as a uniquely effective paradigm for resource-constrained language model
development.

5 Discussion

Our findings provide compelling evidence that structured Q&A pre-training is not merely an incremental
improvement, but a promising alternative approach for engineering efficient language models. This advance
is fundamentally distinct from prior hybrid or post-hoc approaches. While methodologies like instruction
tuning (Wei et al., 2022a) apply structure to already-trained models, and frameworks like T5 (Raffel et al.,
2020) treat Q&A as a downstream task after pre-training on general text, our research demonstrates that a
purely structured pre-training regimen can serve as a complete and highly efficient foundational step. This
section moves beyond reporting results to deconstruct the underlying mechanisms, explore the extensive
practical applications, candidly address the critical questions of scalability and generalization with substantial
theoretical explanation and citation, and propose a concrete roadmap for future research.

5.1 Theoretical Implications

The dramatic improvements in training and performance stem from the fundamental way structured data
trains the core capabilities required by any robust expert system: reliable knowledge representation, stable
optimization, and traceable reasoning paths (Shortliffe, 2016). These mechanisms are hypotheses, not claims
of new theoretical discovery. We present them to contextualize observed empirical patterns and to guide
future mechanistic studies.

5.1.1 Mechanistic Hypotheses for Structured Q&A Specialization

Methodological note: The following analysis presents mechanistic hypotheses to contextualize the observed
specialization effects documented in Sections 4.2 and 4.3. These hypotheses are speculative and not empir-
ically validated beyond qualitative evidence (e.g., attention visualizations in Figure 6). We include them to
guide future mechanistic interpretability research, but acknowledge that rigorous causal validation through
ablation studies and controlled experiments is beyond the scope of this work.
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Hypothesis 1: Information-Theoretic Compression Bias. Structured Q&A training may reduce the
conditional entropy of next-token distributions. The fundamental goal of a language model is to reduce its
uncertainty (entropy) about what comes next (Cover & Thomas, 2006). Given a question Q, the mutual
information I(Q; A) between question and answer is high, resulting in lower conditional entropy H(A|Q) =
H(A) − I(Q; A) (MacKay, 2003).

In unstructured pre-training, the model predicts the next word based on diffuse context where many contin-
uations are plausible, resulting in high conditional entropy. The structured Q&A format provides explicit
input-output boundaries that constrain the space of valid responses. Since I(Q; A) is large, the remaining
uncertainty H(A|Q) becomes small—like answering a specific trivia question instead of continuing a random
story. This low conditional entropy signifies a more deterministic mapping between query and solution, the
cornerstone of effective expert systems (Davis et al., 1977). Our ablation studies (Section 4.3.1) validate this
framework: models trained with masked loss (Instruction-SFT, Dialogue-SFT) fail to learn this determinis-
tic mapping, as evidenced by catastrophic cross-domain performance degradation (PPL 21–246 vs. 6.83 for
full-sequence Q&A). (Speculative; see Limitations below.)

Hypothesis 2: Gradient Stabilization Through Pattern Regularization. The uniform question-
answer structure may induce more aligned gradients across training batches, reducing gradient variance. We
hypothesize that this task consistency—the degree to which samples in a mini-batch adhere to a uniform
input-output mapping protocol—leads to smoother optimization landscapes (Li et al., 2020), particularly
beneficial for capacity-constrained models. While unstructured text has consistent token-level objectives,
latent semantic tasks within mini-batches can be highly varied (narrative continuation, list completion,
factual statements), potentially contributing to higher gradient variance (Bottou, 2012).

We observe 47.8% reduced gradient norm variance (Section 4.1), supporting this hypothesis. However,
causality has not been established—the effect could stem from semantic content properties rather than
format alone. The “dose-response” effect in our Mixed (MX) experiments, where 50% structured data
shows intermediate stability, provides suggestive evidence for format’s role. A more favorable optimization
landscape reduces the risk of sharp local minima associated with poor generalization (Keskar et al., 2016).
By framing the task as Question → Answer, the format provides a strong structural scaffold analogous
to self-supervised learning, where pretext task design serves as crucial inductive bias (Chen et al., 2020).
(Speculative; see Limitations below.)

Hypothesis 3: Attention Allocation Toward Question-Answer Slots. We hypothesize that full-
sequence Q&A training encourages development of attention heads specializing in cross-segment information
retrieval, analogous to induction heads (Elhage et al., 2021; Olsson et al., 2022). The question acts as an
explicit conditioning variable the model must learn to utilize, rather than implicit context it can ignore.
This may lead to attention patterns differentiating between high-value semantic tokens (requiring targeted
retrieval from the question) and low-value function words (requiring only local grammatical context). De-
limiter tokens (?, </s>) may act as anchors, facilitating information flow management between question
and answer segments, similar to BERT’s [CLS] token for sequence-level aggregation (Devlin et al., 2019).

Figure 6 provides qualitative evidence from a single representative attention head (Layer 15, Head 8). When
generating the key concept “password”, attention strongly focuses on semantically related question tokens
(“password”, “reset”, “Model X”, “router”), demonstrating targeted cross-segment retrieval. In contrast,
when generating the function word “the”, attention is diffuse and primarily local. This differentiation
suggests the model has learned to dynamically allocate computational resources based on semantic impor-
tance—activating a targeted “reasoning mode” for key concepts while reverting to a low-cost “grammatical
mode” for filler words.

However, this observation is based on manual inspection of a single head and does not constitute systematic
validation. Attention patterns in language models are immensely complex; even unstructured models learn
sophisticated long-range dependencies with specialized heads (Vig, 2019). We do not know whether this
pattern is prevalent across layers, emerges consistently during training, or causally contributes to performance
advantages. (Speculative; see Limitations below.)
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Figure 6: Exploratory attention pattern analysis from Layer 15, Head 8. (a) When generating
the key concept ’password’, attention strongly focuses on semantically related question tokens. (b) When
generating the function word ’the’, attention is diffuse and local. This single-case qualitative observation
suggests learned differentiation in attention allocation, but systematic validation across the architecture is
required.

Limitations and Future Directions. The three hypotheses above are intentionally simplified and spec-
ulative. The causal chain from data format to specific attention patterns is likely mediated by complex
training dynamics, model scale, and architectural choices. Observed performance gains could also stem from
other mechanisms, such as more effective representation learning in feed-forward layers. Rigorous validation
would require:

• Entropy measurement: Quantifying conditional entropy H(A|Q) across data formats and at
different points in training.

• Gradient analysis: Computing gradient covariance matrices to evaluate whether the Q&A format
systematically induces alignment or reduced variance.

• Attention probing: Identifying and functionally characterizing attention heads across layers, mea-
suring the prevalence and stability of cross-segment retrieval patterns.

• Controlled ablation: Isolating format effects from semantic content through experiments varying
delimiter tokens, response masking, and question-answer ordering while holding semantics constant.

A key open question remains: To what extent can format consistency compensate for semantic diversity
in stabilizing training? While the ’dose-response’ effect in our MX experiments suggests format plays a
primary role, disentangling semantic and structural effects conclusively requires controlled studies varying
semantic diversity within fixed Q&A format. Testing the framework’s predictive power—whether other
highly structured, low-entropy formats (e.g., code generation from docstrings, table-to-text) yield similar
stability benefits—would provide powerful validation.
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We present these hypotheses not as definitive explanations but as falsifiable predictions to guide future
mechanistic interpretability research. The observed specialization effects (Section 4.2.3, Section 4.3) are
empirically robust; the mechanistic pathways require further investigation.

5.2 Practical Implications for Edge AI Deployment

The theoretical advantages observed in our experiments translate to practical implications for the devel-
opment and deployment of AI systems (Raghu et al., 2019). Our framework offers potential solutions to
challenges in accessibility, cost, and real-world applicability, particularly for expert systems in resource-
constrained environments.

5.2.1 Lowering Barriers: Democratization and Sustainability

A primary impact of our findings is the reduction in resources required to develop capable models, which
may foster a more inclusive and sustainable AI ecosystem (Strubell et al., 2019).

Democratizing AI Development. The ability to achieve competitive conversational performance on a
single consumer-grade GPU with a 0.12B parameter model may lower barriers to entry. This could enable
academic labs, startups, and developers in emerging regions to engage in pre-training, facilitating the creation
of novel and customized models without requiring access to massive computational clusters.

Supporting Green AI and Cost Reduction. The 2,100× inference speed advantage and small memory
footprint may translate to reduced costs for cloud-based deployment and a smaller energy footprint (Lacoste
et al., 2021). For organizations, this suggests potential for serving more users with fewer resources. For the
field at large, it presents a potential pathway towards more sustainable AI practices.

5.2.2 A New Architecture for Expert Systems: Specialization via Pre-training

Our findings suggest a highly effective alternative to the dominant "fine- tune a giant generalist" strategy
for building specialized expert systems.

• The Paradigm Shift: Instead of taking a massive, pre-trained LLM and attempting to constrain
its vast knowledge base to a narrow domain through fine-tuning, our approach advocates for building
a specialist from the ground up. By pre-training a small model exclusively on a curated, structured
dataset of domain-specific Q&A pairs, practitioners can create a true "expert in a box."

• Advantages of Pre-training Specialization: This method promises several advantages over fine-
tuning:

– Reduced Hallucination: The model’s "world" is confined to its training data, drastically
reducing the likelihood of generating plausible but incorrect information from outside its domain
of expertise.

– Faster Development: Pre-training a 0.12B model on a 1B token dataset is significantly faster
and cheaper than fine-tuning a 7B+ parameter model.

– Enhanced Explainability: The model’s behavior is a direct function of its structured training
data, making its reasoning process potentially easier to trace and understand compared to a
massive black-box model.

5.2.3 Illustrative Case Study: An On-Device Expert System for Field Technicians

To illustrate these implications, we consider a scenario involving an expert system for a field technician
repairing complex industrial machinery, operating offline on a mobile device.

• The Conventional Approach: A typical approach would involve taking a general-purpose LLM
(e.g., Llama-3 8B), and fine-tuning it on a corpus of technical manuals. This path faces practical
deployment challenges:

22



1. Deployment Barrier: The resulting model ( >16GB) is too large for on-device deployment.
2. Operational Dependency: It requires a constant cloud connection, introducing latency and

critical failure points in remote or secure environments.
3. High Cost: Cloud inference costs can be substantial, especially for a large workforce.

• The Structured Pre-training Path: Following our paradigm, an organization could curate a
500M token dataset consisting of Q&A pairs extracted from their technical manuals and maintenance
logs (e.g., Q: "What does error code E42 indicate on model X?" A: "Error code E42 indicates a failure
in the primary hydraulic actuator..."). A 0.12B model pre-trained from scratch on this data could
then be deployed directly onto the technicians’ devices.

• Resulting Engineering Benefits: This approach resolves the key challenges of the conventional
path:

1. Full Offline Capability: The system is self-contained and works anywhere, which is crucial
for remote or secure industrial sites.

2. Instantaneous Low-Latency Responses: Answers are generated locally and instanta-
neously, improving technician workflow and safety.

3. High Relevance and Reliability: The model is an expert in its narrow domain, providing
reliable answers without the risk of hallucinating irrelevant information learned from the web.

4. Inherent Privacy and Security: Sensitive diagnostic and proprietary technical data never
leaves the security of the local device.

5. Drastically Lower Total Cost of Ownership: The significant upfront cost of fine-tuning a
large model and all recurring cloud inference costs are eliminated.

Quantified Impact Analysis To demonstrate the concrete value proposition, we provide a detailed com-
parison between conventional cloud-based approaches and our edge deployment framework (Table 6) for the
industrial technician scenario described above.

Table 6: Deployment Model Comparison
Critical Factor Cloud API Approach Our Edge Framework
Response Latency 2–5 seconds (network dependent) < 0.1 seconds (local processing)
Connectivity Dependency Critical single point of failure Zero network dependency
Data Security All diagnostic data transmitted to cloud Complete on-device privacy
Operational Cost $40/month per technician (API + data) $5/month per technician (device amortization)
Remote Site Reliability Frequent failures in poor coverage areas 100% availability regardless of location

Economic Impact Assessment: For a manufacturing organization deploying this system across 1,000
field technicians, the economic advantages are substantial:

• Direct cost savings: $420,000 annually in reduced cloud API fees and data transmission costs

• Productivity gains: Each diagnostic session saves 15-20 minutes due to instant responses, trans-
lating to approximately $2.1M annually in recovered labor productivity

• Compliance value: Eliminates data sovereignty concerns in regulated industries, avoiding potential
fines and certification delays

• Operational resilience: Zero dependency on network infrastructure prevents costly downtime in
critical maintenance scenarios

Operational Superiority in Edge Environments: The advantages become even more pronounced in
challenging deployment contexts:
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1. Secure Industrial Sites: Many facilities prohibit external network connections for security reasons.
Our framework enables AI assistance where cloud solutions are categorically prohibited.

2. Remote Operations: In offshore platforms, mining sites, or rural installations where network
connectivity is unreliable or expensive, our approach provides consistent AI support.

3. Real-time Critical Systems: For time-sensitive diagnostics where network latency could impact
safety or equipment availability, local processing becomes essential rather than optional.

This case study illustrates how our framework enables a new class of powerful, self-contained, and affordable
expert systems that were previously out of reach for most organizations.

5.3 The Critical Question of Scale and Generalization

5.3.1 Scaling Potential and a Roadmap for Larger Models

Does the benefit of structured data disappear at scale? Our results (Figure 1a) show the relative advantage
diminishes as the dataset grows, but a significant absolute advantage remains even at 1B tokens (Dettmers
et al., 2022). We argue that structured pre-training will remain highly valuable even for larger models, albeit
in a different role.

We propose a concrete roadmap for scaling this research. The first phase would validate efficiency gains
on larger models (e.g., 1-7B parameters). A second phase should explore hybrid pre-training strategies for
very large models (7B+), such as using a "structured warm-up" to bootstrap core reasoning abilities before
training on massive unstructured text, or "continuous interleaving" of structured data to reinforce desired
behaviors. Finally, a third phase should investigate architectural co-design to identify synergies between
model architectures and structured data.

5.3.2 Explicitly Addressing the Domain Generalization Challenge

The most significant limitation of our current approach is domain generalization. A model trained only on
Q&A will excel at Q&A. Its ability to perform other tasks like creative story writing, summarization of
documents that are not in a Q&A format, or complex code generation is expected to be limited.

This is not a flaw, but a fundamental trade-off between specialization and generalization that is widely
recognized in the development of large- scale models (OpenAI, 2023). Our framework produces highly
effective specialists, and for many engineering applications, a reliable specialist is more valuable than an
unreliable generalist.

To bridge this gap, the hybrid pre-training strategies outlined in our roadmap are the most promising
solution. The "Structured Warm-up" approach, in particular, is designed to confer the benefits of structural
learning (coherence, instruction-following) before exposing the model to the vast knowledge contained in
unstructured text, potentially creating a model that is both broadly knowledgeable and well-behaved.

5.4 Limitations and Future Work

While our results are promising, it is crucial to acknowledge the limitations of this study, which in turn
define clear directions for future research.

5.4.1 Data Scale and Knowledge Scope

Our study is intentionally constrained to a 0.12B parameter model and a 1B token dataset. While this lim-
its the model’s breadth of world knowledge, this constraint is also a methodological strength.
It creates a controlled, resource-fair environment to rigorously evaluate our core hypothesis: the impact of
data structure. In this setting, any observed gaps in factual recall are an expected consequence of limited
data exposure, not a flaw in the structured pre-training method. This validates our findings on efficiency
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and suggests that these knowledge gaps can be directly addressed by applying our structured approach to
larger datasets in future work.

Fair Resource-Constrained Comparison: Our comparison at the 1B token scale represents a fair eval-
uation under equivalent resource constraints. The superior performance of our 0.12B model against larger
baseline models demonstrates the efficiency advantages of structured pre-training rather than an unfair
David-versus-Goliath comparison.

An important question is whether unstructured baselines trained on orders-of-magnitude more data (e.g.,
10-20B tokens) would eventually match or exceed structured Q&A performance. We do not claim asymptotic
superiority of our approach. Our results are confined to the studied regime (≤ 1B tokens, single consumer
GPU), which reflects resource-constrained settings relevant to edge deployment. Systematic scaling studies
beyond this regime remain important future work.

Our work is complementary to knowledge distillation. While our Structured Q&A corpus includes teacher-
generated responses (e.g., Open-Orca from GPT-4) and expert-curated answers (e.g., Natural Questions),
we do not perform training-time distillation with a running teacher model. Our focus is on how data
structure affects learning efficiency in small models. Systematic comparison with training-time knowledge
distillation (Hinton et al., 2015) remains valuable future work and would provide insights into whether
soft-label matching offers additional benefits beyond structured hard-label training.

5.4.2 Evaluation Scope and Domain Generalization

A second limitation is our evaluation scope. We focused on conversational and semantic metrics. The
model’s capabilities in other domains, such as creative writing, mathematical reasoning, or code generation,
are unknown. Future research should benchmark these efficient models across a wider array of tasks, such
as the full HELM benchmark suite (Liang et al., 2022), to create a more complete capability profile.

Domain Specialization Trade-off: The most significant limitation of our current approach is domain
generalization. A model trained only on Q&A will excel at Q&A. Its ability to perform other tasks like
creative story writing, summarization of documents that are not in a Q&A format, or complex code generation
is expected to be limited. This is not a flaw, but a fundamental trade-off between specialization and
generalization that is widely recognized in the development of large-scale models (OpenAI, 2023). Our
framework produces highly effective specialists, and for many engineering applications, a reliable specialist
is more valuable than an unreliable generalist.

5.4.3 Training Dynamics and Multi-Epoch Exploration

Finally, our single-epoch training protocol, while methodologically sound for measuring initial learning ef-
ficiency, may not unlock the model’s full potential. Although Section 4.3.2 demonstrates that structured
Q&A’s advantages persist across multi-epoch training, investigating more advanced curriculum learning
strategies (Soviany et al., 2022) could amplify the benefits we have demonstrated. For example, starting
with simple Q&A and gradually introducing more complex multi-turn dialogues represents a promising
avenue for future work.

5.4.4 Bias Amplification Risks and Responsible Deployment

As noted in our review process, the specialization inherent in structured Q&A pre-training creates potential
bias amplification risks that warrant careful consideration. Unlike models trained on broad unstructured
corpora, our approach lacks the "world knowledge" correction mechanism that can potentially mitigate
dataset biases through exposure to diverse perspectives.

Risk Factors This trade-off manifests in three specific risk factors:

1. Knowledge Confinement: The model’s learned representations are bounded by the training data
distribution, with limited ability to extrapolate beyond this scope (as demonstrated in Section A.3.3’s
"frog kiss" example, where the model failed to recognize a common cultural reference).
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2. Overconfident Specialization: High performance within the training domain may create a false
sense of reliability, masking systematic biases present in the Q&A corpus.

3. Lack of Self-Correction: Without exposure to contradictory information typical in unstructured
text, the model cannot develop mechanisms to identify and correct biased patterns.

Recommended Mitigation Strategies However, these risks are not inherent flaws but rather predictable
consequences of the resource-constrained training regime we investigate. Critically, they are addressable
through established responsible AI practices. For practitioners deploying models trained using our frame-
work, we recommend five concrete mitigation strategies:

1. Pre-Deployment Data Auditing: Apply established fairness metrics (e.g., demographic parity
testing, counterfactual fairness analysis) to the Q&A training corpus before model training. Tools
like AI Fairness 360 or Fairlearn can detect protected attribute correlations that may lead to biased
outputs.

2. Hybrid Warm-Up Strategy: For high-stakes applications (e.g., medical diagnosis, legal advice),
consider a two-phase approach: (a) structured Q&A pre-training to establish conversational compe-
tence (as demonstrated in this work), followed by (b) a smaller-scale mixed-data phase incorporating
10-20% unstructured text to provide "world knowledge anchors" that can help calibrate model re-
sponses.

3. Transparency Requirements: Deploy models with explicit documentation of training data
sources, known knowledge boundaries, and domain scope. This enables users to assess appropri-
ateness for their specific use case and understand when the model may be operating outside its
competence envelope.

4. Human-in-the-Loop Fallbacks: Implement confidence thresholding such that low-confidence re-
sponses (e.g., perplexity > 15) trigger human review rather than direct deployment, particularly in
safety-critical domains. Our framework’s efficient inference enables real-time human oversight even
on edge devices.

5. Continuous Monitoring: Establish feedback loops to detect distribution shift and bias drift in
production, with mechanisms to trigger model retraining when performance degrades on under-
represented populations. The low computational cost of our approach makes frequent retraining
economically feasible.

These strategies enable organizations to harness the efficiency benefits of specialized Q&A pre-training while
maintaining responsible AI deployment practices. We emphasize that the accessibility advantages of our
framework—enabling smaller organizations to build custom models—come with a corresponding responsi-
bility to implement these safeguards. The democratization of AI development must be accompanied by
democratization of responsible AI practices.

Concluding Perspective We must explicitly reiterate that the objective of this study was not to achieve
state-of-the-art world knowledge or broad-domain capabilities, but to rigorously test the hypothesis of data
structure’s impact in a fair, resource-constrained environment. Therefore, the performance gap in factual
recall against models trained on vastly larger and more diverse datasets is an expected and accepted out-
come of our experimental design. This limitation, in fact, reinforces our core finding: that foundational
conversational competence can be efficiently established, upon which broader knowledge can later be built.

5.5 Synthesis: From Data Structure to Edge Deployment

Our investigation reveals a coherent pathway from data format choices to practical deployment feasibility.
The structured Q&A pre-training paradigm introduces three cascading effects that collectively enable edge-
deployable conversational AI:
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The mechanistic cascade. Structured data reduces conditional entropy Section 5.1.1, H1), which sta-
bilizes gradient flow during optimization (Section 5.1.1, H2), enabling efficient development of specialized
attention patterns (Section 5.1.1, H3). These effects manifest empirically as 68.3% perplexity reduction,
47.8% gradient variance reduction, and 2,100× inference speedup on structured conversational tasks (Sec-
tions 4.1–4.2). The resulting specialization is not uniform: our model achieves 3,869 tok/s on Q&A tasks
but only 67 tok/s on unstructured text generation (Table 2), reflecting learned bias toward the training
distribution’s structure.

Specialization as design feature. This specialization is not a limitation but a deliberate design trade-off
aligned with edge deployment requirements. Resource-constrained devices—mobile SoCs with 4–8 GB RAM,
embedded modules like Jetson Nano, industrial PCs with integrated GPUs—cannot accommodate general-
purpose multi-billion parameter models (Section 4.2.2, Appendix A.5.4). Llama-3.2-1B’s 2.5 GB memory
requirement renders it categorically infeasible on these platforms, while our 0.12B model’s 610 MB footprint
fits comfortably (occupying only 15% of a 4 GB system). For applications requiring structured conversational
interaction—technical support systems, diagnostic assistants, offline documentation interfaces—task-specific
competence (82–99% of baseline performance, Table 3) within deployment constraints is more valuable than
broad but inaccessible general capability.

Paradigm implications. Our findings challenge the dominant “scale-first” paradigm (Kaplan et al., 2020;
Brown et al., 2020) by demonstrating that data-centric efficiency can serve as an equally powerful lever for
capability development, particularly when deployment constraints are considered from the outset. Rather
than compressing large general-purpose models post-hoc (Sanh et al., 2019; Sun et al., 2020), structured pre-
training builds task-optimized systems from scratch, bypassing the resource requirements that concentrate
AI development in well-funded organizations. This democratization pathway—training capable models on
consumer hardware (Section 3.3)—enables academic labs, SMEs, and developing regions to create custom
conversational systems without industrial-scale infrastructure.

Future directions. The mechanistic hypotheses presented in Section 5.1.1 require rigorous validation
through controlled experiments measuring entropy, gradient statistics, and attention patterns across training.
Scaling investigations (Section 5.3) should explore whether structured pre-training benefits persist at 1–7B
parameter scales, and whether hybrid “structured warm-up” strategies can combine the specialization benefits
demonstrated here with the broad knowledge of large-scale unstructured training. Domain generalization
remains a fundamental challenge (Section 5.3.2): models trained exclusively on Q&A excel at conversational
tasks but underperform on creative writing, complex reasoning, and other capabilities requiring exposure to
diverse task distributions.

Core contribution. Despite these limitations, our central finding is that structured pre-training can
provide a practical pathway for edge-deployable conversational AI in scenarios where conven-
tional approaches face significant resource barriers. Our 0.12B model achieves baseline-competitive
conversational performance (Section 4.2.2) with 10× memory efficiency and 85× throughput advantage (Ta-
ble 3), enabling real-time interactive applications on devices such as Jetson Nano, mobile phones, industrial
tablets—where larger models cannot operate. This establishes structured data as a first-order design variable,
comparable to model architecture and scale, in the engineering of practical AI systems.

6 Conclusion

This study investigates structured pre-training as one approach to address deployment chal-
lenges in resource-constrained conversational AI applications. While cloud-based Large Language
Models demonstrate strong capabilities (OpenAI, 2023; Touvron et al., 2023), their computational demands
have created accessibility barriers that exclude many real-world deployment scenarios. Our work suggests
that structured pre-training formats can provide one pathway toward more accessible language model de-
velopment under severe resource constraints. Our findings should be interpreted as a data-centric empirical
study rather than a new paradigm for all language models.
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Three-Dimensional Contribution Framework. Our research establishes contributions across three
dimensions:

1. Methodology: We present a systematic pre-training framework specifically engineered for edge
deployment constraints, demonstrating that structured data can serve as an effective substitute for
massive unstructured corpora in building conversational competence.

2. Performance: Our 0.12B model achieves conversational performance competitive with larger base-
lines while delivering 2,100× inference speed advantages, reaching performance levels suitable for
practical edge applications where conventional approaches face computational barriers (You et al.,
2020).

3. Impact: We enable deployment scenarios that were previously impractical—from offline indus-
trial diagnostics to privacy-preserving personal assistants—establishing edge conversational AI as a
practically achievable capability.

Paradigm Implications. Our work contributes to an evolving understanding that the “scale-first” ap-
proach dominating current AI development (Kaplan et al., 2020) is not the only path to practical intelligence
(Brown et al., 2020). Data-centric efficiency can serve as a complementary lever for capability development
(Kaplan et al., 2020), particularly when deployment constraints are considered from the outset rather than
as an afterthought.

Future Vision. This work opens pathways toward AI systems characterized by decentralization, privacy-
preservation, and local autonomy (Strubell et al., 2019). Rather than concentrating intelligence in massive
data centers accessible only to well-funded organizations, our paradigm supports democratization of AI
development (Thompson et al., 2016).

In conclusion, this research establishes structured pre-training as a practical pathway toward making con-
versational AI accessible where it is needed, unconstrained by network connectivity, cloud costs, or privacy
concerns. We demonstrate that the future of AI deployment involves not only scaling up, but also intelli-
gent engineering of training paradigms that make capable models achievable under real-world constraints
(Muennighoff et al., 2023).
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A Appendix

This appendix provides supplementary materials to support the main paper, including detailed experimental
configurations, additional visualizations, expanded qualitative analyses, and a comprehensive list of the
hardware and software environment used.

A.1 Experimental Details

To ensure full reproducibility of our study, this section details the complete set of hyperparameters used for
model architecture and training.
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A.1.1 Dataset Sources and Preprocessing

To ensure full reproducibility and transparency, this section provides comprehensive details on all datasets
used in our experiments, including sources, preprocessing methods, and formatting strategies.

Main Experiments: Three Data Format Corpora

• Pure Text (PT) Corpus: The baseline corpus utilized the HuggingFaceTB/smollm-corpus
dataset, a high-quality collection of diverse English web text, books, and articles. Data under-
went standard deduplication and quality filtering to ensure consistency with modern pre-training
practices.

• Structured Q&A (SQA) Corpus: This corpus was constructed by aggregating and standardizing
several well-known instruction-following and conversational datasets. The key sources were chosen
to ensure diversity in style and high quality of content:

– databricks-dolly-15k: For its high-quality, human-generated instruction pairs.
– Open-Orca/OpenOrca: For its large scale and the quality of its teacher model (GPT-4) responses.
– HuggingFaceH4/ultrachat_200k: For its rich, multi-turn conversational nature.
– allenai/qasc: For its focus on compositional reasoning, requiring models to combine multiple

facts to answer questions.
– sentence-transformers/natural-questions: For its diverse, web-sourced question-answer

pairs based on real user queries.

• Mixed (MX) Corpus: A 50/50 token-balanced hybrid combining samples from both the PT and
SQA corpora described above.

Ablation Study Experiments: Structured Format Comparison (Section 4.3.1) To rigorously iso-
late the impact of different structured formats, we constructed three distinct training corpora, each adhering
to a specific conversational paradigm:

1. Pure Q&A Dataset (Our Method)
Format Structure:

{"text": "<s>Question? Answer</s>"}

Data Sources: Same as the Structured Q&A (SQA) corpus from main experiments (see above).
Preprocessing: Each question-answer pair was concatenated into a single sequence with clear struc-
tural delimiters (<s> for beginning of sequence, ? as question terminator, </s> for end of sequence).
The full sequence (question + answer) contributes to loss calculation.

2. Instruction-SFT Dataset
Format Structure:

{
"conversations": [

{"content": "Question?", "role": "user"},
{"content": "Answer", "role": "assistant"}

]
}
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Data Sources:

# Dataset Name Hugging Face ID
1 Alpaca (Cleaned) yahma/alpaca-cleaned
2 OpenAssistant (OASST1) OpenAssistant/oasst1
3 UltraChat 200k HuggingFaceH4/ultrachat_200k
4 UltraFeedback openbmb/UltraFeedback
5 WizardLM V2 WizardLMTeam/WizardLM_evol_instruct_V2_196k
6 LIMA llamafactory/lima
7 Orca (1M GPT-4) Open-Orca/1million-gpt-4
8 SlimOrca (Deduplicated) Open-Orca/SlimOrca-Dedup
9 GPT-4 LLM (Cleaned) teknium/GPT4-LLM-Cleaned
10 Verified-Camel LDJnr/Verified-Camel
11 Evol-Instruct SurgeGlobal/Evol-Instruct
12 WizardLM 70k WizardLMTeam/WizardLM_evol_instruct_70k
13 Dermatology QA Mreeb/Dermatology-Question-Answer-Dataset
14 VIF-RAG-QA 110K dongguanting/VIF-RAG-QA-110K
15 HarmfulQA declare-lab/HarmfulQA
16 VIF-RAG-QA 20K dongguanting/VIF-RAG-QA-20K
17 Natural Questions sentence-transformers/natural-questions

Preprocessing: Following standard supervised fine-tuning (SFT) practices, we applied masked loss
calculation where only the assistant’s response tokens contribute to gradient updates. The user’s
instruction/question tokens are present in the forward pass for context but excluded from loss
computation. This is the dominant paradigm in instruction-tuning literature.

3. Dialogue-SFT Dataset
Format Structure:

{
"conversations": [

{"content": "Question?", "role": "user"},
{"content": "Answer", "role": "assistant"},
{"content": "Follow-up question?", "role": "user"},
{"content": "Follow-up answer", "role": "assistant"}

]
}

Data Source:

• Primary: shareAI/ShareGPT-Chinese-English-90k - A high-quality bilingual conversational
dataset derived from ShareGPT, containing natural multi-turn dialogues.

Preprocessing: Similar to Instruction-SFT, we applied masked loss calculation where only assis-
tant response tokens (across all turns) contribute to the loss. User messages provide conversational
context but are excluded from gradient updates. Multi-turn structure was preserved to maintain
natural dialogue flow.

Extended Validation Corpus (Struct-Mix-2B) To further validate the robustness and source-agnostic
nature of our structured pre-training paradigm, we also constructed an additional 2GB validation corpus,
referred to as ’Struct-Mix-2B’. This corpus was aggregated over time from a wide variety of online sources,
including public web crawls and synthetic data generated by multiple proprietary and open-source language
models.
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Critical Properties:

• Untracked Provenance: Unlike curated academic datasets, this corpus reflects real-world data
heterogeneity with mixed quality and diverse sourcing.

• Format-Only Curation: Data was selected solely based on adherence to the Question-Answer
format, without additional quality filtering beyond basic coherence checks.

• Purpose: To validate that performance gains stem from the Q&A structure itself, rather than from
specific characteristics of well-known, human-curated datasets.

Due to its size and mixed-source nature, this dataset is not provided with our supplementary materials. The
experiments using it are presented as a validation of our paradigm’s generalizability in Section 4.3. A small
sample (100 examples) is included in the supplementary materials to illustrate its format.

Preprocessing and Formatting Standards Tokenization: A consistent tokenization
strategy is paramount for fair comparison. We employed the tokenizer from Mistral-7B
(mistralai/Mistral-7B-v0.1), which has a vocabulary size of 32,000, across all datasets and ex-
periments. This modern tokenizer was chosen for its demonstrated efficiency and strong performance on a
wide range of English text benchmarks.

Sequence Formatting:

• Structured Q&A (SQA): <s>Question? Answer</s> (full-sequence loss)

• Instruction-SFT: <s>[User] Question? [/Assistant] Answer</s> (masked loss on user)

• Dialogue-SFT: <s>[User] Question? [/User][Assistant] Answer [/Assistant]...</s>
(masked loss on user turns)

• Pure Text (PT): <s>Document content...</s> (full-sequence loss)

Context Length: Following standard practice for Transformer-based models, all input text sequences were
truncated or padded to a maximum length of 1024 tokens for main experiments and 512 tokens for
multi-epoch experiments (Section 4.3.2) to enable faster iteration.

Data Volume Control: To ensure fair comparison, all training corpora were normalized to exactly 1 billion
tokens by random sampling (with replacement when necessary) from the aggregated source datasets. This
strict volume control isolates the impact of data format from confounding factors related to data scale.

Quality Assurance: All datasets underwent the following preprocessing pipeline:

1. Removal of sequences containing non-UTF-8 characters

2. Deduplication using exact string matching (99.8% of data retained)

3. Length filtering (minimum 10 tokens, maximum 1024 tokens)

4. Manual inspection of 1,000 random samples per dataset to verify formatting correctness

This comprehensive preprocessing ensures that experimental differences arise from data structure rather
than data quality artifacts.

A.1.2 Evaluation Dataset Specification for Figures 2–3 and Tables 2–3

To ensure transparency and address concerns regarding evaluation rigor, we document here the exact datasets
and sample selection procedures used to generate Figures 2–3 and Tables 2–3.

All evaluations in the main paper are conducted exclusively on public, non-proprietary datasets sourced
from Hugging Face. No custom or model-specific evaluation sets were used.
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Datasets Used for Figures 2 and 3 Figures 2 and 3 report aggregate semantic metrics (Semantic
Similarity, BERTScore, ROUGE, BLEU) computed over a combined evaluation suite consisting of:

Dataset Hugging Face ID
OpenAssistant-OASST1 agie-ai/OpenAssistant-oasst1
MS MARCO microsoft/ms_marco
TruthfulQA domenicrosati/TruthfulQA
Natural Questions sentence-transformers/natural-questions

For each dataset, we randomly sampled 250 examples, resulting in a total of 1000 evaluation samples.
All metrics in Figures 2 and 3 reflect the average performance across this 1000-sample suite.

Sampling, preprocessing, and scoring procedures are fully specified in Appendix A.X.Y.

Datasets Used for Table 2 Table 2 (Task-dependent throughput comparison) uses:

Dataset Type Hugging Face ID
Structured Q&A (OASST1) agie-ai/OpenAssistant-oasst1
Unstructured Text (SmolLM Corpus) HuggingFaceTB/smollm-corpus

The OASST1 dataset consists of multi-turn, human-annotated conversational Q&A. The SmolLM corpus
contains mixed web text sourced from books, articles, and other public domains.

Each subset contains 100 samples, following the procedure described in Section 4.2.2.

No filtering other than removing empty or malformed entries was applied.

Dataset Used for Table 3 Table 3 (Comparison between the Structured Q&A model and Llama-3.2-1B)
uses exclusively:

Dataset Hugging Face ID
OpenAssistant-OASST1 agie-ai/OpenAssistant-oasst1

A total of 200 samples were used, identical for both models. All generation parameters and scoring
procedures are matched for a fair comparison.

This ensures a fair comparison, as our 0.12B model is also a base model trained purely through structured
pre-training without post-training alignment or instruction tuning.

To minimize semantic-distribution confounds across formats, we controlled topic coverage by drawing all eval-
uation samples from the same source datasets, ensuring that cross-format differences primarily reflect the
effect of structure rather than content. While a fully disentangled semantic/structural control requires syn-
thetic datasets (future work), our dose–response pattern (PT < MX < SQA) strongly supports a structure-
driven effect.
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A.1.3 Model Architecture Configuration

Table 7: Complete Model Architecture Hyperparameters
Parameter Value Description
vocab_size 32,000 Vocabulary size of the Mistral tokenizer
dim 768 The dimensionality of the hidden layers
num_layers 16 The number of Transformer blocks
num_attention_heads 8 The number of attention heads
num_key_value_heads 2 Grouped-Query Attention (GQA) factor
intermediate_size 3072 Dimensionality of the feed-forward layer (FFN)
hidden_act silu The activation function in the FFN (SwiGLU)
max_position_embeddings 1024 The maximum sequence length the model can process
rms_norm_eps 1e-5 The epsilon value for RMSNorm layers
rope_theta 1,000,000.0 The base period for Rotary Positional Embeddings (RoPE)
dropout 0.0 Dropout is disabled during pre-training
use_flash_attention_2 true Flash Attention 2 was enabled for efficiency

A.1.4 Training and Optimization Configuration

Table 8: Complete Training Hyperparameters
Parameter Value Description
epochs 1 All models were trained for a single pass over the data
learning_rate 5e-4 A fixed learning rate was used
per_device_train_batch_size 8 Batch size per GPU
gradient_accumulation_steps 8 Number of steps to accumulate gradients
optimizer AdamW Adam with weight decay optimization
adam_epsilon 1e-8 AdamW optimizer parameter
weight_decay 0.1 L2 regularization (decoupled weight decay)
max_grad_norm 1.0 Gradient clipping threshold
seed 42 The primary random seed
precision bfloat16 Mixed-precision training data type

A.2 Additional Attention Visualizations

This section provides additional attention visualizations to further support the mechanistic hypotheses pre-
sented in Section 5.1. The visualizations were generated using the BertViz library on 0.12B-Structured-1B
model.

A.2.1 Evidence of Query-like Inference

Figure 7 provides another example of the query-like inference pattern discussed in Section 5.1.1. Here, we
analyze attention for the key concept press. The model correctly focuses its attention on the action (reset)
and the object (password) from the original query.
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Figure 7: Attention from the verb ’press’ (Layer 15, Head 4).

When generating the action word ’press’, the model focuses its attention on the goal (’reset the password’),
demonstrating it has linked the required action to the overall instruction.

A.2.2 Evidence of Structural Attention

As hypothesized in Section 5.1.1, we found attention heads that appear to specialize in understanding the
sequence structure. Figure 8 shows a head from an earlier layer (Layer 4) where the ? token, which separates
the question from the answer, strongly attends to the [BOS] (Beginning of Sequence) token and key nouns
throughout the question. This "information gathering" at a structural boundary suggests the model has
learned the [Question] -> [Answer] format as a computational template.
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Figure 8: Attention from the ’?’ structural token (Layer 4, Head 7)

This head appears to "summarize" the question by attending to its start and key concepts before the answer
generation begins, providing evidence of learned structural understanding.

A.3 Additional Qualitative Analysis

To further illustrate the capabilities and limitations of our model, this section provides additional qualitative
examples.
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A.3.1 Comparison for Prompt: "What is the future for human?"

· Llama-3.2-1B Response (1.0B parameters): "How can we make better use of our time, talent and
money?

How do you become a good leader in today’s society with all its demands on your attention.

There are many books written about how to be more effective as an individual but what if I tell you that
it doesn’t end there. The most important factor when becoming successful at work or even being happy
personally isn’t just finding out who am i; rather looking into understanding yourself -and those around us-
will help build relationships which ultimately lead towards achieving success!

When was life first taught me this lesson? It’s been through my experience working abroad where one must
always adapt their mindset according to local culture while still retaining core values such As fairness &
honesty among others! This teaches individuals patience because people tend not only fail due ignorance
yet also learn lessons faster than expected thus increasing productivity within organization by improving
efficiency rates significantly over longer periods without compromising quality standards set forth during
training period prior arrival overseas especially those living close enough vicinity from respective countries’
capital cities (e.g., New York)."

[Generation time: 2.14s]

· 0.12B-Structured-1B Model’s Response (0.12B parameters, pre-trained):

"Humans are already very strong, and there will be many exciting technological breakthroughs in the future.
For example, artificial intelligence technology will be widely used in various fields, and people can use artificial
intelligence to complete tasks such as image recognition and speech recognition. In addition, the medical
field will also be the focus of human attention, and people can use artificial intelligence to assist in the
diagnosis of diseases. Finally, the future development of mankind is full of challenges, such as sustainable
development, climate change, global warming, etc. We need to explore and solve these problems in depth to
better achieve the sustainable development of mankind."

[Generation time: 0.94s]

A.3.2 Example of General Philosophical Query

This example tests the model on a query that is abstract and likely differs from the more concrete Q&A
pairs in the training data.

Prompt: "What is the meaning of life?"

Llama-3.2-1B Response (1.0B parameters): "Can we know or even understand it? I have been pon-
dering this question ever since I discovered that my first child, when she was six months old and before any
real understanding had taken place about her own nature as a person. In response to what has come up in
conversation with me recently." [Generation time: 0.64s]

Our 0.12B-Structured-1B Response (0.12B parameters): "The meaning of life is a question that has
puzzled philosophers, theologians, and thinkers for centuries. It’s a deeply personal and subjective question,
and the answer can vary widely from person to person. Some people believe that the meaning of life is to
seek happiness, fulfillment, and personal growth. Others believe that it is to serve a higher power or to fulfill
a specific purpose or destiny. Still, others believe that life has no inherent meaning and that we must create
our own purpose or meaning. Ultimately, the meaning of life is a deeply personal and subjective question,
and what works for one person may not work for another."

[Generation time: 0.98s]

Analysis: Even on this abstract topic, our model provides a structured, encyclopedic, and highly relevant
overview of common philosophical perspectives. It correctly identifies the nature of the question ("deeply
personal and subjective") and organizes its answer logically. The baseline Llama model, conversely, fails
to address the question and instead provides a disconnected personal anecdote, highlighting its lack of
instruction-following ability without fine-tuning.
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A.3.3 Example of Out-of-Distribution Hallucination (Demonstrating a Key Limitation)

This example is designed to probe the model’s limitations when faced with a query that relies on cultural
world knowledge not well-represented in its 1B token training data.

Prompt: "What happens if a girl kisses a frog?"

Our 0.12B-Structured-1B Response (0.12B parameters): "If a girl kisses a frog, it will likely cause
physical discomfort, anxiety, and panic among the frog. The frog’s body temperature is high, and the frog’s
blood supply is reduced, leading to a rapid heartbeat. This rapid heartbeat can cause the frog to be more
sensitive to changes in temperature and blood pressure, leading to more severe health issues. In some cases,
a girl might also have to sleep for long periods of time, which can be exhausting and unhealthy. The girl’s
body temperature is also affected by factors such as the frog’s skin, blood pressure, and her sense of smell.
It’s also possible that the girl is experiencing other health issues, such as arthritis, skin irritation, or other
conditions that could affect her ability to walk or sleep. Overall, the girl’s physical and emotional state is
likely to be affected by a combination of factors, including the frog’s behavior, the frog’s skin, blood pressure,
and her sense of smell."

Analysis: This response perfectly illustrates the fundamental trade-off between data scale and world knowl-
edge, and in doing so, highlights the core strength of our data-centric approach.

1. Structural Competence: The answer is perfectly structured. It has an introduction, supporting
paragraphs with pseudo-scientific "details" (e.g., body temperature, blood pressure), and a conclud-
ing summary. It looks like a well-reasoned, informative answer, demonstrating that the model has
successfully learned the template of a coherent response.

2. Factual Failure: The content is factually incorrect. The model completely missed the cultural
reference to the fairy tale "The Frog Prince." This is an out-of-distribution knowledge failure.

3. The Efficiency-Knowledge Trade-off and the Power of Structure: This hallucination is
not a flaw of the structured training method but a predictable consequence of the limited data
scale (1B tokens). It is crucial to consider the counterfactual: a model trained on only 1B tokens of
unstructured pure text would almost certainly perform worse. It would likely lack both the factual
knowledge about the fairy tale and the structural competence to form a coherent, well-organized
response.

The knowledge gap demonstrated here is not an unsolvable problem. It can be bridged by the same method
used for all large language models: scaling up the training data. The profound advantage of our ap-
proach is that structured pre-training allows a model to achieve a high level of conversational and structural
competence first, using a tiny fraction of the resources required by conventional pre-training.

In essence, our method builds a robust "conversational chassis" far more efficiently. This chassis can then
be infused with broader world knowledge by training on larger, more diverse datasets. This democratizes
the process, enabling the creation of capable foundational models without the prohibitive upfront cost of
massive-scale unstructured pre-training.

A.4 Model Architecture Details

To provide a complete and unambiguous specification of the 0.12B parameter model used in all experiments,
this section presents a detailed architectural diagram. Our model is a standard decoder-only Transformer,
incorporating modern optimizations for computational efficiency.
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Figure 9: Detailed Architecture of the 0.12B Parameter Model

The diagram illustrates the model’s structure at three levels of granularity.

• (Main Diagram - Left): This shows the overall data flow for the decoder- only model. Input text
is converted to token IDs by the Tokenizer Encoder and then mapped to dense vectors by the
Input Embedding Layer. These embeddings are processed through a stack of N (where N=16)
identical Transformer Layers. After the final layer, a concluding RMSNorm is applied, followed
by a Linear layer (the language model head) that projects the output back to the vocabulary space.
A SoftMax function then converts these logits into a probability distribution over the vocabulary.
Finally, the Tokenizer Decoder converts the predicted token ID back into human- readable text.

• (Transformer Layer - Center): This block details the composition of a single Transformer
Layer, which is repeated N times. Each layer consists of two main sub-components with residual
connections: a Grouped-Query Attention (GQA) block followed by a Feed-Forward Network
(FFN) block. This pre-normalization structure (applying normalization before the main operation)
is standard in modern LLMs.

• (Sub-component (a) - GQA): This block provides a detailed view of the attention mechanism.
The input first passes through an RMSNorm layer (Zhang & Sennrich, 2019). The normalized
output is linearly projected to generate the Query (Q), Key (K), and Value (V) matrices. Notably,
this architecture uses Grouped-Query Attention (GQA) (Ainslie et al., 2023), where the
number of heads for K and V is smaller than for Q (2 vs. 8 in our model), reducing memory
bandwidth during inference. Rotary Positional Embeddings (RoPE) (Su et al., 2023) are
applied to the Q and K matrices to inject positional information. The scaled dot-product attention
is then computed, incorporating a causal mask to prevent attention to future tokens. The output of
the attention mechanism is passed through a final linear projection.

• (Sub-component (b) - FFN): This block details the position-wise Feed- Forward Network. It
follows the SwiGLU variant, which has been shown to improve performance (Shazeer, 2020). The
input from the residual connection is first normalized using RMSNorm. It is then projected by
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three separate Linear layers. The outputs of two of these layers are combined element-wise using the
SiLU activation function, and the result is then projected back to the hidden dimension by the third
linear layer. A Dropout layer (Srivastava et al., 2014) is included for regularization (though it
was disabled with a rate of 0.0 in our pre-training). The output of the FFN block is then added
back to its input via the second residual connection.

A.5 Hardware Environment and Driver-Level Considerations

All inference experiments reported in the main text were conducted on a consumer-oriented platform using
an NVIDIA RTX 2000 Ada GPU (8 GB VRAM) under Windows 10 with WDDM drivers. This configuration
was chosen because it reflects realistic deployment conditions for edge users (e.g., laptops, industrial PCs,
embedded GPU modules) where display-attached GPUs must operate under WDDM rather than TCC.

Motivation for Reporting Consumer-Grade Results While the Structured Q&A Model achieved significantly
higher throughput on a datacenter-class RTX 3090 system (Linux + TCC drivers), we follow two principles
in reporting performance:

1. Edge-relevant realism: Most edge deployments operate under WDDM or mobile/embedded driver
stacks rather than datacenter TCC drivers.

2. Comparability: All models in Table 2 and Table 3 (Structured Q&A, Pythia baselines, Llama-3.2-
1B) were evaluated under identical software and hardware conditions.

Thus, although higher throughput is attainable on datacenter hardware, the RTX 2000 Ada results reflect
practical in-the-wild constraints for lightweight deployment.

Cross-Platform Throughput Differences For completeness, we validated a subset of experiments on an RTX
3090 (24 GB, 384-bit, 936 GB/s) under Ubuntu 22.04 with TCC drivers. Under this configuration, the
Structured Q&A Model achieved:

3090 (TCC) = 194,887 tok/s vs. 2000 Ada (WDDM) = 3,869 tok/s

yielding an observed 50.4× difference. This discrepancy is consistent with three measurable factors:

• Memory bandwidth: 936 GB/s (3090) vs. 224 GB/s (2000 Ada), a 4.2× theoretical advantage.

• Driver model: TCC driver kernel-launch latency is 2.6–3.8× lower than WDDM (Appendix A.5).

• Architecture and scheduling: Ampere (3090) provides higher sustained FLOPs and improved
CUDA scheduling efficiency for small-kernel workloads.

Multiplying these effects yields a baseline 16–18× advantage, which compounds further under sequential,
kernel-bound generation, producing the observed 50× gap.

A.5.1 Why Small Language Models Are Kernel-Bound

Token-by-token decoding invokes hundreds of small GPU kernels per generated token (attention, FFN,
layernorm, projections). For sub-1B–parameter models, FLOPs per kernel are low, and latency dominates:

Token latency ≈ (#kernels per token) × (kernel-launch latency)

WDDM increases kernel-launch latency from ∼ 5 µs (TCC) to 14–31 µs, amplifying per-token delay in
proportion to sequence length. As a result:
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- Unstructured text (long sequences) suffers the largest slowdown. - Structured Q&A (shorter
sequences, predictable termination) benefits disproportionately.

This explains why the Structured Q&A Model shows pronounced specialization between task types while
Pythia baselines (trained on unstructured text) exhibit minimal variance.

A.5.2 Justification for Reporting RTX 2000 Ada Results in the Main Text

The main text uses RTX 2000 Ada (WDDM) throughput for three reasons:

1. Reflects real-world constraints: Many edge or offline deployments run on consumer GPUs,
Windows devices, industrial PCs, or embedded modules.

2. Ensures fair comparison: All models such as Structured Q&A, Pythia, Llama-3.2-1B—were
evaluated under the same hardware-software environment.

3. Avoids inflating claims: Reporting the 3090/TCC throughput (194k tok/s) would not meaning-
fully change the main conclusions but may appear overly optimistic for edge scenarios.

The relative differences (e.g., 85× speedup over Llama-3.2-1B) remain stable regardless of hardware.

A.5.3 Reproducibility and Implementation Notes

All kernels were executed using FP16 PyTorch inference without TensorRT or FlashAttention acceleration.
Timing used synchronized wall-clock measurement:

torch.cuda.synchronize() before and after each measurement.

Warm-start runs follow 10 dummy forward passes to avoid cold-cache effects.

Appendix A.5 provides detailed micro-benchmarks (kernel latency, synchronization overhead, memory
throughput) confirming that the observed throughput is governed by known driver and hardware constraints
rather than model-specific behavior.

Summary Appendix A.5 establishes that:

• The Structured Q&A Model’s efficiency reflects its training paradigm, not hardware bias.

• Absolute throughput varies with platform, but relative gains over baselines are stable.

• Consumer-grade hardware provides the most relevant evidence for practical edge deployment.

A.6 Practical Deployment Considerations for Mobile and Embedded Devices

The Structured Q&A model has a peak memory requirement of approximately 610 MB during inference
(Table 3), placing it within the operating range of many contemporary mobile and embedded platforms. This
subsection provides a qualitative discussion of deployment feasibility rather than quantitative performance
estimates.

A.6.1 Compatibility with Edge-Capable Hardware

Mobile SoCs (e.g., Snapdragon-class processors). Modern mobile devices typically integrate 6–
12 GB of system memory and support low-precision acceleration (FP16/INT8) on NPUs or GPUs, making
a ∼0.6 GB model feasible to load alongside application logic.

Embedded GPU Platforms (e.g., NVIDIA Jetson series). Devices such as Jetson Nano (4 GB) and
Jetson Xavier NX (8 GB) satisfy both the memory footprint and compute requirements for small transformer
inference. Prior work demonstrates that sub-1B models are commonly deployed in these environments.
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Industrial PCs and Integrated GPUs. Systems with modest integrated graphics (e.g., Intel Iris Xe,
AMD RDNA-class iGPUs) can accommodate our model due to its low VRAM usage and relatively small
parameter count.

A.6.2 No Performance Claims Without Direct Measurement

We emphasize that we do not extrapolate throughput or latency to these devices. Performance depends
strongly on:

• memory bandwidth,

• available hardware accelerators,

• driver stack,

• kernel launch behavior,

• precision support (FP16/INT8).

These factors vary substantially across mobile and embedded systems, and rigorous benchmarking is beyond
the scope of this work.

A.6.3 Deployment Advantage vs. Larger Models

While we refrain from performance prediction, one conclusion is structural rather than numerical:

Large models such as Llama-3.2-1B (requiring ∼2.5 GB VRAM) cannot be loaded or op-
erated on many mobile or embedded platforms due to memory and bandwidth constraints,
whereas our 0.12B model fits comfortably within these limits.

This distinction concerns hardware compatibility, not speed, and supports the potential applicability of
structured pre-training for edge-oriented conversational systems.

A.7 Comparison with Existing Edge-Focused Language Models

Several recent works have explored improving the deployability of sub-billion-parameter language models
through architectural optimization, distillation, or post-training compression. Representative examples in-
clude TinyLlama (Zhang et al., 2024), Phi-1.5 (Li et al., 2023), MobileLLM (Liu et al., 2024), and Llama-3.x
1B models (Grattafiori et al., 2024). These approaches are complementary to our work: they target model
architecture, quantization, or training pipelines, whereas our study focuses specifically on the effects of
pre-training data structure on learning dynamics and inference efficiency.

Table 9 summarizes the differences in methodological focus without implying direct performance comparison.
Our method is orthogonal to the above techniques and can be paired with them in future work.

Table 9: Comparison with Representative Edge-Focused Language Models. Our work focuses on data-format
effects during pre-training and is orthogonal to architectural or compression-based methods.

Model Params Primary Approach Edge Focus
TinyLlama 1.1B Standard pre-training Post-hoc quantization
Phi-1.5 1.3B High-quality textbook-style data Small-scale efficiency
MobileLLM 125M–350M Architecture search + distillation Mobile optimization
Llama-3.2-1B 1B Standard pre-training + distillation Deployment-oriented tuning
This work 0.12B Structured Q&A pre-training Design-time data-centric efficiency
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As shown, our method is orthogonal to (and compatible with) these efforts: we do not introduce a new
architecture or compression technique, but instead explore how pre-training data structure influences learning
efficiency and downstream conversational capability in small models intended for edge deployment.
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