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Abstract

Transformers have achieved cutting-edge re-
sults, with Large Language Models (LLMs)
being considered the SOTA in several NLP
tasks. However, the literature has not yet
fully demonstrated that LLMs are always su-
perior to first-generation Transformers (a.k.a.
Small Language Models (SLMs)) in all NLP
tasks and scenarios. This study compares three
SLMs (BERT, RoBERTa, and BART) with
open LLMs (LLaMA 3.1, Mistral, Falcon)
across 9 sentiment analysis and 4 topic classi-
fication datasets. The results indicate that open
LLMs can moderately outperform or tie with
SLMs in all tested datasets, though only when
fine-tuned, at a very high computational cost.
Given this very high cost for only moderate
effectiveness gains (3.1% on average), the ap-
plicability of these models in practical cost-
critical scenarios is questioned. In this context,
we propose “Call My Big Sibling” (CMBS)',
a confidence-based strategy that smoothly com-
bines calibrated SLMs with open LLMs based
on prediction certainty. Documents with high
(calibrated) confidence are classified by the
cheaper SLM, while uncertain documents are
directed to LLMs in zero-shot, in-context, or
partially-tuned versions. Experiments show
that CMBS outperforms SLMs and is very com-
petitive with fully tuned LLMs in terms of ef-
fectiveness at a fraction of the latter’s cost, of-
fering a much better cost-effectiveness balance.

1 Introduction

Automatic text classification (ATC), such as
binary sentiment analysis and topic classification,
is essential in diverse contexts, ranging from
organizing large data volumes to personalizing
user experiences. ATC has experienced a huge
revolution with the advent of semantically enriched
Transformer models (Devlin et al., 2019) that have
achieve state-of-the-art performance in most ATC

'Code available at https: //github.com/Anonymous
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Figure 1: Total Time (seconds) and Macro-F1 in RoOBERTa,
Zero-Shot LLaMA, In-Context, Partially-Tuned LLaMA,
Fully-Tuned LLaMA, CMBS Zero-Shot, CMBS In-Context,
and CMBS Partially-Tuned. All CMBS proposals outperform
the other baselines, being much cheaper.

scenarios (de Andrade et al., 2023; Cunha et al.,
2023a; Zanotto et al., 2021; Pasin et al., 2024).

More recently, Large Language Models (LLMs)
emerged, built on top of the first generation of
Transformers (aka small language models (SLMs)).
Studies have pointed to LLMs as the current SOTA
for several NLP tasks (Liang et al., 2023). Al-
though the literature reports LLMs superiority for
tasks such as summarization and translation, for
others, such as sentiment analysis (one of our fo-
cuses), it is not yet clear whether LLMs complexity
and size (e.g., in terms of number of parameters)
translate into statistical and mainly practical gains.
In fact, several studies point to the SLM RoBERTa
as a very strong sentiment classifier (Cunha et al.,
2023b) ranking prominently on leaderboards such
as the GLUE benchmark?.

Depending on the type of training (or its ab-
sence), LLM approaches can be divided into four
groups: zero-shot, in-context, partially- and fully-
tuned. In a zero-shot approach, the model is ex-
pected to perform tasks without specific training.
In an in-context approach, the model is given a
small number of examples via prompt, providing a

https://gluebenchmark . com/leaderboard/
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context to learn from. Partially-tuned approaches
use a considerable part of the training set (though
not all) to generate the model (e.g. (Cunha et al.,
2023b,a, 2024), while fully-tuned approaches use
the complete training, allowing for better model
optimization. As we shall see in our experiments,
most gains of open LLMs over SLMs are obtained
in the fully-tuned scenario at a very high cost.

In light of the above discussion, the first research
question our paper aims to answer is RQ1: “Are
(open) LLMs more effective in overcoming the lim-
its of SLMs in sentiment and topic classification?”.
Very recent work (Fields et al., 2024) has shown no
consensus as to whether LLMs always perform bet-
ter in classification tasks. To address this question,
we performed a comprehensive set of experiments
comparing three popular SLMs (BERT, RoBERTa,
and BART) and three open LLMs (LLaMA 3.1 8B,
Mistral 7B, Falcon 7B) using a benchmark com-
prising 9 sentiment and 4 topic analysis datasets
with different characteristics. Two of these datasets,
in particular, were collected after the release of
the LLMs (IMDB2024, RottenT2024) to minimize
potential data contamination (Liang et al., 2023).
In this comparison, we focus on open-source
LLMs, as closed-source and proprietary LLMs,
such as ChatGPT, are black boxes that prevent us
from understanding how they were trained or their
internal structure’. Our results indicate that open
LLMs can outperform SLMs, reaching up to 8.3%
of effectiveness gains (on average, 3.1%), though
mostly in the fully-tuned mode.

Given the (much) higher computational costs
associated with fully fine-tuning open LLMs (the
most effective approach), a natural question we
posited is RQ2: “How does the computational cost
of using open LLMs for ATC compare to SLMs’
cost?”. To answer this question, we conducted
a thorough analysis of our experimental results,
considering zero-shot, in-context, partially-tuned,
and fully-tuned strategies, to assess the trade-offs
between effectiveness and costs in terms of compu-
tational time to train the models and their impact
on carbon emission. We found that LLMs are
orders of magnitude more costly to fully fine-tune
when compared to SLMs — fully fine-tuned LLMs
are up to 1700% more expensive than SLMs. As
current LLMs can produce just moderate gains
over SLMs and only through highly costly full
fine-tuning processes, depending on the application

3Closed LLMs are irreproducible (Gao et al., 2024).

scenario, the benefits may not be worth the costs.

All this leads to our final research question
RQ3: “Is it possible to perform a combination
of SLM and (open) LLMs to achieve a better
effectiveness/cost trade-off compared to using
either SLM or LLM alone?” To answer this
question, we propose a novel confidence-based
strategy called “Call My Big Sibling” (CMBS),
which smoothly combines SLM and (open) LLMs
based on calibrated uncertainty.

In CMBS, we rely on fully fine-tuned SLMs,
which have already attained effectiveness and
efficiency and are calibrated* for ATC tasks. We
then use the classification confidence to determine
whether the LLM should classify a doubtful
document. In other words, the fully-tuned SLM
classifies high-certainty documents (i.e., with high
certainty calibrated scores), while low-certainty
documents are sent to the zero-shot, in-context
or partially-tuned versions of the LLMs for
ATC. Such combination with a cheaper LLM
version (compared to the fully-tuned) brings
potential effectiveness gains to the SLM and is
very competitive to the fully-tuned LLM, being an
attractive, cost-effective option in most cases.

In more detail, our experimental results show
that, for sentiment classification, the combination
of a SLM with a zero-shot LLM (aka CMBS
Zero-shot) is enough to produce gains in ef-
fectiveness at the lowest cost, highlighting the
practicality of our proposal. To illustrate our
argument, Figure 1 presents the effectiveness
(Macro-F1) and efficiency (Time(s)) of our
solution compared to the baselines in two datasets.
Our proposals are highlighted with star icons in
Figure 1, in Figure la we observe that CMBS
Zero-Shot matches the effectiveness of the most
computationally expensive solution, Fully-Tuned
LLaMA, at a fraction of the cost. Similarly, in
Figure 1b, all CMBS methods outperform the
other baselines, being much cheaper.

Our experiments reveal that CBMS Zero-shot
outperforms the SLM in 8 out of 9 sentiment
datasets, tying in remaining one, with an increase in
computational cost over SLMs of only 8%. More-
over, compared to fully-tuned LLaMA, CBMS
Zero-Shot delivers comparable effectiveness at a
significantly lower cost. In 4 of the 9 sentiment
datasets, CMBS Zero-Shot ties with the fully-tuned

*The confidence of the SLM s softmax function is highly
calibrated as we shall discuss.



LLM, with minimal losses (on average, just 2%)

in the other datasets, at %0 of the cost. Moreover,

CMBS Partially-Tuned ties with fully-tuned

LLaMA in all sentiment datasets at half of the cost.
For topic classification, with a larger number of

classes (up to 11 in one of our datasets) and more

uneven distributions, the CBMS zero-shot version,
or even the version that sends the doubtful cases
to the in-context LLM (aka CBMS In-Context),
struggles to achieve good effectiveness. Only when
combined with the partially-tuned CMBS (aka

CMBS Partially-Tuned) can we produce gains

over the SLM. Among the four evaluated topic

classification datasets, CMBS Partially-Tuned
outperforms RoBERTa in two datasets and ties
in the other two. Compared to the fully-tuned

LLaMA, CMBS Partially-Tuned achieves statis-

tical parity in three datasets (with just a 2% loss in

the fourth) while operating at approximately half
of the computational cost.
In sum, the main contributions of this paper are:

* We perform a comprehensive comparative
evaluation of SLMs and (open) LLMs regarding
cost/effectiveness trade-offs.

* We propose “Call My Big Sibling” (CMBS), a
confidence-based strategy to combine calibrated
SLMs and LLMs aimed at optimizing the
effectiveness-cost trade-off.

* We perform a thorough evaluation of our three
proposals considering 13 distinct datasets, in two
tasks: sentiment (binary) and topic (multi-class)
classification tasks, three SLMs and zero-shot,
in-context, partially-tuned and fully-tuned
versions of three open LLMs.

2 Related Work

LLMs’ computational costs have led to numerous
studies highlighting their financial and environ-
mental impacts. For instance, (Strubell et al.,
2019) illustrates the substantial financial costs
propelled by the continuous need for investment
in specialized hardware to manage progressively
larger language models. This trend not only
limits access to these models but also escalates
energy consumption, affecting the environment by
increasing carbon dioxide (CO5) emissions.
Among LLMs, there are proprietary and closed-
source ones, such as chatGPT, which operate as
black boxes. This opacity poses challenges in com-
prehending their training methodologies or internal
structures, thereby obstructing reproducibility in re-
search reliant on these models. Moreover, utilizing

such LLMs often entails transmitting data through
web platforms or APIs, a delicate issue when data
is sensitive and cannot be shared. As a result,
numerous studies advocate for restricting scientific
evaluations to run locally, open-source LLMs such
as Bloom and LLaMA 2 (Spirling, 2023).

A close work to ours is (Xu et al., 2024), which
also combines SLMs with LLMs for various NLP
tasks, aiming to improve effectiveness. In that
work, computational costs are not evaluated and
the use of the LLM is not restricted to classifying
a subset of hard instances; instead, it encompasses
the entire test set. On the other hand, we select only
low-confidence documents to be forwarded to the
LLM, a strategy that greatly reduces computational
costs as the LLM is significantly more expensive.
Moreover, in (Xu et al., 2024), a closed LLM is
employed via an API, which provides no control
over the computational structure or the model ar-
chitecture. Furthermore, only a single sentiment
classification dataset is utilized in the experiments.

Liang et al., 2023 investigate various LLMs
across multiple tasks, prompts, metrics, and
datasets. Like Liang et al., we include LLM
evaluation and the trade-off between efficiency and
effectiveness. Unlike their study, which focuses
on the breadth of evaluation with several domains
(including only one sentiment dataset), our work
is depth-oriented into the specific task of senti-
ment and topic classification, covering multiple
datasets with diverse characteristics and domains.
Moreover, although Liang et al. evaluates several
models, they do not compare them with an SLM
such as RoBERTa, considered SOTA in sentiment
and topic classification (Bai et al., 2023a; Cunha
etal., 2021a, 2020; Franca et al., 2024; Belém et al.,
2024). Finally, they do not provide any solution for
the effectiveness-cost trade-off problem. We do!

3 The CBMS Solution

One of the main contributions of our work is
the proposal of a novel strategy to combine
simpler, more efficient, but perhaps less effective
SLMs with potentially more effective but costly
LLMs, aiming to promote effectiveness while
minimizing computational costs. Our solution,
“Call-My-Big-Sibling” (CMBS), metaphorically
conjures up the image of a small (but smart)
child who, in a challenging situation, seeks help
from a bigger sibling. CBMS pursues the best
trade-off between effectiveness and costs with a



confidence-based pipeline of Language Models.
CMBS seamlessly integrates SLMs and (open)
LLMs by leveraging uncertainty. In this frame-
work, we first employ fully-tuned SLMs models®,
which are already highly effective in some classifi-
cation tasks (and faster to tune compared to LLMs).
In our solution, (test) documents classified below
a certain confidence threshold (a method’s param-
eter) by the SLM are sent to an open LLM to be
classified. The procedure is illustrated in Figure 2.

Fine-Tunning Predict

RoBERTa RoBERTa Probability < L

Final
Classification

All Data

Stratified [— 1
K-Fold Train Test

Yes

Classification
Zero-Shot, In-Context
or Partially-Tuned
LLM

Figure 2: Flowchart of the Evaluation Methodology.

For CBMS to properly work, we have to trust
the probability outputs, or, in other words, the
probabilities need to be calibrated®. Wolfe et al.,
2017 argue that RoBERTa’s softmax function
provides calibrated probabilities as it is a gener-
alization of logistic regression. To demonstrate
that, Table 1 presents the Brier score used to
measure model calibration, in three datasets used
in our experiments, by three classifiers. This score
is calculated based on the model probabilities
and actual labels. The score ranges from 0 to
1, with values closer to 1 indicating a better
alignment between probabilistic predictions and
actual outcomes. As we can observe, the table
reinforces that ROBERTa is a very calibrated model
(Brier score > 0.90), being as calibrated as known
calibrated classifiers such as Logistic Regression
and Random Forests (Cunha et al., 2024).

Dataset | RoBERTa | Random Forest | Logistic Regression

Imdb 0.941 0.940 0.938
PangMovie 0.909 0910 0.902
Finance 0.979 0.982 0.982

Table 1: Brier score in validation set.

We select a document set for which the classifier
is most uncertain about its classification (Proba-
bility < L) to send to an LLM for final prediction.
Due to computational costs, we employ either the
zero-shot, in-context or partially-tuned strategies
for this LLM. Finally, our final prediction set is

Tuned with the full training data.

®A classifier is calibrated if there is a strong correlation
between its class prediction probabilities and the frequency
with which it correctly predicts instances belonging to each
probability range.

built using the following procedure: 1) we evaluate
the probability the model provides and compare it
with the threshold parameter; 2) we decide whether
the prediction will be made using an SLM or an
LLM (zero-shot, in-context or partially-tuned).

In this proposal, the choice of the confidence
threshold L is essential for evaluating the docu-
ments that will be sent to the LLM. To illustrate
this point, Figure 3 presents the effectiveness based
on prediction confidence for the SST2 dataset. On
the Y-axis, we have RoBERTa’s effectiveness,
and on the X-axis, we have confidence. We
can observe that the more confident, the more
effective RoBERTa is in its predictions. The
figure highlights the importance of selecting an
appropriate confidence threshold, showing that it
is more advantageous to forward low-confidence
documents, as high-confident ones are classified
with high accuracy by the cheaper SLM.
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Figure 3: RoBERTa’s Macro-F1 vs Confidence for SST2.

4 Experimental Methodology and Setup
4.1 Datasets

Our study draws on thirteen datasets developed for
sentiment analysis and topic classification. The sen-
timent analysis datasets include Finance, IMDB,
PangMovie, SemEval2017, SST, SST2 and Yelp
Review (Yelp2L), while for topic classification we
used ACM, DBLP, Twitter and Webkb. With the
significant amount of data used in building LL.Ms,
several authors express concerns about contami-
nation in evaluation data. Intending to minimize
this issue, we collected and curated two datasets
with data post-LLMs release (RottenT2024 from
Jan-Nov 2024 and IMDB2024 from Jan-May
2024), ensuring no contamination in the training
of these LLMs. Several works in ATC have used
most of these datasets as benchmarks. See Ap-
pendix B for further information about the datasets,
including domain, number of documents, density,
and skewness (class imbalance). Our benchmark
covers a wide variety of heterogeneous scenarios.



4.2 Prompt Template

We investigated the performance of three open
LLMs: Fal.con 7B, Mistral 7B, and LLaMA 3.1
8B, adopting the same prompt template utilized
by (Liang et al., 2023), who, upon evaluating many
alternatives, concluded that the most effective
prompt contains: (i) the task description; (ii) ex-
amples with respective expected responses; and (ii)
the text to be evaluated. We adapted and used such
prompt for sentiment classification as illustrated
in Table 6 and topic classification in Table 7 in the
Appendix A. Our prompt consists of instructions
and examples of classes and concludes with the
text to be evaluated (Evaluate Text). Subsequently,
the LLM generates the class (“next word”) for the
evaluated text (Response from LLM). The template
for In-Context LLM (Table 8) is a small variation
of the above, in which the generic example is
substituted by the closest training document,
according to a cosine similarity calculated using
the RoBERTa’s document embeddings, using an
encoder generated by fine-tuning RoOBERTa.

4.3 Zero-shot, In-context, Partially-tuning or
Fully-tuning for Text Classification

Applying SLM or LLMs pre-trained models to
ATC can be done through four strategies: zero-
shot, in-context, partially-tuned, and fully-tuned.
Zero-shot strategy predicts text classes without
using training examples or performing model
fine-tuning. In an in-context approach, the model
relies on a prompt containing the nearest neighbors
of the evaluated example inserted into the prompt
to provide context for making predictions without
adjusting its weights. In the partially-tuned
strategy, a portion of labeled data is employed to
adjust the model weights, simulating a scenario of
data scarcity. For the partially-tuned approach, we
fixed 50% of the training partition data for model
training. We use this percentage inspired in recent
work in Instance Selection (Cunha et al., 2023a)
that determined this is an empirical threshold that
assures good efficiency with minimal effectiveness
losses.” In any case, an evaluation using different
training data sizes is conducted and presented
in Appendix E. Lastly, the fully-tuned strategy
utilizes all available labeled data in the model’s
training partition to maximize model adjustment
for the task and data domain. While this strategy

"We did not exploit Instance Selection in this work, but
intend to do it in future work.

typically achieves better effectiveness, it has a
very high computational cost. In our paper, the
fully-tuned is used to compare with our approaches
We only employ the SLMs fully tuned, which is
essential for their effectiveness (de Andrade et al.,
2023). Fully tuning SLMs involves fine-tuning the
SLM’s text representation (CLS token) and fully
connected layer that predicts the text class distribu-
tion, utilizing all available training samples. Aim-
ing to investigate the trade-off between efficiency
and effectiveness within our CMBS solution, we
explored the four strategies for LLMs: (i) zero-shot;
(ii) in-context approach; (iii) partially-tuned using
50% of the training samples; and (iv) fully tuned.

4.4 Method-Specific Parameter Tuning

All data is divided using stratified 5-fold cross-
validation, a widely accepted technique in model
evaluation. This method enhances the robustness
and reliability of the model by splitting the dataset
into five parts: three for training, validation, and
testing. In each of the five iterations, the roles of
the partitions alternate between training, validation,
and testing, ensuring that the class distribution is
preserved in the test partition. The validation set is
crucial for parameter tuning, as detailed below.

For SLMs, we adopted the hyper-
parameterization suggested by (Cunha et al.,
2023b), fixing the learning rate in 2x107°, the
batch size with 64 documents, adjusted the model
for five epochs and set the maximum size of each
document to 256 tokens. For the LLM models,
we adopted the following parameters: all LLMs
utilize 4-bit quantization, enabling fine-tuning to
be performed on reasonably equipped machines.
For LLaMA, we used 1024 maximum tokens,
a learning rate of 2x107%, and a temperature
equal to 0.6. All other parameters were set at
their default values. For fully-tuning processes,
which are more costly due to the model’s weight
adjustment (backpropagation), we had to reduce
the maximum number of tokens to 256. We
performed training for three epochs.

We also introduce a confidence threshold param-
eter. Class predictions in which the SLM model’s
confidence falls below this threshold are forwarded
to the LLM, which we refer to as the “Big Sibling”.
This term is used to illustrate the model’s decision-
making process, where the more complex LLM
takes over when the simpler SLM is uncertain. We
employ the validation set and perform classifica-
tions while varying this parameter to determine the



optimal threshold to maximize Macro-F1 without
increasing the cost. The chosen threshold for a sam-
ple of datasets is shown in Table 13 (Appendix F),
which also shows the percentage of validation
instances sent to the LLLM relative to the total, and
the LLM and SLM effectiveness on this subset
of instances. For instance, in SST2, if prediction
confidence is below 0.9, the document is forwarded
to the LLM; otherwise, the SLM classifies it. As
the threshold increases, more documents are sent
to the LLM. It is interesting to notice that the
choice of L (around 0.9) that optimizes the tradeoff
is similar in all datasets, and that the LLM effec-
tiveness in these hard-to-classify instances is better
than SLM’s, justifying potential CBMS gains.

4.5 Metrics and Experimental Protocol

We evaluated SLMs and (open) LLMs regarding
the effectiveness/cost trade-off. All models were
assessed on identical hardware configuration: a
4-core processor, 32GB of system memory, and an
Nvidia Tesla P100 GPU. Classification effective-
ness is assessed using Macro-F1 due to imbalance
in several datasets. To ensure statistical validity
of the results and demonstrate model generality,
models were evaluated using the test set from
a 5-fold stratified cross-validation methodology
and a t-test with 95% confidence with Bonferroni
correction to account for multiple comparisons.
To analyze the cost-effectiveness trade-off, we
also evaluated each method’s cost in terms of
the total time required to build the model. More
specifically, the total time comprises the time for
model learning (if applicable), together with the
time for class prediction (considering the full test
set). In the case of our CMBS solution, the CMBS
Zero-Shot model building time includes the time re-
quired to fully-tuned the SLM, the time to predict a
portion of the test set using the SLM, and a smaller
portion using the LLM. For CMBS in-context, it
also includes the time to find the k nearest neigh-
bors. For CMBS partially-tuned, it also includes
the time to train the LLM using 50% of the training
data (further details provided in Appendix E).

5 Experimental Results and Analyses

5.1 RQ1: Are (open) LLMs more effective in
overcoming the limits of SLMs?

To address RQ1, we first evaluated several popular
open-source LLMs, including Falcon 7B, Mistral
7B, and LLaMA 3.1 8B. We began by comparing

the performance of these three LLMs on sentiment
and topic classification tasks in the Zero-Shot set-
ting. Table 10 in Appendix C presents the Macro-
F1 scores, highlighting the best results in bold, in-
cluding statistical ties. LLaMA 3.1 8B consistently
achieves the best results (statistically) across most
datasets in both sentiment and topic tasks. Due to
the high computational cost of fully tuning LLM:s,
we selected LLaMA 3.1 8B for all subsequent tests.

Regarding SLMs, we did a similar experiment
and compared three widely used SLMs — BERT,
BART, and RoBERTa. Results in Table 11 in
Appendix D show that, among SLMs, RoBERTa
achieves the highest effectiveness (or ties for it)
in all cases, confirming findings reported in the
literature (Cunha et al., 2023b; Bai et al., 2023b).

Finally, to explicitly answer RQ1, we compare
RoBERTa with four LLaMA versions in Table 2
— zero-shot, in-context, partially-tuned with 50%
of training and fully-tuned, using the entire train-
ing partition. Some interesting observations can be
drawn from the Table. Zero-shot LLaMA 3.1 ties
or is worse than RoBERTa in all sentiment datasets,
being much worse than RoBERTa in topic classifi-
cation. Similarly to Zero-Shot LLaMA, In-Context
LLaMA ties or underperforms across all sentiment
classification datasets compared to RoBERTa. For
topic classification, the performance gap is even
more pronounced. This difference can be attributed
to the higher number of classes and the increased
complexity of associating a document with its cor-
responding class in topic classification tasks.

Only partially and fully-tuned LLaMA can
outperform RoBERTa, with an obvious advantage
for fully tuning at double the cost. However, there
are several datasets, such as Finance and Yelp2L
for sentiment and Twitter for topics, which are
fully-tuned and statistically tied with RoBERTa.
In several other datasets, their effectiveness is
also very close. This further motivates us to
combine SLMs and LLMs with our proposed
CMBS pipeline for the sake of optimizing the
effectiveness-cost trade-off. This trade-off is the
core of our subsequent analyses.

5.2 RQ2: How does the computational cost of
open LL.Ms and SLMs compare?

Table 3 presents total time (in seconds) required
to obtain final predictions for each solution. The
Table shows that RoOBERTa’s time is the shortest,
followed by LLM Zero-Shot, which is approxi-
mately 76% more expensive than the SLM, on aver-



Dataset RoBERTa| Zero- In- Partially-| Fully-
Shot Context Tuned Tuned
LLaMA | LLaMA LLaMA | LLaMA
Finance 98.1+1.9 | 954+12| 98.6+1.8 | 98.6+1.2| 98.7+1.6
Imdb 93+0.5 93+0.3 789412 | 95.8+0.2| 95.9+0.4
PangMovie 88.7+0.9 | 88.8+0.9| 89.94+0.7 | 93.1+0.4| 93.7+0.5
SemEval2017| 91.240.7 | 89.7+0.6| 90.1+0.7 | 92.7+0.6| 93.5+0.3
Sst 87.3+1 87.940.7| 88.5+1 90.9+0.8| 91.1+1
Sst2 94.64+0.2 | 91.4404| 93.3+39 | 95.7+0.2| 96+0.1
Yelp2L 97.94+0.5 | 98.5+£0.3| 92.1+1 98.54+0.6| 98.5+0.5
IMDB2024 97.6+1 96.5+1 93.9+1 98.6+0.7| 98.7+0.7
RottenT2024 | 93.74+1.1 | 95.24+1.4| 95.3+1 96.6+0.7| 96.7+0.4
ACM 70.7+1.5 | 35.6£1.1| 50.5£1.6 | 724+1.6| 76.6+2.1
DBLP 81.940.7 | 53.7+0.8| 53.24+1.0 | 85.9+0.8| 87.8+0.7
Twitter 77.5+2.7 | 67.4+2.7| 729+1.6 | 73.5+3.1| 77.7+£2.5
‘Webkb 82.342.6 | 41.9£1.5| 64+1.8 82.4+2.1| 86+1.3

Table 2: Average Macro-F1 and 95% confidence interval
for SLMs and versions Llama 3.1 8B. Best results (including
statistical ties) are marked in bold.

age. LLM In-context, in turn, is 176% slower than
RoBERTa and 56% costlier than LLM Zero-Shot.
In the partially-tuned version, the cost increases
significantly due to the weight adjustment process
performed via backpropagation in the LLMs. Of
course, the fully-tuned LLM is the most expensive
solution, which is 1700% more expensive than
RoBERTa. With an average improvement of 3.3%
across all datasets (peaking at 8.3% in ACM), it
raises the question of whether such improvements
justify the significant computational cost.
Depending on the scenario in which LLMs
are employed, costly solutions may not be ideal
or even feasible. To address this, our proposed
solution aims to reduce costs associated with using
LLMs while preserving their effectiveness gains.

Dataset RoBERTa| Zero- In- Partially- Fully-
Shot Context Tuned Tuned
LLaMA LLaMA LLaMA LLaMA
Finance 79.1 103.4 123.3 484.2 896.4
Imdb 2615 6295.2 11548.1 25175.8 39257
PangMovie 934.4 1199.6 1489.6 5891.6 10921.1
SemEval2017| 2416.4 3160.1 4250.8 15153.7 28086.7
Sst 1027.2 1229.8 1561.8 6544.2 11790.7
Sst2 5816.6 7799.8 10936.4 374349 26171.3
Yelp2L 510 1161.2 1736.3 2406.9 5116
IMDB2024 681.3 1622.9 25384 58222 12303.5
RottenT2024 | 788.7 982.8 1708.4 4393.3 8129.7
ACM 2664.7 3163.2 7896 16876.7 28206.9
DBLP 4140.1 8112.8 173114 27564.2 139249.5
Twitter 650.7 891.8 1477.9 6663.9 11405.9
Webkb 909.8 2877.2 3273.7 10149.9 26020.7

Table 3: Average Total Time for ROBERTa and Llama3.18B.

5.3 RQ3: Is it possible to perform a
combination of SLM and (open) LLMs to
achieve a better effectiveness/cost
trade-off compared to using either SLM

or LLM alone?

Let us focus now on our proposed method: CMBS
and compare the three alternative implementations
of our solution: CMBS Zero-Shot, CBMS In-
Context and CBMS Partially-Tuned. Starting with
the sentiment classification task, Table 4 presents

the results of the SLM RoBERTa, each CMBS ver-
sion, and Fully-Tuned LLaMA. We start by notic-
ing that, CMBS Zero-Shot outperforms RoBERTa
in 8 out 9 sentiment datasets, tying only in Finance.
These gains come with a small increase in com-
putational cost over SLMs of only 8%. Moreover,
in 4 of the 9 datasets, CMBS Zero-Shot ties with
the fully-tuned LLM, with minimal losses in others
(on average, just 2% less effective). These excel-
lent effectiveness results come at % of the cost,
as demonstrated in Table 5, which presents total
time results for all alternatives. Moreover, CMBS
partially-tuned ties with fully-tuned LLama in all
sentiment datasets at half of the cost.

For topic classification, characterized by datasets
with a larger number of categories (up to 11
in one case) and highly uneven class distribu-
tions, CBMS Zero-Shot, as well as CBMS In-
Context, encounter significant challenges in main-
taining high levels of effectiveness. Significant
improvements over the SLM are obtained only
when leveraging the partially-tuned variant (CBMS
Partially-Tuned). Among the four topic classifi-
cation datasets analyzed, CMBS Partially-Tuned
model surpasses RoOBERTa in effectiveness on two
datasets and ties it on the remaining two. Indeed,
CMBS Partially-Tuned can improve over partially-
tuned LLM is all topic datasets, with gains of up
to 6.4% in Twitter. Finally, when compared to
the fully-tuned LLaMA model, CMBS Partially-
Tuned demonstrates statistical equivalence across
three datasets and incurs only a marginal 2% ef-
fectiveness deficit on the fourth, all while reducing
computational demands by approximately 50%.

Summarizing, for sentiment analysis, the best
effectiveness tradeoff is achieved by CBMS Zero-
Shot. If effectiveness is mandatory, the choice is
CBMS Partially-Tuned, which has the same ef-
fectiveness of LLaMA Fine-tuned at half of the
cost. For topics, the choice is also CBMS Partially-
Tuned, which ties with LLaMA fine-tuned in 3 out
four datasets, loosing minimally (by 2%) in the 4th
dataset, being twice more efficient.

We also calculated the CO5 emissions associated
with obtaining final model predictions, using the
methodology developed by Lacoste et al. (2019).
Table 14 (Appendix G) presents the results. Similar
to time, CO9 emissions are much higher for LLMs,
in this case, by orders of magnitude. Financial costs
associated with the solutions are also analyzed in
Appendix H, with similar conclusions.
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Figure 4: Effectiveness, Size of the Test Set Sent to LLM and Efficiency for IMDB dataset.

Dataset RoBERTa | CMBS CMBS CMBS Fully-
Zero- In- Partially- | Tuned
Shot Context Tuned LLaMA
Finance 98.1+1.9 98+2.1 98.2+1.7 | 98.3+1.3 | 98.7£1.6
Imdb 93+0.5 94+0.6 92.54+0.6 | 95.8+0.2 | 95.9+0.4
PangMovie 88.740.9 90.2£0.9 | 89.94+0.8 | 93.1+0.3 | 93.7+0.5
SemEval2017| 91.2+0.7 92.240.6 | 9240.5 92.940.6 | 93.5+0.3
Sst 87.3+1 89+0.6 88.5+1.2 | 90.9+0.9 | 91.1+1
Sst2 94.640.2 95.1£0.2 | 94.840.3 | 95.7£0.2 | 96+0.1
Yelp2L 97.940.5 98.5+0.2 | 98.1+0.2 | 98.6+0.5 | 98.5+0.5
IMDB2024 97.6+1 98.2+0.9 | 97.3+1.2 | 98.74+0.8 | 98.7+0.7
RottenT2024 | 93.7+1.1 95.6+1 95.74£0.7 | 96.3+0.7 | 96.7+0.4
ACM 70.7+1.5 70.5+1.2 | 70.6+£1.2 | 73.3+2.4 | 76.6+2.1
DBLP 81.940.7 81.9£0.6 | 82%1.6 8640.8 87.8+0.7
Twitter 77.5+2.7 79.442.7 | 78.7+2.5 | 782418 | 77.7+2.5
‘Webkb 82.3+2.6 82.1£23 | 82.242.7 | 83.8+2.5 | 86+1.3
Table 4: Average Macro-F1 and 95% confidence interval for

RoBERTa, Zero-Shot LLaMA 3.1 and CMBS Zero-Shot. Best

results (including statistical ties) are marked in bold.

Dataset RoBERTa | CMBS CMBS CMBS Fully-
Zero- In- Partially- | Tuned
Shot Context Tuned LLM
Finance 79.1 84.27 89.44 514.88 896.4
Imdb 2615 2929.76 3244.52 25273.22 | 39257
PangMovie | 934.4 994.38 1054.36 6236.84 10921.1
SemEval2017| 2416.4 2574.405 | 2732.41 16054.73 | 28086.7
Sst 1027.2 1088.69 1150.18 6916.98 11790.7
Sst2 5816.6 6206.59 6596.58 39508.01 | 26171.3
Yelp2L 510 568.06 626.12 2676.21 5116
IMDB2024 | 681.3 762.445 843.59 5921.28 12303.5
RottenT2024 | 788.7 837.84 886.98 4742.67 8129.7
ACM 2664.7 2822.86 2981.02 17853.73 | 28206.9
DBLP 4140.1 4545.74 4951.38 28947.88 | 139249.5
Twitter 650.7 695.29 739.88 6648.21 11405.9
Webkb 909.8 1053.66 1197.52 10044.71 | 26020.7

Table 5: Average Total Time total- RoOBERTa, CMBS(Zero-
Shot,In-Context, Partially-Tuned) and Fully-Tuned LLM.

5.4 Confidence Threshold Sensitivity Analysis

We analyze the role of the uncertainty threshold
in the results. For this, we show in Figure 4,
the results in the IMDB, a dataset in which
CMBS (Partially-tuned) obtained one of the best
cost-benefit tradeoffs: it improves effectiveness
over ROBERTa and ties with Fully-tuned LLaMA,
while requiring only half the computational cost.
Figure 4a, 4b and 4c show effectiveness increase,
number of instances sent to LLM, and respective
cost increase. It is interesting to see that the pat-
terns in increase are very similar in the three graphs,
although the metrics are very different. We can
also see that by choosing appropriate thresholds,
there is still room for effectiveness improvements,
although at the expense of cost increases.

6 Conclusion

We proposed Call-My-Big-Sibling (CMBS), a
novel ATC solution combining already very effec-
tive, efficient, and calibrated SLMs with more ef-
fective but costlier open LLMs, aiming at optimiz-
ing an effectiveness-cost trade-off. Our approach
involves leveraging LLMs only when the SLM ex-
hibits high uncertainty in its calibrated predictions.

Experiments conducted on 13 diverse datasets on
sentiment and topic classification underscored the
superiority of our solutions regarding the aforemen-
tioned trade-off. For sentiments, CBMS Zero-Shot
outperformed the SLM in 8 out 9 datasets, tying
in the other, with a marginal increase in compu-
tational time, while also being very competitive
with fully-tuned LLM. CMBS Partially-Tuned, in
turn, matches the fully-tuned LLM in all sentiment
datasets, improving over partially-tuned LLaMA,
at half of the cost of the fully-tuned LLM.

Similar results are obtained for topics, in which
CMBS Partially-Tuned improves over partially-
tuned LLaMA in all datasets (up to 6.4%) and is
as good as the fully-tuned LLM in 3 out 4, almost
tying (less than 2% of effectiveness loss) in the
fourth dataset, while being twice more efficient. In
real-world, practical scenarios, such minimal effec-
tiveness difference may not impact any application
or user, while a cost difference of 50% may bring
many practical benefits. These results confirm
our hypothesis that CBMS, which leverages a
confidence-based combination of SLMs and LLMs,
can achieve a better effectiveness-cost balance
than the two isolated components of the solution.

In future work, we will apply CMBS to other
ATC tasks, such as hate speech and irony detection,
as well as to other NLP tasks, such as summariza-
tion and Q&A. We intend to apply instance selec-
tion (Cunha et al., 2023b,a, 2024) to further reduce
the amount of training in CBMS Partially-tuned,
improving even further its efficiency, while keeping
similar effectiveness levels. Finally, we intend to
run tests with other LLMs and configurations.



7 Limitations

Despite relevant contributions, our study has
some limitations. Our current work covers only
two classification tasks, which we have pursued
to evaluate in depth. In this study, we used 13
datasets, 9 on sentiment analysis and 4 on topic
classification, all with distinct characteristics.

We focused our evaluation on open LLMs for the
sake of the reproducibility of subsequent research
using our method. Among LLMs, there are pro-
prietary and closed-source ones, such as ChatGPT,
which operate as black boxes. This opacity poses
challenges in understanding their training method-
ologies or internal structures, thereby obstructing
reproducibility in research reliant on these models.

LLMs have been made available for different
purposes. Some of these LLMs have high exe-
cution costs, such as Falcon 180B (Penedo et al.,
2023), which requires an expensive infrastructure
to use it. In our work, we limited our study to
the best evaluated LLMs in the Hugging Face
system®, with around 7 billion parameters, which
have a reasonable structure allowing us to evaluate
zero-shot, in-context, partially and fully-tuned
versions of our solutions.

Finally, our work focused on applying our
proposed solution with three open LLMs — Falcon
7B, Mistral 7B and LLaMA 3.1 8B. However, new
LLMs, such as Orca and LLaMA 3.3, emerged
during the development of this work, and we were
not able to use them in time for reporting the
results in this paper. We intend to use Orca as well
as other new open LLMs that will come out in the
near future. Nevertheless, considering that these
new LLMs tend to be increasingly complex and
costly, optimizing the cost-benefit of our combined
solution between SLMs and LLMs will certainly
be still valid and even a more appealing goal.
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A Prompt Templates

Below are examples of the structure of the prompts
we used for the Zero-Shot and In-Context versions
of the LLMs in our experiments. They are all in-
spired by the work of (Liang et al., 2023). Table 6
provides the prompt used for sentiment classifica-
tion, while Table 7 presents the prompt for topic
classification. Both prompts include the tag [Evalu-
ate Text], which represents the (test) text to be clas-
sified, and the tag [Response from LLM], which
contains the model’s output. If the model’s output
does not match any of the given alternatives (due to
hallucination), we predict the majority class from
the training set.

The third example of prompt, shown in Table 8,
is tailored for in-context learning. For the evalu-
ated test document, “I spent a day at a 5-star hotel,
which was amazing.” the most similar example
from the training set included in the prompt was
“S-star hotels have many food options.”. For each
evaluated example, a vector representation is gen-
erated using the fully-tuned RoBERTa as an en-
coder. By comparing the vector of the evaluated
(test) document with the vectors of the training set
documents, we identify the most similar document
based on the cosine similarity between the vectors
and use it as a training example in the prompt.

Classify the sentiment in the text exclusively as positive
or negative:

Input: I love you.

Reference:

A. Positive

B. Negative

Answer: A

Input: The product is bad.
Reference:

A. Positive

B. Negative

Answer: B

Input: {Evaluate Text}
Reference:

A. Positive

B. Negative

Answer: {Response from LLM}

Table 6: Prompt template for sentiment classification.

B Datasets

Our study draws on thirteen datasets developed
for topic and sentiment classification. Our choice
was strategically purposeful due to the effort to per-
form an in-depth analysis of this task. The datasets
include Finance (Malo et al., 2014) focusing on
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Classify the topic of the text exclusively with one of the
references:

Input: Messi scored a goal against France.
Reference:

A. Pop culture

B. Sports or gaming

C. Daily life

D. Science or technology

E. Business or entrepreneurs

F. Arts or culture

Answer: B

Input: {Evaluate Text}

Reference:

A. Pop culture

B. Sports or gaming

C. Daily life

D. Science or technology

E. Business or entrepreneurs

F. Arts or culture

Answer: {Response from LLM }

Table 7: Prompt template for topic classification.

Classify the sentiment text exclusively as positive or
negative:

Input: 5-star hotels have many food options.
Reference:

A. Positive

B. Negative

Answer: A

Input: I spent a day at a 5-star hotel, which was amazing.
Reference:

A. Positive

B. Negative

Answer: {Response from LLM}

Table 8: Prompt template for sentiment classification
for In-Context Llama and CMBS In-Context.

economic news, IMDB (Maas et al., 2011)° com-
piling movie reviews as well as PangMovie (Pang
and Lee, 2005) including Rotten Tomatoes!? data,
SemEval2017 (Rosenthal et al., 2019) containing
Twitter texts used in a significant text classifica-
tion challenge, and the Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013) and SST2 (Socher
et al., 2013), where sentiment classification relies
on Treebank, a corpus with sentiment labels and
labeled parse trees. Yelp Review is a subset of Yelp
data widely used in sentiment classification studies
(Canuto et al., 2016; Viegas et al., 2023; Mendes
et al., 2020). IMDB2024 and RottenT2024 were
collected to avoid data contamination by LLM. For
topic classification, we have ACM Digital Library
(Cunha et al., 2021b), DBLP (Tang et al., 2008),
Twitter Topic (Antypas et al., 2022) and WebKB
(Craven et al., 1998).

*https://www.imdb.com/
Ohttps://waw. rottentomatoes. com/

Dataset Domain | IDI Avg Classes| Minor| Major
‘Words Class | Class

Finance Finance | 873 24.88 2 303 570
IMDB Movie 24904 | 234 2 12432 | 12472

= PangMovie Movie 10662 | 21.02 2 5331 5331
@| SemEval2017| Twitter | 27413 | 19.85 2 7745 19668
-§ Sst Movie 11841 | 19.18 2 5905 | 5936
5 Sst2 Movie 66973 | 10.45 2 29643 | 37330
Yelp2L Place 4995 131.8 2 2495 | 2500
IMDB2024 Movie 6572 163.02 2 2057 | 4515
RottenT2024 | Movie 7948 46.13 2 3315 4633
Acm Article 24897 | 63.52 11 63 6562

E Dblp Article 38128 141.43 10 1414 9746
S| Twitter Twitter | 6997 28.68 6 152 2738
Webkb Pages 8199 208.81 7 137 3705

Table 9: Datasets Statistics.

As detailed in Table 9, we can observe an ample
diversity in many aspects in these datasets: domain,
number of documents (IDI), density (the average
number of words per document), etc.

C Evaluating LLLMs

We evaluate three SLMs: Falcon 7B, Mistral 7,
and LLama 3.1-8B. Table 10 presents the results in
terms of Macro-F1, with the best outcomes high-
lighted in bold. As observed, LLaMA is consis-
tently the best performer, either alone or tied with
Mistral, across all datasets, but WebKB.

Dataset Falcon 7B Mistral 7B Llama 3.1 8B
Finance 46.7+4.8 94.3+1.9 95.4+1.2
Imdb 68.440.7 68.410.7 93+0.3
PangMovie 43.61+0.5 82.34+0.9 88.81+0.9
SemEval2017 54.440.6 81+0.9 89.71+0.6
Sst 47412 8240.8 87.91+0.7
Sst2 38.640.1 86.240.5 91.41+0.4
Yelp2L 79.94+1.3 96.240.9 98.61+0.3
IMDB2024 78.410.8 94.940.9 96.5+1
RottenT2024 65.8+1.3 93.8+1.2 95.3+1
ACM 2.610.2 18.240.9 35.6+1.1
DBLP 3.140.2 50.240.6 53.71+0.8
Twitter 1340.3 62.242.1 63.5+1.7
‘Webkb 3.840.3 42.11+0.6 37+2.1

Table 10: Effectiveness in Macro-F1 for sentiment and
topic classification tasks with the LLMs in Zero-shot
version, Falcon 7B, Mistral 7B, and Llama 3.1 8B.

D Evaluating SLMs

We evaluate three SLMs: BART, BERT, and
RoBERTa. Table 11 presents the results in terms
of Macro-F1, with the best outcomes highlighted
in bold. As observed, RoBERTa is consistently the
best performer, alone or tied with another SLM,
across all datasets, with no exception.

E Evaluating the training of the LLM

As mentioned, fine-tuning is essential for LLM
effectiveness. Here, we illustrate the impact of
training data size on the LLM effectiveness, using
the validation set and a sample of two datasets. The
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https://www.rottentomatoes.com/

Dataset BERT BART RoBERTa
Finance 94.1+£3.8| 97+1.7 98.1+1.9
Imdb 91.74+0.4| 92.8+0.4| 93+0.5
PangMovie 87.5+£0.7| 88.4+1 88.7+£0.9
SemEval2017 | 90.3+0.3| 91+0.4 91.2+0.7
Sst 86.1+0.4| 87.7+1.1| 87.3%+1
Sst2 94.84+0.1| 94.2+0.3| 94.6+0.2
Yelp2L 96.84+0.4| 97.7+0.2| 97.940.5
IMDB2024 96.64+0.5| 97.5+0.6| 97.61+1
RottenT2024 | 92.5+1 93.54+0.5| 93.7+1.1
ACM 69.8+1.8| 68+2.8 70.7£1.5
DBLP 82.14+0.9| 81.9+0.6| 81.9+0.7
Twitter 76.6+4.4| 76.9+3.3| 77.5+2.7
Webkb 80.8+3.8| 81.7+3.5| 82.312.6

Table 11: Average Macro-F1 and 95% confidence interval
for SLMs . Best results (including statistical ties) marked in
bold.

pattern of results is basically the same in all other
datasets we experimented with.

Table 12 presents the effectiveness results when
utilizing 30%, 50%, and 70% of the training data
in Twitter and WebKB, two topic datasets in which
CMBS performs very well. As we can see in the
Table, 30% of training generally is not enough for
achieving reasonable effectiveness, while the im-
provements of using 70% are either marginal or
incur in higher costs.

As discussed in Section 5, the CMBS Partially-
Tuned version we employed in our experiments
uses 50% of the training data based on results of in-
stance selection experiments (Cunha et al., 2023a).
In all datasets, such a choice produced the best
tradeoff between effectiveness and computational
cost. We should stress that the selection fo train-
ing instances is random. In future work, we will
employ instance selection (Cunha et al., 2024) to
evaluate whether we can reduce the training set
size even further without incurring in effectiveness
losses, by smartly chosen the instances to train.

Dataset Portion Macro-
Train F1
Twitter 30 66.2
Twitter 50 71.9
Twitter 70 76.1
‘Webkb 30 76.7
Webkb 50 83.4
‘Webkb 70 85.2

Table 12: Evaluate amount training LLM.

F Evaluating Threshold L

We evaluate the impact of the parameter L, which
determines the number of documents sent to the
LLM. The higher the value of L, the more docu-
ments fall below the threshold, leading to an in-
crease in the number of documents forwarded to
the LLM. Table 13 presents this evaluation for a
sample of four datasets, showing the dataset name,
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the percentage of instances sent to the LLM relative
to the total of test instances, and the effectiveness
of both the SLM and LLM on this subset of in-
stances. It is interesting to notice that the choice
of L that maximizes the cost-effectiveness thresh-
old (around 0.9) is similar in all datasets, and that
the LLM effectiveness in these hard-to-classify in-
stances is better than the SLM, which justifies the
CBMS gains.

Dataset Percentage of | SLM LLM Threshould
Instances Macro- Macro- (L)
F1 F1
IMDB2024 7.8 0.72 0.87 0.9
SST2 253 0.82 0.85 0.9
Webkb 13.9 0.56 0.67 0.9
Twitter 13.9 0.51 0.53 0.9

Table 13: Evaluate Threshould L.

G CO, emissions

We calculated the CO5 emissions associated with
the execution of the model using the methodology
developed by Lacoste et al. (2019). It is possible to
associate the value of emission 0.14 kg of COzeq
per hour with a machine of similar structure to
the one used in our experiments'!. The emission
values are presented in Table 14.

H Finance Cost

In the literature, some studies also analyze the fi-
nancial costs of executing machine learning meth-
ods on cloud services (Griggs et al., 2024). Ta-
ble 15 presents the financial cost in dollars for ex-
ecuting the main methods discussed in this paper.
We used as a reference the hourly price of a setup
similar to the one used in this research !2, offered
by a large cloud company, which currently costs
$0.752 per hour. The total cost for the main experi-
ments amounted to $901.

Thttps://mlco2.github.io/impact/#co2eq
12https: //aws.amazon.com/ec2/instance-types/
g4/
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Dataset RoBERTa Zero-Shot In- Partially- CMBS CMBS In- | CMBS Fully-
LLaMA Context Tuned Zero-Shot Context Partially- Tuned
LLaMA LLaMA Tuned LLaMA
Finance 0.02 0.02 0.02 0.09 0.02 0.02 0.1 0.17
Imdb 0.51 1.22 2.25 4.9 0.57 0.63 491 7.63
PangMovie 0.18 0.23 0.29 1.15 0.19 0.21 1.21 2.12
SemEval2017 0.47 0.61 0.83 2.95 0.5 0.53 3.12 5.46
Sst 0.2 0.24 0.3 1.27 0.21 0.22 1.34 2.29
Sst2 1.13 1.52 2.13 7.28 1.21 1.28 7.68 5.09
Yelp2L 0.1 0.23 0.34 0.47 0.11 0.12 0.52 0.99
IMDB2024 0.13 0.32 0.49 1.13 0.15 0.16 1.15 2.39
RottenT2024 0.15 0.19 0.33 0.85 0.16 0.17 0.92 1.58
ACM 0.52 0.62 1.54 3.28 0.55 0.58 3.47 5.48
DBLP 0.81 1.58 3.37 5.36 0.88 0.96 5.63 27.08
Twitter 0.13 0.17 0.29 1.3 0.14 0.14 1.29 2.22
‘Webkb 0.18 0.56 0.64 1.97 0.2 0.23 1.95 5.06

Table 14: Emission CO5. Calculation based on the work of Lacoste et al. (2019).

Dataset RoBERTa Zero-Shot In- Partially- CMBS CMBS In- | CMBS Fully-
LLaMA Context Tuned Zero-Shot Context Partially- Tuned
LLaMA LLaMA Tuned LLaMA
Finance 0.08 0.11 0.13 0.51 0.09 0.09 0.54 0.94
Imdb 2.73 6.57 12.06 26.29 3.06 3.39 26.4 41
PangMovie 0.98 1.25 1.56 6.15 1.04 1.1 6.51 11.41
SemEval2017 2.52 33 4.44 15.83 2.69 2.85 16.77 29.33
Sst 1.07 1.28 1.63 6.84 1.14 1.2 7.22 12.31
Sst2 6.08 8.15 11.42 39.1 6.48 6.89 41.26 27.33
Yelp2L 0.53 1.21 1.81 2.51 0.59 0.65 2.8 5.34
IMDB2024 0.71 1.7 2.65 6.08 0.8 0.38 6.18 12.85
RottenT2024 0.82 1.03 1.78 4.59 0.88 0.93 4.95 8.49
ACM 2.78 33 8.25 17.63 2.95 3.11 18.65 29.46
DBLP 432 8.47 18.08 28.79 4.75 5.17 30.23 145.44
Twitter 0.68 0.93 1.54 6.96 0.73 0.77 6.94 11.91
‘Webkb 0.95 3.01 3.42 10.6 1.1 1.25 10.49 27.18

Table 15: Finance Cost in dollars ($) for RoOBERTa, Zero-Shot LL.aMA, In-Context LLaMA, Partially-Tuned
LLaMA, CMBS Zero-Shot, CMBS In-Context, CMBS Partially-Tuned and Fully-Tuned LLaMA.
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