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Abstract

Transformers have achieved cutting-edge re-001
sults, with Large Language Models (LLMs)002
being considered the SOTA in several NLP003
tasks. However, the literature has not yet004
fully demonstrated that LLMs are always su-005
perior to first-generation Transformers (a.k.a.006
Small Language Models (SLMs)) in all NLP007
tasks and scenarios. This study compares three008
SLMs (BERT, RoBERTa, and BART) with009
open LLMs (LLaMA 3.1, Mistral, Falcon)010
across 9 sentiment analysis and 4 topic classi-011
fication datasets. The results indicate that open012
LLMs can moderately outperform or tie with013
SLMs in all tested datasets, though only when014
fine-tuned, at a very high computational cost.015
Given this very high cost for only moderate016
effectiveness gains (3.1% on average), the ap-017
plicability of these models in practical cost-018
critical scenarios is questioned. In this context,019
we propose “Call My Big Sibling” (CMBS)1,020
a confidence-based strategy that smoothly com-021
bines calibrated SLMs with open LLMs based022
on prediction certainty. Documents with high023
(calibrated) confidence are classified by the024
cheaper SLM, while uncertain documents are025
directed to LLMs in zero-shot, in-context, or026
partially-tuned versions. Experiments show027
that CMBS outperforms SLMs and is very com-028
petitive with fully tuned LLMs in terms of ef-029
fectiveness at a fraction of the latter’s cost, of-030
fering a much better cost-effectiveness balance.031

1 Introduction032

Automatic text classification (ATC), such as033

binary sentiment analysis and topic classification,034

is essential in diverse contexts, ranging from035

organizing large data volumes to personalizing036

user experiences. ATC has experienced a huge037

revolution with the advent of semantically enriched038

Transformer models (Devlin et al., 2019) that have039

achieve state-of-the-art performance in most ATC040

1Code available at https://github.com/Anonymous

(a) Yelp Review (b) Twitter

Figure 1: Total Time (seconds) and Macro-F1 in RoBERTa,
Zero-Shot LLaMA, In-Context, Partially-Tuned LLaMA,
Fully-Tuned LLaMA, CMBS Zero-Shot, CMBS In-Context,
and CMBS Partially-Tuned. All CMBS proposals outperform
the other baselines, being much cheaper.

scenarios (de Andrade et al., 2023; Cunha et al., 041

2023a; Zanotto et al., 2021; Pasin et al., 2024). 042

More recently, Large Language Models (LLMs) 043

emerged, built on top of the first generation of 044

Transformers (aka small language models (SLMs)). 045

Studies have pointed to LLMs as the current SOTA 046

for several NLP tasks (Liang et al., 2023). Al- 047

though the literature reports LLMs superiority for 048

tasks such as summarization and translation, for 049

others, such as sentiment analysis (one of our fo- 050

cuses), it is not yet clear whether LLMs complexity 051

and size (e.g., in terms of number of parameters) 052

translate into statistical and mainly practical gains. 053

In fact, several studies point to the SLM RoBERTa 054

as a very strong sentiment classifier (Cunha et al., 055

2023b) ranking prominently on leaderboards such 056

as the GLUE benchmark2. 057

Depending on the type of training (or its ab- 058

sence), LLM approaches can be divided into four 059

groups: zero-shot, in-context, partially- and fully- 060

tuned. In a zero-shot approach, the model is ex- 061

pected to perform tasks without specific training. 062

In an in-context approach, the model is given a 063

small number of examples via prompt, providing a 064

2https://gluebenchmark.com/leaderboard/
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context to learn from. Partially-tuned approaches065

use a considerable part of the training set (though066

not all) to generate the model (e.g. (Cunha et al.,067

2023b,a, 2024), while fully-tuned approaches use068

the complete training, allowing for better model069

optimization. As we shall see in our experiments,070

most gains of open LLMs over SLMs are obtained071

in the fully-tuned scenario at a very high cost.072

In light of the above discussion, the first research073

question our paper aims to answer is RQ1: “Are074

(open) LLMs more effective in overcoming the lim-075

its of SLMs in sentiment and topic classification?”.076

Very recent work (Fields et al., 2024) has shown no077

consensus as to whether LLMs always perform bet-078

ter in classification tasks. To address this question,079

we performed a comprehensive set of experiments080

comparing three popular SLMs (BERT, RoBERTa,081

and BART) and three open LLMs (LLaMA 3.1 8B,082

Mistral 7B, Falcon 7B) using a benchmark com-083

prising 9 sentiment and 4 topic analysis datasets084

with different characteristics. Two of these datasets,085

in particular, were collected after the release of086

the LLMs (IMDB2024, RottenT2024) to minimize087

potential data contamination (Liang et al., 2023).088

In this comparison, we focus on open-source089

LLMs, as closed-source and proprietary LLMs,090

such as ChatGPT, are black boxes that prevent us091

from understanding how they were trained or their092

internal structure3. Our results indicate that open093

LLMs can outperform SLMs, reaching up to 8.3%094

of effectiveness gains (on average, 3.1%), though095

mostly in the fully-tuned mode.096

Given the (much) higher computational costs097

associated with fully fine-tuning open LLMs (the098

most effective approach), a natural question we099

posited is RQ2: “How does the computational cost100

of using open LLMs for ATC compare to SLMs’101

cost?”. To answer this question, we conducted102

a thorough analysis of our experimental results,103

considering zero-shot, in-context, partially-tuned,104

and fully-tuned strategies, to assess the trade-offs105

between effectiveness and costs in terms of compu-106

tational time to train the models and their impact107

on carbon emission. We found that LLMs are108

orders of magnitude more costly to fully fine-tune109

when compared to SLMs – fully fine-tuned LLMs110

are up to 1700% more expensive than SLMs. As111

current LLMs can produce just moderate gains112

over SLMs and only through highly costly full113

fine-tuning processes, depending on the application114

3Closed LLMs are irreproducible (Gao et al., 2024).

scenario, the benefits may not be worth the costs. 115

All this leads to our final research question 116

RQ3: “Is it possible to perform a combination 117

of SLM and (open) LLMs to achieve a better 118

effectiveness/cost trade-off compared to using 119

either SLM or LLM alone?” To answer this 120

question, we propose a novel confidence-based 121

strategy called “Call My Big Sibling” (CMBS), 122

which smoothly combines SLM and (open) LLMs 123

based on calibrated uncertainty. 124

In CMBS, we rely on fully fine-tuned SLMs, 125

which have already attained effectiveness and 126

efficiency and are calibrated4 for ATC tasks. We 127

then use the classification confidence to determine 128

whether the LLM should classify a doubtful 129

document. In other words, the fully-tuned SLM 130

classifies high-certainty documents (i.e., with high 131

certainty calibrated scores), while low-certainty 132

documents are sent to the zero-shot, in-context 133

or partially-tuned versions of the LLMs for 134

ATC. Such combination with a cheaper LLM 135

version (compared to the fully-tuned) brings 136

potential effectiveness gains to the SLM and is 137

very competitive to the fully-tuned LLM, being an 138

attractive, cost-effective option in most cases. 139

In more detail, our experimental results show 140

that, for sentiment classification, the combination 141

of a SLM with a zero-shot LLM (aka CMBS 142

Zero-shot) is enough to produce gains in ef- 143

fectiveness at the lowest cost, highlighting the 144

practicality of our proposal. To illustrate our 145

argument, Figure 1 presents the effectiveness 146

(Macro-F1) and efficiency (Time(s)) of our 147

solution compared to the baselines in two datasets. 148

Our proposals are highlighted with star icons in 149

Figure 1, in Figure 1a we observe that CMBS 150

Zero-Shot matches the effectiveness of the most 151

computationally expensive solution, Fully-Tuned 152

LLaMA, at a fraction of the cost. Similarly, in 153

Figure 1b, all CMBS methods outperform the 154

other baselines, being much cheaper. 155

Our experiments reveal that CBMS Zero-shot 156

outperforms the SLM in 8 out of 9 sentiment 157

datasets, tying in remaining one, with an increase in 158

computational cost over SLMs of only 8%. More- 159

over, compared to fully-tuned LLaMA, CBMS 160

Zero-Shot delivers comparable effectiveness at a 161

significantly lower cost. In 4 of the 9 sentiment 162

datasets, CMBS Zero-Shot ties with the fully-tuned 163

4The confidence of the SLM´s softmax function is highly
calibrated as we shall discuss.
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LLM, with minimal losses (on average, just 2%)164

in the other datasets, at 1
10 of the cost. Moreover,165

CMBS Partially-Tuned ties with fully-tuned166

LLaMA in all sentiment datasets at half of the cost.167

For topic classification, with a larger number of168

classes (up to 11 in one of our datasets) and more169

uneven distributions, the CBMS zero-shot version,170

or even the version that sends the doubtful cases171

to the in-context LLM (aka CBMS In-Context),172

struggles to achieve good effectiveness. Only when173

combined with the partially-tuned CMBS (aka174

CMBS Partially-Tuned) can we produce gains175

over the SLM. Among the four evaluated topic176

classification datasets, CMBS Partially-Tuned177

outperforms RoBERTa in two datasets and ties178

in the other two. Compared to the fully-tuned179

LLaMA, CMBS Partially-Tuned achieves statis-180

tical parity in three datasets (with just a 2% loss in181

the fourth) while operating at approximately half182

of the computational cost.183

In sum, the main contributions of this paper are:184

• We perform a comprehensive comparative185

evaluation of SLMs and (open) LLMs regarding186

cost/effectiveness trade-offs.187

• We propose “Call My Big Sibling” (CMBS), a188

confidence-based strategy to combine calibrated189

SLMs and LLMs aimed at optimizing the190

effectiveness-cost trade-off.191

• We perform a thorough evaluation of our three192

proposals considering 13 distinct datasets, in two193

tasks: sentiment (binary) and topic (multi-class)194

classification tasks, three SLMs and zero-shot,195

in-context, partially-tuned and fully-tuned196

versions of three open LLMs.197

2 Related Work198

LLMs’ computational costs have led to numerous199

studies highlighting their financial and environ-200

mental impacts. For instance, (Strubell et al.,201

2019) illustrates the substantial financial costs202

propelled by the continuous need for investment203

in specialized hardware to manage progressively204

larger language models. This trend not only205

limits access to these models but also escalates206

energy consumption, affecting the environment by207

increasing carbon dioxide (CO2) emissions.208

Among LLMs, there are proprietary and closed-209

source ones, such as chatGPT, which operate as210

black boxes. This opacity poses challenges in com-211

prehending their training methodologies or internal212

structures, thereby obstructing reproducibility in re-213

search reliant on these models. Moreover, utilizing214

such LLMs often entails transmitting data through 215

web platforms or APIs, a delicate issue when data 216

is sensitive and cannot be shared. As a result, 217

numerous studies advocate for restricting scientific 218

evaluations to run locally, open-source LLMs such 219

as Bloom and LLaMA 2 (Spirling, 2023). 220

A close work to ours is (Xu et al., 2024), which 221

also combines SLMs with LLMs for various NLP 222

tasks, aiming to improve effectiveness. In that 223

work, computational costs are not evaluated and 224

the use of the LLM is not restricted to classifying 225

a subset of hard instances; instead, it encompasses 226

the entire test set. On the other hand, we select only 227

low-confidence documents to be forwarded to the 228

LLM, a strategy that greatly reduces computational 229

costs as the LLM is significantly more expensive. 230

Moreover, in (Xu et al., 2024), a closed LLM is 231

employed via an API, which provides no control 232

over the computational structure or the model ar- 233

chitecture. Furthermore, only a single sentiment 234

classification dataset is utilized in the experiments. 235

Liang et al., 2023 investigate various LLMs 236

across multiple tasks, prompts, metrics, and 237

datasets. Like Liang et al., we include LLM 238

evaluation and the trade-off between efficiency and 239

effectiveness. Unlike their study, which focuses 240

on the breadth of evaluation with several domains 241

(including only one sentiment dataset), our work 242

is depth-oriented into the specific task of senti- 243

ment and topic classification, covering multiple 244

datasets with diverse characteristics and domains. 245

Moreover, although Liang et al. evaluates several 246

models, they do not compare them with an SLM 247

such as RoBERTa, considered SOTA in sentiment 248

and topic classification (Bai et al., 2023a; Cunha 249

et al., 2021a, 2020; França et al., 2024; Belém et al., 250

2024). Finally, they do not provide any solution for 251

the effectiveness-cost trade-off problem. We do! 252

3 The CBMS Solution 253

One of the main contributions of our work is 254

the proposal of a novel strategy to combine 255

simpler, more efficient, but perhaps less effective 256

SLMs with potentially more effective but costly 257

LLMs, aiming to promote effectiveness while 258

minimizing computational costs. Our solution, 259

“Call-My-Big-Sibling” (CMBS), metaphorically 260

conjures up the image of a small (but smart) 261

child who, in a challenging situation, seeks help 262

from a bigger sibling. CBMS pursues the best 263

trade-off between effectiveness and costs with a 264
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confidence-based pipeline of Language Models.265

CMBS seamlessly integrates SLMs and (open)266

LLMs by leveraging uncertainty. In this frame-267

work, we first employ fully-tuned SLMs models5,268

which are already highly effective in some classifi-269

cation tasks (and faster to tune compared to LLMs).270

In our solution, (test) documents classified below271

a certain confidence threshold (a method’s param-272

eter) by the SLM are sent to an open LLM to be273

classified. The procedure is illustrated in Figure 2.274

Figure 2: Flowchart of the Evaluation Methodology.

For CBMS to properly work, we have to trust275

the probability outputs, or, in other words, the276

probabilities need to be calibrated6. Wolfe et al.,277

2017 argue that RoBERTa’s softmax function278

provides calibrated probabilities as it is a gener-279

alization of logistic regression. To demonstrate280

that, Table 1 presents the Brier score used to281

measure model calibration, in three datasets used282

in our experiments, by three classifiers. This score283

is calculated based on the model probabilities284

and actual labels. The score ranges from 0 to285

1, with values closer to 1 indicating a better286

alignment between probabilistic predictions and287

actual outcomes. As we can observe, the table288

reinforces that RoBERTa is a very calibrated model289

(Brier score > 0.90), being as calibrated as known290

calibrated classifiers such as Logistic Regression291

and Random Forests (Cunha et al., 2024).292

Dataset RoBERTa Random Forest Logistic Regression
Imdb 0.941 0.940 0.938
PangMovie 0.909 0.910 0.902
Finance 0.979 0.982 0.982

Table 1: Brier score in validation set.

We select a document set for which the classifier293

is most uncertain about its classification (Proba-294

bility < L) to send to an LLM for final prediction.295

Due to computational costs, we employ either the296

zero-shot, in-context or partially-tuned strategies297

for this LLM. Finally, our final prediction set is298

5Tuned with the full training data.
6A classifier is calibrated if there is a strong correlation

between its class prediction probabilities and the frequency
with which it correctly predicts instances belonging to each
probability range.

built using the following procedure: 1) we evaluate 299

the probability the model provides and compare it 300

with the threshold parameter; 2) we decide whether 301

the prediction will be made using an SLM or an 302

LLM (zero-shot, in-context or partially-tuned). 303

In this proposal, the choice of the confidence 304

threshold L is essential for evaluating the docu- 305

ments that will be sent to the LLM. To illustrate 306

this point, Figure 3 presents the effectiveness based 307

on prediction confidence for the SST2 dataset. On 308

the Y-axis, we have RoBERTa´s effectiveness, 309

and on the X-axis, we have confidence. We 310

can observe that the more confident, the more 311

effective RoBERTa is in its predictions. The 312

figure highlights the importance of selecting an 313

appropriate confidence threshold, showing that it 314

is more advantageous to forward low-confidence 315

documents, as high-confident ones are classified 316

with high accuracy by the cheaper SLM. 317

Figure 3: RoBERTa’s Macro-F1 vs Confidence for SST2.

4 Experimental Methodology and Setup 318

4.1 Datasets 319

Our study draws on thirteen datasets developed for 320

sentiment analysis and topic classification. The sen- 321

timent analysis datasets include Finance, IMDB, 322

PangMovie, SemEval2017, SST, SST2 and Yelp 323

Review (Yelp2L), while for topic classification we 324

used ACM, DBLP, Twitter and Webkb. With the 325

significant amount of data used in building LLMs, 326

several authors express concerns about contami- 327

nation in evaluation data. Intending to minimize 328

this issue, we collected and curated two datasets 329

with data post-LLMs release (RottenT2024 from 330

Jan-Nov 2024 and IMDB2024 from Jan-May 331

2024), ensuring no contamination in the training 332

of these LLMs. Several works in ATC have used 333

most of these datasets as benchmarks. See Ap- 334

pendix B for further information about the datasets, 335

including domain, number of documents, density, 336

and skewness (class imbalance). Our benchmark 337

covers a wide variety of heterogeneous scenarios. 338
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4.2 Prompt Template339

We investigated the performance of three open340

LLMs: FaLcon 7B, Mistral 7B, and LLaMA 3.1341

8B, adopting the same prompt template utilized342

by (Liang et al., 2023), who, upon evaluating many343

alternatives, concluded that the most effective344

prompt contains: (i) the task description; (ii) ex-345

amples with respective expected responses; and (ii)346

the text to be evaluated. We adapted and used such347

prompt for sentiment classification as illustrated348

in Table 6 and topic classification in Table 7 in the349

Appendix A. Our prompt consists of instructions350

and examples of classes and concludes with the351

text to be evaluated (Evaluate Text). Subsequently,352

the LLM generates the class (“next word”) for the353

evaluated text (Response from LLM). The template354

for In-Context LLM (Table 8) is a small variation355

of the above, in which the generic example is356

substituted by the closest training document,357

according to a cosine similarity calculated using358

the RoBERTa’s document embeddings, using an359

encoder generated by fine-tuning RoBERTa.360

4.3 Zero-shot, In-context, Partially-tuning or361

Fully-tuning for Text Classification362

Applying SLM or LLMs pre-trained models to363

ATC can be done through four strategies: zero-364

shot, in-context, partially-tuned, and fully-tuned.365

Zero-shot strategy predicts text classes without366

using training examples or performing model367

fine-tuning. In an in-context approach, the model368

relies on a prompt containing the nearest neighbors369

of the evaluated example inserted into the prompt370

to provide context for making predictions without371

adjusting its weights. In the partially-tuned372

strategy, a portion of labeled data is employed to373

adjust the model weights, simulating a scenario of374

data scarcity. For the partially-tuned approach, we375

fixed 50% of the training partition data for model376

training. We use this percentage inspired in recent377

work in Instance Selection (Cunha et al., 2023a)378

that determined this is an empirical threshold that379

assures good efficiency with minimal effectiveness380

losses.7 In any case, an evaluation using different381

training data sizes is conducted and presented382

in Appendix E. Lastly, the fully-tuned strategy383

utilizes all available labeled data in the model’s384

training partition to maximize model adjustment385

for the task and data domain. While this strategy386

7We did not exploit Instance Selection in this work, but
intend to do it in future work.

typically achieves better effectiveness, it has a 387

very high computational cost. In our paper, the 388

fully-tuned is used to compare with our approaches 389

We only employ the SLMs fully tuned, which is 390

essential for their effectiveness (de Andrade et al., 391

2023). Fully tuning SLMs involves fine-tuning the 392

SLM’s text representation (CLS token) and fully 393

connected layer that predicts the text class distribu- 394

tion, utilizing all available training samples. Aim- 395

ing to investigate the trade-off between efficiency 396

and effectiveness within our CMBS solution, we 397

explored the four strategies for LLMs: (i) zero-shot; 398

(ii) in-context approach; (iii) partially-tuned using 399

50% of the training samples; and (iv) fully tuned. 400

4.4 Method-Specific Parameter Tuning 401

All data is divided using stratified 5-fold cross- 402

validation, a widely accepted technique in model 403

evaluation. This method enhances the robustness 404

and reliability of the model by splitting the dataset 405

into five parts: three for training, validation, and 406

testing. In each of the five iterations, the roles of 407

the partitions alternate between training, validation, 408

and testing, ensuring that the class distribution is 409

preserved in the test partition. The validation set is 410

crucial for parameter tuning, as detailed below. 411

For SLMs, we adopted the hyper- 412

parameterization suggested by (Cunha et al., 413

2023b), fixing the learning rate in 2×10−5, the 414

batch size with 64 documents, adjusted the model 415

for five epochs and set the maximum size of each 416

document to 256 tokens. For the LLM models, 417

we adopted the following parameters: all LLMs 418

utilize 4-bit quantization, enabling fine-tuning to 419

be performed on reasonably equipped machines. 420

For LLaMA, we used 1024 maximum tokens, 421

a learning rate of 2×10−4, and a temperature 422

equal to 0.6. All other parameters were set at 423

their default values. For fully-tuning processes, 424

which are more costly due to the model’s weight 425

adjustment (backpropagation), we had to reduce 426

the maximum number of tokens to 256. We 427

performed training for three epochs. 428

We also introduce a confidence threshold param- 429

eter. Class predictions in which the SLM model’s 430

confidence falls below this threshold are forwarded 431

to the LLM, which we refer to as the “Big Sibling”. 432

This term is used to illustrate the model’s decision- 433

making process, where the more complex LLM 434

takes over when the simpler SLM is uncertain. We 435

employ the validation set and perform classifica- 436

tions while varying this parameter to determine the 437
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optimal threshold to maximize Macro-F1 without438

increasing the cost. The chosen threshold for a sam-439

ple of datasets is shown in Table 13 (Appendix F),440

which also shows the percentage of validation441

instances sent to the LLM relative to the total, and442

the LLM and SLM effectiveness on this subset443

of instances. For instance, in SST2, if prediction444

confidence is below 0.9, the document is forwarded445

to the LLM; otherwise, the SLM classifies it. As446

the threshold increases, more documents are sent447

to the LLM. It is interesting to notice that the448

choice of L (around 0.9) that optimizes the tradeoff449

is similar in all datasets, and that the LLM effec-450

tiveness in these hard-to-classify instances is better451

than SLM’s, justifying potential CBMS gains.452

4.5 Metrics and Experimental Protocol453

We evaluated SLMs and (open) LLMs regarding454

the effectiveness/cost trade-off. All models were455

assessed on identical hardware configuration: a456

4-core processor, 32GB of system memory, and an457

Nvidia Tesla P100 GPU. Classification effective-458

ness is assessed using Macro-F1 due to imbalance459

in several datasets. To ensure statistical validity460

of the results and demonstrate model generality,461

models were evaluated using the test set from462

a 5-fold stratified cross-validation methodology463

and a t-test with 95% confidence with Bonferroni464

correction to account for multiple comparisons.465

To analyze the cost-effectiveness trade-off, we466

also evaluated each method’s cost in terms of467

the total time required to build the model. More468

specifically, the total time comprises the time for469

model learning (if applicable), together with the470

time for class prediction (considering the full test471

set). In the case of our CMBS solution, the CMBS472

Zero-Shot model building time includes the time re-473

quired to fully-tuned the SLM, the time to predict a474

portion of the test set using the SLM, and a smaller475

portion using the LLM. For CMBS in-context, it476

also includes the time to find the k nearest neigh-477

bors. For CMBS partially-tuned, it also includes478

the time to train the LLM using 50% of the training479

data (further details provided in Appendix E).480

5 Experimental Results and Analyses481

5.1 RQ1: Are (open) LLMs more effective in482

overcoming the limits of SLMs?483

To address RQ1, we first evaluated several popular484

open-source LLMs, including Falcon 7B, Mistral485

7B, and LLaMA 3.1 8B. We began by comparing486

the performance of these three LLMs on sentiment 487

and topic classification tasks in the Zero-Shot set- 488

ting. Table 10 in Appendix C presents the Macro- 489

F1 scores, highlighting the best results in bold, in- 490

cluding statistical ties. LLaMA 3.1 8B consistently 491

achieves the best results (statistically) across most 492

datasets in both sentiment and topic tasks. Due to 493

the high computational cost of fully tuning LLMs, 494

we selected LLaMA 3.1 8B for all subsequent tests. 495

Regarding SLMs, we did a similar experiment 496

and compared three widely used SLMs – BERT, 497

BART, and RoBERTa. Results in Table 11 in 498

Appendix D show that, among SLMs, RoBERTa 499

achieves the highest effectiveness (or ties for it) 500

in all cases, confirming findings reported in the 501

literature (Cunha et al., 2023b; Bai et al., 2023b). 502

Finally, to explicitly answer RQ1, we compare 503

RoBERTa with four LLaMA versions in Table 2 504

– zero-shot, in-context, partially-tuned with 50% 505

of training and fully-tuned, using the entire train- 506

ing partition. Some interesting observations can be 507

drawn from the Table. Zero-shot LLaMA 3.1 ties 508

or is worse than RoBERTa in all sentiment datasets, 509

being much worse than RoBERTa in topic classifi- 510

cation. Similarly to Zero-Shot LLaMA, In-Context 511

LLaMA ties or underperforms across all sentiment 512

classification datasets compared to RoBERTa. For 513

topic classification, the performance gap is even 514

more pronounced. This difference can be attributed 515

to the higher number of classes and the increased 516

complexity of associating a document with its cor- 517

responding class in topic classification tasks. 518

Only partially and fully-tuned LLaMA can 519

outperform RoBERTa, with an obvious advantage 520

for fully tuning at double the cost. However, there 521

are several datasets, such as Finance and Yelp2L 522

for sentiment and Twitter for topics, which are 523

fully-tuned and statistically tied with RoBERTa. 524

In several other datasets, their effectiveness is 525

also very close. This further motivates us to 526

combine SLMs and LLMs with our proposed 527

CMBS pipeline for the sake of optimizing the 528

effectiveness-cost trade-off. This trade-off is the 529

core of our subsequent analyses. 530

5.2 RQ2: How does the computational cost of 531

open LLMs and SLMs compare? 532

Table 3 presents total time (in seconds) required 533

to obtain final predictions for each solution. The 534

Table shows that RoBERTa’s time is the shortest, 535

followed by LLM Zero-Shot, which is approxi- 536

mately 76% more expensive than the SLM, on aver- 537
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Dataset RoBERTa Zero-
Shot
LLaMA

In-
Context
LLaMA

Partially-
Tuned
LLaMA

Fully-
Tuned
LLaMA

Finance 98.1±1.9 95.4±1.2 98.6±1.8 98.6±1.2 98.7±1.6
Imdb 93±0.5 93±0.3 78.9±1.2 95.8±0.2 95.9±0.4
PangMovie 88.7±0.9 88.8±0.9 89.9±0.7 93.1±0.4 93.7±0.5
SemEval2017 91.2±0.7 89.7±0.6 90.1±0.7 92.7±0.6 93.5±0.3
Sst 87.3±1 87.9±0.7 88.5±1 90.9±0.8 91.1±1
Sst2 94.6±0.2 91.4±0.4 93.3±3.9 95.7±0.2 96±0.1
Yelp2L 97.9±0.5 98.5±0.3 92.1±1 98.5±0.6 98.5±0.5
IMDB2024 97.6±1 96.5±1 93.9±1 98.6±0.7 98.7±0.7
RottenT2024 93.7±1.1 95.2±1.4 95.3±1 96.6±0.7 96.7±0.4
ACM 70.7±1.5 35.6±1.1 50.5±1.6 72.4±1.6 76.6±2.1
DBLP 81.9±0.7 53.7±0.8 53.2±1.0 85.9±0.8 87.8±0.7
Twitter 77.5±2.7 67.4±2.7 72.9±1.6 73.5±3.1 77.7±2.5
Webkb 82.3±2.6 41.9±1.5 64±1.8 82.4±2.1 86±1.3

Table 2: Average Macro-F1 and 95% confidence interval
for SLMs and versions Llama 3.1 8B. Best results (including
statistical ties) are marked in bold.

age. LLM In-context, in turn, is 176% slower than538

RoBERTa and 56% costlier than LLM Zero-Shot.539

In the partially-tuned version, the cost increases540

significantly due to the weight adjustment process541

performed via backpropagation in the LLMs. Of542

course, the fully-tuned LLM is the most expensive543

solution, which is 1700% more expensive than544

RoBERTa. With an average improvement of 3.3%545

across all datasets (peaking at 8.3% in ACM), it546

raises the question of whether such improvements547

justify the significant computational cost.548

Depending on the scenario in which LLMs549

are employed, costly solutions may not be ideal550

or even feasible. To address this, our proposed551

solution aims to reduce costs associated with using552

LLMs while preserving their effectiveness gains.553

Dataset RoBERTa Zero-
Shot
LLaMA

In-
Context
LLaMA

Partially-
Tuned
LLaMA

Fully-
Tuned
LLaMA

Finance 79.1 103.4 123.3 484.2 896.4
Imdb 2615 6295.2 11548.1 25175.8 39257
PangMovie 934.4 1199.6 1489.6 5891.6 10921.1
SemEval2017 2416.4 3160.1 4250.8 15153.7 28086.7
Sst 1027.2 1229.8 1561.8 6544.2 11790.7
Sst2 5816.6 7799.8 10936.4 37434.9 26171.3
Yelp2L 510 1161.2 1736.3 2406.9 5116
IMDB2024 681.3 1622.9 2538.4 5822.2 12303.5
RottenT2024 788.7 982.8 1708.4 4393.3 8129.7
ACM 2664.7 3163.2 7896 16876.7 28206.9
DBLP 4140.1 8112.8 17311.4 27564.2 139249.5
Twitter 650.7 891.8 1477.9 6663.9 11405.9
Webkb 909.8 2877.2 3273.7 10149.9 26020.7

Table 3: Average Total Time for RoBERTa and Llama3.18B.

5.3 RQ3: Is it possible to perform a554

combination of SLM and (open) LLMs to555

achieve a better effectiveness/cost556

trade-off compared to using either SLM557

or LLM alone?558

Let us focus now on our proposed method: CMBS559

and compare the three alternative implementations560

of our solution: CMBS Zero-Shot, CBMS In-561

Context and CBMS Partially-Tuned. Starting with562

the sentiment classification task, Table 4 presents563

the results of the SLM RoBERTa, each CMBS ver- 564

sion, and Fully-Tuned LLaMA. We start by notic- 565

ing that, CMBS Zero-Shot outperforms RoBERTa 566

in 8 out 9 sentiment datasets, tying only in Finance. 567

These gains come with a small increase in com- 568

putational cost over SLMs of only 8%. Moreover, 569

in 4 of the 9 datasets, CMBS Zero-Shot ties with 570

the fully-tuned LLM, with minimal losses in others 571

(on average, just 2% less effective). These excel- 572

lent effectiveness results come at 1
10 of the cost, 573

as demonstrated in Table 5, which presents total 574

time results for all alternatives. Moreover, CMBS 575

partially-tuned ties with fully-tuned LLama in all 576

sentiment datasets at half of the cost. 577

For topic classification, characterized by datasets 578

with a larger number of categories (up to 11 579

in one case) and highly uneven class distribu- 580

tions, CBMS Zero-Shot, as well as CBMS In- 581

Context, encounter significant challenges in main- 582

taining high levels of effectiveness. Significant 583

improvements over the SLM are obtained only 584

when leveraging the partially-tuned variant (CBMS 585

Partially-Tuned). Among the four topic classifi- 586

cation datasets analyzed, CMBS Partially-Tuned 587

model surpasses RoBERTa in effectiveness on two 588

datasets and ties it on the remaining two. Indeed, 589

CMBS Partially-Tuned can improve over partially- 590

tuned LLM is all topic datasets, with gains of up 591

to 6.4% in Twitter. Finally, when compared to 592

the fully-tuned LLaMA model, CMBS Partially- 593

Tuned demonstrates statistical equivalence across 594

three datasets and incurs only a marginal 2% ef- 595

fectiveness deficit on the fourth, all while reducing 596

computational demands by approximately 50%. 597

Summarizing, for sentiment analysis, the best 598

effectiveness tradeoff is achieved by CBMS Zero- 599

Shot. If effectiveness is mandatory, the choice is 600

CBMS Partially-Tuned, which has the same ef- 601

fectiveness of LLaMA Fine-tuned at half of the 602

cost. For topics, the choice is also CBMS Partially- 603

Tuned, which ties with LLaMA fine-tuned in 3 out 604

four datasets, loosing minimally (by 2%) in the 4th 605

dataset, being twice more efficient. 606

We also calculated the CO2 emissions associated 607

with obtaining final model predictions, using the 608

methodology developed by Lacoste et al. (2019). 609

Table 14 (Appendix G) presents the results. Similar 610

to time, CO2 emissions are much higher for LLMs, 611

in this case, by orders of magnitude. Financial costs 612

associated with the solutions are also analyzed in 613

Appendix H, with similar conclusions. 614
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(a) Effectiveness (b) Instances Sent to LLM (c) Efficiency
Figure 4: Effectiveness, Size of the Test Set Sent to LLM and Efficiency for IMDB dataset.

Dataset RoBERTa CMBS
Zero-
Shot

CMBS
In-
Context

CMBS
Partially-
Tuned

Fully-
Tuned
LLaMA

Finance 98.1±1.9 98±2.1 98.2±1.7 98.3±1.3 98.7±1.6
Imdb 93±0.5 94±0.6 92.5±0.6 95.8±0.2 95.9±0.4
PangMovie 88.7±0.9 90.2±0.9 89.9±0.8 93.1±0.3 93.7±0.5
SemEval2017 91.2±0.7 92.2±0.6 92±0.5 92.9±0.6 93.5±0.3
Sst 87.3±1 89±0.6 88.5±1.2 90.9±0.9 91.1±1
Sst2 94.6±0.2 95.1±0.2 94.8±0.3 95.7±0.2 96±0.1
Yelp2L 97.9±0.5 98.5±0.2 98.1±0.2 98.6±0.5 98.5±0.5
IMDB2024 97.6±1 98.2±0.9 97.3±1.2 98.7±0.8 98.7±0.7
RottenT2024 93.7±1.1 95.6±1 95.7±0.7 96.3±0.7 96.7±0.4
ACM 70.7±1.5 70.5±1.2 70.6±1.2 73.3±2.4 76.6±2.1
DBLP 81.9±0.7 81.9±0.6 82±1.6 86±0.8 87.8±0.7
Twitter 77.5±2.7 79.4±2.7 78.7±2.5 78.2±1.8 77.7±2.5
Webkb 82.3±2.6 82.1±2.3 82.2±2.7 83.8±2.5 86±1.3

Table 4: Average Macro-F1 and 95% confidence interval for
RoBERTa, Zero-Shot LLaMA 3.1 and CMBS Zero-Shot. Best
results (including statistical ties) are marked in bold.

Dataset RoBERTa CMBS
Zero-
Shot

CMBS
In-
Context

CMBS
Partially-
Tuned

Fully-
Tuned
LLM

Finance 79.1 84.27 89.44 514.88 896.4
Imdb 2615 2929.76 3244.52 25273.22 39257
PangMovie 934.4 994.38 1054.36 6236.84 10921.1
SemEval2017 2416.4 2574.405 2732.41 16054.73 28086.7
Sst 1027.2 1088.69 1150.18 6916.98 11790.7
Sst2 5816.6 6206.59 6596.58 39508.01 26171.3
Yelp2L 510 568.06 626.12 2676.21 5116
IMDB2024 681.3 762.445 843.59 5921.28 12303.5
RottenT2024 788.7 837.84 886.98 4742.67 8129.7
ACM 2664.7 2822.86 2981.02 17853.73 28206.9
DBLP 4140.1 4545.74 4951.38 28947.88 139249.5
Twitter 650.7 695.29 739.88 6648.21 11405.9
Webkb 909.8 1053.66 1197.52 10044.71 26020.7

Table 5: Average Total Time total- RoBERTa, CMBS(Zero-
Shot,In-Context, Partially-Tuned) and Fully-Tuned LLM.

5.4 Confidence Threshold Sensitivity Analysis615

We analyze the role of the uncertainty threshold616

in the results. For this, we show in Figure 4,617

the results in the IMDB, a dataset in which618

CMBS (Partially-tuned) obtained one of the best619

cost-benefit tradeoffs: it improves effectiveness620

over RoBERTa and ties with Fully-tuned LLaMA,621

while requiring only half the computational cost.622

Figure 4a, 4b and 4c show effectiveness increase,623

number of instances sent to LLM, and respective624

cost increase. It is interesting to see that the pat-625

terns in increase are very similar in the three graphs,626

although the metrics are very different. We can627

also see that by choosing appropriate thresholds,628

there is still room for effectiveness improvements,629

although at the expense of cost increases.630

6 Conclusion 631

We proposed Call-My-Big-Sibling (CMBS), a 632

novel ATC solution combining already very effec- 633

tive, efficient, and calibrated SLMs with more ef- 634

fective but costlier open LLMs, aiming at optimiz- 635

ing an effectiveness-cost trade-off. Our approach 636

involves leveraging LLMs only when the SLM ex- 637

hibits high uncertainty in its calibrated predictions. 638

Experiments conducted on 13 diverse datasets on 639

sentiment and topic classification underscored the 640

superiority of our solutions regarding the aforemen- 641

tioned trade-off. For sentiments, CBMS Zero-Shot 642

outperformed the SLM in 8 out 9 datasets, tying 643

in the other, with a marginal increase in compu- 644

tational time, while also being very competitive 645

with fully-tuned LLM. CMBS Partially-Tuned, in 646

turn, matches the fully-tuned LLM in all sentiment 647

datasets, improving over partially-tuned LLaMA, 648

at half of the cost of the fully-tuned LLM. 649

Similar results are obtained for topics, in which 650

CMBS Partially-Tuned improves over partially- 651

tuned LLaMA in all datasets (up to 6.4%) and is 652

as good as the fully-tuned LLM in 3 out 4, almost 653

tying (less than 2% of effectiveness loss) in the 654

fourth dataset, while being twice more efficient. In 655

real-world, practical scenarios, such minimal effec- 656

tiveness difference may not impact any application 657

or user, while a cost difference of 50% may bring 658

many practical benefits. These results confirm 659

our hypothesis that CBMS, which leverages a 660

confidence-based combination of SLMs and LLMs, 661

can achieve a better effectiveness-cost balance 662

than the two isolated components of the solution. 663

In future work, we will apply CMBS to other 664

ATC tasks, such as hate speech and irony detection, 665

as well as to other NLP tasks, such as summariza- 666

tion and Q&A. We intend to apply instance selec- 667

tion (Cunha et al., 2023b,a, 2024) to further reduce 668

the amount of training in CBMS Partially-tuned, 669

improving even further its efficiency, while keeping 670

similar effectiveness levels. Finally, we intend to 671

run tests with other LLMs and configurations. 672
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7 Limitations673

Despite relevant contributions, our study has674

some limitations. Our current work covers only675

two classification tasks, which we have pursued676

to evaluate in depth. In this study, we used 13677

datasets, 9 on sentiment analysis and 4 on topic678

classification, all with distinct characteristics.679

We focused our evaluation on open LLMs for the680

sake of the reproducibility of subsequent research681

using our method. Among LLMs, there are pro-682

prietary and closed-source ones, such as ChatGPT,683

which operate as black boxes. This opacity poses684

challenges in understanding their training method-685

ologies or internal structures, thereby obstructing686

reproducibility in research reliant on these models.687

LLMs have been made available for different688

purposes. Some of these LLMs have high exe-689

cution costs, such as Falcon 180B (Penedo et al.,690

2023), which requires an expensive infrastructure691

to use it. In our work, we limited our study to692

the best evaluated LLMs in the Hugging Face693

system8, with around 7 billion parameters, which694

have a reasonable structure allowing us to evaluate695

zero-shot, in-context, partially and fully-tuned696

versions of our solutions.697

Finally, our work focused on applying our698

proposed solution with three open LLMs – Falcon699

7B, Mistral 7B and LLaMA 3.1 8B. However, new700

LLMs, such as Orca and LLaMA 3.3, emerged701

during the development of this work, and we were702

not able to use them in time for reporting the703

results in this paper. We intend to use Orca as well704

as other new open LLMs that will come out in the705

near future. Nevertheless, considering that these706

new LLMs tend to be increasingly complex and707

costly, optimizing the cost-benefit of our combined708

solution between SLMs and LLMs will certainly709

be still valid and even a more appealing goal.710
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A Prompt Templates 939

Below are examples of the structure of the prompts 940

we used for the Zero-Shot and In-Context versions 941

of the LLMs in our experiments. They are all in- 942

spired by the work of (Liang et al., 2023). Table 6 943

provides the prompt used for sentiment classifica- 944

tion, while Table 7 presents the prompt for topic 945

classification. Both prompts include the tag [Evalu- 946

ate Text], which represents the (test) text to be clas- 947

sified, and the tag [Response from LLM], which 948

contains the model’s output. If the model’s output 949

does not match any of the given alternatives (due to 950

hallucination), we predict the majority class from 951

the training set. 952

The third example of prompt, shown in Table 8, 953

is tailored for in-context learning. For the evalu- 954

ated test document, “I spent a day at a 5-star hotel, 955

which was amazing.” the most similar example 956

from the training set included in the prompt was 957

“5-star hotels have many food options.”. For each 958

evaluated example, a vector representation is gen- 959

erated using the fully-tuned RoBERTa as an en- 960

coder. By comparing the vector of the evaluated 961

(test) document with the vectors of the training set 962

documents, we identify the most similar document 963

based on the cosine similarity between the vectors 964

and use it as a training example in the prompt. 965

Classify the sentiment in the text exclusively as positive
or negative:
Input: I love you.
Reference:
A. Positive
B. Negative
Answer: A
Input: The product is bad.
Reference:
A. Positive
B. Negative
Answer: B
Input: {Evaluate Text}
Reference:
A. Positive
B. Negative
Answer: {Response from LLM}

Table 6: Prompt template for sentiment classification.

B Datasets 966

Our study draws on thirteen datasets developed 967

for topic and sentiment classification. Our choice 968

was strategically purposeful due to the effort to per- 969

form an in-depth analysis of this task. The datasets 970

include Finance (Malo et al., 2014) focusing on 971
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Classify the topic of the text exclusively with one of the
references:
Input: Messi scored a goal against France.
Reference:
A. Pop culture
B. Sports or gaming
C. Daily life
D. Science or technology
E. Business or entrepreneurs
F. Arts or culture
Answer: B
Input: {Evaluate Text}
Reference:
A. Pop culture
B. Sports or gaming
C. Daily life
D. Science or technology
E. Business or entrepreneurs
F. Arts or culture
Answer: {Response from LLM}

Table 7: Prompt template for topic classification.

Classify the sentiment text exclusively as positive or
negative:
Input: 5-star hotels have many food options.
Reference:
A. Positive
B. Negative
Answer: A
Input: I spent a day at a 5-star hotel, which was amazing.
Reference:
A. Positive
B. Negative
Answer: {Response from LLM}

Table 8: Prompt template for sentiment classification
for In-Context Llama and CMBS In-Context.

economic news, IMDB (Maas et al., 2011)9 com-972

piling movie reviews as well as PangMovie (Pang973

and Lee, 2005) including Rotten Tomatoes10 data,974

SemEval2017 (Rosenthal et al., 2019) containing975

Twitter texts used in a significant text classifica-976

tion challenge, and the Stanford Sentiment Tree-977

bank (SST) (Socher et al., 2013) and SST2 (Socher978

et al., 2013), where sentiment classification relies979

on Treebank, a corpus with sentiment labels and980

labeled parse trees. Yelp Review is a subset of Yelp981

data widely used in sentiment classification studies982

(Canuto et al., 2016; Viegas et al., 2023; Mendes983

et al., 2020). IMDB2024 and RottenT2024 were984

collected to avoid data contamination by LLM. For985

topic classification, we have ACM Digital Library986

(Cunha et al., 2021b), DBLP (Tang et al., 2008),987

Twitter Topic (Antypas et al., 2022) and WebKB988

(Craven et al., 1998).989

9https://www.imdb.com/
10https://www.rottentomatoes.com/

Dataset Domain |D| Avg
Words

Classes Minor
Class

Major
Class

Se
nt

im
en

t

Finance Finance 873 24.88 2 303 570
IMDB Movie 24904 234 2 12432 12472
PangMovie Movie 10662 21.02 2 5331 5331
SemEval2017 Twitter 27413 19.85 2 7745 19668
Sst Movie 11841 19.18 2 5905 5936
Sst2 Movie 66973 10.45 2 29643 37330
Yelp2L Place 4995 131.8 2 2495 2500
IMDB2024 Movie 6572 163.02 2 2057 4515
RottenT2024 Movie 7948 46.13 2 3315 4633

To
pi

c Acm Article 24897 63.52 11 63 6562
Dblp Article 38128 141.43 10 1414 9746
Twitter Twitter 6997 28.68 6 152 2738
Webkb Pages 8199 208.81 7 137 3705

Table 9: Datasets Statistics.

As detailed in Table 9, we can observe an ample 990

diversity in many aspects in these datasets: domain, 991

number of documents (|D|), density (the average 992

number of words per document), etc. 993

C Evaluating LLMs 994

We evaluate three SLMs: Falcon 7B, Mistral 7, 995

and LLama 3.1-8B. Table 10 presents the results in 996

terms of Macro-F1, with the best outcomes high- 997

lighted in bold. As observed, LLaMA is consis- 998

tently the best performer, either alone or tied with 999

Mistral, across all datasets, but WebKB. 1000

Dataset Falcon 7B Mistral 7B Llama 3.1 8B
Finance 46.7±4.8 94.3±1.9 95.4±1.2
Imdb 68.4±0.7 68.4±0.7 93±0.3
PangMovie 43.6±0.5 82.3±0.9 88.8±0.9
SemEval2017 54.4±0.6 81±0.9 89.7±0.6
Sst 47±1.2 82±0.8 87.9±0.7
Sst2 38.6±0.1 86.2±0.5 91.4±0.4
Yelp2L 79.9±1.3 96.2±0.9 98.6±0.3
IMDB2024 78.4±0.8 94.9±0.9 96.5±1
RottenT2024 65.8±1.3 93.8±1.2 95.3±1
ACM 2.6±0.2 18.2±0.9 35.6±1.1
DBLP 3.1±0.2 50.2±0.6 53.7±0.8
Twitter 13±0.3 62.2±2.1 63.5±1.7
Webkb 3.8±0.3 42.1±0.6 37±2.1

Table 10: Effectiveness in Macro-F1 for sentiment and
topic classification tasks with the LLMs in Zero-shot
version, Falcon 7B, Mistral 7B, and Llama 3.1 8B.

D Evaluating SLMs 1001

We evaluate three SLMs: BART, BERT, and 1002

RoBERTa. Table 11 presents the results in terms 1003

of Macro-F1, with the best outcomes highlighted 1004

in bold. As observed, RoBERTa is consistently the 1005

best performer, alone or tied with another SLM, 1006

across all datasets, with no exception. 1007

E Evaluating the training of the LLM 1008

As mentioned, fine-tuning is essential for LLM 1009

effectiveness. Here, we illustrate the impact of 1010

training data size on the LLM effectiveness, using 1011

the validation set and a sample of two datasets. The 1012

12
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Dataset BERT BART RoBERTa
Finance 94.1±3.8 97±1.7 98.1±1.9
Imdb 91.7±0.4 92.8±0.4 93±0.5
PangMovie 87.5±0.7 88.4±1 88.7±0.9
SemEval2017 90.3±0.3 91±0.4 91.2±0.7
Sst 86.1±0.4 87.7±1.1 87.3±1
Sst2 94.8±0.1 94.2±0.3 94.6±0.2
Yelp2L 96.8±0.4 97.7±0.2 97.9±0.5
IMDB2024 96.6±0.5 97.5±0.6 97.6±1
RottenT2024 92.5±1 93.5±0.5 93.7±1.1
ACM 69.8±1.8 68±2.8 70.7±1.5
DBLP 82.1±0.9 81.9±0.6 81.9±0.7
Twitter 76.6±4.4 76.9±3.3 77.5±2.7
Webkb 80.8±3.8 81.7±3.5 82.3±2.6

Table 11: Average Macro-F1 and 95% confidence interval
for SLMs . Best results (including statistical ties) marked in
bold.

pattern of results is basically the same in all other1013

datasets we experimented with.1014

Table 12 presents the effectiveness results when1015

utilizing 30%, 50%, and 70% of the training data1016

in Twitter and WebKB, two topic datasets in which1017

CMBS performs very well. As we can see in the1018

Table, 30% of training generally is not enough for1019

achieving reasonable effectiveness, while the im-1020

provements of using 70% are either marginal or1021

incur in higher costs.1022

As discussed in Section 5, the CMBS Partially-1023

Tuned version we employed in our experiments1024

uses 50% of the training data based on results of in-1025

stance selection experiments (Cunha et al., 2023a).1026

In all datasets, such a choice produced the best1027

tradeoff between effectiveness and computational1028

cost. We should stress that the selection fo train-1029

ing instances is random. In future work, we will1030

employ instance selection (Cunha et al., 2024) to1031

evaluate whether we can reduce the training set1032

size even further without incurring in effectiveness1033

losses, by smartly chosen the instances to train.1034

Dataset Portion
Train

Macro-
F1

Twitter 30 66.2
Twitter 50 71.9
Twitter 70 76.1
Webkb 30 76.7
Webkb 50 83.4
Webkb 70 85.2

Table 12: Evaluate amount training LLM.

F Evaluating Threshold L1035

We evaluate the impact of the parameter L, which1036

determines the number of documents sent to the1037

LLM. The higher the value of L, the more docu-1038

ments fall below the threshold, leading to an in-1039

crease in the number of documents forwarded to1040

the LLM. Table 13 presents this evaluation for a1041

sample of four datasets, showing the dataset name,1042

the percentage of instances sent to the LLM relative 1043

to the total of test instances, and the effectiveness 1044

of both the SLM and LLM on this subset of in- 1045

stances. It is interesting to notice that the choice 1046

of L that maximizes the cost-effectiveness thresh- 1047

old (around 0.9) is similar in all datasets, and that 1048

the LLM effectiveness in these hard-to-classify in- 1049

stances is better than the SLM, which justifies the 1050

CBMS gains. 1051

Dataset Percentage of
Instances

SLM
Macro-
F1

LLM
Macro-
F1

Threshould
(L)

IMDB2024 7.8 0.72 0.87 0.9
SST2 25.3 0.82 0.85 0.9
Webkb 13.9 0.56 0.67 0.9
Twitter 13.9 0.51 0.53 0.9

Table 13: Evaluate Threshould L.

G CO2 emissions 1052

We calculated the CO2 emissions associated with 1053

the execution of the model using the methodology 1054

developed by Lacoste et al. (2019). It is possible to 1055

associate the value of emission 0.14 kg of CO2eq 1056

per hour with a machine of similar structure to 1057

the one used in our experiments11. The emission 1058

values are presented in Table 14. 1059

H Finance Cost 1060

In the literature, some studies also analyze the fi- 1061

nancial costs of executing machine learning meth- 1062

ods on cloud services (Griggs et al., 2024). Ta- 1063

ble 15 presents the financial cost in dollars for ex- 1064

ecuting the main methods discussed in this paper. 1065

We used as a reference the hourly price of a setup 1066

similar to the one used in this research 12, offered 1067

by a large cloud company, which currently costs 1068

$0.752 per hour. The total cost for the main experi- 1069

ments amounted to $901. 1070

11https://mlco2.github.io/impact/#co2eq
12https://aws.amazon.com/ec2/instance-types/

g4/
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Dataset RoBERTa Zero-Shot
LLaMA

In-
Context
LLaMA

Partially-
Tuned
LLaMA

CMBS
Zero-Shot

CMBS In-
Context

CMBS
Partially-
Tuned

Fully-
Tuned
LLaMA

Finance 0.02 0.02 0.02 0.09 0.02 0.02 0.1 0.17
Imdb 0.51 1.22 2.25 4.9 0.57 0.63 4.91 7.63
PangMovie 0.18 0.23 0.29 1.15 0.19 0.21 1.21 2.12
SemEval2017 0.47 0.61 0.83 2.95 0.5 0.53 3.12 5.46
Sst 0.2 0.24 0.3 1.27 0.21 0.22 1.34 2.29
Sst2 1.13 1.52 2.13 7.28 1.21 1.28 7.68 5.09
Yelp2L 0.1 0.23 0.34 0.47 0.11 0.12 0.52 0.99
IMDB2024 0.13 0.32 0.49 1.13 0.15 0.16 1.15 2.39
RottenT2024 0.15 0.19 0.33 0.85 0.16 0.17 0.92 1.58
ACM 0.52 0.62 1.54 3.28 0.55 0.58 3.47 5.48
DBLP 0.81 1.58 3.37 5.36 0.88 0.96 5.63 27.08
Twitter 0.13 0.17 0.29 1.3 0.14 0.14 1.29 2.22
Webkb 0.18 0.56 0.64 1.97 0.2 0.23 1.95 5.06

Table 14: Emission CO2. Calculation based on the work of Lacoste et al. (2019).

Dataset RoBERTa Zero-Shot
LLaMA

In-
Context
LLaMA

Partially-
Tuned
LLaMA

CMBS
Zero-Shot

CMBS In-
Context

CMBS
Partially-
Tuned

Fully-
Tuned
LLaMA

Finance 0.08 0.11 0.13 0.51 0.09 0.09 0.54 0.94
Imdb 2.73 6.57 12.06 26.29 3.06 3.39 26.4 41
PangMovie 0.98 1.25 1.56 6.15 1.04 1.1 6.51 11.41
SemEval2017 2.52 3.3 4.44 15.83 2.69 2.85 16.77 29.33
Sst 1.07 1.28 1.63 6.84 1.14 1.2 7.22 12.31
Sst2 6.08 8.15 11.42 39.1 6.48 6.89 41.26 27.33
Yelp2L 0.53 1.21 1.81 2.51 0.59 0.65 2.8 5.34
IMDB2024 0.71 1.7 2.65 6.08 0.8 0.88 6.18 12.85
RottenT2024 0.82 1.03 1.78 4.59 0.88 0.93 4.95 8.49
ACM 2.78 3.3 8.25 17.63 2.95 3.11 18.65 29.46
DBLP 4.32 8.47 18.08 28.79 4.75 5.17 30.23 145.44
Twitter 0.68 0.93 1.54 6.96 0.73 0.77 6.94 11.91
Webkb 0.95 3.01 3.42 10.6 1.1 1.25 10.49 27.18

Table 15: Finance Cost in dollars ($) for RoBERTa, Zero-Shot LLaMA, In-Context LLaMA, Partially-Tuned
LLaMA, CMBS Zero-Shot, CMBS In-Context, CMBS Partially-Tuned and Fully-Tuned LLaMA.
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