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ABSTRACT

Deep neural networks (DNNs) have shown to be vulnerable to adversarial exam-
ples, which can produce erroneous predictions by injecting imperceptible pertur-
bations. In this work, we study the transferability of adversarial examples, which
is of significant due to its threat to real-world applications where model archi-
tecture or parameters are usually unknown. Many existing works reveal that the
adversarial examples are likely to overfit the surrogate model that they are gener-
ated from, limiting its transfer attack performance against different target models.
Inspired by the connection between the flatness of loss landscape and the model
generalization, we propose a novel attack method, dubbed reverse adversarial
perturbation (RAP) to boost the transferability of adversarial examples. Specif-
ically, instead of purely minimizing the adversarial loss at a single adversarial
point, we advocate seeking adversarial examples locating at the low-value and flat
region of the loss landscape, through injecting the worst-case perturbation (i.e.,
the reverse adversarial perturbation) for each step of the optimization procedure.
The adversarial attack with RAP is formulated as a min-max bi-level optimization
problem. Comprehensive experimental comparisons demonstrate that RAP can
significantly boost the adversarial transferability. Furthermore, RAP can be natu-
rally combined with many existing black-box attack techniques, to further boost
the transferability. When attacking a real-world image recognition system, i.e.,
Google Cloud Vision API, we obtain 22% performance improvement of targeted
attacks over the compared method.

1 INTRODUCTION

Deep neural networks (DNNs) have been successfully applied in many safety-critical tasks, such
as autonomous driving, face recognition and verification, etc. However, it has been shown that
DNN models are vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014),
which are indistinguishable from natural examples but make a model produce erroneous predictions.
For real-world applications, the DNN models are often hidden from users. Therefore, the attackers
need to generate the adversarial examples under black-box setting where they do not know any
information of the target model. For black-box setting, the adversarial transferability matters since
it can allow the attackers to attack target models by using adversarial examples generated on the
surrogate models. Therefore, learning how to generate adversarial examples with high transferability
has gained more attentions in the literature (Liu et al., 2016; Tramèr et al., 2018; Dong et al., 2018;
Xie et al., 2019b; Dong et al., 2019; Guo et al., 2020).

Under white-box setting where the complete information of the attacked model (e.g., architecture
and parameters) is available, the gradient-based attacks such as FGSM (Goodfellow et al., 2014) and
I-FGSM (Kurakin et al., 2018) have demonstrated good attack performance. However, they often
exhibit the poor transferiability (Xie et al., 2019b; Dong et al., 2018), i.e., the adversarial examples
generated from the surrogate models perform poorly against different target models. The previous
works attribute that to the overfitting of adversarial examples to the surrogate models (Dong et al.,
2018; Xie et al., 2019b; Lin et al., 2020). And various techniques have been proposed to improve
the transferability, including input transformation (Dong et al., 2019; Xie et al., 2019b), gradient
calibration (Guo et al., 2020), feature-level attacks (Huang et al., 2019), and generative models
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(Naseer et al., 2021), etc. However, there still exists a large gap of attack performance between the
transfer setting and the ideal white-box setting, especially for targeted attack, requiring more efforts
for boosting the transferability.

Recalling that several existing works demonstrate that it is possible to enhance the standard/robust
generalization of the learned model by seeking flat local minima in both standard and adversarial
training of deep neural networks (Dziugaite & Roy, 2017; Li et al., 2018; Jiang et al., 2020; Izmailov
et al., 2018; Foret et al., 2021; Wu et al., 2020b). We find that the transferability of adversarial
examples between source and target models is somewhat analogous to the generalization of model
parameters between training and testing sets: the formal aims to address the overfitting issue of the
generated adversarial example to surrogate models, while the latter tends to alleviate the overfitting
of the model parameters to the training set. The perspective motivates us to think about the following
question: can we alleviate the overfitting to surrogate models by investigating the flatness of loss
landscape around the generated adversarial examples?

In this work, we propose a novel attack method called reverse adversarial perturbation (RAP) to
boost the transferability of adversarial examples. The key idea is to seek an adversarial example that
is not only of low adversarial loss but also locates at a local flat region, i.e., the points within the
local neighborhood region around this adversarial example should also of similar low loss values. To
achieve this goal, we design a min-max bi-level optimization problem. The inner maximization aims
to find the worst-case perturbation (i.e., that with the largest adversarial loss, and this is why we call
it reverse adversarial perturbation) within the local region around the current adversarial example,
which can be solved by the projected gradient ascent algorithm. Then, the outer minimization will
update the adversarial example to find a new point added with the provided reverse perturbation that
leads to lower adversarial loss. Besides, we design a late-start variant of RAP (RAP-LS) to further
boost the attack effectiveness and efficiency, which doesn’t insert the reverse perturbation into the
optimization procedure in the early stage. Extensive experiments on attacking several DNN mod-
els have empirically verified that the adversarial examples generated by the proposed RAP method
often locate at flat regions, and show much higher adversarial transferability, compared to existing
methods. Moreover, from the technical perspective, since the proposed RAP method only introduces
one specially designed perturbation onto the adversarial example, one notable advantage of the pro-
posed method is that it can be naturally combined with many existing black-box attack techniques
to further boost the transferability. For example, when combined with different input transforma-
tions (e.g., the random resizing and padding in Diverse Input (Xie et al., 2019b)), our RAP method
consistently outperforms the counterparts by a clear margin.

Our main contributions are four-fold: 1) we advocate considering the flatness of loss landscape
around the adversarial example to boost the adversarial tranferability; 2) we propose the reverse ad-
versarial perturbation (RAP) attack to explicitly encourage the local flatness around the adversarial
example by injecting the worst-case perturbation; 3) we present a vigorous experimental study and
show that RAP can significant boost the adversarial transferability on both untargeted and targeted
attacks; 4) we demonstrate that RAP can be easily combined with existing transfer attack techniques
and outperforms the state-of-the-art performance by a large margin.

2 RELATED WORK

The black-box attacks can be categorized into two categories: 1) query-based attacks that conduct
the attack based on the feedback of iterative queries to target models, and 2) transfer attacks that
use the adversarial examples generated on some surrogate models to attack the target models. In
this work, we focus on the transfer attacks. For surrogate models, existing attack algorithms such
as FGSM (Goodfellow et al., 2014) and I-FGSM (Kurakin et al., 2018) could achieve good attack
performance. However, they often overfit the surrogate models and thus exhibit poor transferability.
Recently, many works are proposed to generate more transferable adversarial examples.

Instead of the I-FGSM, the work of Dong et al. (2018) integrate momentum into the updating strat-
egy and Lin et al. (2020) use the Nesterov accelerated gradient to boost the transferability. Data
augmentation, which has been shown to be effective in improving model generalization, has also
been widely studied in transfer attack, such as randomly resizing and padding (Xie et al., 2019b),
randomly scaling (Lin et al., 2020), and adversarial mixup (Wang et al., 2021b). The work of Dong
et al. (2019) use a set of translated images to compute gradient and get the better performance
against defense models. There are also some model-specific designs to boost the transferability. For
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example, Wu et al. (2020a) find the gradient of skip connections is more crucial to generate more
transferable attacks. The work of Guo et al. (2020) also propose LinBP to utilize more gradient of
skip connections during the back-propagation. However, these methods tend to be specific to a par-
ticular model architecture, such as skip connection, and it is nontrivial to extend the findings to other
architectures or modules. Meanwhile, Huang et al. (2019); Inkawhich et al. (2020a;b) propose to
exploit feature space constraints to generate more transferable attacks. Yet they need to identity the
best performing intermediate layers or train one-vs-all binary classifies for all attacked classes. Re-
cently, Zhao et al. (2020) find iterative attacks with much more iterations and logit loss can achieve
relatively high targeted transferability and exceed the feature-based attacks.

Apart from the input-specific adversarial attacks, there have been some methods utlizing the gener-
ative models to generate the adversarial perturbations (Poursaeed et al., 2018; Naseer et al., 2019;
2021). For example, the work of Naseer et al. (2021) propose to train a generative model to match
the distributions of source and target class, so as to increase the targeted transferability. However, the
learning of the perturbation generator is nontrivial, especially on large-scale datasets. In summary,
the current performance of transfer attacks is still unsatisfactory, especially for targeted attacks.

Wang et al. (2021a) also explore the min-max framework for producing the attacks, but they are
totally different from us in terms of motivation and formulation. They are to generate attacks based
on multiple models and samples. And, the variable of inner maximization in Wang et al. (2021a) is
the probability vector, representing the weight assigned to different models or samples.

3 METHODOLOGY

3.1 PRELIMINARIES OF TRANSFER ADVERSARIAL ATTACK

Given an benign sample (x, y) ∈ (X ,Y), the procedure of transfer adversarial attack is firstly
constructing the adversarial example xadv within the neighborhood region Bε(x) = {x′ : ‖x′ −
x‖p ≤ ε} by attacking the white-box surrogate modelMs(x;θ) : X → Y , then transferring xadv
to directly attack the black-box target model Mt(x;φ) : X → Y . The attack goal is to mislead
the target model, i.e.,Mt(xadv;φ) 6= y (untargeted attack), orMt(xadv;φ) = yt (targeted attack)
with yt ∈ Y indicting the target label. Taking the target attack as example, the general formulation
of many existing transfer attack methods can be written as follows:

min
xadv∈Bε(x)

L(Ms(G(xadv);θ), yt). (1)

The loss function L is often set as the cross entropy (CE) loss (Xie et al., 2019b) or the logit loss
(Zhao et al., 2020), which will be specified in later experiments. Besides, the formulation of untar-
geted attack can be easily obtained by replacing the loss functionL and yt by−L and y, respectively.

SinceMs is white-box, if G(·) is set as the identity function, then any off-the-shelf white-box ad-
versarial attack method can be adopted to solve Problem (1), such as I-FSGM (Kurakin et al., 2018),
MI-FGSM (Dong et al., 2018), etc. Meanwhile, some existing works have designed different G(·)
functions and developed the corresponding optimization algorithms, in order to boost the adversarial
transferability between the surrogate and target models. For example, G(·) is specified as random
resizing and padding (DI) (Xie et al., 2019b), translation transformation (TI) (Dong et al., 2019),
scale transformation (SI) (Lin et al., 2020), and adversarial mixup (Admix) (Wang et al., 2021b).

3.2 TRANSFER ADVERSARIAL ATTACK WITH REVERSE ADVERSARIAL PERTURBATION

Adversarial transferability between surrogate to target models is somewhat analogous to the model
generalization between training and testing sets. The former studies the overfitting to the surrogate
model when constructing an adversarial example, and the latter focuses on the overfitting to the
training set when training a model. Inspired by this point, some previous works have attempted
to borrow the effective techniques on improving model generalization to enhance the adversarial
transferability. For example, inspired by data augmentation, a series of transfer attack methods
focused on augmenting the adversarial perturbation during the procedure of generating adversarial
perturbation, and showed good transferability, such as DI (Xie et al., 2019b), TI (Dong et al., 2019),
SI (Lin et al., 2020), and Admix (Wang et al., 2021b).

Recalling that prior works have related the model generalization to the flatness (or sharpness) of the
loss landscape in the weight space, motivating a series of methods on boosting the model general-
ization by implicitly or explicitly seeking a flatter minima (Dziugaite & Roy, 2017; Li et al., 2018;
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Figure 1: Targeted attack success rate (%) on Dense-121 and VGG-16. We take the Res-50 as the
surrogate model and take MI and Admix as baseline methods.

Jiang et al., 2020; Izmailov et al., 2018; Foret et al., 2021). Inspired by this point, we assume that
the adversarial example locating at flatter regions of the loss landscape of the surrogate model may
have better adversarial transferability to other models. Specifically, we encourage that not only xadv
itself has low loss value, but also the points in the vicinity of xadv have similarly low loss values.
To achieve this goal, we propose to minimize the maximal loss value within a local neighborhood
region around the adversarial example xadv . The maximal loss is implemented by perturbing xadv
to maximize the adversarial loss, named Reverse Adversarial Perturbation (RAP). By inserting the
RAP into the formulation (1), we aim to solve the following problem,

min
xadv∈Bε(x)

L(Ms(G(xadv + nadv);θ), yt), (2)

where

nadv = argmax
‖nadv‖∞≤εn

L(Ms(xadv + nadv;θ), yt), (3)

with nadv indicating the RAP, and εn defining its search region. The above formulations Equa-
tion (2) and Equation (3) correspond to the targeted attack, and the corresponding untargeted formu-
lations can be easily obtained by replacing the loss function L and yt by −L and y, respectively.

It is a min-max bi-level optimization problem (Liu et al., 2021), and can be solved by iteratively op-
timizing the inner maximization and the outer minimization problem. Specifically, in each iteration,
given xadv , the inner maximization w.r.t. nadv is solved by the projected gradient ascent algorithm:

nadv ← nadv + αn · sign(∇nadvL(Ms(xadv + nadv;θ), yt)). (4)

The above update is conducted by T steps, and αn = εn
T . Then, given nadv , the outer minimization

w.r.t. xadv can be solved by any off-the-shelf algorithm that is developed for solving Equation (1).
For example, it can be undated by one step projected gradient descent, as follows:

xadv ← ClipBε(x)
[
xadv − α · sign(∇xadvL(Ms(G(xadv + nadv);θ), yt))

]
, (5)

with ClipBε(x)(a) clipping a into the neighborhood region Bε(x). The overall optimization proce-
dure is summarized in Algorithm 1. Since the optimization w.r.t. xadv can be implemented by any
off-the-shelf algorithm for solving Problem Equation (1), one notable advantage of the proposed
RAP is that it can be naturally combined with any one of them, such as the input transformation
methods (Xie et al., 2019b; Dong et al., 2019; Lin et al., 2020; Wang et al., 2021b).

A Late-Start (LS) Variant of RAP. In our preliminary experiments, we find that RAP requires
more iterations to converge and the performance is slightly lower during the initial iterations, com-
pared to its baseline transfer attack methods. As shown in Figure 1, we combine MI (Dong et al.,
2018) and Admix (Wang et al., 2021b) with RAP, and adopt ResNet-50 as the surrogate model. We
take the evaluation on 1000 images from ImageNet (see Sec.4.1). It is observed that the method
with RAP (see the orange curves) quickly surpasses its baseline method (see the blue curves) and
finally achieves much higher success rate with more iterations, which verify the effect of RAP on
enhancing the adversarial transferability. However, it is also observed that the performance of RAP
is slightly lower than its baseline method in the early stage. The possible reason is that the early-
stage adversarial example is of very weak attack performance to the surrogate model. In this case,
it may be waste to pursue better transferable adversarial example by solving the min-max problem.
A better strategy may be only solving the minimization problem Equation (1) in the early stage to
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Algorithm 1 Transfer Adversarial Attack Algorithm with Reverse Adversarial Perturbation (RAP)
Input: Surrogate model Ms, benign data (x, y), target label yt, loss function L, transformation
G, the global iteration number K, the late-start iteration number KLS of RAP, as well as hyper-
parameters in optimization (specified in later experiments)
Output: the adversarial example xadv

1: Initialize xadv ← x
2: for k = 1, . . . ,K do
3: if k ≥ KLS then
4: Initialize nadv ← 0
5: for t = 1, . . . , T do
6: Update nadv using Equation (4)
7: Update xadv using Equation (5)

quickly achieve the region of relatively high adversarial attack performance, then starting RAP to
further enhance the attack performance and transferability simultaneously. This strategy is denoted
as RAP with late-start (RAP-LS), whose effect is preliminarily supported by the results shown in
Figure 1 (see the green curve) and will be evaluated extensively in later experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset and Evaluated Models. We conduct the evaluation on the ImageNet-compatible dataset
1 comprised of 1,000 images. For the surrogate models, we consider the four widely used network
architectures: Inception-v3 (Inc-v3) (Szegedy et al., 2016), ResNet-50 (Res-50) (He et al., 2016),
DenseNet-121 (Dense-121) (Huang et al., 2017), and VGG-16bn (VGG-16) (Simonyan & Zisser-
man, 2014). For target models, apart from the above models, we also utilize more diverse architec-
tures: Inception-ResNet-v2 (Inc-Res-v2) (Szegedy et al., 2017), NASNet-Large (NASNet-L) (Zoph
et al., 2018), and ViT-Base/16 (ViT-B/16) (Dosovitskiy et al., 2021). For defense models, we adopt
the two widely used adversarial trained models: adv-Inc-v3 (Inc-v3adv) and ens-adv-Inc-Res-v2
(IncRes-v2ens) (Tramèr et al., 2018).

Compared Methods. We adopt I-FGSM (Kurakin et al., 2018) (denoted as I), MI (Dong et al.,
2018), TI (Dong et al., 2019), DI (Xie et al., 2019b), SI (Lin et al., 2020), Admix (Wang et al.,
2021b), ILA (Huang et al., 2019), LinBP (Guo et al., 2020), and the generative targeted attack
method TTP (Naseer et al., 2021). We also consider the combination of baseline methods, including
MI-TI-DI (MTDI), MI-TI-DI-SI (MTDSI), and MI-TI-DI-Admix (MTDAI).

Implementation Details. For untargeted attack, we adopt the Cross Entropy (CE) loss. For targeted
attack, apart from CE, we also experiment with the logit loss, where Zhao et al. (2020) shows it
behaves better for targeted attack. The adversarial perturbation ε is restricted by `∞ = 16/255.
The step size α is set as 2/255 and number of iteration K is set as 400 for all attacks. In the
following, we mainly show the results at K = 400 and the results at different value of K are shown
in supplementary materials. For RAP, we set KLS as 100 and αn as 2/255. We set εn as 12/255
for I and TI in untargeted attack and 16/255 for other attacks in all other settings.

4.2 A CLOSER LOOK AT THE FLATNESS OF RAP

We first conduct experiments to study the effect of RAP on the flatness of the loss landscape around
the adversarial examples. We use ResNet-50 as surrogate model and conduct the targeted attacks.
We take I, MI, DI, and MTDI as baselines and combined them with RAP. We visualize the flatness
of the loss landscape around xadv on surrogate model by plotting the loss variations when we move
xadv along a random direction with different magnitudes a. The details of the calculation are pro-
vided in supplementary materials. Figure 2 plots the visualizations. We can see that comparing to
the baselines, RAP significantly improves the flatness of loss landscape around xadv . In the follow-
ing, we investigate whether the flatness induced by RAP can boost the transferability of adversarial
examples or not, on both untargeted and targeted transfer attacks.

1Publicly available from https://github.com/cleverhans-lab/cleverhans/tree/
master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
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Figure 2: The flatness visualization of targeted adversarial examples.

Table 1: The untargeted attack success rate (%) of baseline attacks with RAP. The results with
CE loss are reported. The best results are bold and the second best results are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

I / +RAP / +RAP-LS 79.2 / 91.5 / 91.9 78.0 / 91.1 / 92.9 34.6 / 57.0 / 57.2 87.4 / 94.2 / 94.3 85.1 / 91.7 / 92.8 46.5 / 60.2 / 61.1
MI / +RAP / +RAP-LS 85.8 / 95.0 / 96.1 82.4 / 93.9 / 94.5 50.3 / 75.9 / 77.4 90.3 / 97.6 / 97.9 87.5 / 96.0 / 97.6 59.3 / 80.4 / 82.8
TI / +RAP / +RAP-LS 82.0 / 94.1 / 95.1 81.0 / 93.1 / 93.3 45.5 / 66.1 / 67.0 89.6 / 94.2 / 94.8 87.0 / 92.1 / 93.3 54.2 / 66.7 / 70.0
DI / +RAP / +RAP-LS 99.0 / 99.6 / 99.7 99.0 / 99.6 / 99.7 57.7 / 82.9 / 85.0 98.2 / 99.6 / 99.7 98.1 / 99.4 / 99.4 67.6 / 86.6 / 86.9
SI / +RAP / +RAP-LS 94.9 / 98.9 / 99.7 88.6 / 95.7 / 97.2 65.9 / 79.7 / 84.4 95.1 / 96.9 / 98.8 91.9 / 95.0 / 97.5 71.6 / 83.2 / 87.4

Admix / +RAP / +RAP-LS 97.9 / 99.6 / 99.9 95.8 / 97.7 / 99.0 77.7 / 87.4 / 92.6 97.0 / 99.0 / 99.2 95.6 / 97.7 / 98.6 82.0 / 89.8 / 93.8

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

I / +RAP / +RAP-LS 53.7 / 53.0 / 54.2 49.1 / 50.6 / 51.4 22.0 / 24.7 / 24.9 51.5 / 62.1 / 62.0 48.7 / 60.8 / 60.0 55.1 / 65.9 / 68.0
MI / +RAP / +RAP-LS 62.5 / 76.2 / 76.4 60.5 / 73.0 / 73.9 30.0 / 42.7 / 42.2 62.0 / 85.8 / 84.8 56.7 / 84.6 / 84.6 63.1 / 84.9 / 84.6
TI / +RAP / +RAP-LS 62.8 / 64.8 / 65.8 55.9 / 63.7 / 62.1 29.1 / 36.2 / 37.1 49.3 / 63.4 / 61.6 49.4 / 63.4 / 63.8 58.1 / 68.6 / 69.5
DI / +RAP / +RAP-LS 72.2 / 86.0 / 88.8 68.8 / 85.0 / 87.4 29.9 / 46.6 / 51.6 68.4 / 81.7 / 81.8 71.9 / 85.0 / 84.0 76.1 / 85.2 / 86.4
SI / +RAP / +RAP-LS 80.0 / 92.7 / 94.7 82.1 / 94.8 / 95.7 45.8 / 74.0 / 74.7 66.2 / 69.8 / 72.8 65.9 / 74.9 / 77.2 66.0 / 69.2 / 73.0

Admix / +RAP / +RAP-LS 87.3 / 94.6 / 96.8 88.2 / 96.4 / 97.2 55.5 / 77.6 / 80.8 75.9 / 80.2 / 84.9 78.5 / 83.7 / 87.4 74.5 / 77.2 / 83.5

4.3 THE EVALUATION OF UNTARGETED ATTACKS

Baseline Methods. We first evaluate the performance of RAP and RAP-LS with different baseline
attacks, including I, MI, DI, TI, SI, and Admix. The results are shown in Table 1. For instance, the
‘MI/ +RAP/ +RAP-LS’ denotes the methods of baseline MI, MI+RAP, and MI+RAP-LS, respec-
tively. RAP achieves the significant improvements for all methods on each target model. For average
attack success rate of all target models, RAP outperforms the I and MI by 9.6% and 16.3%, respec-
tively. For TI, DI, SI, and Admix, RAP gets the improvements by 10.2%, 10.9%, 9.3%, and 6.3%.
With late-start, RAP-LS further enhance the transfer attack performance for almost all methods.

Combinational Methods. Prior works demonstrate the combination of baseline methods could
largely boost the adversarial transferability (Zhao et al., 2020; Wang et al., 2021b). We also investi-
gate of behavior of RAP when incorporated with the combinational attacks. The results are shown in
Table 2. As shown in the table, there exist the clear improvements of the combinational attacks over
all baseline attacks shown in Table 1. In addition, our RAP-LS further boosts the average attack suc-
cess rate of the three combinational attacks by 6.9%, 2.6%, and 1.7% respectively. Combined with
the three combinational attacks, RAP-LS achieves 95.4%, 97.6%, and 98.3% average attack success
rate, respectively. These results demonstrate RAP can significantly enhance the transferability.

4.4 THE EVALUATION OF TARGETED ATTACKS

We then evaluate the targeted attack performance of the different methods with RAP. The results
with logit loss are presented and the results with CE loss are shown in supplementary materials.

Baseline Methods. The results of RAP with baseline attacks are shown in Table 3. From the results,
RAP is also very effective in enhancing the transferability in targeted attacks. Taking ResNet-50 and
DenseNet-121 as surrogate models for example, the average performance improvements induced by
RAP are 5.0% (I), 8.1% (MI), 4.6% (TI), 10.4% (DI), 18.5% (SI), and 15.1% (Admix), respectively.
Comparing to the ResNet-50 and DenseNet-121, the baseline attacks generally achieve lower trans-
ferability when using the VGG-16 or Inception-v3 as the surrogate models, which has also been
verified in existing works (Xie et al., 2019b; Zhao et al., 2020). However, for Inception-v3 and
VGG-16 as the surrogate models, RAP also consistently boosts the transferability under all cases.
With late-start, RAP-LS could further improve the transferability of RAP for most attacks. The
average attack success rate under all attack cases of RAP-LS is 2.6% higher than that of RAP.
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Table 2: The untargeted attack success rate (%) of combinational methods with RAP. The re-
sults with CE loss are reported. The best results are bold and the second best results are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI / +RAP / +RAP-LS 99.8 / 100 / 100 99.8 / 100 / 99.9 85.7 / 96.0 / 96.9 99.4 / 99.8 / 100 99.2 / 99.5 / 100 89.1 / 97.1 / 97.1
MTDSI / +RAP / +RAP-LS 100 / 100 / 100 99.7 / 99.9 / 99.8 97.0 / 99.1 / 99.1 99.8 / 99.9 / 99.9 99.2 / 99.3 / 99.7 95.1 / 98.3 / 98.4
MTDAI / +RAP / +RAP-LS 100 / 100 / 100 99.8 / 99.9 / 99.9 98.3 / 99.2 / 99.8 99.8 / 99.8 / 99.9 99.4 / 99.6 / 99.8 97.9 / 98.8 / 98.9

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

MTDI / +RAP / +RAP-LS 90.0 / 97.2 / 97.7 88.8 / 97.0 / 97.3 56.8 / 82.6 / 81.4 82.9 / 91.8 / 90.6 85.7 / 94.2 / 93.3 85.1 / 92.7 / 91.0
MTDSI / +RAP / +RAP-LS 97.6 / 98.8 / 99.4 98.1 / 99.2 / 99.4 85.0 / 94.1 / 95.2 89.0 / 91.2 / 92.3 92.0 / 95.2 / 95.6 87.6 / 90.3 / 92.2
MTDAI / +RAP / +RAP-LS 97.8 / 99.2 / 99.6 98.9 / 99.5 / 99.6 89.3 / 95.0 / 95.5 91.5 / 94.1 / 94.7 95.4 / 96.2 / 97.6 91.4 / 93.2 / 94.1

Table 3: The targeted attack success rate (%) of baseline methods with RAP. The results with
logit loss are reported. The best results are bold and the second best results are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

I / +RAP / +RAP-LS 4.5 / 9.5 / 14.3 2.4 / 9.8 / 11.8 0.1 / 0.1 / 0.7 5.0 / 12.8 / 17.9 2.9 / 10.1 / 15.9 0.0 / 0.8 / 1.2
MI / +RAP / +RAP-LS 6.3 / 17.5 / 29.6 2.2 / 14.5 / 20.6 0.1 / 1.1 / 2.4 4.6 / 16.2 / 26.5 3.1 / 13.4 / 23.2 0.3 / 2.0 / 3.4
TI / +RAP / +RAP-LS 7.2 / 11.0 / 17.3 4.0 / 12.9 / 15.3 0.1 / 0.8 / 1.2 8.4 / 13.5 / 20.8 5.2 / 12.4 / 16.4 0.2 / 2.1 / 3.0
DI / +RAP / +RAP-LS 62.6 / 64.9 / 73.9 57.2 / 63.4 / 69.3 1.5 / 7.9 / 10.1 30.2 / 52.6 / 60.4 32.1 / 49.5 / 58.9 1.4 / 8.8 / 10.0
SI / +RAP / +RAP-LS 30.0 / 53.2 / 61.1 9.5 / 32.8 / 36.0 1.8 / 9.3 / 10.5 14.2 / 41.5 / 43.4 8.4 / 31.0 / 35.2 1.6 / 8.5 / 10.4

Admix / +RAP / +RAP-LS 54.6 / 68.0 / 74.6 26.0 / 45.4 / 51.6 5.8 / 17.1 / 19.6 29.3 / 53.0 / 58.2 21.5 / 42.7 / 48.2 5.0 / 17.1 / 17.6

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

I / +RAP / +RAP-LS 0.1 / 0.7 / 1.4 0.2 / 1.4 / 1.7 0.0 / 0.1 / 0.2 0.2 / 0.9 / 0.5 0.2 / 0.6 / 0.3 0.1 / 0.5 / 0.5
MI / +RAP / +RAP-LS 0.5 / 1.3 / 1.9 0.5 / 2.3 / 3.0 0.0 / 0.0 / 0.3 0.2 / 1.7 / 1.5 0.1 / 1.6 / 1.5 0.2 / 1.3 / 1.0
TI / +RAP / +RAP-LS 0.7 / 1.2 / 3.2 0.8 / 1.7 / 2.9 0.0 / 0.1 / 0.4 0.2 / 0.5 / 0.7 0.1 / 0.7 / 0.6 0.2 / 0.8 / 0.6
DI / +RAP / +RAP-LS 2.8 / 7.3 / 9.7 3.8 / 8.4 / 12.7 0.0 / 0.4 / 1.1 1.6 / 4.6 / 6.4 2.8 / 5.8 / 7.5 2.6 / 6.3 / 8.1
SI / +RAP / +RAP-LS 3.3 / 9.8 / 9.8 7.2 / 16.8 / 17.8 0.2 / 1.7 / 1.8 0.6 / 2.9 / 2.5 0.9 / 2.7 / 3.2 0.5 / 1.5 / 2.3

Admix / +RAP / +RAP-LS 5.6 / 11.1 / 11.9 13.0 / 20.2 / 23.6 0.7 / 2.4 / 2.8 1.5 / 4.9 / 5.2 2.0 / 6.9 / 7.5 1.3 / 3.3 / 4.4

Combinational Methods. As did in the untargeted attacks, we also evaluate the performance of
combinational methods. The results are shown in Table 4. Similar to the findings in untargeted
attacks, the combinational methods obtain significantly improvements over baseline methods. The
RAP-LS outperforms all combinational methods by a significantly margin. For example, taking the
average attack success rate of all target models as evaluation metric, RAP-LS obtains 14.2%, 11.8%,
9.3% improvements over the MTDI, MTDSI and MTDAI, respectively.

4.5 THE COMPARISON WITH OTHER TYPES OF ATTACKS

Apart from the baseline and the combinational methods, we also experiment with more diverse
attack methods, including the model-specific attack LinBP (Guo et al., 2020), the feature-based
attack ILA (Huang et al., 2019), and the generative targeted attack TTP (Naseer et al., 2021).

Table 5: The comparison with ILA and LinBP. We use
ResNet-50 as surrogate model. The best results are
bold.

Attack Untarged Targeted
Dense-121 VGG-16 Inc-v3 Dense-121 VGG-16 Inc-v3

ILA 95.0 94.2 77.7 2.8 1.5 0.5
LinBP-ILA 99.5 99.2 89.8 9.4 4.9 2.0

LinBP-ILA-SGM 99.7 99.3 91.1 13.3 7.2 2.8
LinBP-MI-DI 99.5 99.2 89.3 26.1 16.5 3.2

LinBP-MI-DI-SGM 99.8 99.3 90.2 32.6 22.1 4.6
MI-DI+RAP 99.9 100 93.7 75.1 69.7 13.9

The LinBP depends on the skip connection
and the authors only provide the source
code about ResNet-50. We use their re-
leased code and thus conduct experiments
with ResNet-50 as surrogate model. The
results of LibBP and ILA are shown in Ta-
ble 5, where we also implement the vari-
ants of LinBP following Guo et al. (2020),
inlcuding LinBP-ILA, LinBP-ILA-SGM,
LinBP-MI-DI, and LinBP-MI-DI-SGM. We observe that our MI-DI-RAP significantly outperforms
the LinBP and ILA, especially for the targeted attacks. Compared with the second-best method (i.e.,
LinBP-MI-DI-SGM), we obtain a large improvement by 33.5% on average ASR of targeted attacks.

Table 6: The comparison with TTP
on targeted attack. The best results
are bold.

Attack Dense-121 VGG-16 Inc-v3

TTP 79.6 78.6 40.3
MTDI 78.6 74.6 12.7

MTDI+RAP-LS 90.8 87.2 35.4
MTDSI 93.2 80.0 41.3

MTDSI+RAP-LS 95.7 88.1 59.3

TTP (Naseer et al., 2021) is the state-of-the-art generative
method. To compare with it, we adopt the generators based
on ResNet-50 provided by the authors. Since TTP needs
to train the perturbation generator for each targeted class,
we follow their “10-Targets (all-source)” setting, as did in
Zhao et al. (2020). The results are shown in Table 6, where
our MTDSI+RAP-LS behaves best and outperforms TTP and
MTDI by large margins of 14.9% and 25.7%, respectively.
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Table 4: The targeted attack success rate (%) of combinational methods with RAP. The results
with logit loss are reported. The best results are bold and the second best results are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI / +RAP / +RAP-LS 74.9 / 78.2 / 88.5 62.8 / 72.9 / 81.5 10.9 / 28.3 / 33.2 44.9 / 64.3 / 74.5 38.5 / 55.0 / 65.5 7.7 / 23.0 / 26.5
MTDSI / +RAP / +RAP-LS 86.3 / 88.4 / 93.3 70.1 / 77.7 / 84.7 38.1 / 51.8 / 58.0 55.0 / 71.2 / 75.8 42.0 / 58.4 / 62.3 19.8 / 39.0 / 39.2
MTDAI / +RAP / +RAP-LS 91.4 / 89.4 / 93.6 79.9 / 79.0 / 86.3 50.8 / 57.1 / 64.1 69.1 / 74.2 / 82.1 54.7 / 63.1 / 69.3 32.0 / 43.5 / 49.3

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

MTDI / +RAP / +RAP-LS 11.8 / 16.7 / 22.9 13.7 / 19.4 / 27.4 0.7 / 3.4 / 4.6 1.8 / 8.3 / 7.5 4.1 / 14.8 / 13.4 2.9 / 8.0 / 9.8
MTDSI / +RAP / +RAP-LS 31.0 / 35.3 / 38.7 41.7 / 44.4 / 49.6 9.6 / 15.2 / 13.7 5.6 / 11.9 / 10.7 10.4 / 21.2 / 20.9 4.2 / 8.9 / 8.6
MTDAI / +RAP / +RAP-LS 36.2 / 39.0 / 43.1 48.0 / 45.1 / 55.2 11.6 / 17.1 / 17.6 9.6 / 13.6 / 16.7 17.9 / 27.5 / 31.6 8.4 / 12.0 / 12.1

Table 7: The evaluation on diverse network architectures and defense models.

Attack Untarged Targeted Untarged Targeted
IncRes-v2 NASNet-L ViT-B/16 IncRes-v2 NASNet-L ViT-B/16 Inc-v3adv IncRes-v2ens Inc-v3adv IncRes-v2ens

MTDI 83.4 89.0 27.9 14.8 32.1 0.4 68.1 50.9 0.8 0.0
MTDI+RAP-LS 95.6 97.5 42.7 43.0 62.5 1.7 86.5 72.3 9.7 4.1

MTDSI 95.7 98.0 43.0 45.5 67.9 2.6 90.0 79.6 12.7 6.7
MTDSI+RAP-LS 98.6 99.7 57.4 64.0 80.4 5.3 96.5 91.5 31.0 22.0

MTDAI 97.3 98.8 45.5 58.4 75.3 3.3 92.1 82.7 17.2 12.2
MTDAI+RAP-LS 99.2 99.8 60.2 70.4 82.6 7.4 96.7 91.6 34.4 26.0

4.6 THE EVALUATION ON DIVERSE NETWORK ARCHITECTURES AND DEFENSE MODELS

To further demonstrate the efficacy of RAP, we evaluate our method on more diverse network ar-
chitectures, including Inception-ResNet-v2, NASNet-Large and ViT-Base/16. We adopt ResNet-50
as the surrogate model and the results are shown in Table 7, col 2-7. As shown in the table, the
proposed RAP-LS achieves significant improvements for all three combinational methods on all tar-
get models, and MTDAI+RAP-LS achieves the best performance for diverse models. For MTDAI,
the average performance improvements induced by RAP-LS is 5.9% and 7.8% for untargeted and
targeted attacks, respectively. Since ViT is based on the transformer architecture that totally being
different from convolution models, the transfer attacks based on Resnet-50 behave relatively poor on
it, especially on targeted attacks. Yet our RAP-LS still obtains consistent improvements for all com-
pared methods. We also consider the ensemble-model attack on these diverse network architectures
and the results are given in supplementary materials.

Furthermore, we evaluate RAP on attacking defense models adv-Inc-v3 and ens-adv-Inc-Res-v2.
Following prior works (Wang et al., 2021b; Xie et al., 2019b), we adopt the ensemble-model attack
by averaging the logits of different surrogate models, including ResNet-50, ResNet-101, Inception-
v3, and Inception-ResNet-v2. The transfer attack success rate on defense models are shown in Table
7, col 8-11. We can observe that our RAP-LS further boosts transferability of the baseline methods
on both targeted and untargeted attacks. For untargeted attacks, RAP-LS achieves average perfor-
mance improvements of 9.8% and 14.1% on Inc-v3adv and IncRes-v2ens, respectively. For targeted
attacks, the average performance improvements of RAP-LS are 14.8% and 11.1%, respectively.

4.7 ABLATION STUDY

We conduct ablation study on the hyper-parameters of the proposed RAP, including the size of neigh-
borhoods εn, the iteration number of inner optimization T and late-start KLS . We adopt targeted
attacks with ResNet-50 as the surrogate model.

We first evaluate the effect of εn and T . We consider different values of εn, including 2/255, 4/255,
8/255, 12/255, 16/255, and 20/255. In Figure 3 (a), we plot the tendency curves of the targeted
attack success rate under different values of εn and T . Note that in Sec. 3.2, we set αn = εn/T .
Thus for a fixed εn, larger T indicating lower stepsize αn. The minimum stepsize of αn is set to
2/255. We have the following observation from the plot: for a fixed εn, the more iterations T , the
better attack performance. Thus, we adopt a relatively smaller αn = 2/255 in our experiments. In
Figure 3 (b-d), we further plot the results of different attack methods and target models w.r.t. εn,
where αn = 2/255. As shown in the plots, the larger εn generally improves the attack performance.
For Inception-v3 and DenseNet-121, the improvements become mild for even larger εn. Overall, the
value of 12 or 16 could lead to satisfactory result under most cases.
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Figure 3: Targeted attack success rate (%) with various T and εn. Res-50 is set as surrogate model.

Figure 4: Targeted attack success rate (%) with various KLS . Res-50 is set as surrogate model.

Then we conduct the ablation study ofKLS . In Figure 4, we report the targeted attack success rate of
I, MI, DI, and MI-TI-DI combined with RAP-LS withKLS = 0, 25, 50, 100, 150, 200. Note that the
RAP-LS with KLS = 0 reduces to RAP. As shown in the plots, the proposed late-start strategy can
further boost attack performance of RAP for most cases. In general, the performance improvements
increase as KLS increases, and then become mild when KLS is larger than 100. The suitable value
of KLS is relatively consistent among different methods and target models.

4.8 THE TARGETED ATTACK AGAINST GOOGLE CLOUD VISION API

Finally, we conduct the transfer attacks to attack a practical and widely used image recognition
system, Google Cloud Vision API, and in the more challenging targeted attack scenario. MTDAI-
RAP-LS behaves the best performance in above experiments, so we choose it to conduct the attack.
We take the evaluation on randomly selected 500 images and use ResNet-50 as surrogate model. As
the API returns 10 predicted labels for each query, to evaluate the attacking performance, we test
whether or not the target class appears in the returned predictions. Since the predicted label space
of Google Cloud Vision API do not fully correspond to the 1000 ImageNet classes, we manually
treat classes with similar semantics to be the same classes. In comparison, the baseline MTDAI
successfully attacks 232 images against the Google API. Our RAP-LS achieves a large improve-
ment, successfully attacking 342 images, leading to a 22.0% performance improvements. These
demonstrates the high efficacy of our method to improve transferability on real-world system.

5 CONCLUSION

In this work, we study the transferability of adversarial examples that is significant for black-box
attacks. The transferability of adversarial examples is generally influenced by the overfitting of sur-
rogate models. To alleviate this, we propose to seeking adversarial examples that locate at flatter
local regions. That is, instead of optimizing the pinpoint adversarial loss, we aim to obtain a consis-
tently low loss at the neighbor regions of the adversarial examples. We formulate this as a min-max
bi-level optimization problem, where the inner maximization aims to inject the worse-case pertur-
bation for the adversarial examples. We conduct a rigorous experimental study, covering untargeted
attack and targeted attack, standard and defense models, and a real-world Google Clould Vision
API. The experimental results demonstrate that RAP can significantly boost the transferability of
adversarial examples.
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ETHICS STATEMENT

Deep neural networks (DNNs) have been successfully applied in many safety-critical tasks, such
as autonomous driving, face recognition and verification, etc. And adversarial samples have posed
a serious threat to machine learning systems. For real-world applications, the DNN model as well
as the training dataset, are often hidden from users. Therefore, the attackers need to generate the
adversarial examples under black-box setting where they do not know any information of the target
model. For black-box setting, the adversarial transferability matters since it can allow the attackers
to attack target models by using adversarial examples generated on the surrogate models. This work
can potentially contribute to understanding of transferability of adversarial examples. Besides, the
better transferability of adversarial examples calls the machine learning and security communities
into action to create stronger defenses and robust models against black-box attacks.

REPRODUCIBILITY STATEMENT

Our approach is easy to implement and requires only simple modifications to the existing meth-
ods, as shown in Sec.3.2. The detailed algorithm of our method is shown in Algorithm 1. The
implementation details of our method are shown in Sec.4.1. We provide the details to reproduce the
experimental results in Sec.4.1 of main submission and Sec.A of supplementary materials, including
datasets in Sec.4.1, evaluated models in Sec.4.1, baseline methods in Sec.4.1. The implementation
details of baseline methods also shown in Sec.A. We will release all related codes after the accep-
tance of this work.

REFERENCES

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185–9193, 2018.

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversar-
ial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4312–4321, 2019.

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Benchmark-
ing adversarial robustness on image classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 321–331, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Lianli Gao, Qilong Zhang, Jingkuan Song, Xianglong Liu, and Heng Tao Shen. Patch-wise attack
for fooling deep neural network. In European Conference on Computer Vision, pp. 307–322.
Springer, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Yiwen Guo, Qizhang Li, and Hao Chen. Backpropagating linearly improves transferability of
adversarial examples. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=6Tm1mposlrM


Under review as a conference paper at ICLR 2022

(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 85–95. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. Enhanc-
ing adversarial example transferability with an intermediate level attack. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4733–4742, 2019.

Nathan Inkawhich, Kevin Liang, Lawrence Carin, and Yiran Chen. Transferable perturbations of
deep feature distributions. In International Conference on Learning Representations, 2020a. URL
https://openreview.net/forum?id=rJxAo2VYwr.

Nathan Inkawhich, Kevin Liang, Binghui Wang, Matthew Inkawhich, Lawrence Carin, and Yiran
Chen. Perturbing across the feature hierarchy to improve standard and strict blackbox attack
transferability. Advances in Neural Information Processing Systems, 33, 2020b.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In 34th Conference on Un-
certainty in Artificial Intelligence 2018, UAI 2018, pp. 876–885. Association For Uncertainty in
Artificial Intelligence (AUAI), 2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJgIPJBFvH.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
Artificial Intelligence Safety and Security, pp. 99–112, Jul 2018. doi: 10.1201/9781351251389-8.
URL http://dx.doi.org/10.1201/9781351251389-8.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6391–6401, 2018.

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Nesterov accelerated
gradient and scale invariance for adversarial attacks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJlHwkBYDH.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level opti-
mization for learning and vision from a unified perspective: A survey and beyond. arXiv preprint
arXiv:2101.11517, 2021.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Muhammad Muzammal Naseer, Salman H Khan, Muhammad Haris Khan, Fahad Shahbaz Khan,
and Fatih Porikli. Cross-domain transferability of adversarial perturbations. Advances in Neural
Information Processing Systems, 32:12905–12915, 2019.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli. A self-
supervised approach for adversarial robustness. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 262–271, 2020.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli. On
generating transferable targeted perturbations. arXiv preprint arXiv:2103.14641, 2021.

11

https://proceedings.neurips.cc/paper/2020/file/00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf
https://openreview.net/forum?id=rJxAo2VYwr
https://openreview.net/forum?id=SJgIPJBFvH
http://dx.doi.org/10.1201/9781351251389-8
https://openreview.net/forum?id=SJlHwkBYDH


Under review as a conference paper at ICLR 2022

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative adversarial pertur-
bations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4422–4431, 2018.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better? In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
3533–3545. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/24357dd085d2c4b1a88a7e0692e60294-Paper.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI con-
ference on artificial intelligence, 2017.
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A IMPLEMENTATION DETAILS

Implementation Details of Evaluated Models. For ResNet-50, DenseNet-121, VGG-16,
Inception-v3, we adopt the pre-trained models provided by torchvision package. For Inception-
ResNet-v2, NASNet-Large, ViT-Base/16, adv-Inc-v3, and ens-adv-Inc-Res-v2, we adopt the pro-
vided pre-trained models2.

Implementation Details of Baseline Attack Methods. We adopt the source code 3 provided by
Zhao et al. (2020) to implement I, MI, TI, and DI attacks. The decay factor for MI is set as 1.0.
The kernel size is set as 5 for TI attack, following Gao et al. (2020). The transformation probability
is set as 0.7 for DI. For SI and Admix, we adopt the parameters suggested in Wang et al. (2021b).
The number of copies for SI is set as 5. The number of randomly sample m2 and η of Admix are
set as 3 and 0.2 respectively. For implementation of ILA and LinBP, we utilize the source code 4

provided by Guo et al. (2020). For implementation of TTP, we use the pre-trained generator 5 based
on ResNet-50 provided by Naseer et al. (2021).

Implementation Details of Visualization. We visualize the flatness of the loss landscape around
xadv on surrogate model by plotting the loss change when moving xadv along a random direction
with different magnitudes. Specially, we first sample d from a Gaussian distribution and normalize it
on a `2 unit norm ball, d← d

‖d‖F . Then, we calculate the loss change (flatness) f(a) with different
magnitudes a,

f(a) = L(Ms(G(xadv + a · d);θ), yt)− L(Ms(G(xadv);θ), yt). (6)

Considering d is randomly selected, we repeat the above calculation 20 times with different d and
take the averaged value to conduct the visualization.

Computation Cost. We conducted all experiments in an Nvidia-V100 GPU. Taking MTDI as
an example, its computation time is 2 hours. Combining RAP or RAP-LS, the computation time
becomes 5.5 or 4 hours.

B THE EXPERIMENTAL RESULTS IN DISCUSSION

In this section, we show the experiments mentioned in the discussion. The detailed results are shown
in the below tables and figures.

Visualization of Untargeted Attacks We add the visualization results about untargeted attacks.
The implementation details are also shown in Section A.

Figure 5: The flatness visualization of untargeted adversarial examples.
We add I-FGSM with random-start (I*) in our experiments. The untargeted attack performance of I*
and I* combined with RAP is shown in Table 8. We follow the experimental setting in Section 4.3 of
the main submission. RAP achieves improvements for I* on each target model, and with late-start,
RAP-LS further enhances the transfer attack performance for I*, getting a 6.0% increase in terms of
average attack success rate.

2https://github.com/rwightman/pytorch-image-models
3https://github.com/ZhengyuZhao/Targeted-Tansfer
4https://github.com/qizhangli/linbp-attack
5https://github.com/Muzammal-Naseer/TTP
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Table 8: The untargeted attack success rate (%) of I* with RAP. The results with CE loss and
400 iterations are reported. The best results are bold and the second best results are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

I* / +RAP / +RAP-LS 75.7 / 80.2 / 81.2 78.0 / 80.5 / 82.1 35.0 / 47.2 / 48.9 85.6 / 86.1 / 86.9 83.7 / 84.6 / 85.0 47.0 / 54.2 / 55.1

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

I* / +RAP / +RAP-LS 52.9 / 56.8 / 57.2 49.9 / 54.5 / 55.3 21.7 / 24.5 / 25.1 50.9 / 55.2 / 57.9 48.6 / 54.0 / 56.2 54.7 / 61.6 / 63.8

The Evaluation on More Defense Models Following the reviewers’ suggestions, we take the
evaluations on more defense models: Feature Denoising (Xie et al., 2019a), Adversarial training
models in ImageNet (Salman et al., 2020), NRP (Naseer et al., 2020), R&P (Xie et al., 2018).

For Feature Denoising, we utilize the pre-trained ResNet-152 model. For AT models on ImageNet,
we adopt the pre-trained ResNet-50 AT models from (Salman et al., 2020). For `∞ norm, we adopt
the ResNet-50 AT model with budget 4/255, which ranks first in the RobustBench leaderboard 6.
For `2 norm, we adopt the ResNet-50 AT model with budget 0.5. The untargeted attack performance
is shown in Table 9. We follow the experimental settings in Section 4.6 of the main submission. We
can observe that our RAP-LS further boosts the transferability of baseline methods on these new
defense models, getting a 5.5% boost for the average attack success rate.

For NRP, we adopt the pre-trained purifiers provided by the authors. Since NRP is an offline defense
module, we combine it with the two used ensemble AT models and the above two AT models. The
untargeted attack performance is shown in Table 10. We also follow the experimental settings in
Section 4.6 of the main submission. Combining NRP with AT models is a much stronger defense
mechanism, but RAP-LS still achieves an improvement by 0.8%.

For R&P, we adopt the source code provided by Dong et al. (2020) to implement it. We also combine
R&P with the two used ensemble AT models and the two new AT models above. The untargeted
attack performance is shown in Table 11. We also follow the experimental settings in Section 4.6
of the main submission. For R&P, RAP-LS achieves an 9.1% increase in terms of average attack
success rate.

Table 9: The evaluation of ensemble attacks on two AT models and Feature Noising.

Attack Untarged
Res-50 AT (`2) Res-50 AT (`∞) Feature Denoising

MTDI 42.5 32.4 44.1
MTDI+RAP-LS 59.5 34.4 44.4

MTDSI 56.6 35.8 45.0
MTDSI+RAP-LS 70.3 36.6 45.7

MTDAI 62.1 35.6 44.2
MTDAI+RAP-LS 73.7 37.7 45.2

Table 10: The evaluation of ensemble attacks on defense models with NRP.

Attack Untarged
Inc-v3adv IncRes-v2ens Res-50 AT (`2) Res-50 AT (`∞)

MTDI 23.1 13.5 14.2 25.7
MTDI+RAP-LS 22.7 14.8 14.9 26.3

MTDSI 22.5 14.2 15.0 26.1
MTDSI+RAP-LS 24.5 15.3 15.4 26.2

MTDAI 24.1 14.7 14.2 25.9
MTDAI+RAP-LS 24.9 15.6 15.3 26.1

The Comparison with EOT Attack We sample noise nadv from Gaussian multiple times and add
them to xadv in each iteration. We set the standard deviation of Gaussian noise as 15/255 and the

6https://robustbench.github.io
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Table 11: The evaluation of ensemble attacks on defense models with R&P.

Attack Untarged
Inc-v3adv IncRes-v2ens Res-50 AT (`2) Res-50 AT (`∞)

MTDI 65.0 46.2 52.5 43.7
MTDI+RAP-LS 82.1 63.2 65.3 45.8

MTDSI 86.5 69.6 64.1 45.9
MTDSI+RAP-LS 93.4 84.9 74.0 46.2

MTDAI 88.9 76.5 68.4 46.2
MTDAI+RAP-LS 94.8 87.0 77.7 47.7

number of EOT as 20. We take MTDI as our baseline, ResNet and DenseNet as surrogate models
and compare this attack with our method RAP.

The untargeted and targeted attack performance is shown in Table 12. As shown in experimental
results, our methods achieve better performance and surpass this EOT attack a large margin on all
target models for targeted attacks. RAP-LS gets an 8.7% increase for targeted attacks in terms of
average success rate. This demonstrates the superiority of our methods.

Table 12: The comparison between EOT and our method.

Attack ResNet-50 (Untarged) =⇒ ResNet-50 (Ttarged) =⇒
Dense-121 VGG-16 Inc-v3 Dense-121 VGG-16 Inc-v3

MTDI+EOT / MTDI+RAP-LS 99.9 / 100 99.7 / 99.9 95.3 / 96.9 82.7 / 88.5 73.4 / 81.5 34.6 / 33.2

Attack DenseNet-121 (Untarged) =⇒ DenseNet-121 (Ttarged) =⇒
Res-50 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI+EOT / MTDI+RAP-LS 99.8 / 100 99.7 / 100 96.3 / 97.1 56.6 / 74.5 49.7 / 65.5 22.6 / 26.5

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first show the evaluation of targeted attacks with CE loss in Sec.C.1. Then we
show the results of ensemble attacks on more diverse network architectures in Sec.C.2. In Sec.C.3,
we report the experimental results w.r.t. different value of iterations.

C.1 THE RESULTS OF TARGETED ATTACKS WITH CE LOSS

Following the settings in main submission, we evaluate the targeted attack performance of the dif-
ferent baseline methods with our method on ResNet-50, DenseNet-121, VGG-16, and Inception-v3.
The results of combinational methods are shown in Table 13. The RAP-LS outperforms all com-
binational methods by a significantly margin. Taking the average attack success rate of all target
models as the evaluation metric, RAP-LS achieves 20.9%, 18.4%, and 15.1% improvements over
the MTDI, MTDSI and MTDAI, respectively.

Table 13: The targeted attack success rate (%) of combinational methods with RAP. The results
with CE loss and 400 iterations are reported. The best results are bold and the second best results
are underlined.

Attack ResNet-50 =⇒ DenseNet-121=⇒
Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

MTDI / +RAP / +RAP-LS 45.5 / 78.3 / 85.9 29.8 / 70.5 / 76.7 4.5 / 21.3 / 25.3 20.0 / 54.0 / 62.7 9.9 / 41.7 / 48.7 2.6 / 17.5 / 18.5
MTDSI / +RAP / +RAP-LS 77.7 / 89.0 / 93.7 39.9 / 69.4 / 76.7 26.9 / 45.3 / 50.8 30.5 / 60.4 / 69.5 14.9 / 42.8 / 49.7 12.7 / 26.6 / 32.5
MTDAI / +RAP / +RAP-LS 90.2 / 91.4 / 96.1 61.8 / 73.7 / 83.4 44.5 / 47.9 / 59.0 55.8 / 68.4 / 79.3 35.1 / 51.8 / 64.1 26.3 / 32.4 / 40.4

Attack VGG-16 =⇒ Inc-v3=⇒
Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

MTDI / +RAP / +RAP-LS 0.5 / 10.4 / 12.1 0.1 / 11.0 / 13.5 0.0 / 1.7 / 2.0 2.2 / 4.9 / 5.9 2.2 / 9.8 / 11.0 1.2 / 4.9 / 6.7
MTDSI / +RAP / +RAP-LS 5.4 / 17.4 / 16.8 9.5 / 28.4 / 25.2 2.2 / 7.1 / 5.1 4.4 / 8.6 / 8.9 7.9 / 16.3 / 19.3 2.0 / 6.4 / 6.4
MTDAI / +RAP / +RAP-LS 11.6 / 22.6 / 26.6 20.6 / 32.1 / 39.1 5.1 / 9.2 / 9.5 6.7 / 12.3 / 17.0 14.0 / 22.9 / 29.2 4.5 / 9.4 / 13.2
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C.2 THE RESULTS OF ENSEMBLE ATTACKS ON DIVERSE NETWORK ARCHITECTURES

We also take the evaluation of the ensemble attacks on diverse network architecture (Sec.4.6). We
adopt the ensemble-model attack by averaging the logits of different surrogate models, including
ResNet-50, DenseNet-121, VGG-16, and Inception-v3. The transfer attack success rate on diverse
models are shown in Table 14. Compared with results of single model attack in Table 7, the ensemble
attack achieve the better performance. We can observe that our RAP-LS further boosts transferability
of the baseline methods on both targeted and untargeted attacks. We take ViT as target model for
example. For untargeted attacks, RAP-LS achieves average performance improvements of 19.2%.
For targeted attacks, RAP-LS achieves average performance improvements of 10.4%.

Table 14: The evaluation of ensemble attacks on diverse network architectures.

Attack Untarged Targeted
IncRes-v2 NASNet-L ViT-B/16 IncRes-v2 NASNet-L ViT-B/16

MTDI 98.6 99.3 46.2 65.7 80.1 2.8
MTDI+RAP-LS 100 100 73.2 84.4 89.7 12.7

MTDSI 99.8 100 68.3 81.7 89.4 15.0
MTDSI+RAP-LS 100 100 85.0 89.8 92.3 25.1

MTDAI 100 100 70.7 88.8 91.2 16.8
MTDAI+RAP-LS 100 100 84.6 90.4 91.8 27.8

C.3 THE EXPERIMENTAL RESULTS w.r.t. DIFFERENT VALUE OF ITERATIONS

In the main submission, we report the evaluations of K = 400. Here, we further report the per-
formance with different values of K for completeness in Table 15 (targeted attack) and Table 16
(untargeted attack). From the results, we observe that the attacking performance generally increase
as K increases for most cases, this is also aligned with prior works (Zhao et al., 2020).

Table 15: The targeted attack success rate (%) of all baseline attacks with our method. The results
with logit loss and 10/100/200/300/400 iterations are reported. We highlight the results with K =
400 in bold.

ResNet-50 → Inception-v3
Baseline +RAP +RAP-LS

I 0.0 / 0.1 / 0.2 / 0.1 / 0.1 0.0 / 0.2 / 0.3 / 0.3 / 0.1 0.0 / 0.1 / 0.4 / 0.6 / 0.7
MI 0.1 / 0.1 / 0.2 / 0.1 / 0.1 0.0 / 0.6 / 1.0 / 1.0 / 1.1 0.1 / 0.1 / 1.4 / 1.6 / 2.4
TI 0.0 / 0.3 / 0.2 / 0.2 / 0.1 0.0 / 0.7 / 0.9 / 1.2 / 0.8 0.0 / 0.3 / 1.3 / 1.3 / 1.2
DI 0.2 / 1.2 / 1.7 / 1.5 / 1.5 0.0 / 3.8 / 6.6 / 7.7 / 7.9 0.2 / 1.2 / 10.2 / 9.4 / 10.1
SI 0.3 / 2.6 / 2.4 / 2.0 / 1.8 0.2 / 6.6 / 8.2 / 8.6 / 9.3 0.3 / 2.6 / 9.6 / 9.3 / 10.5

Admix 1.4 / 5.7 / 5.9 / 6.0 / 5.8 0.6 / 14.6 / 16.6 / 16.5 / 17.1 1.4 / 5.7 / 18.5 / 19.2 / 19.6
MI-TI-DI 1.5 / 7.9 / 9.8 / 10.5 / 10.9 0.1 / 12.7 / 22.3 / 26.3 / 28.3 1.5 / 7.9 / 26.8 / 30.0 / 33.2

MI-TI-DI-SI 8.9 / 34.1 / 36.7 / 38.1 / 38.1 3.3 / 43.3 / 47.9 / 49.9 / 51.8 8.9 / 34.8 / 54.8 / 55.8 / 58.0
MI-TI-DI-Admix 13.5 / 45.7 / 49.2 / 50.5 / 50.8 5.0 / 48.1 / 53.4 / 56.2 / 57.1 13.5 / 45.1 / 61.4 / 63.0 / 64.1

ResNet-50 → DenseNet-121
Baseline +RAP +RAP-LS

I 0.9 / 5.3 / 5.0 / 5.5 / 4.5 0.0 / 4.8 / 7.9 / 8.8 / 9.5 0.9 / 5.3 / 14.0 / 14.0 / 14.3
MI 3.4 / 6.3 / 6.3 / 6.0 / 6.3 0.2 / 9.0 / 14.1 / 15.8 / 17.5 3.4 / 6.3 / 25.9 / 28.9 / 29.6
TI 2.5 / 8.6 / 8.9 / 9.0 / 7.2 0.0 / 7.1 / 10.1 / 11.2 / 11.0 2.5 / 8.6 / 16.1 / 16.4 / 17.3
DI 8.4 / 54.8 / 60.4 / 61.2 / 62.6 0.1 / 40.6 / 53.2 / 59.4 / 64.9 8.4 / 54.6 / 70.9 / 72.5 / 73.9
SI 9.7 / 29.6 / 30.4 / 30.4 / 30.0 2.2 / 45.8 / 50.9 / 52.5 / 53.2 9.7 / 29.6 / 60.0 / 61.1 / 61.1

Admix 23.6 / 55.6 / 55.5 / 55.6 / 54.6 5.3 / 61.2 / 66.0 / 66.9 / 68.0 23.6 / 55.6 / 74.4 / 74.7 / 74.6
MI-TI-DI 16.3 / 66.9 / 71.4 / 73.4 / 74.9 1.8 / 56.7 / 71.2 / 76.4 / 78.2 16.3 / 66.7 / 85.2 / 85.7 / 88.5

MI-TI-DI-SI 41.0 / 82.8 / 84.5 / 86.2 / 86.3 12.9 / 80.2 / 85.7 / 87.8 / 88.4 41.0 / 82.5 / 91.9 / 92.4 / 93.3
MI-TI-DI-Admix 48.0 / 88.7 / 90.9 / 91.1 / 91.4 20.3 / 83.2 / 87.2 / 88.4 / 89.4 47.9 / 88.5 / 93.5 / 93.8 / 93.6
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ResNet-50 → VGG-16
Baseline +RAP +RAP-LS

I 1.0 / 2.7 / 2.6 / 2.3 / 2.4 0.0 / 5.6 / 8.3 / 9.8 / 9.8 1.0 / 2.7 / 11.4 / 12.8 / 11.8
MI 1.2 / 2.1 / 2.4 / 2.2 / 2.2 0.1 / 8.6 / 12.3 / 14.1 / 14.5 1.2 / 2.1 / 18.2 / 20.0 / 20.6
TI 1.1 / 4.8 / 4.8 / 4.5 / 4.0 0.1 / 6.0 / 9.3 / 9.9 / 12.9 1.1 / 4.8 / 14.2 / 15.3 / 15.3
DI 7.6 / 51.0 / 56.9 / 56.6 / 57.2 0.4 / 42.4 / 55.0 / 61.5 / 63.4 7.6 / 51.0 / 69.3 / 69.8 / 69.3
SI 4.4 / 10.4 / 8.9 / 8.8 / 9.5 1.1 / 27.8 / 31.1 / 30.7 / 32.8 4.4 / 10.4 / 35.8 / 35.1 / 36.0

Admix 10.6 / 24.9 / 25.0 / 26.2 / 26.0 3.6 / 41.4 / 45.2 / 43.8 / 45.4 10.6 / 24.9 / 51.7 / 51.9 / 51.6
MI-TI-DI 12.1 / 55.9 / 61.0 / 63.9 / 62.8 1.5 / 53.0 / 64.7 / 70.9 / 72.9 12.1 / 55.8 / 78.5 / 81.7 / 81.5

MI-TI-DI-SI 24.6 / 67.4 / 68.5 / 69.7 / 70.1 8.2 / 66.4 / 73.7 / 75.2 / 77.7 24.5 / 66.4 / 82.4 / 83.7 / 84.7
MI-TI-DI-Admix 33.4 / 75.3 / 77.5 / 78.7 / 79.9 14.6 / 70.4 / 76.7 / 78.3 / 79.0 33.3 / 75.2 / 85.4 / 86.4 / 86.3

DenseNet121 → Inception-v3
Baseline +RAP +RAP-LS

I 0.0 / 0.1 / 0.2 / 0.1 / 0.0 0.0 / 0.6 / 0.9 / 0.7 / 0.8 0.0 / 0.1 / 1.0 / 1.3 / 1.2
MI 0.2 / 0.2 / 0.3 / 0.3 / 0.3 0.0 / 1.2 / 2.1 / 2.1 / 2.0 0.2 / 0.2 / 2.5 / 3.7 / 3.4
TI 0.0 / 0.4 / 0.3 / 0.5 / 0.2 0.0 / 1.2 / 1.5 / 1.6 / 2.1 0.0 / 0.4 / 2.6 / 3.1 / 3.0
DI 0.3 / 1.9 / 1.4 / 1.7 / 1.4 0.0 / 4.1 / 7.0 / 7.6 / 8.8 0.3 / 1.9 / 9.3 / 9.9 / 10.0
SI 0.3 / 1.5 / 1.8 / 1.6 / 1.6 0.1 / 7.6 / 9.2 / 10.0 / 8.5 0.3 / 1.5 / 9.2 / 10.7 / 10.4

Admix 1.7 / 5.0 / 5.4 / 5.5 / 5.0 0.2 / 15.8 / 17.0 / 17.7 / 17.1 1.7 / 5.0 / 18.5 / 18.2 / 17.6
MI-TI-DI 1.2 / 6.8 / 7.9 / 8.7 / 7.7 0.1 / 13.0 / 19.7 / 22.2 / 23.0 1.2 / 6.7 / 21.9 / 26.2 / 26.5

MI-TI-DI-SI 5.1 / 17.6 / 18.9 / 19.3 / 19.8 2.0 / 30.4 / 35.1 / 37.0 / 39.0 5.2 / 17.7 / 36.8 / 38.9 / 39.2
MI-TI-DI-Admix 11.4 / 30.5 / 32.2 / 31.4 / 32.0 3.9 / 36.7 / 41.3 / 42.2 / 43.5 11.2 / 31.2 / 47.2 / 49.2 / 49.3

DenseNet121 → ResNet-50
Baseline +RAP +RAP-LS

I 1.8 / 6.5 / 5.6 / 5.5 / 5.0 0.2 / 7.7 / 11.2 / 12.4 / 12.8 1.8 / 6.5 / 18.7 / 19.0 / 17.9
MI 3.4 / 5.4 / 5.2 / 4.9 / 4.6 0.3 / 10.2 / 14.3 / 16.3 / 16.2 3.4 / 5.4 / 23.6 / 26.3 / 26.5
TI 2.6 / 8.1 / 7.9 / 8.4 / 8.4 0.2 / 7.8 / 10.9 / 12.1 / 13.5 2.6 / 8.1 / 19.2 / 20.2 / 20.8
DI 6.3 / 30.4 / 33.1 / 32.0 / 30.2 0.4 / 33.6 / 44.1 / 48.7 / 52.6 6.3 / 30.8 / 58.8 / 60.4 / 60.4
SI 7.3 / 16.5 / 15.9 / 14.8 / 14.2 1.5 / 33.8 / 39.5 / 41.4 / 41.5 7.3 / 16.5 / 44.7 / 44.8 / 43.4

Admix 16.4 / 32.6 / 30.3 / 28.8 / 29.3 3.7 / 48.3 / 52.9 / 53.4 / 53.0 16.4 / 32.6 / 60.1 / 58.8 / 58.2
MI-TI-DI 8.3 / 40.3 / 44.6 / 46.3 / 44.9 0.9 / 42.0 / 56.4 / 62.4 / 64.3 8.3 / 40.1 / 69.5 / 72.8 / 74.5

MI-TI-DI-SI 18.6 / 52.3 / 54.1 / 56.2 / 55.0 6.6 / 60.3 / 67.5 / 70.6 / 71.2 18.6 / 52.5 / 73.8 / 75.5 / 75.8
MI-TI-DI-Admix 27.6 / 66.3 / 69.7 / 69.8 / 69.1 12.1 / 66.4 / 70.8 / 73.2 / 74.2 27.6 / 66.4 / 81.4 / 82.0 / 82.1

DenseNet121 → VGG-16
Baseline +RAP +RAP-LS

I 0.6 / 3.8 / 3.5 / 3.5 / 2.9 0.1 / 6.2 / 9.3 / 10.5 / 10.1 0.6 / 3.8 / 14.5 / 15.7 / 15.9
MI 1.6 / 2.4 / 2.6 / 2.7 / 3.1 0.2 / 8.6 / 12.2 / 13.0 / 13.4 1.6 / 2.4 / 19.5 / 21.7 / 23.2
TI 1.1 / 5.6 / 5.8 / 4.8 / 5.2 0.1 / 6.3 / 9.1 / 11.0 / 12.4 1.1 / 5.6 / 16.5 / 17.0 / 16.4
DI 4.1 / 29.8 / 32.7 / 33.1 / 32.1 0.2 / 31.5 / 44.7 / 48.7 / 49.5 4.1 / 29.9 / 57.2 / 56.5 / 58.9
SI 2.8 / 9.8 / 8.8 / 8.5 / 8.4 0.6 / 25.8 / 28.2 / 31.4 / 31.0 2.8 / 9.8 / 33.5 / 35.3 / 35.2

Admix 10.2 / 23.3 / 22.1 / 21.3 / 21.5 1.7 / 39.4 / 42.2 / 43.0 / 42.7 10.2 / 23.3 / 49.7 / 49.3 / 48.2
MI-TI-DI 6.1 / 32.4 / 36.3 / 39.0 / 38.5 0.7 / 36.2 / 49.9 / 53.2 / 55.0 6.1 / 32.6 / 61.8 / 64.3 / 65.5

MI-TI-DI-SI 12.4 / 40.2 / 41.9 / 42.2 / 42.0 4.6 / 46.9 / 54.0 / 57.0 / 58.4 12.4 / 40.0 / 61.3 / 62.4 / 62.3
MI-TI-DI-Admix 20.0 / 53.2 / 55.0 / 55.7 / 54.7 9.4 / 54.8 / 60.1 / 61.8 / 63.1 19.9 / 53.1 / 68.1 / 69.7 / 69.3

VGG-16 → Inception-v3
Baseline +RAP +RAP-LS

I 0.0 / 0.0 / 0.0 / 0.0 / 0.0 0.0 / 0.1 / 0.0 / 0.1 / 0.1 0.0 / 0.0 / 0.2 / 0.0 / 0.2
MI 0.0 / 0.0 / 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.2 / 0.0 / 0.0 0.0 / 0.0 / 0.2 / 0.5 / 0.3
TI 0.0 / 0.0 / 0.0 / 0.1 / 0.0 0.0 / 0.1 / 0.1 / 0.1 / 0.1 0.0 / 0.0 / 0.4 / 0.4 / 0.4
DI 0.0 / 0.0 / 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.4 / 0.6 / 0.4 0.0 / 0.0 / 0.7 / 0.7 / 1.1
SI 0.0 / 0.4 / 0.3 / 0.2 / 0.2 0.0 / 2.0 / 1.5 / 2.0 / 1.7 0.0 / 0.6 / 1.6 / 1.9 / 1.8

Admix 0.1 / 0.7 / 0.8 / 0.6 / 0.7 0.0 / 2.7 / 2.2 / 2.3 / 2.4 0.1 / 1.0 / 2.3 / 3.0 / 2.8
MI-TI-DI 0.1 / 1.0 / 0.8 / 1.1 / 0.7 0.0 / 1.8 / 2.8 / 3.0 / 3.4 0.1 / 0.9 / 3.4 / 4.0 / 4.6

MI-TI-DI-SI 1.7 / 7.7 / 9.1 / 9.8 / 9.6 0.6 / 12.2 / 14.5 / 13.8 / 15.2 1.7 / 8.6 / 11.4 / 12.1 / 13.7
MI-TI-DI-Admix 3.6 / 12.4 / 12.2 / 11.5 / 11.6 1.1 / 14.5 / 16.1 / 15.9 / 17.1 3.4 / 11.2 / 15.9 / 17.4 / 17.6
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VGG-16 → ResNet-50
Baseline +RAP +RAP-LS

I 0.2 / 0.4 / 0.3 / 0.3 / 0.1 0.0 / 1.0 / 0.8 / 0.8 / 0.7 0.2 / 0.5 / 1.4 / 1.5 / 1.4
MI 0.4 / 0.5 / 0.6 / 0.5 / 0.5 0.2 / 1.1 / 1.3 / 1.3 / 1.3 0.4 / 0.2 / 2.1 / 2.4 / 1.9
TI 0.3 / 1.0 / 0.7 / 0.9 / 0.7 0.0 / 1.4 / 1.5 / 1.4 / 1.2 0.3 / 1.0 / 3.0 / 3.3 / 3.2
DI 0.5 / 2.8 / 3.1 / 3.4 / 2.8 0.0 / 4.9 / 6.7 / 6.5 / 7.3 0.5 / 3.9 / 9.5 / 10.1 / 9.7
SI 1.4 / 4.4 / 3.9 / 3.8 / 3.3 0.4 / 9.2 / 9.0 / 9.1 / 9.8 1.4 / 4.3 / 10.1 / 9.4 / 9.8

Admix 4.6 / 7.3 / 6.7 / 5.8 / 5.6 0.7 / 10.6 / 11.3 / 10.9 / 11.1 4.7 / 7.3 / 11.6 / 12.5 / 11.9
MI-TI-DI 1.8 / 10.2 / 11.7 / 11.9 / 11.8 0.0 / 10.8 / 14.6 / 15.7 / 16.7 1.8 / 9.5 / 20.2 / 21.6 / 22.9

MI-TI-DI-SI 8.8 / 30.1 / 31.6 / 30.3 / 31.0 3.2 / 30.8 / 32.5 / 33.5 / 35.3 9.0 / 29.5 / 36.9 / 38.5 / 38.7
MI-TI-DI-Admix 15.2 / 34.6 / 35.1 / 36.6 / 36.2 5.4 / 34.7 / 37.3 / 38.1 / 39.0 15.3 / 35.5 / 43.2 / 42.9 / 43.1

VGG-16 → DenseNet-121
Baseline +RAP +RAP-LS

I 0.1 / 0.2 / 0.4 / 0.3 / 0.2 0.0 / 0.7 / 1.1 / 0.7 / 1.4 0.1 / 0.3 / 1.2 / 1.5 / 1.7
MI 0.3 / 0.8 / 0.6 / 0.6 / 0.5 0.0 / 1.1 / 1.4 / 2.1 / 2.3 0.3 / 0.6 / 2.4 / 3.2 / 3.0
TI 0.1 / 0.6 / 1.1 / 1.0 / 0.8 0.0 / 0.9 / 1.7 / 1.6 / 1.7 0.1 / 0.9 / 2.5 / 2.7 / 2.9
DI 0.2 / 3.8 / 4.8 / 4.1 / 3.8 0.0 / 5.0 / 7.6 / 7.8 / 8.4 0.2 / 3.7 / 11.9 / 12.2 / 12.7
SI 1.3 / 9.0 / 8.9 / 7.7 / 7.2 0.3 / 14.0 / 15.6 / 16.4 / 16.8 1.3 / 8.2 / 17.0 / 17.4 / 17.8

Admix 4.9 / 14.3 / 13.4 / 13.2 / 13.0 0.7 / 17.9 / 20.5 / 20.2 / 20.2 4.9 / 14.0 / 23.9 / 24.2 / 23.6
MI-TI-DI 1.5 / 12.1 / 13.4 / 13.9 / 13.7 0.1 / 9.7 / 15.7 / 17.4 / 19.4 1.6 / 12.1 / 24.4 / 26.3 / 27.4

MI-TI-DI-SI 13.0 / 38.9 / 41.5 / 42.8 / 41.7 3.8 / 37.8 / 42.0 / 43.8 / 44.4 12.8 / 37.3 / 48.6 / 49.8 / 49.6
MI-TI-DI-Admix 19.0 / 45.5 / 47.0 / 47.7 / 48.0 6.8 / 41.3 / 45.2 / 44.8 / 45.1 19.1 / 45.3 / 52.9 / 54.9 / 55.2

Inc-v3 → ResNet-50
Baseline +RAP +RAP-LS

I 0.2 / 0.4 / 0.3 / 0.1 / 0.2 0.0 / 0.2 / 0.7 / 0.6 / 0.9 0.2 / 0.4 / 1.0 / 0.7 / 0.5
MI 0.1 / 0.3 / 0.3 / 0.2 / 0.2 0.0 / 0.6 / 1.4 / 1.5 / 1.7 0.1 / 0.3 / 0.8 / 1.6 / 1.5
TI 0.2 / 0.3 / 0.2 / 0.2 / 0.2 0.0 / 0.2 / 0.6 / 0.9 / 0.5 0.2 / 0.3 / 1.0 / 0.7 / 0.7
DI 0.2 / 1.5 / 1.4 / 1.9 / 1.6 0.1 / 2.5 / 4.3 / 4.3 / 4.6 0.2 / 1.5 / 5.0 / 5.1 / 6.4
SI 0.3 / 0.3 / 0.3 / 0.6 / 0.6 0.4 / 1.9 / 2.6 / 2.6 / 2.9 0.3 / 0.3 / 2.4 / 2.8 / 2.5

Admix 1.2 / 1.9 / 2.2 / 1.9 / 1.5 0.6 / 5.0 / 4.9 / 5.2 / 4.9 1.2 / 1.9 / 5.7 / 5.7 / 5.2
MI-TI-DI 0.6 / 1.6 / 2.0 / 2.4 / 1.8 0.0 / 4.2 / 6.3 / 7.7 / 8.3 0.6 / 1.7 / 6.2 / 7.0 / 7.5

MI-TI-DI-SI 1.5 / 4.7 / 5.5 / 5.8 / 5.6 0.7 / 8.6 / 10.3 / 11.1 / 11.9 1.5 / 5.0 / 10.0 / 9.6 / 10.7
MI-TI-DI-Admix 2.8 / 8.9 / 9.5 / 9.6 / 9.6 1.4 / 12.6 / 14.0 / 13.6 / 13.6 2.8 / 8.6 / 14.5 / 15.1 / 16.7

Inc-v3 → DenseNet-121
Baseline +RAP +RAP-LS

I 0.0 / 0.0 / 0.2 / 0.0 / 0.2 0.0 / 0.2 / 0.4 / 0.6 / 0.6 0.0 / 0.0 / 0.2 / 0.4 / 0.3
MI 0.0 / 0.1 / 0.2 / 0.1 / 0.1 0.1 / 0.7 / 1.0 / 1.1 / 1.6 0.0 / 0.1 / 1.0 / 1.1 / 1.5
TI 0.0 / 0.3 / 0.2 / 0.0 / 0.1 0.0 / 0.3 / 0.3 / 0.3 / 0.7 0.0 / 0.3 / 0.9 / 0.9 / 0.6
DI 0.1 / 1.3 / 2.5 / 3.0 / 2.8 0.0 / 2.7 / 4.4 / 5.4 / 5.8 0.1 / 1.3 / 5.9 / 7.0 / 7.5
SI 0.2 / 0.7 / 0.9 / 0.8 / 0.9 0.0 / 2.4 / 3.3 / 2.9 / 2.7 0.2 / 0.7 / 3.2 / 3.1 / 3.2

Admix 1.1 / 2.6 / 2.5 / 2.3 / 2.0 0.5 / 7.2 / 7.7 / 7.0 / 6.9 1.1 / 2.6 / 8.2 / 7.3 / 7.5
MI-TI-DI 0.5 / 3.1 / 3.8 / 4.5 / 4.1 0.2 / 5.4 / 10.8 / 12.6 / 14.8 0.5 / 3.3 / 10.6 / 11.8 / 13.4

MI-TI-DI-SI 1.9 / 9.0 / 9.4 / 9.5 / 10.4 1.1 / 15.5 / 19.8 / 19.8 / 21.2 1.9 / 9.0 / 19.1 / 20.2 / 20.9
MI-TI-DI-Admix 4.6 / 15.7 / 16.8 / 17.4 / 17.9 2.4 / 23.2 / 24.5 / 26.6 / 27.5 4.6 / 15.0 / 29.1 / 30.2 / 31.6

Inc-v3 → VGG-16
Baseline +RAP +RAP-LS

I 0.0 / 0.3 / 0.1 / 0.1 / 0.1 0.0 / 0.2 / 0.8 / 0.6 / 0.5 0.0 / 0.3 / 0.2 / 0.5 / 0.5
MI 0.1 / 0.1 / 0.2 / 0.2 / 0.2 0.1 / 0.4 / 0.8 / 1.2 / 1.3 0.1 / 0.1 / 0.4 / 0.8 / 1.0
TI 0.1 / 0.2 / 0.2 / 0.1 / 0.2 0.1 / 0.4 / 0.5 / 0.6 / 0.8 0.1 / 0.2 / 0.6 / 0.6 / 0.6
DI 0.3 / 2.0 / 2.8 / 2.3 / 2.6 0.1 / 1.8 / 4.3 / 5.2 / 6.3 0.3 / 2.0 / 6.8 / 7.3 / 8.1
SI 0.0 / 0.7 / 0.6 / 0.4 / 0.5 0.2 / 2.0 / 1.5 / 1.5 / 1.5 0.0 / 0.7 / 1.6 / 2.3 / 2.3

Admix 0.5 / 1.6 / 1.0 / 1.0 / 1.3 0.4 / 3.2 / 3.8 / 4.1 / 3.3 0.5 / 1.6 / 4.5 / 3.8 / 4.4
MI-TI-DI 0.3 / 2.0 / 2.4 / 2.7 / 2.9 0.1 / 3.8 / 6.5 / 7.3 / 8.0 0.3 / 2.0 / 8.0 / 7.9 / 9.8

MI-TI-DI-SI 0.7 / 3.7 / 3.6 / 4.1 / 4.2 0.5 / 7.6 / 7.5 / 8.5 / 8.9 0.7 / 3.2 / 6.7 / 8.1 / 8.6
MI-TI-DI-Admix 2.3 / 6.9 / 8.3 / 8.6 / 8.4 1.3 / 10.5 / 12.5 / 12.0 / 12.0 2.3 / 7.0 / 11.9 / 12.8 / 12.1
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Table 16: The untargeted attack success rate (%) of all baseline attacks with RAP. The results with
CE loss and 10/100/200/300/400 iterations are reported. We highlight the results with K = 400 in
bold.

ResNet-50 → Inception-v3
Baseline +RAP +RAP-LS

I 25.9 / 35.5 / 35.3 / 34.7 / 34.6 12.3 / 48.3 / 54.1 / 55.5 / 57.0 25.7 / 36.0 / 54.1 / 56.5 / 57.2
MI 53.2 / 50.7 / 51.0 / 50.6 / 50.3 26.2 / 58.7 / 68.9 / 73.4 / 75.9 53.2 / 50.7 / 64.3 / 73.6 / 77.4
TI 30.0 / 45.3 / 44.0 / 45.3 / 45.5 16.4 / 57.9 / 63.9 / 64.6 / 66.1 30.0 / 45.1 / 62.3 / 65.3 / 67.0
DI 46.0 / 60.5 / 59.5 / 59.4 / 57.7 27.3 / 80.7 / 82.8 / 83.4 / 82.9 46.0 / 61.0 / 86.0 / 85.7 / 85.0
SI 50.1 / 66.0 / 65.6 / 66.0 / 65.9 60.6 / 80.5 / 80.9 / 80.9 / 79.7 49.9 / 66.6 / 85.2 / 85.0 / 84.4

Admix 66.6 / 78.7 / 79.2 / 78.0 / 77.7 73.9 / 87.6 / 87.0 / 86.8 / 87.4 67.6 / 79.4 / 91.8 / 92.3 / 92.6
MI-TI-DI 82.1 / 85.8 / 86.4 / 85.9 / 85.7 61.9 / 93.9 / 95.3 / 95.6 / 96.0 82.1 / 85.8 / 95.9 / 96.4 / 96.9

MI-TI-DI-SI 94.2 / 96.8 / 97.2 / 97.0 / 97.0 92.3 / 98.9 / 98.9 / 99.0 / 99.1 94.2 / 96.7 / 99.0 / 99.3 / 99.1
MI-TI-DI-Admix 97.3 / 98.6 / 98.5 / 98.5 / 98.3 95.1 / 99.4 / 99.4 / 99.3 / 99.2 97.3 / 98.5 / 99.8 / 99.8 / 99.8

ResNet-50 → DenseNet-121
Baseline +RAP +RAP-LS

I 67.4 / 79.9 / 79.1 / 79.0 / 79.2 26.7 / 84.8 / 91.1 / 90.8 / 91.5 67.8 / 80.1 / 89.8 / 91.3 / 91.9
MI 87.3 / 85.4 / 86.4 / 85.9 / 85.8 45.2 / 85.3 / 91.3 / 93.9 / 95.0 87.3 / 85.4 / 90.8 / 95.0 / 96.1
TI 73.2 / 83.0 / 82.2 / 81.6 / 82.0 30.9 / 87.3 / 91.5 / 93.3 / 94.1 72.9 / 82.4 / 90.9 / 94.2 / 95.1
DI 92.8 / 98.9 / 99.2 / 99.0 / 99.0 52.6 / 99.0 / 99.6 / 99.7 / 99.6 92.8 / 99.0 / 99.6 / 99.7 / 99.7
SI 89.1 / 95.7 / 95.6 / 95.3 / 94.9 91.3 / 98.9 / 99.0 / 99.2 / 98.9 89.1 / 95.7 / 99.7 / 99.7 / 99.7

Admix 96.6 / 98.9 / 98.5 / 98.1 / 97.9 96.2 / 99.6 / 99.6 / 99.6 / 99.6 96.4 / 98.5 / 99.9 / 99.9 / 99.9
MI-TI-DI 98.2 / 99.7 / 99.8 / 99.8 / 99.8 86.4 / 99.9 / 100 / 100 / 100 98.2 / 99.7 / 99.9 / 100 / 100

MI-TI-DI-SI 99.8 / 100 / 100 / 100 / 100 98.8 / 100 / 100 / 100 / 100 99.8 / 100 / 100 / 100 / 100
MI-TI-DI-Admix 99.9 / 100 / 100 / 100 / 100 99.5 / 100 / 100 / 100 / 100 99.9 / 100 / 100 / 100 / 100

ResNet-50 → VGG-16
Baseline +RAP +RAP-LS

I 68.2 / 77.4 / 78.1 / 77.4 / 78.0 36.2 / 84.6 / 89.2 / 90.7 / 91.1 68.4 / 77.3 / 87.1 / 90.9 / 92.9
MI 82.5 / 82.8 / 82.9 / 82.7 / 82.4 53.1 / 85.5 / 92.2 / 93.1 / 93.9 82.5 / 82.8 / 89.3 / 93.7 / 94.5
TI 70.6 / 80.5 / 79.8 / 80.8 / 81.0 39.3 / 86.9 / 90.6 / 92.5 / 93.1 71.1 / 80.0 / 89.0 / 91.9 / 93.3
DI 92.3 / 99.1 / 99.1 / 99.0 / 99.0 64.4 / 99.4 / 99.7 / 99.7 / 99.6 92.3 / 99.1 / 99.8 / 99.9 / 99.7
SI 82.2 / 90.0 / 88.9 / 89.6 / 88.6 81.3 / 95.7 / 95.8 / 95.7 / 95.7 82.1 / 89.3 / 97.7 / 97.8 / 97.2

Admix 92.3 / 95.4 / 96.0 / 95.6 / 95.8 91.6 / 97.9 / 98.4 / 97.8 / 97.7 92.7 / 95.9 / 98.9 / 99.0 / 99.0
MI-TI-DI 97.9 / 99.7 / 99.7 / 99.8 / 99.8 85.9 / 99.5 / 100 / 100 / 100 97.9 / 99.7 / 99.9 / 99.9 / 99.9

MI-TI-DI-SI 99.1 / 99.8 / 99.8 / 99.7 / 99.7 97.4 / 99.7 / 99.9 / 99.9 / 99.9 99.1 / 99.8 / 99.8 / 99.8 / 99.8
MI-TI-DI-Admix 99.2 / 99.8 / 99.8 / 99.8 / 99.8 98.5 / 99.7 / 99.9 / 99.9 / 99.9 99.2 / 99.8 / 99.9 / 99.9 / 99.9

DenseNet-121 → Inception-v3
Baseline +RAP +RAP-LS

I 31.2 / 48.5 / 46.9 / 46.3 / 46.5 18.0 / 54.9 / 58.1 / 59.8 / 60.2 31.6 / 46.9 / 58.9 / 61.0 / 61.1
MI 56.8 / 58.8 / 59.3 / 60.6 / 59.3 32.2 / 65.6 / 74.1 / 78.9 / 80.4 56.8 / 58.8 / 74.6 / 80.0 / 82.8
TI 37.7 / 54.0 / 55.1 / 54.6 / 54.2 20.4 / 61.0 / 64.7 / 67.3 / 66.7 38.2 / 54.5 / 65.4 / 67.6 / 70.0
DI 51.0 / 67.9 / 68.3 / 66.7 / 67.6 31.4 / 84.0 / 86.8 / 86.7 / 86.6 51.0 / 68.0 / 89.0 / 88.8 / 86.9
SI 54.7 / 71.5 / 71.6 / 70.3 / 71.6 61.1 / 82.9 / 83.1 / 83.5 / 83.2 53.9 / 71.0 / 86.4 / 87.0 / 87.4

Admix 72.5 / 82.0 / 82.6 / 82.2 / 82.0 73.0 / 89.9 / 90.3 / 89.5 / 89.8 71.7 / 82.8 / 93.9 / 93.2 / 93.8
MI-TI-DI 81.5 / 89.7 / 89.8 / 89.4 / 89.1 62.5 / 94.8 / 96.8 / 97.1 / 97.1 81.5 / 89.6 / 96.1 / 96.9 / 97.1

MI-TI-DI-SI 92.3 / 95.2 / 94.9 / 95.1 / 95.1 88.6 / 97.7 / 98.0 / 98.0 / 98.3 92.4 / 95.2 / 97.8 / 98.5 / 98.4
MI-TI-DI-Admix 95.8 / 97.7 / 97.2 / 97.3 / 97.9 93.2 / 98.6 / 98.6 / 99.0 / 98.8 95.4 / 97.6 / 99.0 / 98.9 / 98.9

DenseNet-121 → ResNet-50
Baseline +RAP +RAP-LS

I 76.1 / 88.0 / 87.5 / 87.1 / 87.4 35.7 / 90.1 / 93.5 / 93.2 / 94.2 76.1 / 88.0 / 91.2 / 92.9 / 94.3
MI 87.7 / 90.5 / 91.2 / 90.8 / 90.3 55.6 / 91.1 / 96.2 / 96.9 / 97.6 87.7 / 90.5 / 95.4 / 97.2 / 97.9
TI 79.2 / 90.4 / 90.0 / 89.9 / 89.6 36.9 / 90.1 / 93.2 / 95.0 / 94.2 79.0 / 89.8 / 92.7 / 94.3 / 94.8
DI 91.1 / 98.0 / 98.3 / 98.2 / 98.2 57.0 / 98.6 / 99.3 / 99.7 / 99.6 91.1 / 98.0 / 99.5 / 99.6 / 99.7
SI 89.6 / 95.2 / 94.8 / 95.3 / 95.1 83.0 / 96.5 / 96.7 / 96.3 / 96.9 89.4 / 95.0 / 98.7 / 98.8 / 98.8

Admix 96.3 / 97.6 / 97.7 / 97.7 / 97.0 90.9 / 98.8 / 98.8 / 99.0 / 99.0 95.7 / 97.9 / 99.3 / 99.2 / 99.2
MI-TI-DI 96.3 / 99.3 / 99.5 / 99.4 / 99.4 84.4 / 99.2 / 99.8 / 99.8 / 99.8 96.3 / 99.2 / 99.8 / 99.9 / 100

MI-TI-DI-SI 98.3 / 99.7 / 99.8 / 99.8 / 99.8 95.8 / 99.7 / 99.9 / 99.9 / 99.9 98.3 / 99.7 / 99.9 / 99.9 / 99.9
MI-TI-DI-Admix 99.2 / 99.7 / 99.8 / 99.8 / 99.8 97.9 / 99.9 / 99.8 / 99.8 / 99.8 99.0 / 99.7 / 99.9 / 99.9 / 99.9
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DenseNet-121 → VGG-16
Baseline +RAP +RAP-LS

I 75.1 / 84.7 / 85.2 / 84.9 / 85.1 42.2 / 87.5 / 90.7 / 91.2 / 91.7 75.1 / 84.6 / 89.2 / 91.7 / 92.8
MI 85.1 / 87.2 / 88.6 / 87.9 / 87.5 58.4 / 90.2 / 93.7 / 95.1 / 96.0 85.1 / 87.2 / 94.2 / 97.0 / 97.6
TI 74.4 / 86.3 / 86.4 / 87.3 / 87.0 44.2 / 87.8 / 89.6 / 91.0 / 92.1 74.5 / 85.8 / 90.3 / 92.2 / 93.3
DI 90.8 / 98.0 / 98.4 / 98.1 / 98.1 63.3 / 98.6 / 99.2 / 99.6 / 99.4 90.8 / 97.9 / 99.4 / 99.2 / 99.4
SI 84.2 / 91.5 / 91.4 / 91.4 / 91.9 78.5 / 93.9 / 94.5 / 95.2 / 95.0 83.9 / 91.6 / 96.9 / 97.1 / 97.5

Admix 93.5 / 95.7 / 96.0 / 96.1 / 95.6 87.8 / 97.4 / 97.5 / 97.6 / 97.7 92.0 / 96.1 / 98.9 / 98.7 / 98.6
MI-TI-DI 95.1 / 99.0 / 99.2 / 99.2 / 99.2 84.2 / 99.1 / 99.4 / 99.5 / 99.5 95.1 / 99.0 / 99.9 / 100 / 100

MI-TI-DI-SI 97.9 / 99.5 / 99.4 / 99.4 / 99.2 93.3 / 99.0 / 99.2 / 99.3 / 99.3 97.9 / 99.4 / 99.7 / 99.7 / 99.7
MI-TI-DI-Admix 98.4 / 99.4 / 99.4 / 99.5 / 99.4 96.1 / 99.7 / 99.7 / 99.6 / 99.6 98.3 / 99.4 / 99.8 / 99.7 / 99.8

VGG-16 → Inception-v3
Baseline +RAP +RAP-LS

I 14.3 / 22.2 / 22.0 / 22.2 / 22.0 9.4 / 23.8 / 26.1 / 23.7 / 24.7 14.4 / 21.8 / 24.1 / 25.4 / 24.9
MI 32.3 / 31.3 / 31.0 / 30.1 / 30.0 16.4 / 30.4 / 36.9 / 42.0 / 42.7 32.4 / 30.7 / 35.0 / 39.2 / 42.2
TI 18.7 / 30.2 / 29.6 / 29.7 / 29.1 11.9 / 32.1 / 35.7 / 34.9 / 36.2 18.3 / 29.3 / 34.2 / 36.0 / 37.1
DI 18.1 / 29.7 / 29.9 / 30.4 / 29.9 14.2 / 43.6 / 46.1 / 46.5 / 46.6 18.0 / 29.2 / 50.1 / 51.5 / 51.6
SI 31.0 / 45.1 / 46.1 / 45.1 / 45.8 46.7 / 70.9 / 72.0 / 73.4 / 74.0 31.0 / 44.6 / 73.0 / 74.3 / 74.7

Admix 40.2 / 54.9 / 55.5 / 54.9 / 55.5 57.0 / 78.0 / 77.6 / 77.9 / 77.6 41.4 / 56.0 / 80.0 / 79.9 / 80.8
MI-TI-DI 50.7 / 55.9 / 57.2 / 56.7 / 56.8 41.9 / 74.0 / 79.0 / 81.5 / 82.6 50.7 / 56.4 / 77.8 / 80.0 / 81.4

MI-TI-DI-SI 77.6 / 85.3 / 85.7 / 85.0 / 85.0 85.5 / 93.1 / 93.7 / 94.2 / 94.1 78.0 / 85.0 / 94.4 / 94.6 / 95.2
MI-TI-DI-Admix 84.7 / 89.4 / 89.2 / 89.9 / 89.3 88.4 / 94.9 / 95.1 / 95.2 / 95.0 85.8 / 90.1 / 94.8 / 95.4 / 95.5

VGG-16 → ResNet-50
Baseline +RAP +RAP-LS

I 37.2 / 52.0 / 53.4 / 53.1 / 53.7 17.8 / 48.5 / 53.9 / 53.7 / 53.0 38.1 / 53.0 / 52.4 / 54.8 / 54.2
MI 60.2 / 64.3 / 63.5 / 62.0 / 62.5 32.9 / 57.1 / 67.6 / 73.1 / 76.2 60.4 / 62.0 / 66.3 / 73.2 / 76.4
TI 45.3 / 62.7 / 63.6 / 62.5 / 62.8 19.4 / 56.6 / 63.0 / 65.6 / 64.8 46.0 / 62.9 / 63.5 / 65.8 / 65.8
DI 51.5 / 72.9 / 73.2 / 72.5 / 72.2 29.6 / 80.9 / 85.0 / 86.4 / 86.0 51.4 / 73.8 / 88.9 / 89.2 / 88.8
SI 64.6 / 81.0 / 80.2 / 80.5 / 80.0 68.1 / 91.9 / 92.3 / 92.4 / 92.7 64.9 / 80.6 / 95.1 / 95.3 / 94.7

Admix 76.8 / 87.5 / 88.2 / 88.0 / 87.3 79.4 / 93.8 / 94.4 / 95.2 / 94.6 77.6 / 88.3 / 96.6 / 96.8 / 96.8
MI-TI-DI 81.1 / 89.9 / 89.8 / 90.3 / 90.0 66.7 / 94.6 / 96.3 / 96.9 / 97.2 81.4 / 88.5 / 96.5 / 97.3 / 97.7

MI-TI-DI-SI 95.1 / 97.6 / 98.0 / 97.9 / 97.6 94.7 / 98.4 / 98.8 / 98.9 / 98.8 95.2 / 97.5 / 99.3 / 99.4 / 99.4
MI-TI-DI-Admix 97.2 / 98.1 / 98.0 / 98.1 / 97.8 96.1 / 99.1 / 99.2 / 99.3 / 99.2 97.3 / 98.6 / 99.5 / 99.6 / 99.6

VGG-16 → DenseNet-121
Baseline +RAP +RAP-LS

I 35.4 / 50.4 / 49.8 / 48.4 / 49.1 15.4 / 46.0 / 49.6 / 50.5 / 50.6 35.2 / 50.3 / 49.7 / 52.9 / 51.4
MI 62.1 / 63.8 / 62.8 / 61.7 / 60.5 26.6 / 51.1 / 63.4 / 70.0 / 73.0 61.6 / 62.5 / 62.7 / 70.5 / 73.9
TI 43.5 / 58.6 / 58.7 / 57.2 / 55.9 19.4 / 55.8 / 62.7 / 63.0 / 63.7 44.3 / 58.3 / 60.3 / 63.8 / 62.1
DI 48.1 / 70.2 / 68.9 / 70.0 / 68.8 26.5 / 79.9 / 82.3 / 84.2 / 85.0 47.9 / 70.5 / 85.1 / 87.2 / 87.2
SI 65.3 / 82.3 / 82.4 / 82.0 / 82.1 71.3 / 93.3 / 93.7 / 94.4 / 94.8 65.5 / 82.2 / 95.2 / 95.4 / 95.7

Admix 79.6 / 89.4 / 88.6 / 88.4 / 88.2 83.5 / 96.1 / 95.9 / 96.2 / 96.4 79.2 / 88.9 / 97.4 / 97.4 / 97.2
MI-TI-DI 80.3 / 87.0 / 88.7 / 89.3 / 88.8 62.9 / 94.0 / 95.9 / 96.4 / 97.0 80.4 / 86.8 / 96.8 / 97.2 / 97.3

MI-TI-DI-SI 95.3 / 98.2 / 98.4 / 98.4 / 98.1 95.9 / 99.2 / 99.2 / 99.2 / 99.2 95.4 / 98.2 / 99.5 / 99.5 / 99.4
MI-TI-DI-Admix 97.1 / 98.6 / 98.8 / 99.1 / 98.9 97.4 / 99.4 / 99.6 / 99.6 / 99.5 97.3 / 98.5 / 99.5 / 99.5 / 99.6

Inc-v3 → ResNet-50
Baseline +RAP +RAP-LS

I 34.0 / 48.4 / 51.2 / 50.1 / 51.5 22.7 / 58.6 / 60.9 / 61.1 / 62.1 34.5 / 49.0 / 60.2 / 60.5 / 62.0
MI 58.5 / 59.1 / 60.4 / 60.3 / 62.0 43.8 / 77.0 / 81.7 / 84.0 / 85.8 58.5 / 59.1 / 80.0 / 82.6 / 84.8
TI 33.6 / 46.9 / 48.7 / 48.5 / 49.3 21.8 / 58.9 / 60.2 / 61.7 / 63.4 33.1 / 47.2 / 59.5 / 61.5 / 61.6
DI 48.4 / 65.8 / 67.2 / 68.4 / 68.4 33.3 / 78.8 / 81.4 / 81.4 / 81.7 48.3 / 65.7 / 80.7 / 82.3 / 81.8
SI 43.7 / 61.9 / 63.9 / 65.1 / 66.2 45.8 / 67.0 / 69.4 / 69.5 / 69.8 43.6 / 62.3 / 72.5 / 73.4 / 72.8

Admix 56.1 / 73.0 / 75.9 / 76.9 / 75.9 57.0 / 77.5 / 79.8 / 80.3 / 80.2 56.3 / 73.4 / 82.9 / 84.0 / 84.9
MI-TI-DI 72.2 / 79.5 / 81.9 / 81.9 / 82.9 61.2 / 88.1 / 90.8 / 91.9 / 91.8 72.2 / 79.4 / 89.9 / 91.5 / 90.6

MI-TI-DI-SI 82.9 / 88.3 / 88.3 / 88.4 / 89.0 83.5 / 90.8 / 91.2 / 90.6 / 91.2 82.8 / 88.1 / 91.9 / 92.6 / 92.3
MI-TI-DI-Admix 89.8 / 91.6 / 91.3 / 91.4 / 91.5 89.0 / 93.9 / 94.0 / 94.0 / 94.1 89.6 / 92.3 / 94.1 / 94.8 / 94.7
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Inc-v3 → DenseNet-121
Baseline +RAP +RAP-LS

I 35.2 / 47.2 / 47.3 / 46.8 / 48.7 21.4 / 54.3 / 57.2 / 59.4 / 60.8 34.9 / 47.5 / 58.7 / 58.8 / 60.0
MI 57.4 / 56.2 / 56.5 / 56.8 / 56.7 42.9 / 74.0 / 80.1 / 82.5 / 84.6 57.4 / 56.2 / 77.4 / 81.9 / 84.6
TI 35.8 / 48.6 / 47.8 / 48.9 / 49.4 22.1 / 59.6 / 63.3 / 65.7 / 63.4 35.5 / 48.7 / 61.6 / 64.2 / 63.8
DI 53.2 / 72.1 / 71.8 / 71.5 / 71.9 35.7 / 81.9 / 83.7 / 85.1 / 85.0 53.2 / 71.8 / 84.1 / 85.2 / 84.0
SI 46.6 / 63.7 / 65.1 / 65.9 / 65.9 52.6 / 72.4 / 73.5 / 74.5 / 74.9 46.6 / 63.0 / 77.7 / 77.9 / 77.2

Admix 60.5 / 76.7 / 78.0 / 79.3 / 78.5 63.9 / 83.2 / 83.4 / 84.1 / 83.7 61.9 / 76.9 / 87.7 / 87.3 / 87.4
MI-TI-DI 76.7 / 84.7 / 85.7 / 85.7 / 85.7 65.1 / 91.5 / 92.8 / 94.0 / 94.2 76.7 / 84.6 / 92.6 / 92.9 / 93.3

MI-TI-DI-SI 89.0 / 91.9 / 91.7 / 91.8 / 92.0 89.0 / 94.7 / 95.6 / 95.2 / 95.2 89.0 / 91.4 / 95.1 / 95.4 / 95.6
MI-TI-DI-Admix 93.5 / 95.5 / 95.9 / 95.1 / 95.4 93.3 / 96.8 / 96.9 / 96.4 / 96.2 94.1 / 95.5 / 97.2 / 97.5 / 97.6

Inc-v3 → VGG-16
Baseline +RAP +RAP-LS

I 39.9 / 53.1 / 54.1 / 53.7 / 55.1 29.1 / 63.0 / 65.8 / 66.9 / 65.9 39.7 / 52.6 / 65.6 / 68.3 / 68.0
MI 60.7 / 62.2 / 63.8 / 62.1 / 63.1 50.7 / 76.1 / 81.0 / 83.6 / 84.9 60.7 / 62.2 / 79.8 / 84.0 / 84.6
TI 41.6 / 55.1 / 55.2 / 55.3 / 58.1 31.1 / 65.9 / 67.1 / 68.2 / 68.6 41.5 / 55.1 / 66.3 / 68.0 / 69.5
DI 54.9 / 73.4 / 74.5 / 76.0 / 76.1 44.4 / 83.4 / 84.7 / 85.0 / 85.2 54.9 / 73.0 / 85.7 / 87.2 / 86.4
SI 46.7 / 62.4 / 64.4 / 65.7 / 66.0 47.4 / 67.6 / 69.2 / 68.6 / 69.2 46.3 / 64.1 / 72.4 / 72.1 / 73.0

Admix 57.3 / 73.2 / 72.8 / 74.0 / 74.5 57.3 / 75.4 / 75.9 / 77.5 / 77.2 55.3 / 73.4 / 82.6 / 82.2 / 83.5
MI-TI-DI 74.7 / 82.7 / 84.7 / 84.6 / 85.1 67.7 / 90.0 / 91.9 / 92.3 / 92.7 74.7 / 82.5 / 90.4 / 90.8 / 91.0

MI-TI-DI-SI 79.8 / 88.0 / 87.6 / 87.5 / 87.6 81.6 / 89.0 / 89.4 / 89.4 / 90.3 79.7 / 87.8 / 92.4 / 92.5 / 92.9
MI-TI-DI-Admix 87.9 / 89.7 / 90.7 / 91.4 / 91.4 87.0 / 92.2 / 92.3 / 92.5 / 93.2 87.7 / 91.7 / 94.5 / 94.6 / 94.1
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