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ABSTRACT

Event camera, a novel bio-inspired vision sensor, has drawn a lot of attention
for its low latency, low power consumption, and high dynamic range. Currently,
overfitting remains a critical problem in event-based classification tasks for Spik-
ing Neural Network (SNN) due to its relatively weak spatial representation ca-
pability. Data augmentation is a simple but efficient method to alleviate over-
fitting and improve the generalization ability of neural networks, and saliency-
based augmentation methods are proven to be effective in the image processing
field. However, there is no approach available for extracting saliency maps from
SNNs. Therefore, for the first time, we present Spiking Layer-Time-wise Rel-
evance Propagation rule (SLTRP) and Spiking Layer-wise Relevance Propaga-
tion rule (SLRP) in order for SNN to generate stable and accurate CAMs and
saliency maps. Based on this, we propose EventRPG, which leverages rele-
vance propagation on the spiking neural network for more efficient augmentation.
Our proposed method has been evaluated on several SNN structures, achieving
state-of-the-art performance in object recognition tasks including N-Caltech101,
CIFAR10-DVS, with accuracies of 85.62% and 85.55%, as well as action recog-
nition task SL-Animals with an accuracy of 91.59%. Our code is available at
https://github.com/myuansun/EventRPG.

1 INTRODUCTION

With the advent of event cameras, researchers have focused on applying the brain-inspired technique
to achieve a variety of tasks, as the asynchronous nature of event cameras mimics the way the
biological visual system works (Gallego et al., 2020). Event cameras record the change in brightness
of each pixel, and once the change in brightness of a pixel exceeds a predetermined threshold, an
event is triggered. The intrinsic properties of event cameras give them several advantages over RGB
cameras, including low power consumption, high dynamic range, low latency, and high temporal
resolution. These benefits highlight the potential of event cameras in challenging scenarios, such
as low-light and high-speed conditions, which has led to some research emphasizing the use of
event cameras for robotic sensing in challenging situations (Zuo et al., 2022; Chen et al., 2023).
Spiking Neural Network (SNN) (Maass, 1997) is a type of neural network that is inspired by the way
biological neurons communicate with each other. By integrating the biological neuronal dynamics
into individual neurons, SNN becomes capable of representing intricate spatio-temporal information
and dealing with asynchronous data naturally, typically event-based data.

In terms of classification tasks, a number of event-based datasets, such as N-MNIST, N-
Caltech101 (Orchard et al., 2015), and CIFAR10-DVS (Li et al., 2017), have been used to evaluate
the performance of artificial neural networks (ANNs) and SNNs. However, the issue of overfitting
still poses a significant challenge for event-based datasets. Data augmentation is an efficient method
for improving the generalization and performance of a model. Lots of methods have been proposed
to augment event-based data, for example, transferring classic geometric augmentations from image
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field to event-based field (Li et al., 2022), randomly dropping events (Gu et al., 2021), and mixing
two event streams with a randomly sampled mask (Shen et al., 2023). Nevertheless, current mixing
augmentation strategies in event-based field do not consider the size and location information of
label-related objects, and thus may produce events with incorrect labels and disrupt the training pro-
cess. To address this problem in image processing field, Uddin et al. (2020); Kim et al. (2020) mix
the label-related objects together based on the saliency information obtained from neural networks.
This paradigm achieves better results compared with conventional non-saliency augmentations. Kim
& Panda (2021b) was the first to explore acquiring saliency information from SNNs. In this work,
Spiking Activation Map (SAM) was presented to reveal the model’s attention by weighted adding
of the intermediate feature maps. Since the CAMs obtained from this method are not related to the
network’s predictions, their precision regarding the shape and position of label-related objects is still
not satisfactory.

In this paper, we present two novel methods extended from layer-wise relevance propagation
(LRP) (Bach et al., 2015) to visualize the label-related saliency information of SNNs, each offering
distinct advantages in terms of temporal precision and computational time. Moreover, guided by this
saliency information, we develop two data augmentation approaches targeted at event-based data,
demonstrating significant improvements in the performance and generalization capability of SNNs
across multiple classification tasks.

Our contributions are summarized as follows:

• We propose Spiking Layer-Time-wise Relevance Propagation (SLTRP) and Spiking Layer-
wise Relevance Propagation (SLRP) to accurately reveal the saliency information of SNNs.
The former reveals information across time, while the latter is less time-consuming.

• We present RPGDrop and RPGMix. By dropping and mixing events with the guidance
of relevance propagation obtained from SLRP or STLRP, the augmented samples exhibit
increased diversity and tight correlation with the labels. Combined with several geometric
data augmentations, we formulate our data augmentation strategy namely EventRPG.

• We evaluate our proposed saliency visualizing method and data augmentation method using
various SNNs on event-based object and action recognition datasets. Experiments demon-
strate that our SLRP and SLTRP can generate high quality CAMs and saliency maps with
sub-optimal computing time. EventRPG achieves state-of-the-art performance on both
object recognition and action recognition tasks with limited time consumption.

2 PRELIMINARY

Layer-wise Relevance propagation (LRP) was first introduced in (Bach et al., 2015) as a visualiza-
tion tool for generating saliency maps that show the contribution of individual pixels in the input
data to the model prediction or a specific class, facilitating the interpretability of neural networks.
According to the LRP rule, we assign a value to each neuron to represent the neuron’s contribution
to the prediction or target class, called Relevance Score. The idea of LRP is to find a propagation
rule satisfying the following definition.
Definition 1 (Conservation Property). On a neural network with L layers, the relevance score of
each layer satisfies

c =
∑
i

R
(l)
i , ∀l ∈ [0, L], (1)

where c is a constant value and R
(l)
i is the relevance score of ith neuron on layer l. R(0) is the

relevance score before input layer.
We calculate the relevance score of ith input neuron on layer l R(l−1)

i by the sum of all relevance
scores propagated from all the connections in this layer:

R
(l−1)
i =

∑
j

R
(l−1,l)
i←j . (2)

Utilizing the αβ-rule (Montavon et al., 2017) and abandoning the bias term b, we obtain the rel-
evance score that should be propagated from the jth neuron in layer l to the ith neuron in layer
l − 1:

R
(l−1,l)
i←j = R

(l)
j ·

(
α ·

z+ij∑
i z

+
ij

+ β ·
z−ij∑
i z
−
ij

)
, (3)
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Figure 1: Forward propagation flow and relevance propagation flow of ANNs (a) and SNNs (b, c).

where α + β = 1. z+ij = w+
ij · x

+
i + w−ij · x

−
i and z−ij = w+

ij · x
−
i + w−ij · x

+
i are respectively the

positive and negative contribution of the ith neuron in layer l − 1 to the jth neuron in layer l. This
relevance propagation rule satisfies definition 1, and the proof can be seen in appendix D.1.

3 SPIKING RELEVANCE PROPAGATION RULE

In an SNN, information is represented by the timing and frequency of spikes. Neurons in an SNN
generate spikes when their membrane voltage reaches a certain threshold. These spikes propagate
through the network, influencing the activity of other neurons layer by layer. Two popular and
fundamental models used to represent basic spiking neurons are the Leaky Integrate-and-Fire (LIF)
neuron model and the Integrate-and-Fire (IF) neuron model:

fLIF (V, I) = e−
∆t
τ V [t− 1] +

(
1− e−

∆t
τ

)
I[t], (4)

fIF (V, I) = V [t− 1] + I[t], (5)

where τ is the attenuation factor and ∆t is the interval between time steps satisfying ∆t << τ .
Membrane voltage V can be interpreted as the information reserved by a neuron from the previous
time step t− 1. I[t] indicates the input of the neuron at the current time step.

In practice, researchers would replace the activation layer in an ANN with spiking layers represented
by eq. (4) or eq. (5) to construct an SNN. As shown in fig. 1a, an ANN consists of linear layers
and activation layers and passes information layer by layer. These two layer types do not include
variables related to time and as such we propagate the relevance scores through them layer by layer.

3.1 RELEVANCE PROPAGATION FOR LINEAR LAYERS IN SNNS

Information in SNNs is propagated through time in spiking layers, while the linear layers do not
transmit information across different time steps. Any linear layer’s output y[t] at time step t only
correlates to its input x[t] at time step t, and we conduct relevance propagation using eq. (3) on this
layer separately for each time step. Specifically, for linear layer l, we extend the eq. (3) with suffix
“[t]” representing the time step t, and we have

R
(l−1)
i [t] =

∑
j

R
(l−1,l)
i←j [t], (6)

R
(l−1,l)
i←j [t] = R

(l)
j [t] ·

(
α ·

z+ij [t]∑
i z

+
ij [t]

+ β ·
z−ij [t]∑
i z
−
ij [t]

)
, (7)

in which z+ij [t] = w+
ij · x

+
i [t] +w−ij · x

−
i [t] and z−ij [t] = w+

ij · x
−
i [t] +w−ij · x

+
i [t]. Next, we focus on

the derivation of the relevance propagation rule on spiking layers.

3.2 SPIKING LAYER-TIME-WISE RELEVANCE PROPAGATION

From eq. (4) we know that in the forward propagation, the output of a LIF neuron at time step t
(t > 0) depends on this layer’s input current I[t] at the current time step and the membrane voltage
V [t − 1] from the previous time step. Therefore, we should propagate the relevance score to the
neuron’s internal voltage at the previous time step and to the input current at the current time step,
as shown in fig. 1b. Assume there are overall T time steps. Similar to αβ-rule, we propagate
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the relevance score based on its positive contribution and negative contribution at each time step
t ∈ [1, T ]. Consider a neuron in spiking layer l at time step t. We decomposite and represent it in a
general manner:

f(V, I) = c · V [t− 1] + d · I[t] (8)
where c and d are coefficients depending on the neuron type:

c =

{
e−

∆t
τ LIF Neuron,

1 IF Neuron,
d =

{
1− e−

∆t
τ LIF Neuron,

1 IF Neuron.

Based on eq. (8), at time step t, we define the proportion of relevance score that should be propagated
to the previous time step as

γ[t] = α · c · V +[t− 1]

c · V +[t− 1] + d · I+[t]
+ β · c · V −[t− 1]

c · V −[t− 1] + d · I−[t]
, (9)

where superscripts + and − denote the positive and negative values, respectively. For each neuron
in spiking layer l, By initializing the relevance score at the final time step as R(l−1)[T ] = R(l)[T ]
and subsequently updating relevance scores iteratively as time step t from T to 1 using

R(l−1)[t− 1]← γ[t] ·R(l−1)[t] +R(l)[t− 1], (10)

R(l−1)[t]← (1− γ[t]) ·R(l−1)[t], (11)
we propagate the relevance score of every neuron in spiking layers to all time steps. With iteration
formulas (10) and (11), we could derive the relevance score at each time step

R(l−1)[t] = (1− γ[t])

 T∑
i=t+1

R(l)[i]

i∏
j=t+1

γ[j] +R(l)[t]

 . (12)

Proposition 1. The sum of relevance scores propagated after spiking layer l from time step 1 to
k(k < T ) is

k∑
t=1

R(l−1)[t] =

k∑
t=1

R(l)[t] +

T∑
i=k+1

R(l)[i]

i∏
j=k+1

γ[j]. (13)

The proof is provided in appendix D.2. With proposition 1, we have
T∑

t=1

R(l−1)[t] =

T−1∑
t=1

R(l−1)[t] +R(l−1)[T ] =

T−1∑
t=1

R(l)[t] + γ[T ]R(l)[T ] + (1− γ[T ])R(l)[T ]

=

T−1∑
t=1

R(l)[t] +R(l)[T ] =

T∑
t=1

R(l)[t]. (14)

This is a stronger Conservation Property since the relevance score stays unchanged for every neuron
in a spiking layer. This indicates that leveraging formulas (10) and (11), we are able to propagate
relevance scores through any spiking layer while satisfying the Conservation Property. Combining
with relevance propagation rules introduced in section 3.1, we could propagate relevance scores
to any layer in an SNN, thereby revealing the saliency information across time, namely Spiking
Layer-Time-wise Relevance Propagation (SLTRP).

3.3 SPIKING LAYER-WISE RELEVANCE PROPAGATION

SLTRP could reveal the saliency information at any time step, and would thus cost more time to
conduct the whole relevance propagation process compared with ANNs. Under some circumstances,
e.g., on datasets transformed from static images where coordinates of events tend to be fixed w.r.t.
the time, we don’t need to obtain the saliency score of some specific time step and only require the
saliency information stacked from all time steps R(l) ≡ 1

T

∑T
t R(l)[t]. For any spiking layer l, from

eq. (14) we have R(l−1) = R(l).

In terms of linear layers, we sum the positive and negative contribution values of the ith neuron to
jth neuron through time dimension as

z+ij ≡
1

T

∑
t

z+ij [t] =
1

T

∑
t

(w+
ij · x

+
i [t] + w−ij · x

−
i [t]) =

1

T
(w+

ij ·
∑
t

x+
i [t] + w−ij ·

∑
t

x−i [t]),

z−ij ≡
1

T

∑
t

z−ij [t] =
1

T

∑
t

(w+
ij · x

−
i [t] + w−ij · x

+
i [t]) =

1

T
(w+

ij ·
∑
t

x−i [t] + w−ij ·
∑
t

x+
i [t]).
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Figure 2: Illustration of Relevance Propagation Guided Event Mix and Event Drop. (a) RPGDrop.
Where the saliency map offers a higher value, events are more likely to be dropped.(b) RPGMix.

Then we propagate the relevance scores of linear layer using eq. (2) and eq. (3) with different def-
initions of R(l−1), R(l), z+ij and z−ij . This enables a spiking relevance propagation process without
consideration of the time dimension, saving time costs and being more practical for datasets trans-
formed from static images, namely Spiking Layer-wise Relevance Propagation (SLRP) (see fig. 1c).

4 RELEVANCE PROPAGATION GUIDED EVENT DATA AUGMENTATION

4.1 SALIENCY MAP AND CLASS ACTIVATION MAP

In an SNN, we first leverage Contrastive Layer-wise Relevance Propagation (CLRP) (Gu et al.,
2018) to initialize the relevance scores of the output layer for each time step. Then we propagate the
relevance scores backward using SLRP or SLTRP depending on the dataset. Relevance scores are
propagated throughout all layers to create saliency maps, while class activation maps (CAMs) can
be formed in two ways. One method involves summing the relevance scores from a specific interme-
diate layer across the channel dimension, resulting in SLRP-CAM and SLTRP-CAM. Alternatively,
CAMs can be generated by calculating a weighted sum between relevance scores and feature maps,
a method referred to as SLRP-RelCAM and SLTRP-RelCAM (Lee et al., 2021).

4.2 RELEVANCE PROPAGATION GUIDED EVENT DROP

Gu et al. (2021) has proven randomly dropping events to be an effective augmentation strategy.
Furthermore, we expect to drop events more frequently in regions with label-related objects, mo-
tivated by the fact that disturbing regions with no label-related information (namely background)
would have a negligible impact on the classifier’s prediction. The label-related information can be
provided by CAM and saliency map, where higher values imply higher model attention and label
relevance. Since saliency map accurately reveals the relevance score of each pixel to the target in the
input data, we leverage saliency map to guide dropping, detailly illustrated in fig. 2a. The higher the
value of a pixel, the higher the probability that we will drop events on that pixel. θ is the parameter
controlling the magnitude of augmentation.

4.3 RELEVANCE PROPAGATION GUIDED EVENT MIX

Event-based data, in contrast to image-based data, does not include color details, with the most
crucial aspect being the texture information it contains. The overlapping of label-related objects
will impair the texture details of these objects, which in turn further degrades the quality of features
extracted in SNNs. Building upon this motivation, we propose Relevance Propagation Guided Event
Mix (RPGMix). The whole mixing strategy is illustrated in fig. 2b. For two event-based data
candidates, we utilize relevance propagation to localize the label-related regions and obtain two
bounding boxes. To mix two objects with clear texture features, we randomly select two positions
ensuring minimal overlap of their bounding boxes. This involves initially positioning one box at a
corner to maximize the nonoverlapping area for the other box’s placement, then selecting positions
for both boxes in order, maintaining minimal overlap and maximizing sampling options. Finally, the
two event streams are moved to the sampled positions. Although this linear translation part prevents
the overlapping of label-related objects, the background of one object would still overlap with the
other object. Moreover, in one single time step, the representation ability of the spiking neurons
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(which only output binary information) is much worse than that of the activation layer (usually
ReLU) of ANNs, making them less capable of spatial resolution and more likely to fall into local
optima. Therefore, to promise the presence of only events from a single event stream candidate per
pixel, avoiding regions with mixed information from interfering with the SNN, we adopt a CutMix
strategy to mask the two event streams based on the bounding box of the second event stream, as
demonstrated in the left part in fig. 2b. Kim et al. (2020) takes the sum of each sample’s mask as
the ratio of their corresponding labels. This ensures that the proportion of labels in the mixed label
matches the proportion of pixels belonging to each sample. In our approach, we further aim to align
the proportion of labels with the proportion of label-related pixels, which can be estimated using the
bounding boxes. As a result, the labels of the two event streams are mixed as

Lmix =
L1(w1h1 − Soverlap) + L2w2h2

w1h1 + w2h2 − Soverlap
, (15)
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…
…

A Batch of Events
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Identity
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Figure 3: Augmentation process of EventRPG.

where wi and hi denote the width and height
of the bounding box in the event stream i. L1

and L2 are the one-hot labels of the two event
streams and Soverlap is the area of the overlap-
ping region of the two bounding boxes.

4.4 EVENTRPG
Combined with a few geometric data augmen-
tation methods in NDA (Li et al., 2022), we for-
mulate our data augmentation strategy namely
EventRPG as shown in fig. 3. Specifically,
for a batch of input event streams, each of the
event streams would be augmented with ran-
domly sampled policy and magnitude. They
then have a probability of 0.5 to be augmented
by RPGMix.

5 EXPERIMENTS

5.1 EFFECTIVENESS OF SLRP AND SLTRP
In this subsection, we evaluate the effectiveness of our approach for generating CAMs and saliency
maps. Current event-based datasets for classification can be divided into two tasks: object recogni-
tion task and action recognition task. Generally, the former mainly involves event streams generated
from jittering of static images, while the latter mainly involves event streams recorded in real envi-
ronments, containing more dynamic information. We perform experiments on both types of datasets
to showcase the effectiveness of our approach. We visualize the feature before the last fully con-
nected layer as CAM.

Method
Object Recognition Action Recognition

N-Caltech101 CIFAR10-DVS N-Cars DVSGesture SL-Animals

A.I. ↑ A.D. ↓ A.I. ↑ A.D. ↓ A.I. ↑ A.D. ↓ A.I. ↑ A.D. ↓ A.I. ↑ A.D. ↓
SAM (Kim & Panda, 2021b) 0.86 22.33 1.23 46.83 5.24 5.89 8.27 10.83 20.60 8.23

Grad-CAM (Selvaraju et al., 2017) 12.03 41.71 8.31 22.15 21.77 17.74 0.41 67.09 0.80 81.44
Grad-CAM++ (Chattopadhay et al., 2018) 24.82 10.32 6.23 26.33 26.04 5.41 7.99 10.41 11.78 22.21

SLRP-RelCAM (Lee et al., 2021) 17.51 10.44 7.60 23.41 22.05 19.00 13.11 6.41 26.49 10.67
SLTRP-RelCAM (Lee et al., 2021) 17.54 10.44 7.60 23.41 22.05 19.00 13.05 6.40 26.49 10.67

SLRP-CAM 34.24 5.75 8.41 23.50 15.72 23.80 7.79 29.99 10.88 40.95
SLTRP-CAM 34.24 5.75 8.41 23.50 15.72 23.80 7.79 30.02 10.88 40.95

SLRP-Saliency Map 34.12 4.18 9.44 19.99 22.98 6.77 22.20 13.86 22.30 20.57
SLTRP-Saliency Map 34.17 4.19 9.51 19.98 22.84 6.75 21.17 13.95 22.30 20.79

Table 1: Comparison of A.I. and A.D. on event-based object recognition and action recognition
datasets. We highlight the best results in bold and the second best results with underlining.

5.1.1 OBJECTIVE FAITHFULNESS

We adopt two widely used metrics, Average Drop (A.D.) and Average Increase (A.I.), to measure
the objective faithfulness of our method compared with other typical visualization tools. These two
metrics explain how well an attention map explains a model’s attention by measuring the average
change in the model’s output when the attention map is applied as a mask to the input. The higher
the A.I. and the lower the A.D., the better the attention map explains the model’s attention. We
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compare our method with Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al.,
2018), and SAM (Kim & Panda, 2021b) on both object recognition datasets and action recognition
datasets.

On object recognition task, our method achieves the best performance in terms of A.I. and A.D. on
large datasets including N-Caltech101 and CIFAR10DVS, demonstrating the effectiveness of our
method in generating CAMs and saliency maps. On the N-Cars dataset, Grad-CAM++ outperforms
our method. This disparity may be due to N-Cars being a binary classification task that solely
focuses on detecting the presence of a car in the event stream, in contrast to other datasets requiring
multi-class object localization.

In terms of action recognition task, methods with spiking relevance propagation outperform other
methods significantly, with an A.I. metric almost thrice as good as the best method without spiking
relevance propagation — Grad-CAM++, in the DVSGesture dataset. In the SL-Animals dataset,
RelCAM achieves the best results in terms of A.I. and also has a low A.D. value. Note that RelCAM
is also obtained based on the relevance scores from SLRP and SLTRP. Therefore, its good results
also helps to demonstrate the effectiveness of our spiking relevance propagation rules.
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Figure 4: CAM and saliency map by different methods on (a) N-Caltech101 and (b) CIFAR10-DVS.
(c) Saliency maps generated from SLTRP on DVS-Gesture and SL-Animals.

5.1.2 EVALUATION OF SELECTIVITY

We visualized the saliency map and CAM results of ours and other methods from Spiking-VGG11
and SEW Resnet18. As shown in fig. 4a, our method is more selective than other methods, with a
higher value on the label-related objects and a lower value on the background. In contrast, Grad-
CAM and SAM are more likely to be affected by the background, and Grad-CAM++ failed to locate
the “dragonfly” on the top row, even though there are no other label-unralated events in this sample.
On CIFAR10-DVS, SLRP-CAM and SLRP-RelCAM successfully localize the dog’s head, whereas
the attention of the other methods drifted to other regions.

The saliency maps generated from SLTRP are able to track the exact moving object in the dataset
(see fig. 4c). In the demonstration of SL-Animals dataset, the saliency map first focuses on the hand
part to recognize the gesture. In the later time steps, it transfers its attention to the arm to capture
the moving information. This proves its capability of temporal saliency information capturing , also
yielding high selectivity.

Model Resolution Grad-CAM Grad-CAM++ SLRP-RelCAM SLTRP-RelCAM SAM SLRP-CAM SLRP-Saliency Map SLTRP-CAM SLTRP-Saliency Map

Spiking VGG-11 (48, 48) 0.0776 0.0884 0.0225 0.0233 0.0267 0.0246 0.0645 0.0279 0.1157
(128, 128) 0.0842 0.0996 0.0335 0.0347 0.0303 0.0323 0.0716 0.0345 0.1886

SEW Resnet18 (128, 128) 0.2629 0.2846 0.0902 0.1072 0.0909 0.0869 0.1960 0.0785 0.2881

Table 2: Average time cost (s) of generating CAM and saliency map on N-Caltech101 (Spiking-
VGG11) and DVSGesture (SEW Resnet18). Results within the quickest tier are highlighted in bold.
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5.1.3 COMPUTATION TIME

As shown in table 2, SLRP-CAM, SLTRP-CAM are on the same level as SLTRP-RelCAM, SLRP-
RelCAM, and SAM, all among the fastest methods. SLRP-Saliency Map and SLTRP-Saliency
Map are slower than other methods, while still being competitive on SEW Resnet18 compared with
Grad-CAM and Grad-CAM++. The time cost of SLTRP-CAM does not increase a lot compared to
SLRP-CAM, since it only requires the relevance computation of the last fully connected layer. In
contrast, the time cost of SLTRP-Saliency Map is much higher than SLRP-Saliency Map, since it
requires the relevance computation of all layers.

5.2 RESULTS OF EVENTRPG

Dataset Data Augmentation Training Method Neural Network Neuron Timesteps Resolution Accuracy

N
-C

al
te

ch
10

1

Flip SALT (Kim & Panda, 2021a) Spike-VGG16 LIF 20 (80,80) 55.00
NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (48,48) 78.20
NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (128,128) 83.70

Eventmix (Shen et al., 2023) STBP Pre-Act Resnet18 PLIF 10 (48, 48) 79.47

Identity

TET (Deng et al., 2022) Spike-VGG11 LIF 10 (128,128)

75.70
EventDrop (Gu et al., 2021) 74.04

EventRPG (CAM) 85.00
EventRPG (Saliency Map) 85.62

C
IF

A
R

10
-D

V
S

Drop by time STBP SEW Wide-7B-Net PLIF 16 (128,128) 74.40
Flip SALT (Kim & Panda, 2021a) Spike-VGG16 LIF 20 (64,64) 67.10

Random Crop DSR (Meng et al., 2022) Spike-VGG11 IF 20 (48,48) 75.03 ± 0.39
Random Crop DSR (Meng et al., 2022) Spike-VGG11 LIF 20 (48,48) 77.27±0.24
FlipTranslation TET (Deng et al., 2022) Spike-VGG11 LIF 10 (48,48) 83.17±0.15

NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (48,48) 79.60
NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (128,128) 81.70

Eventmix (Shen et al., 2023) STBP Pre-Act Resnet18 PLIF 10 (48,48) 81.45

Identity

TET (Deng et al., 2022) Spike-VGG11 LIF 10 (48, 48)

78.85
EventDrop (Gu et al., 2021) 77.73

EventRPG (CAM) 85.55
EventRPG (Saliency Map) 84.96

N
-C

ar
s

NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (48,48) 90.10
NDA (Li et al., 2022) STBP-tdBN (Zheng et al., 2021) Spike-VGG11 LIF 10 (128,128) 91.90

Eventmix (Shen et al., 2023) STBP Pre-Act Resnet18 PLIF 10 (48,48) 96.29
Identity

TET (Deng et al., 2022) Spike-VGG11 LIF 10 (48,48)

94.92
EventDrop (Gu et al., 2021) 95.46

EventRPG (CAM) 95.76
EventRPG (Saliency Map) 96.00

Table 3: Accuracy of various data augmentation methods on event-based object recognition datasets.
All of the datasets used are created using event cameras. Specifically, N-Caltech101 and CI-
FAR10DVS are derived from static images, while N-Cars is recorded in real-world environments.

In this section, we evaluate our proposed EventRPG with other augmentation methods including
EventDrop (Gu et al., 2021), NDA (Li et al., 2022), and EventMix (Shen et al., 2023) across several
object recognition and action recognition datasets. They could illustrate the performance of our
methods in terms of static objects and moving objects, respectively. The datasets used and training
settings are introduced in appendix C in details. Since SLRTP and SLRP yield nearly identical
results for object recognition tasks, we only leverage SLRP in object recognition experiments since
it costs fewer time. Eventdrop (Gu et al., 2021) did not conduct experiments on SNNs, so we
reproduce it using its public code and conduct experiments under the same training setting of ours.
We report the best accuracy for each experiment using same random seed.

5.2.1 OBJECT RECOGNITION TASKS

From table 3 we see that EventRPG achieves state-of-the-art performance on N-Caltech101 and
CIFAR10-DVS datasets, bringing 9.92% and 6.7% improvements compared with identity (no aug-
mentation), respectively. On N-Cars, EventRPG achieves the second-best performance, only
0.29% lower than EventMix. This might be attributed to the fact that N-Cars is a binary classi-
fication dataset, which only contains label “car” and “background”. Most samples belonging to
“background” do not have a specific label-related object to locate, making it difficult for our method
to generate saliency map and CAM with high quality, thus decreasing the performance.

5.2.2 ACTION RECOGNITION TASKS

We implement EventRPG on SEW Resnet18 for action recognition tasks. On DVSGesture dataset,
our method achieves best results compared with other reproduced augmentation methods under the
same training settings, though slightly lower than EventMix on Pre-Act Resnet18. On SL-Animals
dataset, our method achieves state-of-the-art performance among all data augmentation apporaches
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Model Spike Method DVSGesture SL-Animals

4 sets 3 sets

7-Layer Spiking CNN Hybrid SCTFA (Cai et al., 2023) 98.96 90.04 -
GoogLeNet % TORE (Baldwin et al., 2022) 96.20 85.10 -

Event Transformer % EvT (Sabater et al., 2022) 96.20 88.12 87.45
Pre-Act Resnet18 ! EventMix (Shen et al., 2023) 96.75 - -

SEW Resnet18 !

Identity 94.33 85.42 89.09
EventDrop (Gu et al., 2021) 92.33 86.33 88.99

NDA (Li et al., 2022) 93.67 87.77 89.55
EventRPG (CAM, SLRP) 95.83 90.97 91.96

EventRPG (Saliency Map, SLRP) 95.49 91.59 93.30
EventRPG (CAM, SLTRP) 96.18 90.54 90.63

EventRPG (Saliency Map, SLTRP) 96.53 90.04 93.75

Table 4: Accuracy of various data augmentation methods on event-based action recognition datasets.

and all neural networks, with 3.82% and 4.2% improvements compared with the second-best aug-
mentation method on 4 sets and 3 sets, respectively. Action recognition tasks include more dynamic
information compared to object recognition tasks. Thus, the success of our method on action recog-
nition tasks demonstrates its great potential for other dynamic event-based datasets, which is a future
direction worth exploring.

5.2.3 TIME CONSUMPTION ANALYSIS
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Figure 5: Average time cost of augmentation methods with SEW Resnet18 on two datasets.

In order to assess the computational efficiency of our data augmentation method, we perform two
experiments to measure the time required for executing EventRPG with SLRP and SLTRP in ob-
ject recognition and action recognition tasks. As depicted in fig. 5, the computation time of other
data augmentation approaches remains constant regardless of the batch size, whereas our method
exhibits a nearly linear decrease in computation time as the batch size increases, since the relevance
propagation process, which is the main contributor to the time consumption, can be speeded up by
parallizing computing across samples in a batch, similar to the gradient backpropagation process.
When the batch size for each GPU exceeds 4, both SLRP and SLTRP achieve comparable speeds to
NDA and EventDrop, confirming the time efficiency of EventRPG.

6 CONCLUSION AND LIMITATION

Conclusion In this paper, for the first time, we propose SLTRP and SLRP, two efficient and prac-
tical methods for generating CAMs and saliency maps for SNNs. Building upon this, we propose
EventRPG, i.e., dropping events and mixing events with Relevance Propagation Guidance. Since
EventRPG only disturbs and mixes regions on which model concerns most, it is more efficient com-
pared to vanilla dropping and mixing, and also alleviates the likely misalignment problem between
data and label. In our experiments, SLRP and SLTRP not only both yeild best results compared with
other feature visualization tools, but also consume very little time to compute. EventRPG achieves
state-of-the-art performance on N-Caltech101, CIFAR10-DVS and SL-Animals datasets, proving its
strong generalization ability across different models and datasets.
Limitation Currently, EventRPG can only be implemented on classification tasks, remaining as
a limitation. However, we could still leverage multi-task training paradim which has been proven to
be effective to implement it into other downstream tasks, and we will also explore more possibilities
of using EventRPG in self-supervised learning tasks.
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APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

Here we present more experiments to further prove the effectiveness of our approach.

A.1 CLASSIFICATION ON MINI N-IMAGENET DATASET

N-ImageNet, as proposed by Kim et al. (2021), represents the neuromorphic adaptation of the well-
known ImageNet dataset. It encompasses a thousand object categories, making it the most challeng-
ing task in event-based classification to date. We conduct experients to evaluate the performances of
different data augmentation methods on mini N-ImageNet with SEW Resnet-18.

Data Augmentation Identity EventDrop NDA EventRPG

Top-1 Accuracy 28.16 34.18 35.84 40.90
Top-5 Accuracy 52.14 60.94 63.64 67.74

Table 5: Top-1 and Top-5 Accuracies (%) on mini N-ImageNet.

Table 5 demonstrates that data augmentations significantly enhance the performance of the model,
as shown by the notable positive effects. In this comparison, our approach outperforms the nearest
competitor NDA, achieving a higher Top-1 accuracy by 5.06% and Top-5 accuracy by 4.1%.
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Figure 6: The loss and Accuracy curves of different augmentations on mini N-ImageNet.

As shown in fig. 6a, the performance disparity between EventRPG and NDA is as significant as the
one observed between EventDrop and Identity. Additionally, late epochs of EventDrop and Identity
exhibit overfitting, a problem that is effectively mitigated in NDA and EventRPG, as illustrated
in fig. 6b. These outcomes highlight again the efficiency of our approach in boosting the model’s
performance and mitigating overfitting.

A.2 COMPARISON WITH OTHER SALIENCY-BASED MIX METHODS

We also compare the performance of various saliency-based mix methods on two typical datasets:
N-Caltech101 and SL-Animals. In the experients, there is a 50% chance for each event stream to
be augmented by corresponding mix approach with no other augmentations applied. Notably, it’s
observed in table 6 that both Saliency Mix (Uddin et al., 2020) and Puzzle Mix (Kim et al., 2020)
occasionally result in lower performance than the identity approach. This underscores RPGMix’s
robust generalization capability, as it consistently excels across all datasets.

To clearly showcase the differences among these mix methods, we present visualizations of the
augmented samples they produce (see fig. 7). In most cases, our RPGMix aims to preserve as many
label-related pixels as possible.
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Figure 7: Mixed samples generated by different methods on N-Caltech101.
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Dataset Model Identity Saliency Mix Puzzle Mix Puzzle Mix (mask only) RPGMix

N-Caltech101 Spike-VGG11 75.70 72.63 79.38 78.13 81.75
SL-Animals-4Sets SEW Resnet18 85.42 84.00 85.34 85.68 88.67
SL-Animals-3Sets SEW Resnet18 89.09 89.29 88.39 90.18 90.45

Table 6: Accuracy of Puzzle Mix, Saliency Mix, and RPGMix on object and action recognition
tasks.

A.3 ADDITIONAL QUAILITATIVE RESULTS

We present additional qualitative results of our method applied to the N-Caltech101, SL-Animals,
and DVS-Gesture datasets. The saliency maps created using SLTRP, as shown in fig. 8, exhibit
strong selectivity. They assign high values to label-related objects and low values to label-unrelated
objects. In action recognition datasets, saliency maps primarily focus on label-related moving ob-
jects to capture the dynamic aspects of actions, as illustrated in fig. 9. In SL-Animals datasets
(second row), the saliency maps focus on the person’s hand raised to his/her head, assigning mini-
mal attention to the lower area of the person, despite its high event density. Similarly, in the fourth
row, the saliency maps show little interest in the person’s right hand (from our perspective), focusing
instead on the left hand, even though both hands have similar event densities. These results illustrate
that it’s the label-related actions, rather than event density, that truly draw the focus of the saliency
maps. This observation further confirms the selectivity of SLTRP-generated saliency maps in both
action recognition and object recognition datasets.

B RELATED WORK

B.1 EVENT-BASED DATA

Event-based data is generated by asynchronous sensors, usually referred to as event cameras (Ma-
howald, 1994; Son et al., 2017). Similar to point cloud, event-based data consists of four-
dimensional points, denoted as (x, y, t, p), where x and y are the spatial coordinates, t is the times-
tamp, and p is the polarity. Due to the inherent advantages of event cameras, event-based data is
widely used in the field of perception, e.g., optical flow estimation (Gehrig et al., 2021), depth es-
timation (Wang et al., 2021), 3d reconstruction (Baudron et al., 2020; Rudnev et al., 2022), motion
segmentation (Stoffregen et al., 2019; Zhou et al., 2021), semantic segmentation (Kim et al., 2022),
etc.

There are two mainstream approaches to processing event-based data, frame-based approaches and
event-by-event-based approaches. Frame-based approaches (Kogler et al., 2009; Bardow et al.,
2016; Lagorce et al., 2016; Gehrig et al., 2019) are similar to image processing, where events are
first converted into frames with a fixed shape (C,H,W ), and then the frames are fed into an ANN
for downstream classification or regression tasks. Event-by-event-based approaches handle events
on a one-by-one basis, which is natural for SNNs (Lee et al., 2020; Fang et al., 2021a; Deng et al.,
2022).

B.2 DATA AUGMENTATION

Vanilla data augmentations include simple transformations such as scale, rotation, flip, etc.
Mixup (Zhang et al., 2018) proposes mixing two randomly selected samples and their corresponding
labels as new data and label for training, based on which several works that modify the mixing de-
tails were proposed to further improve the robustness and performance (Yun et al., 2019; Hendrycks
et al., 2019). Kim et al. (2020); Uddin et al. (2020) are similar to our proposed RPGMix that lever-
ages the model’s saliency information to augment the data, while our motivation and implementation
details are quite different from them.

B.3 RELEVANCE PROPAGATION

Relevance propagation was initially presented in (Montavon et al., 2017) as a method for creating
saliency maps to visualize the impact of each pixel in the input data on the prediction of the model
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Figure 8: SLTRP-Saliency Maps from Spike-VGG11 on N-Caltech101.
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SL-Animals

DVS-Gesture

Figure 9: SLTRP-Saliency Maps from SEW Resnet-18 on SL-Animals and DVS-Gesture.
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or a particular class, thereby enhancing the interpretability of neural networks. The specificity of
saliency maps towards the target class can be improved by employing Contrastive Layer-wise Tele-
vance Propagation (CLRP) as described by Gu et al. (2018), which diminishes the relevance scores
for non-target classes.

B.4 CLASS ACTIVATION MAP

As another visualization tool describing the area of most interest to the model, Class Activation
Map (CAM) is widely used to interpret the model’s attention and to find objects belonging to a
certain class in the input data. The original CAM (Zhou et al., 2016) could only visualize the
activation map of the last global average pooling (GAP) layer of the model, requiring the model to
have a special structure. Grad-CAM (Selvaraju et al., 2017) overcomes this limitation by replacing
the weights of GAP with the sum of gradients, enabling the acquisition of CAM from any CNN
model. On this basis, Grad-CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020),
and Relevance-CAM (Lee et al., 2021) were proposed to improve the quality of CAMs.

C DATASETS AND TRAINING DETAILS

C.1 OBJECT RECOGNITION TASK

N-Caltech101 The neuromorphic version (Orchard et al., 2015) of Caltech101 (Fei-Fei et al.,
2004). It is artificially created by moving an asynchronous time-based image sensor (ATIS) mounted
on a pan tilt unit in front of an LCD screen that presents the image data in Caltech101. We use the
same dataset as Li et al. (2022) that is split into the training set and test set by 9 : 1. The resolution
of N-Caltech101 is 180 × 240 which, in our implementation, is padded to 240 × 240 and rescaled
to 128× 128.

CIFAR10-DVS The DVS version (Li et al., 2017) of CIFAR10 (Krizhevsky et al., 2009). The
generation of CIFAR10-DVS is similar to N-Caltech101. Following NDA (Li et al., 2022), we
divide it by 9 : 1 as the training set and test set, and scale the resolution from 128× 128 to 48× 48.

N-Cars A binary classification dataset (Sironi et al., 2018). Unlike N-Caltech101 and CIFAR10-
DVS transformed from image datasets, N-Cars is obtained from the recording of an ATIS in real
driving scenarios. Similar to the preprocessing of N-Caltech101, we first pad the resolution from
100× 120 to 120× 120 and then scale it to 48× 48 on SNN.

Mini N-ImageNet A subset of N-ImageNet dataset (Kim et al., 2021). Despite being a smaller
segment, it includes over 100,000 samples spanning 100 classes, making it the largest dataset used
in our experiments. In line with the original authors’ setup, we pad the resolution from 640 × 480
to 640× 640 and then scale it down to 224× 224 as the input resolution of the SNN.

C.2 ACTION RECOGNITION TASK

For object recognition tasks, shapes and textures are the most important information to recognize
an object, and thus we do not care how an object moves in the event streams. While in action
recognition tasks, the movements of the objects should be considered. They represent two different
recognition strategies and thus are both essential to validate our proposed method.

DVS128 Gesture A hand gesture dataset (Amir et al., 2017) recorded from a DVS128 camera. It
comprises 1464 samples with 11 classes, split into the training set and test set by 8:2. The resolution
is set as 128× 128 on SNN.

SL-Animals-DVS A sign language dataset (Vasudevan et al., 2021) including 19 Spanish Sign
Language signs corresponding to animals. Following the raw paper, we split it by 7.5:2.5 into the
training set and test set. Also, we separate the datasets into “4 sets” and “3 sets”, which excludes the
samples disturbed by the indoor lighting conditions reflecting on the patterned clothing of the user.
The resolution processing of SL-Animals-DVS is identical to that of DVS 128 Gesture.

18



Published as a conference paper at ICLR 2024

Neural Networks Neuron Model Datasets Epoch Batch Size T Learning Rate

Spike-VGG11 LIF
N-Caltech101

100
16

10 1× 10−3CIFAR10-DVS 64
N-Cars 64

SEW Resnet-18 PLIF
SL-Animals 200 20 16 5× 10−4

DVS-Gesture
Mini N-Imagenet 100 64 10 1× 10−3

Table 7: Hyper-parameters for different models and datasets.

C.3 TRAINING DETAILS

In all experiments, we use Adam optimizer with the default setting (β1, β2) = (0.9, 0.999) to
update the parameters and Cosine Annealing Scheduler for the decrease of learning rate. Other
hyper-parameters are shown in table 7. For fair comparisons, an identical seed is leveraged for all
experiments. We utilize the public code of TET (Deng et al., 2022) to build Spike-VGG11 and
Spikingjelly (Fang et al., 2020) to build SEW Resnet-18 with PLIF (Fang et al., 2021b).

D PROOFS

In this section, we provide proofs of the propositions.

D.1 PROOF FOR CONSERVATION PROPERTY ON αβ-RULE

Proof. The sum of relevance scores in layer l − 1 is

∑
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∑
i

∑
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∑
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j .

D.2 PROOF FOR PROPOSITION 1

Proof. We prove proposition 1 by induction.

For case t = 1, according to eq. (12) we have

R(l−1)[1] = (1− γ[1])

 T∑
i=2

R(l)[i]

i∏
j=2

γ[j] +R(l)[1]

 ,

where γ[1] = 0, since at the first time step, the membrane voltage is initialized to be 0. Clearly,
proposition 1 holds for case t = 1.
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Next, suppose proposition 1 holds for case t = k − 1, we have

k−1∑
t=1

R(l−1)[t] =

k−1∑
t=1

R(l)[t] +

T∑
i=k

R(l)[i]

i∏
j=k

γ[j]

=

k−1∑
t=1

R(l)[t] + γ[k]

(
R(l)[k] +

T∑
i=k+1

R(l)[i]

i∏
j=k+1

γ[j]

)

=

k−1∑
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R(l)[t] +
γ[k]

1− γ[k]
R(l−1)[k].

Then
k∑
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R(l−1)[t] =
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R(l−1)[t] +R(l−1)[k] =
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R(l)[t] +
γ[k]

1− γ[k]
R(l−1)[k] +R(l−1)[k]

=

k−1∑
t=1

R(l)[t] +
R(l−1)[k]

1− γ[k]

=

k−1∑
t=1

R(l)[t] +R(l)[k] +

T∑
i=k+1

R(l)[i]

i∏
j=k+1

γ[j]

=
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R(l)[t] +

T∑
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γ[j].
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