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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful paradigm
for enhancing the reasoning ability of Large Language Models (LLMs). Yet current
RLVR methods often explore poorly, leading to premature convergence and entropy
collapse. To address this challenge, we introduce Curiosity-Driven Exploration
(CDE), a framework that leverages the model’s own intrinsic sense of curiosity to
guide exploration. We formalize curiosity with signals from both the actor and the
critic: for the actor, we use perplexity over its generated response, and for the critic,
we use the variance of value estimates from a multi-head architecture. Both signals
serve as an exploration bonus within the RLVR framework. Our theoretical analysis
shows that the actor-wise bonus inherently penalizes overconfident errors and
promotes diversity among correct responses; moreover, we connect the critic-wise
bonus to the well-established count-based exploration bonus in RL. Empirically, our
method achieves an approximate +3 point over standard RLVR using GRPO/PPO
on AIME benchmarks.

1 Introduction

RLVR is a central technique for advancing the reasoning capabilities of LLMs, demonstrating
significant performance on complex reasoning tasks in mathematics and coding (Guo et al., 2025;
Lu et al., 2025). Despite the emergence of various training algorithms, such as GRPO (Guo et al.,
2024), DAPO (Yu et al., 2025b) and others (Wang et al., 2025; Liu et al., 2025), key issues remain. In
particular, problems such as premature convergence and phenomena like entropy collapse (Cui
et al., 2025; Zhuang et al., 2025) have been widely observed during training, posing fundamental
challenges to the efficiency of RLVR.

These challenges stem from the classic exploration-exploitation dilemma in reinforcement learning
(Sutton & Barto, 2018). Phenomena like entropy collapse reveal a critical flaw in the training
process: it is heavily biased towards exploitation, causing models to converge prematurely instead of
sufficiently exploring their environment for better solutions. Although the RL literature encompasses
a wide range of exploration strategies, these methods exhibit limitations when applied to LLMs.
Simple heuristics, including ϵ-greedy policies (Sutton & Barto, 2018) and entropy bonuses (Haarnoja
et al., 2018), either inject randomness to the environment or encourage the policy to be more
stochastic. Directly applying those approaches often demonstrates debatable effectiveness in complex
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environments like Deep RL (Andrychowicz et al., 2021) and LLM-based reasoning (Cui et al., 2025;
Shen, 2025).

More principled strategies include count-based and prediction-based approaches. The former, in-
cluding UCB (Lai, 1987) and LinUCB (Li et al., 2010), incentivizes visits to rarely explored states,
while the latter, like ICM (Pathak et al., 2017) and RND (Burda et al., 2018b), reward an agent for
reaching hard-to-predict states. Recent work has focused on adapting these methods for tuning LLMs
(Bai et al., 2025; Sun et al., 2025; Gao et al., 2025; Yu et al., 2025a; Zhou et al., 2025; Zhuang
et al., 2025). However, these strategies often require training auxiliary modules and effective state
representations (Burda et al., 2018a). This requirement is particularly challenging for LLMs, where
efficiently represent a reasoning path into a fixed-size embedding remains an open problem (Fu et al.,
2024), and simplistic approaches such as using the last hidden state are often problematic (Barbero
et al., 2024).

In this work, we propose an intuitive approach that leverages the model’s intrinsic sense of curiosity
as a guide for exploration. An LLM, having been trained on vast reasoning corpora, develops a
sophisticated internal model of what constitutes a familiar versus a novel reasoning pattern. This
parallels early childhood development (Chu & Schulz, 2020), where learning is not driven by a
external summary and count of experiences, but is instead propelled by an intrinsic curiosity to
explore novel situations. We formalize this principle in our Curiosity-Driven Exploration (CDE)
framework, which considers curiosity signals from both the actor and the critic. For the actor,
perplexity (PPL) over its generated response serves as the curiosity measure. For the critic, we
measure curiosity via the variance of its posterior value distribution, which is approximated with
a multi-head critic. The curiosity signals serve as an exploration bonus, shaping the reward and
advantage functions to guide exploration.

Our theoretical analysis clarifies the calibration behavior of the PPL bonus and formally links critic
curiosity to count-based exploration bonuses. Empirically, we observe consistent gains across four
standard math-reasoning benchmarks—AIME’25, AIME’24, AMC’23, and MATH. Furthermore,
our analysis reveals a phenomenon we term calibration collapse: under naive GRPO training, the
model’s confidence progressively decouples from its correctness, while adding PPL bonus mitigates
this miscalibration.

2 Our Approach

In the following sections, we introduce the formulations of exploration Guided by actor and critic
curiosity (Section 2.1 and 2.2), and defer the background on GRPO and PPO to Appendix A.

2.1 Exploration Guided by Actor Curiosity

We model actor curiosity as the actor’s uncertainty about its own actions. Intuitively, a response that
is surprising to the actor—i.e., has a low probability under its current policy—likely resides in an
underexplored region of its learned distribution. A natural and computationally efficient measure of
this surprise is the perplexity of the actor’s generation. Given an actor π, a prompt q and a generated
response o “ to1, . . . , oT u, the perplexity is is defined as: Bactorpq, oq “ ´ 1

T

řT
t“1 log πpot|oăt, qq.

A higher value indicates greater surprise and thus a stronger intrinsic signal for exploration.

However, practically simply adding this bonus to the original reward can be unstable and sub-optimal.
Unconstrained exploration might incentivize the model to generate high-perplexity but inaccurate
responses, or lead to over-exploration where the policy fails to converge to a stable output. To address
this, we integrate the bonus using an adaptive clipping mechanism. The total sentence-level reward,
r̃, is a combination of the original reward signal rpq, oq and the curiosity bonus Bactorpq, oq:

r̃pq, oq “ rpq, oq ` ωminp|rpq, oq|{κ, αBactorpq, oqq,

Here, the bonus weight ω is annealed downward over training, enabling aggressive exploration early
on and gradually shifting toward exploitation as the policy converges. The clipping ratio κ and
the bonus scaling factor α together control the bonus magnitude: by capping it at |rpq, oq|{κ, the
auxiliary term remains a supplement to rpq, oq rather than overwhelming the learning signal.

Intuitions and Theoretical Foundation We analyze responses along two axes—correctness and
actor PPL. Among these four categories, two require particular attention:
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Figure 2: Illustration of the multi-head critic framework.

1. Incorrect responses with low PPL indicate that the model is highly confident in its answer, yet the
response is wrong. This reflects overfitting and should be penalized.

2. Correct responses with high PPL suggest that the model is less familiar with such answers, but
they turn out to be successful. This reflects effective exploration and should be encouraged.

Figure 1: Responses by
correctness and avg PPL.

As illustrated in Figure 1, we find out that the PPL bonus intrinsically
penalizes confident mistakes while encouraging novel correct responses.
For correct responses, those novel responses (with higher PPL) receive a
larger positive reward. For incorrect responses, those confident responses
(with lower PPL) receive larger penalty as it receives smaller PPL bonus.
Theorem B.1 formalizes this intuition; its statement and proof are deferred
to Appendix B.1.

2.2 Exploration Guided by Critic Curiosity
In contrast to critic-free methods such as REINFORCE and GRPO, the critic in actor–critic frame-
works provides a higher-level understanding of the prompt–response pair. Its posterior distribution nat-
urally reflects the degree of coverage: regions with dense data yield low-variance posteriors, whereas
sparsely sampled regions result in larger-variance. Posterior distributions are a well-established
means of quantifying predictive uncertainty in deep learning models (Gal & Ghahramani, 2016).

To approximate the posterior distribution of value estimates, we adopt the classical bootstrap method
(Davison & Hinkley, 1997), widely used in statistics and increasingly recognized in the RL community
as an effective tool for exploration (Osband et al., 2016; Ciosek et al., 2019; Bai et al., 2021). We
implement this idea through a multi-head critic (upper-left subfigure in Figure 2), where K critics
share a common LLM backbone. Each head is trained on a resampled subset of the collected
trajectories (bottom subfigure in Figure 2), thereby producing an empirical approximation to the
posterior distribution. We then use the standard deviation across the K heads as a principled curiosity
signal, guiding the policy toward regions of high disagreement. (upper-right subfigure in Figure 2).
The full algorithm is leave in Appendix C.

Beyond the practical design, we provide a theoretical link: under standard linear-MDP assumptions,
the cross-head standard deviation of bootstrap critics consistently estimates the classical pseudo-count
bonus. Assumptions and the theorem appear in Appendix B.2.

3 Experiments
In this paper, we adopt DAPO-17K (Yu et al., 2025b) for training and evaluate the performance of
CDE on four challenging mathematical reasoning benchmarks: MATH (Hendrycks et al., 2021),
AMC23 (MAA, b), AIME24, and AIME25 (MAA, a). All experiments are implemented with the
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Model MATH AMC23 AIME24 AIME25 Avg
Avg@1 Avg@16 Pass@16 Avg@16 Pass@16 Avg@16 Pass@16

Qwen3-4B-Base 23.1 10.9 53.8 1.5 8.4 1.3 8.3 9.2

GRPO based methods
Qwen3-4B-Base-GRPO 87.3 63.6 89.1 20.8 41.9 21.0 39.2 48.2
ë w/ PPL bonus 87.7 67.8 89.5 23.3 48.5 23.5 42.5 50.6

PPO based methods
Qwen3-4B-Base-PPO 86.6 64.1 87.2 17.8 36.0 17.5 33.7 46.5
ë w/ PPL bonus 87.9 66.1 88.5 18.3 37.6 18.3 33.5 47.7
ë w/ 2 Heads 83.2 63.6 89.9 19.6 34.8 19.6 36.1 46.6
ë w/ 4 Heads 87.3 63.9 87.9 21.5 35.5 21.5 45.5 48.5
ë w/ 8 Heads 85.1 66.7 86.9 21.7 46.4 19.0 37.1 48.1
ë w/ 16 Heads 88.3 65.0 88.7 20.5 41.9 20.0 38.8 48.6

Table 1: Zero-shot accuracy of different models on the validation datasets. Avg@16 denotes the mean
Pass@1 accuracy over 16 sampled generations, while Avg column represents the overall average
across datasets, computed as Avg@1 for MATH and Avg@16 for the remaining datasets.

Verl framework using the Qwen3-4B-Base model (Yang et al., 2025). The implementation details are
provided in Appendix D, while the full formulations of GRPO and PPO can be found in Appendix A.

Main Results The main results are presented in Table 1. Here K Heads represents multi-head critic
PPO with K head critics. The key observations are as follows:

• Both the PPL bonus and the multi-head critic (K ě 4) improve the baselines’ reasoning ability,
yielding an average gain of `2.4 points across datasets and showing consistent superiority. In
many cases, we observe over `6 points in Pass@16 on AIME benchmarks.

• The performance of multi-head PPO generally increases with the number of heads K and perfor-
mance increase begin to plateau once K ě 4, which suggests that a modest number of heads can
capture most of the curiosity signals needed.

We also performed a series of ablation studies, the results of which are provided in Appendix E.

Analysis of Calibration As shown in Figure 3, we plot the batch-wise mean response perplexity
(PPL), stratified by answer correctness. In subfigure (a), we observe a phenomenon we term calibra-
tion collapse: early in naive GRPO training, correct responses have lower PPL (higher confidence)
than incorrect ones, but as training progresses this gap shrinks and ultimately vanishes—confidence no
longer tracks correctness. By contrast, with a PPL bonus (subfigure (b)), this separation is sustained
throughout training.

This pattern is explained by Theorem B.1: while both naive GRPO and GRPO with a PPL bonus tend
to increase confidence on correct answers, the PPL bonus additionally suppresses confident errors
(low-PPL incorrect trajectories), thereby improving calibration.

(a) GRPO without PPL bonus (b) GRPO with PPL bonus (c) Distribution of Critic Heads std.

Figure 3: (a)–(b) Mean response PPL over training steps, stratified by correctness. (c) Distribution of
the standard deviation across K “ 16 value heads for each dataset.

Analysis of Multi-Head Curiosity Signal In subfigure (c) of Figure 3, we present a cross-dataset
analysis by calculating the average standard deviation of the value estimates across different questions.
Specifically, we evaluate three datasets: the training set (DAPO-17K), the in-domain validation set
(AMC23), and the out-of-domain validation set GPQA (Rein et al., 2023). We observe that the
training set exhibits a smaller standard deviation compared to both the in-domain and out-of-domain
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validation sets. This pattern aligns with the intuition that multi-head critics tend to show stronger
disagreement on data that is less frequently encountered during training.

4 Conclusion

We have presented Curiosity-Driven Exploration, an efficient technique that enhances exploration by
incorporating curiosity signals from both the actor and the critic. Its effectiveness is demonstrated
by consistent accuracy improvements over strong baselines on a suite of challenging mathematical
reasoning benchmarks, with these empirical results strongly corroborating our underlying theoretical
framework and intuition. The calibration collapse revealed in our analysis aligns with recent findings
on the root causes of LLM hallucination (Kalai et al., 2025), pointing to a promising avenue for future
work.
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A Background on RLVR Algorithms: GRPO and PPO

We formulate the language generation process of LLMs as a sequential decision-making problem
(Yu et al., 2025b; Yue et al., 2025). Specifically, we consider two reinforcement learning algorithms:
Group Relative Policy Optimization (GRPO), a critic-free method, and Proximal Policy Optimization
(PPO), a canonical actor–critic method. We adopt the training paradigm of Reinforcement Learning
with Verifiable Rewards (RLVR) (Guo et al., 2025; Lambert et al., 2024) and utilize a rule-based
verifier to compare the generated response with the ground truth to judge its correctness.

A.1 Group Relative Policy Optimization (GRPO, Shao et al. 2024)

GRPO is an REINFORCE-style optimization algorithm. Let πθ denote the LLM policy with param-
eters θ. At each training step, given a prompt q sampled from the dataset D, the current policy πθ
generates a group of G candidate outputs to1, o2, . . . , oGu. For each candidate oi, we compute its
total reward ri “ rpoi, qq.

The advantage for each output is computed by normalizing its reward with respect to the group’s
rewards:

Ai “
ri ´ meanpr1, . . . , rGq

stdpr1, . . . , rGq ` δ
,

where δ is a small constant for numerical stability. The same advantage Ai is applied to all tokens
in oi. Let πθold be the policy from the previous step and πref the original pre-trained model. GRPO
maximizes:

LGRPOpθq “ Eq„D,toiu„πθold

»

–

1

G

G
ÿ

i“1

1

|oi|

|oi|
ÿ

t“1

Lθpr̃i,t, Aiq

fi

fl ´ βDKL pπθ}πrefq ,

where the clipped objective is

Lθpr̃i,t, Aiq “ min pr̃i,tAi, clippr̃i,t, 1 ´ ε, 1 ` εqAiq , r̃i,t “
πθpoi,t | q, oi,ătq

πθold poi,t | q, oi,ătq
.

Here, ε and β control the ratio clipping threshold and the KL-penalty strength, respectively. The
clipping mitigates large, unstable policy updates, while the KL term constrains deviation from πref.

A.2 Proximal Policy Optimization (PPO, Schulman et al. 2017)

PPO is an actor–critic algorithm that maintains both a policy (actor) πθ and a value function (critic)
Vϕ with parameters ϕ, estimating the expected total reward from a given state (prompt and sequence
prefix). The advantage function in PPO leverages the critic to reduce variance. Specifically, General-
ized Advantage Estimation (GAE) is applied to compute token-level advantages. For an output oi
with sentence-level reward ri, the GAE at token t is:

Ai,t “

|oi|
ÿ

l“t

pγλql´tδi,l,

where
δi,l “ ri,l ` γVϕpq, oi,ďl`1q ´ Vϕpq, oi,ďlq,

and in our setting ri,l “ 0 for all non-terminal tokens, with ri,|oi| “ ri. The hyperparameters γ and
λ are the discount factor and GAE trace-decay, respectively. The PPO objective is:

LPPOpθ, ϕq “ Eq„D,toiu„πθold

” 1

|oi|

|oi|
ÿ

t“1

rLθpr̃i,t, Ai,tq ´ c1Lϕpq, oi,ăt, riqs

ı

´ βDKL pπθ}πrefq ,

where Lθ is as in GRPO but with per-token Ai,t, and the value loss is:

Lϕpϕq “ pVϕpq, oi,ătq ´ riq
2
.

In practice, we alternate optimization of the actor (θ) and the critic (ϕ).
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B Theoretically Results

B.1 Calibration Effect of PPL Bonus

Theorem B.1. Let πt denote the policy at training step t. With PPL bonus in Equation (??), the
update to πt`1 calibrates the policy’s confidence as follows:

(i) Among correct responses, trajectories with higher perplexity receive a larger relative probability
increase.

(ii) Among incorrect responses, trajectories with lower perplexity receive a larger relative probability
decrease.

Proof. Define r̃tpq, oq “ rpq, oq ` btpq, oq where btpq, oq “ ωmintκ|rpq, oq|,´ α
To

log πtpo|qqu is
a bonus function where To is the length of response o. Note that ω is a redundant variable in theory
because we can write btpq, oq “ mintκ1|rpq, oq|,´ α

To
log πtpo|qqu with κ1 “ ωκ and α1 “ ωα.

Given that rpx, yq P t1,´1u, it suffices to consider btpq, oq “ mintκ,´ α
To

log πtpo|qqu. Thus, as
long as we use κ ă 1, we have signpr̃tpq, oqq “ signprpq, oqq. The introduce of bonus does not
change the sign of the original correctness reward.

Consider single step policy optimization

πt`1p¨|qq “ argmax
π

#

ÿ

o

πpo|qqr̃tpq, oq ´
1

η
KL pπp¨|qq}πtp¨|qqq

+

,

which has closed-form solution

πt`1po|qq “
πtpo|qq exp pηr̃tpq, oqq

ř

o1 πtpo1|qq exp pηr̃tpq, o1qq
.

For any question q and response o. Define Zpqq “
ř

o1 πtpo
1|qq exp pηr̃tpq, o

1qq, we have

log πt`1po|qq “ log πtpo|qq ` ηr̃tpq, oq ´ log pZpqqq .

Define ∆tpo|qq “ log πt`1po|qq ´ log πtpo|qq as the change of likelihood of response o under
question q at update step t. For two correct response o`

1 and o`
2 with length To`

1
and To`

2
, and

´ α
T
o

`
1

log πtpo
`
1 |qq ě ´ α

T
o

`
2

log πtpo
`
2 |qq (i.e. o`

1 has larger perplexity), we have

∆tpo
`
1 |qq ´ ∆tpo

`
2 |qq

“ r̃tpq, o
`
1 q ´ r̃tpq, o

`
2 q

“ btpq, o
`
1 q ´ btpq, o

`
2 q

“ mintκ,´
α

To`
1

log πtpo
`
1 |qqu ´ mintκ,´

α

To`
2

log πtpo
`
2 |qqu

ě 0

Similarly, for two incorrect response o´
1 and o´

2 with ´ α
T
o

´
1

log πtpo
´
1 |qq ě ´ α

T
o

´
2

log πtpo
´
2 |qq (i.e.

o´
1 has larger perplexity), we have ∆tpo

´
1 |qq ´ ∆tpo

´
2 |qq ě 0.

Specifically, given a question q, for any response po1, o2q that has the same correctness label and
´ α

To1
log πtpo1|qq ě ´ α

To2
log πtpo2|qq, we have

• If r̃tpq, o1q ě 1
η log pZpqqq and r̃tpq, o2q ě 1

η log pZpqqq , then ∆tpo1|qq ě 0 and
∆tpo2|qq ě 0 but o1 has more likelihood increase.

• If r̃tpq, o1q ě 1
η log pZpqqq and r̃tpq, o2q ă 1

η log pZpqqq , then ∆tpo1|qq ě 0 and
∆tpo2|qq ă 0 where o1’s likelihood increase but o2’s likelihood decrease.

• If r̃tpq, o1q ă 1
η log pZpqqq and r̃tpq, o2q ă 1

η log pZpqqq , then ∆tpo1|qq ă 0 and
∆tpo1|qq ă 0 but o1 has less likelihood decrease.
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• It is impossible that r̃tpq, o1q ă 1
η log pZpqqq and r̃tpq, o2q ě 1

η log pZpqqq given that
po1, o2q has the same correctness label and ´ α

To1
log πtpo1|qq ě ´ α

To2
log πtpo2|qq.

B.2 Consistency of Multi-head Critic Curiosity

Linear MDP and Assumptions
Assumption B.2 (Linear MDP). We consider finite horizon M “ pS,A, R, P,Hq with horizon H ,
state space S , action space A, reward function R : S ˆA Ñ R, and transition P : S ˆA Ñ S such
that there exists a known feature ϕ P Rd and unknown features θ, ψ P Rd to ensure

Rps, aq “ ϕps, aqJθ P ps1|s, aq “ ϕps, aqJψps1q.

Without loss of generality, we assume }ϕps, aq} ď 1 for all ps, aq, and }ψps1q} ď
?
d, }θ}2 ď

?
d.

Lemma B.3 (Proposition 2.3 in Jin et al. (2020)). For linear MDPs that satisfy Assumption B.2, there
exists w‹

h P Rd such that

Qπ
hps, aq :“ E

”

H
ÿ

t“h

rt
ˇ

ˇsh “ s, ah “ a
ı

“ ϕps, aqJw‹
h.

The linearity of Q-functions enables using regression technique to solve it. Consider a dataset
with n observations D “ tsi,h, ai,h, Gi,huni“1 where Gi,h is the Monte-Carlo return. Let ϕi,h “

ϕpsi,h, ai,hq and denote the regression noise as εi,h “ Gi,h ´ ϕJ
i,hw

‹
h. We impose the following

assumptions.

(A1) Erεi,h | ϕi,hs “ 0 and tpεi,hquni“1 are i.i.d. σ2–sub-Gaussian for each fixed h;

(A2) 1
n

řn
i“1 ϕi,hϕ

J
i,h

P
ÝÑ Σt ą 0

Jin et al. (2020) shows that doing value iteration on optimistically estimated Q function can achieve
near-optimal regret for linear MDP, where the optimistic Q function is the combination of linear regres-
sion estimation and exploration bonus bn,h “ β

b

ϕJ
n,hΛ

´1
n,hϕn,h, where Λn,h “ λI `

řn
i“1 ϕi,hϕ

J
i,h

and β is some constant. Below we will formally connect our bootstrapped bonus with this term.

Formulation of the bootstrap multi-head critic

We accommodate the bootstrap multi-head into the linear-MDP setting. For any time step h, we
sample K mini-batches tSk Ă rnsuKk“1 of size m “ ζn uniformly without replacement from D and
construct the ridge estimator as follows

pw
pkq

n,h “ argmin
w

ÿ

rPSk

pGr,h ´ ϕJ
r,hwq2 ` ζλ}w}2.

For any feature ϕ P Rd, we define the bootstrap multi-head bonus as

bboot
h,Kpϕq “ std

´

␣

ϕJ
pw

pkq

n,h

ˇ

ˇ1 ď k ď K
(

¯

.

Elliptical (“count-based”) bonus in (Jin et al., 2020). The ridge estimator is constructed using all
data across n trajectories as follows

pwn,h “ argmin
w

n
ÿ

i“1

pGi,h ´ ϕJ
i,hwq2 ` ζλ}w}2.

For any query feature ϕ P Rd, the bonus term is bcnt
h pϕq “

b

ϕJΛ´1
n,hϕ.
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Theorem B.4. Under Assumption B.2 and assumptions (A1)–(A2), for any fixed time-step h and
query ϕ P Rd,

bboot
h,Kpϕq

P
ÝÝÝÝÝÝÝÝÝÑ
KÑ8, nÑ8

β
b

ϕJΛ´1
n,hϕ,

where β is some constant.

Proof. For any time-step h and Sk Ă rns, we have the explicit solution of the ridge regression

pwn,h “ Λ´1
n,h

n
ÿ

i“1

ϕi,hGi,h.

Conditioning on Xh “ rϕJ
1,h; . . . ;ϕ

J
n,hs, the conditional variance of the estimator is

Var
`

ϕJ
pwn,h | Xh

˘

“ σ2ϕJ
´

Λ´1
n,h ´ λΛ´2

n,h

¯

ϕ.

From Assumption (A2), we have }Λ´1
n,h}op “ Opp1{nq, therefore

ϕJΛ´1
n,hϕ ď }ϕ}2 }Λ´1

n,h}op “ Opp1{nq and ϕJΛ´2
n,hϕ “ Opp1{n2q,

and
nϕJ

´

Λ´1
n,h ´ λΛ´2

n,h

¯

ϕ´ nϕJΛ´1
n,hϕ “ ´nλϕJΛ´2

n,hϕ
P

ÝÑ 0.

Therefore, we have
ϕJ

´

Λ´1
n,h ´ λΛ´2

n,h

¯

ϕ
P

ÝÑ ϕJΛ´1
n,hϕ.

Before moving to bboot
h,Kpϕq, we define the following quantities

∆Σ “
1

ζ

ÿ

rPSk

ϕr,hϕ
J
r,h ´

n
ÿ

i“1

ϕi,hϕ
J
i,h, b “

n
ÿ

i“1

ϕi,hGi,h, bs “
1

ζ

ÿ

rPSk

ϕr,hGr,h, ∆b “ bs ´ b.

Since Σt ą 0, matrix Bernstein for sampling without replacement yields }∆Σ}op “ Opp
?
nq. Use

the expansion

pΛn,h ` ∆Σq´1 “ Λ´1
n,h ´ Λ´1

n,h∆ΣΛ´1
n,h `RΣ, }RΣ}op “ Opp}Λ´1

n,h}3op}∆Σ}2opq “ Opp1{n2q.

The k-th bootstrap ridge solution is

pw
pkq

n,h “ pΛn,h ` ∆Σq´1bs.

Subtracting pwn,h “ Λ´1
n,hb and inserting the expansion,

pw
pkq

n,h ´ pwn,h “ Λ´1
n,h∆b´ Λ´1

n,h∆Σ pwn,h
loooooooooooooomoooooooooooooon

first order

`
`

´ Λ´1
n,h∆ΣΛ´1

n,h∆b`RΣbs
˘

loooooooooooooooooomoooooooooooooooooon

“:rn

.

Since Gi,h “ ϕJ
i,hwh ` ϵi,h, for any ϕ we have

ϕJp pw
pkq

n,h´ pwn,hq “ ϕJΛ´1
n,h

´1

ζ

ÿ

rPSk

ϕr,hϵr,h´

n
ÿ

i“1

ϕi,hϵi,h

¯

`ϕJΛ´1
n,h∆Σpw‹

h´ pwn,hq`ϕJrn. (1)

From standard results for ridge regression, we have }w‹
h ´ pwn,h}2 “ OPp1{

?
nq, thus we have the

second term ϕJΛ´1
n,h∆Σpw‹

h ´ pwn,hq “ OPp1{nq. Similarly, for the last term we have

ϕJrn ď }ϕ}

´

}Λ´1
n,h}2op}∆Σ}op}∆b}op ` }∆Σ}op}bs}op

¯

“ OPp1{nq.

Therefore, both terms are negligible at the
?

¨ scale. Condition on pXh, tϵi,huni“1q the only random-
ness comes from S. By finite-population sampling theory,

Var˚
´1

ζ

ÿ

rPS

ϕr,hϵr,h

¯

“
1 ´ ζ

ζ

n
ÿ

i“1

ϕi,hϕ
J
i,hσ

2.
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Therefore,

Var˚
´

ϕJp pw
pkq

n,h ´ pwn,hq

¯

“
1 ´ ζ

ζ
σ2ϕJΛ´1

n,h

´

n
ÿ

i“1

ϕi,hϕ
J
i,h

¯

Λ´1
n,hϕ` oP

`

1{n
˘

“
1 ´ ζ

ζ
σ2ϕJ

´

Λ´1
n,h ´ λΛ´2

n,h

¯

ϕ` oP
`

1{n
˘

“
1 ´ ζ

ζ
σ2ϕJΛ´1

n,hϕ` oP
`

1{n
˘

Finally, by the conditional strong law of large numbers, we have

bboot
h,Kpϕq “ std

´

␣

ϕJ
pw

pkq

n,h

ˇ

ˇ1 ď k ď K
(

¯

Ña.s.

b

Var˚pϕJ
pw

pkq

n,hq
P

ÝÑ

d

1 ´ ζ

ζ
σ
b

ϕJΛ´1
n,hϕ.

C The Algorithmic Framework of the Multi-head Critic PPO

In this section, we describe the training procedure of the multi-head PPO algorithm, which follows
the standard stages of vanilla PPO: (i) generating trajectories with the actor, (ii) updating the actor,
and (iii) updating the critic. The key distinction is that we incorporate the multi-head variance as an
exploration bonus, encouraging the policy to visit under-explored regions.

• Actor roll-out: Given a prompt q, the actor generates a set of responses to1, . . . , onu. Each
response is denoted as oi “ toi,1, . . . , oi,|oi|u. Correspondingly, we associate each response with a
verifiable reward ri. For clarity, we focus on the case of a single prompt q.

• Actor update: In this step, the advantage is estimated as

pAi,t “

|oi|
ÿ

l“t

pγλql´t
pδi,l

loooooomoooooon

«Ãi,t

`ωmin

˜

|Ãi,t|

κ
, αBcriticpq, oi,ďt`1q

¸

. (2)

The advantage consists of two components. The first term, Ãi,t, largely follows the standard
advantage estimation in PPO, except that we exploit bootstrap estimators by using an ensemble of
value functions rather than a single point estimate:

pδi,l “ ri,l `
γ

K

K
ÿ

j“1

pVjpq, oi,ďl`1q ´
1

K

K
ÿ

j“1

pVjpq, oi,ďlq.

The second term of Equation 2 introduces the multi-head critic bonus (Bcritic), governed by the
bonus weight ω, clipping ratio κ, and scaling factor α (see discussion following Equation (??) for
interpretation). Specifically, Bcritic is defined as the standard deviation across the K value heads,
encouraging exploration by assigning higher bonus to actions leading to uncertain/less-visited
regions:

Bcritic pq, oi,ďt`1q “ std
´

␣

pVjpq, oi,ďt`1q
ˇ

ˇ1 ď j ď K
(

¯

. (3)

• Critic update: We use the collected roll-outs to update the critic. For notational convenience, let
the dataset be

D “ tpq, oi,ďt, riq|i P rns, t P r|oi|su, (4)
consisting of (prompt, partial response, reward) triplets. For each critic head j, we sample without
replacement a subset Dj Ă D of size |Dj | “ ζ|D|, where the hyperparameter ζ P p0, 1s controls
the fraction of data assigned per head. Smaller ζ increases head diversity, while larger ζ improves
sample efficiency. The multi-head critic is then updated with the following bootstrap loss:

Lϕ “
1

ζK|D|

K
ÿ

j“1

ÿ

pq,o,rqPDj

´

pVjpq, oq ´ r
¯2

.
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D Training Details

We use verl as the training framework1. Configurations for training CDE and baseline models are
listed in Table 2.

Config GRPO PPO
actor-lr 1e-6 1e-6
critic-lr - 1e-5
critic-warmup - 10
kl_coef 0.0 0.0
max_prompt_length 2K 2K
max_response_length 3K 3K
train_batch_size 256 512
ppo_mini_batch_size 256 256
clip_ratio 0.20 0.20
sample temperature 1.0 1.0
rollout.n 8 4
total_training_steps 300 300

(a)

Config PPL 2,4 Heads 8,16 Heads
κ 3 3 3
α 1 0.5 0.5
ω Staircase No decay No decay
ζ - 1 0.5

(b)

Table 2: (a) Baseline training configurations. The GRPO setup is shared across all GRPO-based
methods (e.g., “Qwen3-4B-Base-GRPO” and “w/PPL bonus” in Table 1); likewise, the PPO setup
is shared across all PPO-based methods. (b) CDE-specific configurations. The PPL settings are
identical for both the GRPO “w/PPL bonus” and PPO “w/PPL bonus” variants.

Solve the following math problem step by step. The last line of your response should be of the form
Answer: $Answer (without quotes) where $Answer is the answer to the problem.
{Problem}
Remember to put your answer on its own line after “Answer:”.

Figure 4: The prompt for RLVR training.

E Ablation Studies

Figure 5: An illustration of differ-
ent weight anneal schedules.

Bonus weight decay is crucial We compare four schedules
for the bonus weight ω—No decay, Linear, Cosine, and Stair-
case—as illustrated in Figure 5, with the performance of models
trained under each schedule summarized in Table 3. Briefly,
the No decay schedule maintains strong exploration through-
out training, while the Staircase schedule reduces ω abruptly,
enabling strong exploration in the early phase and then remov-
ing the bonus for final convergence. The Linear and Cosine
schedules provide intermediate behaviors.

The results in Table 3 underscore two insights: First, decay of
the bonus weight is necessary, as all decay schedules outper-
form the no-decay baseline by enabling a gradual shift from exploration to exploitation. Second,
strong exploration in the early phase is crucial, with the staircase scheme proving most effective by
sustaining high exploration initially to broaden state–action coverage and then removing the bonus
abruptly to allow stable convergence, whereas the gentler cosine and linear decays weaken the signal
too soon and thus yield smaller gains.

1https://github.com/volcengine/verl
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Model MATH AMC23 AIME24 AIME25 Avg
Avg@1 Avg@16 Pass@16 Avg@16 Pass@16 Avg@16 Pass@16

Bonus Weight Decay Schedules
Qwen3-4B-Base-GRPO 87.3 63.6 91.1 21.0 41.9 20.8 39.2 48.2
ë ω No decay 85.1 64.5 84.6 20.8 39.0 22.3 36.2 48.2
ë ω Linear decay 85.4 66.1 91.9 23.3 40.4 20.0 40.4 48.7
ë ω Cosine decay 86.7 68.1 90.0 22.5 44.9 21.5 40.7 49.7
ë ω Staircase decay 87.7 67.8 89.2 23.5 48.5 23.3 40.3 50.6

Table 3: Zero-shot accuracy of GRPO models under different PPL bonus weight decay schedules.
The schedules follow those illustrated in Figure 5.

Analysis of sub-sample fraction ζ during critic update Additionally, we examine the sensitivity
of the critic update to the hyperparameter ζ (sub-sample fraction). We vary ζ under two configu-
rations—critics with 16 heads and with 4 heads—and compare ζ P t0.5, 1u. As shown in Table 4,
while a larger number of heads benefits from a larger sub-sample fraction, the overall performance
is stable across settings. The model demonstrates robustness to the masking fraction ζ, achieving
similar results for both values tested (0.5 and 1.0).

Model MATH AMC23 AIME24 AIME25 Avg
Avg@1 Avg@16 Pass@16 Avg@16 Pass@16 Avg@16 Pass@16

Mask fraction
16 Heads ; ζ “ 0.5 88.3 65.0 88.7 20.5 41.9 20.0 38.8 48.6
16 Heads ; ζ “ 1 85.4 65.3 85.3 21.0 39.2 21.7 43.2 48.4
4 Heads ; ζ “ 0.5 86.1 66.4 85.8 18.1 36.7 23.1 39.1 48.4
4 Heads ; ζ “ 1 87.3 63.9 87.9 21.5 35.5 21.5 45.5 48.5

Table 4: Ablation study on sub-sample fraction ζ.
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