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Abstract

Neural networks offer a promising data-driven approach to tackle computationally
challenging optimization problems. In this work, we introduce neural approxima-
tion frameworks for a family of geometric "extent measure" problems, including
shape-fitting descriptors (e.g. minimum enclosing ball or annulus). Central to our
approach is the alignment of our neural model with a new variant of the classi-
cal ε-kernel technique from computational geometry. In particular, we develop a
new relaxed-ε-kernel theory that maintains the approximation guarantees of the
classical ε-kernels but with the crucial benefit that it can be implemented with
bounded model complexity (i.e, constant number of parameters) by the simple
SumFormer neural network. This leads to a simple neural model that approximate
quantities such as the directional width of any input point set and empirically
shows good out-of-distribution generalization. Many geometric extent measures,
such as the minimum enclosing spherical shell, cannot be directly captured by
ε-kernels. To this end, we show that an encode-process-decode framework with
our kernel-approximating NN used as the “process” module can approximate such
extent measures, again, with bounded model complexity where parameters scale
only with the approximation error ε and not the size of the input set. Empirical
results on diverse point-cloud datasets demonstrate the practical performance of
our models.

1 Introduction

Using neural networks to solve optimization problems in a data-driven manner has received great
attention in recent years [9, 45, 19, 30]. However, one challenge in using neural networks to solve
optimization problems is that their architectures often grow with problem size [23]. The key question
we consider is the design of practical neural models that both have the capacity to approximate
solutions to specific optimization problems with bounded model complexity (i.e. number of parameters
is independent of the size of input), and perform well in practice. A direction that has shown promise
both theoretically and practically is neural algorithmic alignment [37, 38, 44, 36], which intuitively
informs architecture design via loosely imitating (“alignment” with) certain algorithmic frameworks
to achieve improved accuracy and out-of-distribution (OOD) generalization.

Our overall motivation is to design efficient and practical neural models to solve problems in a
data-driven manner. In this paper, we study this problem in the context of a particular family of
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geometric optimization problems and demonstrate that biasing the model architecture towards some
algorithmic flow yields more efficient and accurate approximations. In particular, we aim to compute
a variety of point cloud descriptors, such as convex hulls, bounding volumes (e.g. minimum enclosing
ball or ellipsoids), or best shapes fitting an input point set (e.g, the minimum-width slabs or spherical
shells that cover an input set of points). These problems are called extent measure problems and
are well-studied in computational geometry; e.g, [10, 2, 1, 46, 21, 16, 6, 11]. We show how biasing
our model architectures towards a particularly well-known approximation technique known as the
ε-kernel [3, 27, 2, 11] results in neural networks which can approximate the aforementioned point
cloud descriptor with bounded model complexity, or a constant number of parameters which is
independent to input size.

New work. In the high level, the type of geometric problems we consider have the following form:
Given an arbitrary set of points P in Rd, the goal is to compute a certain geometric descriptor µ(P )
for P . We want to train a suitable neural network model that can approximate µ(P ) efficiently for
any input point set P . We draw inspiration from an elegant line of work in computational geometry
that approximately solves these problems using the ε-coreset framework via ε-kernels; see Section 2
for detailed descriptions. Our contributions can be summarized as follows.

Neural approximation of ε-kernels. An ε-kernel Q of a set of points P is a subset of P that
approximately preserves the projection of P along any direction in Rd. Once Q is given, one
can approximate a family of geometric descriptors (e.g, the convex hull of P ) by computing
them using Q in time dependent only on |Q| and not on |P |. However, computing the
ε-kernel is not naturally aligned with common neural models for point clouds. We instead
introduce an alternative theory of relaxed-ε-kernels, which retain the same approximation
guarantees while aligning naturally with the simple Sumformer [5] (a variant of DeepSets
[47]). This leads to an efficient neural model that approximates relaxed ε-kernels with
bounded model complexity independent of size of input point set P .

Neural approximations of extent measures. Among the so-called unfaithful extent measures
which cannot be directly approximated by ε-kernels, a family of them can nevertheless be
approximated via the linearization technique [4]. In Section 4, we show that our relaxed-
ε-kernel can still be combined with the linearization technique to approximate such extent
measures. We further employ an encode-process-decode framework (introduced by [37]
to solve algorithmic tasks) where our relaxed ε-kernel neural network will be used as the
processor module. See Figure 1. This framework can approximate both faithful and a family
of unfaithful extent measures using only bounded model complexity.

Empirical performance. Importantly, we empirically demonstrate the accuracy (both in and out of
distribution) and efficiency of the proposed neural models both for approximating ε-kernels
and several (faithful and unfaithful) extent measures (e.g, minimum enclosing balls / annulus)
in comparison to both natural neural baselines and algorithmic approaches. Our Sumformer
instantiated neural model consistently exhibits much stronger OOD generalization than
Transformer-instantiated neural models for these tasks, which we think is partially due to
the alignment of the Sumformer model with our relaxed-ε-kernel algorithm.

In summary, the encode-process-decode framework instantiated with our relaxed ε-kernel NN as
the processor network is both practical and theoretically sound, and can solve a family of geometric
optimization problems accurately. Importantly, our models offer the advantage of being differentiable,
enabling them to be used in downstream ML pipelines. Our neural approach also provides greater
flexibility in comparison to classical algorithmic techniques: our framework can tackle tasks where
the objective is hidden and only implicitly given via labeled examples. In contrast to classical
algorithms which can not be used without knowing the target objective, our model can still efficiently
learn the objective in a data-driven manner, as long as the underlying goal corresponds to a variant of
the shape-fitting problem (even when unknown).

Related work. This paper discusses efficient neural approximations of a certain family of geometric
optimization problems on point clouds. As such, we will discuss relevant work related to neural point
cloud processing and neural network approximations of general optimization problems. In particular,
deep learning on geometric data – especially point clouds – has advanced rapidly. Two foundational
permutation-equivariant models are DeepSets [47] and PointNet [28, 29]. Both DeepSets and PointNet
have universal approximation guarantees; however, general universal approximation of permutation

2



Input point set

Radius of
minimum

enclosing ball

Width of
minimum

enclosing annulus

xVolume of
minimum

enclosing ellipse

Embedded
point clouds

Processor
network

Decoder
network

OutputEncoder
networks

Output -kernel,

Input point set

Figure 1: Illustration of (a) our kernel-approx-NN, and (b) our encode-decode-process framework for
approximating various extent measures. The processor module NP can be frozen as a pre-trained
kernel-approx-NN, and only encoder / decoder needs to be trained in a task-dependent manner.

invariant functions requires the internal latent dimension depend on the size of the input point
set [40, 12]. In geometric deep learning, it is also common to use geometry-enhanced graph neural
networks to process point clouds; see the proto-book [8] for a comprehensive discussion. Recent work
has seen a shift to Transformer based architectures for point cloud processing [48, 41, 42, 24, 14].

In recent years there have been great interest in using ML to help tackle combinatorial optimization
problems; e.g, [39, 19, 22, 32, 13, 31], and surveys [7, 9]. Theoretically, there are also several works
on the best possible approximation guarantees one can get from these neural network approaches
[23, 31, 45, 30, 17]. However, bounded model complexity usually is not guaranteed, other than
[18, 25], which use hybrid neural-algorithmic models. Our work uses neural algorithmic alignment
ideas [37, 38, 44] to develop practical neural networks with bounded model complexity.

2 Preliminaries

Transformers. A standard Transformer is the composition of multiple Transformer blocks, each of
which models a sequence-to-sequence permutation equivariant function using a specific attention
mechanism. For simplicity, below we introduce the formulation using just a single attention head:
Given a sequence X ∈ Rn×d (a length-n sequence of vectors in Rd), the output of a single attention
block T is another length-n sequence T (X) ∈ Rn×d defined by

T (X) = MLP(X +Attn(X)XWV ), where Attn(X) = softmax(XWQ(XWK)T ).

Here, WQ,WK ,WV ∈ Rd×d are matrices and MLP : Rd → Rd operates element-wise on each of
the n elements. (We fix the internal dimension to be d for simplicity of presentation.) Sequences for
language tasks typically use positional encodings, e.g rotary PEs [33], to encode ordering information.
However, since we are concerned with processing point clouds, each point in an input point cloud
P has its coordinates in Rd; hence we omit positional encodings. For a Transformer with bounded
complexity, i.e, total number of parameters is a constant independent of n, it still takes O(n2) time
per forward pass when processing an input point set of size n.

Sumformers. A Sumformer [5] is a sequence-to-sequence permutation equivariant model formed
by composition of blocks defined as follows:
Definition 2.1 (Sumformer Block). A Sumformer block is a sequence-to-sequence function S :
Xn → Yn, such that for any length-n sequence X = [x1, . . . , xn] ∈ Xn, the output is another
length-n sequence in Yn defined by S(X) = S([x1, . . . , xn]) = [ψ(x1, Z), . . . , ψ(xn, Z)], where
Z :=

∑n
i=1 ϕ(xi), ϕ : X → Rd′

, and ψ : X × Rd′ → Y . Usually, both the input and output feature
spaces are Euclidean: X = Rd1 and Y = Rd2 .

Intuitively, at each layer, a Sumformer block first computes a global representation of the input
sequence via sum-aggregation (the quantityZ above), and then computes the individual representation
of each input token from its initial encoding and the global representation Z via the function ψ (i.e,
S(X)[i] = ψ(xi, Z)). Conceptually, it is similar to the DeepSet architecture [47], but each layer
is not necessarily a linear equivariant layer. Unlike the Transformer, the SumFormer takes linear
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time per forward pass as computing Z takes Θ(n) time while computing each ψ(xi, Z) takes only
constant time, assuming d′ and the dimensions of X and Y are constant.

ε-kernels and coresets. A classical technique in developing approximation algorithms for geometric
problems is via the extraction of a certain small representative subset of the input object, called
ε-coresets, and solving the problem only on the small subset. A popular coreset construction is via the
ε-kernels. First, given a set of points P and a direction u ∈ Sd−1 with Sd−1 denoting the unit-sphere
in Rd, the directional interval −→w u(P ) and directional width wu(P ) w.r.t. u are defined as:
−→w u(P ) =

[
min
p∈P
⟨u, p⟩,max

p∈P
⟨u, p⟩

]
; and wu(P ) = max

p∈P
⟨u, p⟩ −min

p∈P
⟨u, p⟩ = length of −→w u(P ).

Definition 2.2 (ε-kernel). Given a set of point P ⊆ Rd, an ε-kernel for P is a subset of pointsQ ⊆ P
such that for any u ∈ Sd−1, wu(Q) is an ε-approximation of wu(P ); i.e., (1− ε)wu(P ) ≤ wu(Q).

Hence, an ε-kernel Q of P approximates the width of P along any direction u. In this paper, we
assume that any input point set P is contained within a bounded compact set in Rd; in fact, w.l.o.g.,
assume each P is contained in the d-D hypercube Cd = [−1, 1]d. Let CH(P ) denote the convex hull
of P consisting of all convex combinations of points in P . Our theoretical results in this paper will
assume that each point set P is not too “skinny”, in the sense that it is “fat”: A point set P ⊆ Rd is
α-fat if there exist 0 < α ≤ 1 and o⃗ ∈ Rd such that o⃗+ αCd ⊆ CH(P ) ⊆ o⃗+ Cd.

We now explain the utility of ε-kernels for extent measures. An extent measure µ is a function
that maps any point set P ⊂ Rd to a real value such that µ(P ′) ≤ µ(P ) for all P ′ ⊂ P . Examples
include the diameter of point set P , the minimum radius of any ball covering P (i.e, the radius of the
minimum enclosing ball of P ), the minimum width of any slab (parallel hyperplane) containing P ,
and the minimum width of any spherical or cylindrical shells containing P .
Definition 2.3 (Coresets and faithful extent measures). Q ⊆ P is an ε-coreset for P w.r.t. µ if
µ(P ) ≤ (1 + ε)µ(Q). An extent measure µ is faithful if there exists c > 0 such that every ε-kernel
Q of P is a cε-coreset for µ.

Note that ε-kernel is defined w.r.t. directional width; while ε-coreset is defined for a target extent
measure. Intuitively, µ is a faithful measure if any ε-kernel of P serves as a valid ε-coreset for
P w.r.t. this measure µ. Examples of faithful measures include diameter, smallest enclosing-ball
radius, min-width of any enclosing slab, and bounding-box volume. For a faithful measure µ, once an
ε-kernel Q is computed for P , evaluating µ(Q) yields a ε-approximation to µ(P ) in time depending
only on |Q|. In short, computing ε-kernels leads to approximations of faithful extent measures. In the
next Section 4, we will discuss approximations of unfaithful extent measures.
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Figure 2: Comparison of error (left) and inference
time (right) of the Transformer, Sumformer, and
encode-process-decode approaches for estimating
the radius of the minimum enclosing ball.

Motivating example. Before introducing our
neural architecture, we provide a motivating ex-
ample: the minimum enclosing ball. Given a set
of points P ⊆ Rd, the minimum enclosing ball
is the smallest-radius ball that contains all of P .
In Figure 2, we compare two natural end-to-end
neural network approaches, one using a Sum-
former and the other a Transformer, to directly
predict the radius of the minimum enclosing ball
from the input point set. We also compare with
the algorithmically aligned encoder-processor-
decoder network that we propose later in the
paper. Each model is trained with point clouds
of size 100 sampled uniformly from [−5, 5]2
and tested on point clouds of increasing sizes
and bounding boxes (see Appendix for details).
The error is shown on the left side of Figure 2 and we see that neither end-to-end approach generalize
across sizes since the error grows rapidly as the size of the point cloud increases. In contrast, our
encode-process-decode approach maintains low error across sizes as its error rate remains flat. On
the right side of Figure 2, we see that our new encode-process-decode approach is as efficient as
Sumformer (time complexity grows linearly), while Transformer grows quadratically. In what follows,
we show how the encode-process-decode aligns with the ε-kernel and can therefore approximate
extent measures with bounded model complexity.
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3 Neural approximations of relaxed-ε-kernels

The previous section states that for faithful measures, computing ε-kernels leads to their approxima-
tion for any input point-set P . Hence intuitively, we wish to have a neural architecture to compute
ε-kernels. It turns out that existing algorithms to construct ε-kernels all require being able to identify
the exact extreme point(s) in various projects, which does not easily align with Transformer nor
SumFormer. Instead, we will propose a variant of the classical ε-kernels, called the relaxed-ε-kernel,
which shares similar theoretical guarantees as ε-kernels. We then develop a simple Sumformer-based
neural model that can efficiently approximate a relaxed-ε-kernel with bounded model complexity.

Algorithm 1 Relaxed-ε-kernels

Require: P = {p1, . . . , pn} ⊆ Rd, k
1: Ω← set of k directions from Sd−1

2: Q← {}
3: for u ∈ Ω do
4: Au ← {⟨u, p⟩ : p ∈ P}
5: w(Au)← maxAu −minAu

6: Compute ρε(Au)

7: qu ← (σ(ρε(Au))
T
P

8: Q.append(qu)
9: end for

10: return Q

Set MAu
:= max(Au) = max

p∈P
⟨u, p⟩

ρε(Au) =


ReLU(⟨u, p1⟩+ εw(Au)−MAu

)
ReLU(⟨u, p2⟩+ εw(Au)−MAu

)
...

ReLU(⟨u, pn⟩+ εw(Au)−MAu)


Let σ : Rn → Rn such that

σ(x) =

[
ex1 − 1∑n
i (e

xi − 1)
· · · exn − 1∑n

i (e
xi − 1)

]T

Figure 3: An algorithm for computing relaxed ε-kernels. The functions ρε and σ are defined on the
right. Notice that σ is a modified softmax function.

3.1 Relaxed ε-kernels

Definition 3.1 (Relaxed-ε-kernel). Given a set of points P ⊆ Rd, a relaxed ε-kernel is a set of points
Q ⊆ CH(P ) such that for any u ∈ Sd−1, we have (1− ε)wu(P ) ≤ wu(Q).

Figure 4: qu is the convex combina-
tion of points in the shaded region.

Unlike a standard ε-kernel, where the output points must be
a subset of P , the relaxed-ε-kernel allows each output to be
convex combinations of input points (as guaranteed by Q ⊂
CH(P )). See Figure 4 for a visualization. The key is to show
the relaxed-ε-kernels can replace ε-kernels in approximating
faithful extent measures. Indeed, this is guaranteed by the
following theorem (through the relaxed ε-coreset). The proofs
are in Appendix A.3.1. In addition to the relaxed-ε-kernel,
we define an analogous relaxed-ε-coreset and show that it has
the same approximation guarantees for faithful measures µ.
Specifically, a relaxed ε-coreset of P w.r.t µ is a set of points
Q ⊆ CH(P ) (versusQ ⊂ P ) such that (1−ε)µ(Q) ≤ µ(P ) ≤
(1 + ε)µ(Q).
Theorem 3.2. Let µ be a faithful measure with constant c. Let
0 < ε < 1

6c . There exists c′ such that for any P , any relaxed
ε-kernel Q for P is a relaxed c′ε-coreset for P .

A NN-aligned relaxed-ε-kernel construction. A relaxed-ε-kernel for P can be computed by
Algorithm 1. Intuitively, we pick a fixed set of directions Ω and for each u ∈ Ω, we output a point
qu ∈ Rd which is a convex combination of points in P whose projections onto u are within εwu(P )

of the maximum. ρε(Au) computes an indicator vector for such points, and (σ(ρε(Au)))
T
P then

computes qu, where σ is the modified softmax function described in Algorithm 1 and qu is a convex
combination of the points in P .

Theorem 3.3 (proof in Appendix A.3.1) below shows that the quality of the output of Algorithm 1
depends on the “fatness” of the input point set P . We also need to choose an appropriate set of
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directions Ω: in particular, Ω is a αε
4
√
d

-net for all possible unit directions Sd−1. Note that a set A is
a δ-net of a metric space (X, dX ) if A ⊂ X and for any point x ∈ X , there exists a ∈ A such that
dX(x, a) ≤ δ. It is easy to construct a δ-net of Sd−1 of size O(1/δd−1) where the distance between
two directions is measured as the angle between them.

Theorem 3.3. Let P ⊂ [−1, 1]d be a α-fat point set and let 0 < ε < 1
3 . Suppose Ω+ is an αε

4
√
d

-net

for Sd−1 s.t. |Ω| = O
(

1
( αε

4
√

d
)d−1

)
. Let Ω− = {−u : u ∈ Ω+} and let Ω = Ω− ∪ Ω+ so for all

u ∈ Ω, −u ∈ Ω. Then the set of points Q constructed via Algorithm 1 is a relaxed-3ε-kernel of P .

3.2 Relaxed-ε-kernel approximating NN architecture

Given an arbitrary point set P ⊆ Cd, we will represent P ∈ RN×d as a sequence of d-vectors where
N = |P |. Given X ∈ RN×k, let σcol denote column-wise application of the modified softmax
normalization described in Algorithm 1 (i.e. we apply σ to each column in X). First, we introduce a
general neural framework of a specific form: given P ∈ RN×d, it will output k points in Rd; that is,
Nϕε

(P ) ∈ Rk×d, as follows:

Nϕε
(P ) = σcol(ϕε(P ))

TP, (1)

where ϕε is a sequence-to-sequence permutation equivariant model that maps a sequence of points in
Rd to a sequence of points in Rk. Note that regardless of the length of the input sequence P (i.e., N ),
the output Nϕε(P ) is always in Rk×d, viewed as k points in Rd. The model ϕε can be instantiated
with any permutation equivariant neural network: such as a Sumformer Sε or a Transformer Tε.
The resulting final model Nϕε

is then denoted by NSε
(P ) = σcol(Sε(P ))TP for the SumFormer

instantiation or NTε
(P ) = σcol(Tε(P ))TP for the Transformer instantiation. See Figure 1 (a). We

will use the Sumformer implementation NSε , as the following result shows that this simple model is
sufficient to align with the computation of a relaxed-ε-kernel.

Theorem 3.4. Given any ε, α > 0, there exists a SumFormer Sε with only a single block, and
bounded model complexity (depending only on ε, α, and the input dimension d) such that, for any
α-fat point clouds P ⊂ Rd of arbitrary size, NSε

(P ) is a relaxed-ε-kernel for P .

Intuitively, the SumFormer Sε(P ) ∈ RN×k can easily simulate the computation of the collection of
ρε(Au)’s, for all k number of u ∈ Ω, as in Algorithm 1. Line 7 of Algorithm 1 is then computed
by the outer columnwise-softmax normalization as in Eqn. (1), thereby outputting k points in Rd

which form a relaxed-ε-kernel for input point set P . We refer to the neural network model NSε
in

Theorem 3.4 as our relaxed-ε-kernel-approximating-neural network, abbrev. kernel-approx-NN.

With our kernel-approx-NN, it is now easy to construct a bounded-complexity neural network to
approximate faithful extent measures. Consider any faithful extent measure µ: For any input point set
P , once we are given a relaxed-ε-kernelQ of P , we can simply compute µ(Q) as an approximation of
µ(P ). By Theorem 3.4, the k points Nϕε

(P ) ∈ Rk×d form a relaxed-ε-kernel of P , for a suitable ε
depending on the output size k. By Definition 2.3, we can compute µ(Nϕε

(P )) as an approximation of
µ(P ). Note that µ can be viewed as a permutation-invariant function as its output does not change
as the ordering of input points change. Hence we can use a DeepSet architecture [47] to approximate
µ: in particular, we set our faithful-measure-approximating NN asNfaithful(P ) = Ndeepset(Nϕε(P )).
Deepset models are universal approximators for permutation-invariant functions where the model
complexity depends on the maximum input size (e.g, [40, 34]) – in our case, the input is of size
k × d (k points in Rd as computed by our kernel-approx-NN NSε

). Hence the model complexity of
Ndeepset is also bounded, depending only k, thus only on ε, α and d, and not on the size of original
input point set P . Indeed, the following corollary implies that we have a NN with bounded complexity
that can approximate extent measures such as diameter, radius of minimum-enclosing ball, and width
of minimum-width slab, for input point set of arbitrary size.

Corollary 3.5. For any ε > 0, α > 0 and a faithful extent measure µ with constant c as in
Definition 2.3, there exists a bounded-complexity NN of the form Nfaithful(P ) = Ndeepset(Nϕε(P )),
such that for any α-fat point set P , the output Nfaithful(P ) satisfies that:

(1− 3cε)µ(P )− ε ≤ Nfaithful(P ) ≤ (1 + 3cε)µ(P ) + ε

6



Figure 5: (a) Upper / lower envelopes and the extent vector for a family of linear functions. Thick
curves in (b) form an ε-kernel G of F and those thick curves in (c) is a relaxed-ε-kernel. Dashed lines
are those in F . Note that, unlike (b), a relaxed-ε-kernel does not need to be a subset of F .

4 Neural approximations of unfaithful extent measures

The ε-kernel framework can also be used to derive efficient approximations for a certain family of
unfaithful measures via the so-called“linearization” trick [2]. We briefly describe the high-level idea,
which follows the same framework as [2]. We will show that our relaxed-ε-kernel can replace the
role of ε-kernel in this approach. First, we need to define (relaxed-)ε-kernels for sets of functions
(instead of points). The way to handle those unfaithful extent measures is to first convert them to
higher-dimensional linear functions via the linearization technique. Specifically, given a set of real-
valued functions F = {f1, . . . , fn : Rd−1 → R}, its upper envelope is the function UF : Rd−1 → R
where UF (x) = maxf∈F f(x), while its lower envelope is defined by LF (x) = minf∈F f(x).
Definition 4.1. Given a set of functions F = {f1, . . . , fn}, where fi : Rd−1 → R, its extent is
EF (x) = UF (x)− LF (x) and its extent-interval is

−→
E F (x) = [LF (x), UF (x)]. An ε-kernel for F

is a set G ⊆ F such that EG ≥ (1− ε)EF .

See Figure 5. We define analogous concepts for relaxed-ε-kernels. Given two intervals I1 = [a, b]
and I2 = [c, d], the Hausdorff distance between them equals max{|a− c|, |b− d|}.
Definition 4.2 (Relaxed-ε-kernels for sets of functions). A relaxed ε-kernel for F is a set G of
functions (not necessarily subset ofF ) such that for any x ∈ Rd−1, we have that (i)

−→
E G(x) ⊆

−→
E F (x)

and (ii) the Hausdorff distance between
−→
E G(x) and

−→
E F (x) is at most ε · EF (x).

Now consider a linear function f(x) = a1x1 + · · ·+ ad−1xd−1 + ad, where x = [x1, . . . , xd−1]
T ∈

Rd−1: This linear function represents a hyperplane in Rd. Its dual is the point f∗ := [a1, . . . , ad]
T ∈

Rd. Symmetrically, given a point p = [p1, . . . , pd]
T ∈ Rd, its dual hyperplane is the linear function

p∗(x) = p1x1 + . . . + pd−1xd−1 + pd. Given a set of linear functions F = {f1, . . . , fn}, let
F∗ = {f∗1 , . . . , f∗n} ⊂ Rd denote its dual point set. Note that (f∗)∗ = f and (F∗)∗ = F .
Theorem 4.3. G is a relaxed ε-kernel for the set of linear functions F if and only if G∗ is a relaxed
ε-kernel for the point set F∗.

Often we want to find the extent or ε-kernels for sets of non-linear functions. Depending on the
functions, it is possible to linearize them as follows [2]: Suppose F is a set of (d + p)-variate
polynomials F = {fi(x) = f(x, ai) : i ∈ [N ], x ∈ Rd, ai ∈ Rp}. We say that F admits
a linearization of dimension m if there exist p-variate polynomials ψ0, . . . , ψm : Rp → R and
d-variant polynomials φ1, . . . , φm : Rd → R such that for each fi, we can write it as

fi(x) = f(x, ai) = ψ0(ai) + ψ1(ai)φ1(x) + · · ·+ ψk(ai)φm(x).

Now define functions Ψ : Rp → Rm+1 and Φ : Rd → Rm+1 as Ψ(a) = [ψ0(a), . . . , ψm(a)]T for
any a ∈ Rp and Φ(x) = [1, φ1(x), . . . , φm(x)]T for any x ∈ Rd. Then we can view fi as a new
linearized form f(x, ai) = Ψ(ai)

TΦ(x) in space Rm+1. For standard ε-kernels, finding the ε-kernel
for the dual of the set of linearized functions gives an ε-kernel for the set of original functions. In
Theorem 4.4 we prove that we can also construct a relaxed-ε-kernel for a set of functions F from an
ε-kernel of the dual set after linearization.
Theorem 4.4. Suppose F is a set of N number of (d + p)-variate polynomials which admit a
linearization of dimension m; i.e. there is a set of A = {a1, . . . , aN} ⊆ Rp, Ψ : Rp → Rm+1

and Φ : Rd → Rm+1, such that F = {fi(x) = Ψ(ai)
TΦ(x) : ai ∈ A, i ∈ [N ]}, and the dual

F∗ = {Ψ(ai) : i ∈ [N ]}. Let Q∗
ε ⊆ Rm+1 be a relaxed-ε-kernel for F∗ of size k computed via

Alg. 1. Suppose Q∗
ε = {αj

1Ψ(a1) + · · ·+ αj
NΨ(aN ) : j ∈ [k],

∑
αj
ℓ = 1, αj

ℓ ≥ 0}. Then the set of
functions Qε := {qTΦ(x) : q ∈ Q∗

ε} is a relaxed-ε-kernel for the original set of functions F .
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Finally, as shown in [2], a family of unfaithful extent measures can be transformed to finding the
smallest extent E∗F = minxEF (x) of a set of N functions F(constructed from the input pointset P
with N = |P |) that admit a linearization, and thereby can be approximated by computing the smallest
extent of the relaxed-ε-kernel Qε as computed in Theorem 4.4. Once Qε is computed, finding the
smallest extent E∗Qε

takes time only depending on |Qε| and indepent to the original pointset size P .
We provide an example in Appendix A.2 of how relaxed-ε-kernels can be used to approximate the
width of the minimum enclosing annulus for a point cloud.

Neural framework for approximating unfaithful extent measures. In order to approximate those
unfaithful extent measures that can be solved via linearization, we make use of the encode-process-
decode framework proposed in [15]. Given X which is the space of point clouds, a point cloud
P ∈ X , and an extent measure µ : X → Rd, we define

Nextent(P ) = ND(NP(NE(P ))) (2)

Intuitively, given a size-N pointset P ∈ RN×d, the encoder P̂ = NE(P ) ∈ RN×(m+1) computes
the linearization which maps P to a size-N (dual) point set in Rm+1. The process-network NP then
outputs a size-k relaxed-ε-kernel, and the decoder ND network computes the final approximation of
the extent measure. Importantly, for the process-network NP, we use our ε-kernel approximating
neural networkNϕε

defined in Equation (1), and given P̂ = NE(P ), the output of processorNP(P̂ ) ∈
Rk×(m+1) is a size-k relaxed-ε-kernel for P̂ . See a visualization of this architecture in Figure 1 and
note that this is exactly the encode-process-decode framework from our motivating example in Figure
2. Note that the encoder NE can be any permutation equivariant architecture. In our experiments,
we simply apply an MLP to each element of P so NE([p1, . . . , pN ]) = [MLP(p1), . . . ,MLP(pN )].
The decoder ND can be implemented by any universal permutation invariant architecture. In our
experiments, we use DeepSet as the final decoder, ND, to compute the final approximation of the
extent architecture. Note that we can also use Nextent to approximate faithful extent measures as NE

can be set to the identity function. In our experiments, we use this encoder-process-decoder Nextent

to approximate both faithful and unfaithful extent measures.

5 Experiments

We evaluate both our kernel-approx-NN (cf. Eqn. (1)) to approximate relaxed-ε-kernels as well as
our encode-process-decode framework (cf. Eqn. (2)) for extent measure approximation tasks (faithful
and unfaithful). Throughout this section, we report the best results after a hyperparameter search. All
details regarding training and datasets are given in Appendix A.4.

Our experiments use (i) two synthetic datasets ‘Gaussian Mixture’ (point clouds from 2 to 5 random
Gaussian clusters), and ‘Mixed Synthetic’ (a mixture of synthetically generated point clouds, including
‘Ellipse’, ‘Gaussian Mixture’ and more), and (ii) two real datasets, SQUID [26] (2D point clouds
generated from boundary contours of fish) and the 3D ModelNet [43]. In the main text, we present
average evaluation metrics over all test data; the Appendix provides complete results, including
standard deviations, and further experiments demonstrating that fixed-size models continue to perform
well on OOD point sets (across varied sampling schemes and sizes).

Relaxed-ε-kernel approximation. We examine the performance of the kernel-approx-NN (cf.
Equation (1)) using both Sumformers and Transformers as ϕε in Nϕε

; and we denote these different
instantiations as Sε and Tε, respectively. We also compare against a direct neural baseline that directly
outputs a coarsened point cloud aggregating encoded point features and passing the result through
an MLP to produce the final output point cloud. The Sumformer and Transformer implementations
of this baseline are denoted Sε,B and Tε,B, respectively. We also include a comparison to the
classical ε-kernel and our relaxed ε-kernel algorithms, both with ε = 0.1, denoted Bε,E and Bε,R,
respectively. For performance, we use the directional width error to measure the error caused by our
approximation: Edir(P, Q̃) = maxu∈Ω

|wu(P )−wu(Q̃)|
wu(P,u) where P is the input point set, Q̃ is the output

of our kernel-approx-NN, and Ω is a set of 1000 random directions. We report results for datasets in
R2 and in R3 in Table 1. Additional results for point clouds in R5, as well as many other experiments
including effects of hyperparameters (e.g. width of latent dimension), are given in the Appendix.
Overall, using Sumformer instantiation Sε as Nϕε consistently yields lower error on OOD data than
the Transformer-instantiation Tε. This gap is most striking on real world datasets: when trained on
the synthetic datasets (‘Mixed Synthetic or ‘Gaussian Mixture’), the Sε has significantly lower error
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Table 1: Edir for predicted relaxed-ε-kernels of size 16 and 64 respectively, for point clouds in R2

(left) and R3 (right) across three different test sets for each train set. ‘In-dist.’ refers to in-distribution
test sets. “Mixed Synthetic” has no “OOD, Synthetic” because the train set contains all types of
synthetic data. Similarly, the models trained on SQUID and ModelNet are not OOD on those test
sets (so unreported). Since algorithmic baselines do not require training, they have no ‘In-dist’ error.
Boldface indicates the lower error (better accuracy).

Test Sets
OOD

Train Set Method In-dist. Synthetic SQUID

Gaussian
Mixture

Sε 0.014 0.043 0.028
Tε 0.027 0.097 0.218
Sε,B 0.146 0.146 0.962
Tε,B 0.190 0.383 0.94

SQUID

Sε 0.028 0.504 -
Tε 0.061 0.400 -
Sε,B 0.421 7.137 -
Tε,B 0.228 14.561 -

Mixed
Synthetic

Sε 0.027 – 0.065
Tε 0.032 – 0.296
Sε,B 0.094 - 0.97
Tε,B 0.203 - 0.939

Algorithmic
Baselines

Bε,R - 0.180 0.228
Bε,E - 0.040 0.062

Test Sets
OOD

Train Set Method In-dist. Synthetic ModelNet

Gaussian
Mixture

Sε 0.047 0.039 0.064
Tε 0.054 0.066 0.250
Sε,B 0.274 0.223 1.949
Tε,B 0.357 0.803 5.514

ModelNet

Sε 0.041 0.099 -
Tε 0.049 0.265 -
Sε,B 0.379 0.528 -
Tε,B 0.542 0.581 -

Mixed
Synthetic

Sε 0.035 – 0.055
Tε 0.042 – 0.117
Sε,B 0.174 - 2.288
Tε,B 0.289 - 4.356

Algorithmic
Baselines

Bε,R - 1.016 2.176
Bε,E - 0.062 0.050

than Tε when tested on OOD samples from SQUID (in R2) and ModelNet (in R3). While Tε also has
the capacity to implement Algorithm 1, we believe that the simple and more direct alignment of Sε
with this algorithm leads to faster training (optimization) and better (OOD) generalization.

Approximating extent measures. We train the encode–process–decode model (Eq. 2) to predict three
extent measures: radius of minimum enclosing ball (MEB), radii (and therefore area) of minimum
enclosing ellipse (MEE), and width of minimum-width annulus (MEA) covering input points. The
first two are faithful extent measures, while the last is unfaithful. We compare two instantiations of
the general model Nextent: (i) Sextent when using the Sumformer within the processor model NP,
and (ii) Textent when using the Transformer.

To examine the contribution of the relaxed-ϵ-kernel module when used as Nϕε
, we compare two

training protocols: (1) full end-to-end optimization of the entire pipeline (denoted as ‘E2E’) and (2) a
regime in which the inner kernel-approx-NN is fixed after being pre-trained to output a relaxed-ε-
kernel (denoted as ‘Frozen’), and then only the encoder and decoder are trained based on the specific
task. To understand the effect of mapping input point to a relaxed-ε-kernel in the processor module, we
also construct a baseline where we do not use Equation (1) to compute a coreset. Instead, we use the
output ϕε(P̂ ) (where P̂ = NE(P )) and feed it to the decoder ND. SBaseline and TBaseline to denote
the Sumformer and Transformer instantiations of this baseline model. Additionally, we also compare
against the proposed direct neural approximations described in Section 2, with Sumformer and
Transformer implementations denoted as SDirect and TDirect. An extended comparison to classical
algorithmic baselines in terms of both accuracy and runtime is also included in Appendix A.4.

The results for all three extent measures are shown in Table 2 and we evaluate the performance as
follows: (1) For MEB, we measure the relative error Er of predicted minimum-radius over the true
optimal. (2) For MEE, we use the relative errors of both predicted major and minor radii (denoted as
Er,maj for the major radius and Er,min for the minor radius). (3) For the MEA, we use the relative
error for the predicted smallest width Ew. To measure the quality of our returned geometric shape, we
also compute Ep, the percentage of input points not covered by these approximations. These results
are in the Appendix and usually this portion is very small (around 1-2%).

All results in Table 2 are for in-distribution test sets: e.g, if they are trained on SQUID, then the test
sets are also from SQUID. The term “Synthetic” in Table 2 refers to different datasets for different
tasks (see Appendix A.4 for details). From Table 2, we see that in almost all cases, “Sextent (Frozen)”
achieves the best result (lowest error). In general Sumformer versions outperform corresponding
Transformer versions, which is suggestive of the benefit of the alignment (resemblance) of Sumformer-
instantiated kernel-approx-NN with Algorithm 1. In the case of Sumformer versions of neural models,
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Table 2: Error metrics across MEB, MEE, and MEA (standard deviations in Appendix). Er: relative
radius error of MEB Er,min / Er,maj: minor/major radius errors of MEEs Ew: error in MEA width.
Boldface marks the best (lowest) value in each column.

MEB MEE MEA

Train Set Method Er Er,min Er,maj Ew

Synthetic

Sextent (Frozen) 0.009 0.037 0.022 0.050
Sextent (E2E) 0.023 0.056 0.047 0.038
Textent (Frozen) 0.099 0.041 0.027 0.083
Textent (E2E) 0.024 0.038 0.022 0.077
SBaseline 0.048 0.378 0.426 0.674
TBaseline 0.030 0.071 0.047 0.417
SDirect 0.126 0.033 0.038 0.141
TDirect 0.178 0.932 0.887 0.079

MEB MEE MEA

Train Set Method Er Er,min Er,maj Ew

SQUID

Sextent (Frozen) 0.017 0.056 0.047 0.073
Sextent (E2E) 0.010 0.078 0.050 0.087
Textent (Frozen) 0.068 0.058 0.032 0.064
Textent (E2E) 0.190 0.093 0.045 0.104
SBaseline 0.027 0.322 0.250 0.191
TBaseline 0.039 0.357 0.049 0.118
SDirect 0.050 0.68 0.05 0.041
TDirect 0.685 1.269 0.188 0.065
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Figure 6: Size generalization across all extent measure tasks. We record the error for each model
on extent measure tasks as the size and bounding box of the input point cloud increases. Our frozen
Sextent model consistently outperforms all other neural baselines across every task.

the “Frozen” version (where the processor module is pre-trained then frozen, and only the encoder
and decoder will be trained in a task driven manner) is usually much better than the “E2E” version.
This advantage, however, is less clear for the Transformer based models. Finally, while the direct
models outperform our models in terms of Ew for MEA on the SQUID dataset, refer to Table 15 in
Appendix A.4 to see that our models achieve more geometrically faithful predictions, reducing the
proportion of excluded points by approximately one third.

Additionally, we examine how each model’s error changes as the size of the input point cloud
increases (i.e., its size generalization capability) across all extent-measure problems in Figure 6.
Each model in this experiment is trained on synthetic data generated from within the bounding box
[−5, 5]2. For the test data, we simultaneously scale both the number of input points and the size of
the bounding box from which each point cloud is sampled. Extended details for the experiment set-up
are in Appendix A.4. The results in Figure 6 highlight the advantage of the Sumformer-instantiated
kernel-approx-NN as the “Sextent (Frozen)” has much better generalization as compared to all other
neural models. Visualizations of the solutions in Figure 14 (Appendix A.4) for in-distribution and
out-of-distribution data for each problem even more suggestive of how aligning the processor network
explicitly with relaxed-ε-kernel can better adjust to OOD data.

6 Conclusion and Limitations

We introduce an alternative theory of relaxed-ε-kernels which we show naturally aligns with a
SumFormer-based architecture to approximate a family of faithful and unfaithful extent measure
problems using bounded model complexity. Empirically, we demonstrate the benefits of alignment
of our SumFormer instantiated models and the effectiveness of our (encoder-process-decoder) ar-
chitecture, especially in better OOD generalization performance. Some limitations include: The
model complexity still depends on the dimension (but not the size) of the input point sets. Also our
theoretical results depend on the “fatness” of the input point sets. Nevertheless, our work shows
the benefits of neural-algorithmic alignments and opens the door to further explorations of how the
interplay between task structure, classical algorithmic approaches, and network design yields better
performance, both theoretically and empirically.
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A Technical Appendices and Supplementary Material

A.1 Additional details from Section 2

Here, we provide more details regarding the computation of ε-kernels. One simple algorithm to
compute an ε-kernel is given in Algorithm 2. More sophisticated methods can be found in [10] and
[46] but we highlight Algorithm 2 as it is most similar to the computation of the relaxed-ε-kernel in
Section 3.2. In summary, one may compute an ε-kernel by carefully choosing a set of directions Ω
and choose points according to the max-projection in that direction. We show the correctness of this
algorithm in Theorem A.3. However, we first provide some auxiliary lemmas which we will use in
the proof of Theorem A.3 as well as subsequent proofs.

Lemma A.1. If P is an α-fat point set, then for any u ∈ Sd−1, wu(P ) ≥ 2α.

Proof. Suppose P is an α-fat point set so αC ⊆ CH(P ). For any u ∈ Sd−1 and p ∈ CH(P ), ⟨u, p⟩ ≥
∥u∥∥p∥. Since αC ⊆ CH(P ), ∥p∥ ≥ α so ⟨u, p⟩ ≥ α and maxp∈P ⟨u, p⟩ ≥ α. Furthermore,
minp∈P ⟨u, p⟩ = −maxp∈P −⟨u, p⟩ = −maxp∈P ⟨−u, p⟩ ≤ −α. Then

wu(P ) = max
p∈P
⟨u, p⟩ −min

p∈P
⟨u, p⟩ ≥ 2α

Lemma A.2. Let S ⊆ Cd. Given two unit vectors u, u′ ∈ such that ∥u − u′∥ ≤ λ, wu(S) ≥
wu′(S)− 2λ

√
d.

Proof. Given any x ∈ S,

|⟨x, u⟩ − ⟨x, u′⟩| = |⟨u− u′, x⟩| ≤ |∥u− u′∥∥x∥| ≤ λ
√
d.

where the final
√
d is because x ∈ [−1, 1]d. Then

wu′(S) = max
s∈S
⟨u′, s⟩ −min

s,∈S
⟨u′, s⟩

≥ ⟨u′, argmaxs∈S⟨u, s⟩⟩ −min
s∈S
⟨u′, s⟩

≥ ⟨u, argmaxs∈S⟨u, s⟩⟩ − λ
√
d−min

s∈S
⟨u′, s⟩

≥ ⟨u, argmaxs∈S⟨u, s⟩⟩ − λ
√
d− ⟨u′, argmins∈S⟨u, s⟩⟩

≥ ⟨u, argmaxs∈S⟨u, s⟩⟩ − λ
√
d− (⟨u, argmins∈S⟨u, s⟩⟩+ λ

√
d)

≥ wu(S)− 2λ
√
d.

Theorem A.3. Let P ⊆ C = [−1, 1]d be an α-fat point set and let 0 < ε < 1
3 . Suppose Ω is an

αε
4
√
d

-net for Sd−1 so |Ω| = O
(

1
( αε

4
√

d
)d−1

)
, ∀u, u′ ∈ Ω, ∥u − u′∥ ≤ 1

( αε

4
√

d
)d−1 , and for all u ∈ Ω,

−u ∈ Ω. Suppose that ∀u ∈ Ω, −u ∈ Ω. Then the set of points Q constructed via Algorithm 2 is
an ε-kernel for P .

Algorithm 2 Computation of ϵ-kernels

Require: P ⊆ Rd, k
Ω is a set of k directions
Initialize Q = {}
for u ∈ Ω do

Q.append(argmaxp∈P ⟨u, p⟩)
end for
return Q = {qu : u ∈ Ω}
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Proof of Theorem A.3. Let u ∈ Sd−1. Let λ = αε
4
√
d

. Since Ω is an λ-net for Sd−1, there is a
u′ ∈ Ω such that ∥u− u′∥ ≤ λ. Therefore, by Lemma A.2,

wu(Q) ≥ wu′(Q)− 2λ
√
d ≥ wu′(P )− 2λ

√
d ≥ wu(P )− 4λ

√
d.

Therefore,
wu(Q)

wu(P )
≥ 1− 4λ

√
d

wu(P )
≥ 1− 4λ

√
d

α
= 1− ε

where the second inequality comes from Lemma A.1. Thus, wu(Q) ≥ (1− ε)wu(P ).

A.2 Additional details from Section 4

We provide an example of how relaxed-ε-kernels can be used to approximate minimum width
enclosing annulus. However, we will first need show in Theorem A.5 how Theorem 4.4 can be used
to compute relaxed-ε-kernels for fractional powers of polynomials. Our proof of Theorem A.5 builds
on the following lemma, originally proved by [2].
Lemma A.4. Let 0 < ε < 1 be a parameter, r ≥ 2 and let δ = (ε/2(r − 1))r. If we have
0 ≤ a ≤ A ≤ B ≤ b and B −A ≥ (1− δ)(b− a), then

B1/r −A1/r ≥ (1− ε)(b1/r − a1/r)
Theorem A.5. Let F be a family of (d + p) variate polynomials which admit a linearization of
dimension m as in Theorem 4.4. Additionally, suppose for every fi, fi(x) ≥ 0 for all x ∈ Rd. Let
r ≥ 2, δ = (ε/2(r − 1))r, and let G = {gi} be a relaxed-δ-kernel of F . Then G1/r = {g

1/r
i } is a

relaxed-ε-kernel of F1/r = {f
1/r
i }.

Proof. Let δ = (ε/2(r − 1))r where r ≥ 2 is an integer. Let G be a relaxed-δ-kernel of F so
−→
E G(x) ⊆

−→
E F (x) and

−→
E G(x) is within ε · EF (x)-Hausdorff distance of

−→
E F (x). Since f ∈ F is

positive, for any x ∈ Rd, we know that

0 ≤ min
f∈F

(x) ≤ min
g∈G

(x) ≤ max
g∈G

(x) ≤ max
f∈F

(x).

Additionally, by the definition of relaxed-ε-kernels, maxg∈G g(x) − ming∈G g(x) ≥ (1 −
ε)(maxf∈F (x)−minf∈F (x)). Then, we apply Lemma A.4 to get

max
g∈G1/r

g(x)1/r −min g ∈ G1/rg(x)1/r ≥ (1− ε)( max
g∈F1/r

f(x)1/r − min
f∈F1/r

f(x)1/r).

Now, we are prepared to provide an example of Theorem A.5 can be used to approximate minimum
enclosing annulus for points in R2. Given P = {p1, . . . , pN} ⊆ R2 and any x ∈ R2, finding the
width of the a minimum enclosing spherical annulus centered at x is

w(x, P ) = max
p∈P
∥x− p∥ −min

p∈P
∥x− p∥.

We define the set of functions F = {fp(x) = ∥x− p∥ : p ∈ P}. Notice then that EF (x) = w(x, P )
and the width of the minimum enclosing spherical shell is exactly minx∈Rd EF (x). Similarly, the
optimal center for the minimum enclosing spherical shell is argminx∈RdEF (x). By Theorem A.5, a
relaxed-ε-kernel for F ′ = {∥x− p∥2 : p ∈ P} translates to relaxed-ε-kernel for F .

Suppose x = (x1, x2) ∈ R2 and pi = (pi,1, pi,2) ∈ R2 where pi ∈ P . Given fi ∈ F ′, fi =
x21 + x22 − 2pi,1x1 − 2pi,2x2 + p2i,1 + p2i,2. fi admits a linearization of dimension 3 as follows:

ψ0(pi) = p2i,1 + p2i,2 ψ1(pi) = −2pi,1 ψ2(pi) = −2pi,2 ψ3(pi) = 1

φ1(x) = x1 φ2(x) = x2 φ3(x) = x21 + x22

By Theorem 4.4, we can compute a relaxed-ε-kernel for the dual space via Algorithm 1 in R4 and
map back to relaxed-ε-kernel for F ′, Qε. Then Qε,1/r is a relaxed-ε-kernel for F by Theorem A.5.
Computing minx∈R2 EQε,1/r

(x) as well as argminx∈R2EQε,1/r
(x) outputs the width and center of

the minimum enclosing annulus, respectively.
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A.3 Proofs details

In this section, we will provide the missing proofs from the main text.

A.3.1 Proofs from Section 3

The following lemma will be important to show that relaxed ε-kernels can approximate well-behaved
measurements of the original point set P .

Lemma A.6. SupposeQ is a relaxed-ε-kernel of P . Let P̂ = P ∪Q. Then (a)Q is a ε-approximation
of P̂ and (b) P is an ε-approximation of P̂ .

Proof of Lemma A.6 Let u ∈ Sd−1. To show that Q is an ε-approximation of P̂ , we must show
that

max
q∈Q
⟨q, u⟩ − εwu(Q) ≤ max

p̂∈P̂
⟨p̂, u⟩ ≤ max

q∈Q
⟨q, u⟩+ εwu(Q)

and
min
q∈Q
⟨q, u⟩ − εwu(Q) ≤ min

p̂∈P̂
⟨p̂, u⟩ ≤ min

q∈Q
⟨q, u⟩+ εwu(Q)

We know that maxp̂∈P̂ ⟨p̂, u⟩ = max{maxp∈P ⟨p, u⟩,maxq∈Q⟨q, u⟩}. We know that
maxq∈Q⟨q, u⟩ − εwu(Q) ≤ maxp∈P ⟨u, p⟩ ≤ maxq∈Q⟨u, q⟩+ εwu(Q) because Q is an ε-relaxed-
kernel of P . Clearly, maxq∈Q⟨q, u⟩ − εwu(Q) ≤ maxq∈Q⟨q, u⟩ ≤ maxq∈Q⟨q, u⟩+ εwu(Q) so

max
q∈Q
⟨q, u⟩ − εwu(Q) ≤ max{max

p∈P
⟨p, u⟩,max

q∈Q
⟨q, u⟩} = max

p̂∈P̂
⟨p̂, u⟩ ≤ max

q∈Q
⟨q, u⟩+ εwu(Q).

We can do something similar for minq∈Q⟨q, u⟩ and minp̂∈P̂ ⟨p̂, u⟩.

The same argument will hold for (b).

Proof of Theorem 3.2. Let P̂ = P ∪Q. Let µ be a faithful measure and let c be the constant in for
the faithful measure, µ. By Lemma A.6 (a), Q is ε-kernel of P̂ , meaning Q is a cε-coreset of P̂ . By
Lemma A.6 (b), P is ε-kernel of P̂ , meaning P is a cε-coreset of P̂ . It then follows that

1− cε
1 + cε

µ(Q) ≤ µ(P ) ≤ 1 + cε

1− cε
µ(Q).

For cε < 1/3, it is easy to verify that this implies

(1− 3cε)µ(Q) ≤ µ(P ) ≤ (1 + 3cε)µ(Q),

hence the theorem holds with c′ = 3c.

Proof of Theorem 3.3 First, we make two important observations regarding the points in the
output relaxed-ε-kernels, Q, computed by Algorithm 1 and their relationship to the set of chosen
directions Ω. First, suppose we are given ε > 0 and A = {a1, . . . , aN} ⊆ R such that ai = ⟨u, pi⟩,
let a = [a1, . . . , aN ]T . Recall from Algorithm 1, ρε is defined as

ρε(a) =


ReLU(a1 + ε · w(A)−MA)
ReLU(a2 + ε · w(A)−MA)

...
ReLU(an + ε · w(A)−MA)


where MA = max(A) and w(A) = max(A)−min(A). Note ReLU(ai+ ε ·w(A)−MA) > 0 only
when ai is within ε · w(A) of the maximum value, MA. Recall our modified softmax normalization
from Algorithm 1 given x ∈ Rn:

σ(x) =

[
ex1 − 1∑n

i=1(e
xi − 1)

· · · exn − 1∑n
i=1(e

xi − 1)

]
.

Notice that σ(x)i > 0 only when xi > 0. Hence, we can see σ(ρε(a)) as a probability vector over a
which only has non-zero values corresponding to those ai that are within ε · w(A) of MA. If we take
σ(ρε(a))

Ta, we observe that σ(ρε(a))Ta is a convex combination of the points in A.

Thus, given u ∈ Ω and qu ∈ Q, we make the following important observations about qu.

16



Observation A.7. Given u ∈ Ω, qu ∈ Q is the convex combination of a subset of points pI1 , . . . , pIru .
For each such point pIi , ⟨u, pIi⟩ ∈ [maxp∈P ⟨u, p⟩ − εwu(P ),maxp∈P ⟨u, p⟩].
Observation A.8. Given u ∈ Ω, ⟨u, qu⟩ ∈ [maxp∈P ⟨u, p⟩ − εwu(P ),maxp∈P ⟨u, p⟩].

Our goal is to show that for any u ∈ Sd−1, the u-projection −→w u(Q) is an ε-approximation of
the interval (u-projection) −→w u(P ). First, note that by construction, each point in Q is a convex
combination of a subset of points in P so Q ⊆ CH(P ). This implies that −→w u(Q) ⊆ −→w u(P ). What
remains is to show that wu(Q) ≥ (1− 3ε)wu(P ). If u ∈ Ω, then this holds as

max
q∈Q
⟨u, q⟩ −min

q∈Q
⟨u, q⟩ ≥ ⟨u, qu⟩ − ⟨−u, q−u⟩

≥ max
p∈P
⟨u, p⟩ − εwu(P )−min

p∈P
⟨u, p⟩ − εwu(P ) due to Observation 2

≥ wu(P )− 2εwu(P )

≥ (1− 3ε)wu(P )

Consider when u /∈ Ω and let λ = αε
4
√
d

. Then there is a u′ ∈ Ω such that ∥u− u′∥ ≤ λ due to the
construction of Ω and −u′ ∈ Ω. Then

wu′(Q) = max
q∈Q
⟨u′, q⟩ −min

q∈Q
⟨u′, q⟩

≥ ⟨u′, qu′⟩ −min
q∈Q
⟨u′, q⟩

≥ ⟨u′, argmaxp∈P ⟨u′, p⟩⟩ − εwu′(P )−min
q∈Q
⟨u′, q⟩ (Observation 2)

= ⟨u′, argmaxp∈P ⟨u′, p⟩⟩ − εwu′(P )−max
q∈Q
⟨−u′, q⟩

= max
p∈P
⟨u′, p⟩ − εwu′(P )− ⟨−u′, q−u′⟩

≥ max
p∈P
⟨u′, p⟩ − εwu′(P )− (⟨−u′, argmaxp∈P ⟨−u′, p⟩⟩ − εw−u′(P ))

= max
p∈P
⟨u′, p⟩ −min

p∈P
⟨u′, p⟩ − 2εwu′(P ) = (1− 2ε)wu′(P )

By Lemma A.2,

wu(Q) ≥ wu′(Q)− 2λ
√
d

≥ (1− 2ε)wu′(P )

≥ (1− 2ε)(wu(P )− 2λ
√
d)− 2λ

√
d

= (1− 2ε)wu(P )− 2λ
√
d(1− 2ε+ 1)

= (1− 2ε)wu(P )− 4λ
√
d(1− ε)

Therefore, by Lemma A.1,

wu(Q)

wu(P )
≥ 1− 2ε− 4λ

√
d(1− ε)

wu(P )

≥ 1− 2ε− 4λ
√
d(1− ε)
α

due to α-fatness of P

≥ 1− 2ε− ε(1− ε)
≥ 1− 3ε

and we get our desired result i.e. wu(Q) ≥ (1− 3ε)wu(P )

Proof of Theorem 3.4. Let k(ε) ≥ O
(

1

(
αε/3

4
√

d
)d−1

)
and let Ω be a fixed set of directions such

that |Ω| = k(ε). Notice that here, since k(ε) ≥ O
(

1

(
αε/3

4
√

d
)d−1

)
, by Theorem 3.3, the output of
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Algorithm 1 would be a relaxed-ε-kernel. Let Finner : X → Rk(ε) such that

Finner(S) =

 maxx∈S⟨u1, x⟩
...

maxs∈S⟨uk(ε), x⟩


Additionally, let Fouter,1 : Rd × Rd → Rk(ε) such

Fouter,1(x) =


⟨x, u1⟩
⟨x, u2⟩

...
⟨x, uk(ε)⟩


and Fouter,2 : Rk(ε) × Rk(ε) → Rk(ε) be defined as Fouter,2(x, y) = ReLU(x+ y). Given x ∈ Rd

and y ∈ Rk(ε), let Fouter(x, y) = Fouter,2(Fouter,1(x) + y).

First, we note that ℓp-norms converge to the ℓ∞-norm so there is a p such that for any x ∈ RN ,
|∥x∥p − ∥x∥∞| < εα

2 . Finner can be approximated to within εα
2 via a sum-decomposition by first

mapping each s ∈ S to ϕ1(s) = [⟨u1, s⟩p, . . . , ⟨uk(ε), s⟩p]T ∈ Rk(ε) and then taking
∑

(ϕ1(s))
1/p

where the 1/p-power is taken elementwise. Thus, by the universal approximation property of MLPs,
there are multilayer perceptrons MLP1 and MLP2 such that∥∥∥∥∥Finner(S)−MLP1

(∑
s∈S

MLP2(s)

)∥∥∥∥∥ < εα.

This means that Finner(S)i is within εα for maxs∈S⟨ui, s⟩ for any S ∈ Xα. Because each set in Xα

is α-fat, ∀u ∈ Sd−1, Finner(S)i is within εwu(S) of the maximum value. In other words,∣∣∣∣∣MLP1

(∑
s∈S

MLP2(s)

)
i

− Finner(S)i

∣∣∣∣∣ ≤ ε · α ≤ ε · wui
(S).

We can implement Fouter,1 with MLP3 i.e. Fouter,1(x) = MLP3(x) where MLP3 can realize
Fouter,1 by choosing its weight matrix to be diagonal with entries [u1, . . . , uk(ε)] along the diagonal.
Similarly, Fouter,2 can be exactly represented by

Fouter,2(x, y) = MLP4(x+ y)

where MLP4 represents the identity function followed by a ReLU activation. Fouter can be rep-
resented by a neural network ψ such that ψ(x, y) = MLP4(MLP3(x) + y). Given P ∈ Xα and
pi ∈ P ,

ψ

(
pi +MLP1

(∑
s∈S

MLP2(s)

))
=

 ReLU(⟨u1, pi⟩+ εwui(P )−maxp∈P ⟨u1, p⟩)
...

ReLU(⟨uk(ε), pi⟩+ εwui
(P )−maxp∈P ⟨uk(ε), p⟩)


This is exactly the point-wise update computed in a SumFormer architecture so if we instantiate a
SumFormer Sε with the MLPs described above and each MLP in Sε mapping to an intermediate
dimension of k(ε), QSε

= σcol(Sε(P ))TP is a relaxed-ε-kernel by Theorem 3.3. Additionally, note
that each MLP used to approximate QSε maps to Rk(ε) where k is independent of the size of the
input set and only dependent on the input dimension d, the fatness of the point set α, and the desired
approximation error ε.

Proof of Corollary 3.5 From Theorem 3.4, we know that Qε = L1,col(Sε(P ))TP is a relaxed
ε-kernel for P . By Theorem 3.2, since Qε is a relaxed ε-kernel, it is 3cε-coreset for P . Then
(1−3cε)µ(P ) ≤ µ(Qε) ≤ (1+3cε)µ(P ). By the universality of DeepSets,Ndeepset can approximate
µ to arbitrary accuracy for any point set in Xα. Thus, there is a Ndeepset architecture such that

|Ndeepset(Qε)− µ(Qε)| < ε

and we get the desired result.
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A.3.2 Proofs from Section 4

Proof of Theorem 4.3 Note that the non-relaxed version is also given in [2]. For completeness, we
prove this theorem for the relaxed case which essentially just follows from the definitions of duality.

First for any point x ∈ Rd−1, let x̂ = [x, 1] denote the point in Rd with the last coordinate being 1.
Let ϕ(x) := x̂/∥x̂∥ ∈ Sd−1 be the unit vector in direction x. Let Sd−1

+ be the positive semi-sphere.
It is easy to see that ϕ is bijective from Rd−1 to Sd−1

+ . Note that for any x ∈ Rd−1, ⟨x̂, f∗⟩ and for
any set of functionsH,

LH(x) = min
h∈H

h(x) = ∥x∥min
h∈H
⟨ϕ(x), h∗⟩ and

UH(x) = max
h∈H

h(x) = ∥x∥max
h∈H
⟨ϕ(x), h∗⟩.

Then
EH(x) = ∥x∥ · wϕ(x)(H∗)

whereH∗ is the dual point set ofH.

If G = {g1, . . . , gk} is a relaxed ε-kernel for F . Then for any x ∈ Rd, we have that LF (x) ≥
LG(x)− εEF (x) and UF (x) ≤ UG(x) + εEF (x). It then follows that for any x ∈ Rd−1,

min
f∗∈F∗

⟨ϕ(x), f∗⟩ ≥ min
g∗∈G∗

⟨ϕ(x), g∗⟩ − εwϕ(x)(F∗) and

max
f∗∈F∗

⟨ϕ(x), f∗⟩ ≤ max
g∗∈G∗

⟨ϕ(x), g∗⟩+ εwϕ(x)(F∗)

That is, for any u ∈ Sd−1
+ , −→w u(G∗) ε-approximates −→w u(F∗). Given that ⟨−u, p⟩ = −⟨u, p⟩ for any

point p, this means that −→w u(G∗) ε-approximates −→w u(F∗) holds for any u ∈ Sd−1
+ ∪ Sd−1

− . Hence
the only directions left are u ∈ Sd−1 ∩ {x ∈ Rd, xd = 0}. However, given that each term above is
continuous, this holds due to continuity.

The other direction follows easily from the fact that ϕ being bijective.

Proof of Theorem 4.4 Suppose F admits a linearization of dimension m. For any x ∈ Rd, we
will show first that

−→
E Qε

(x) ⊆
−→
E F (x). Then we will show that EQε

(x) ≥ (1− ε)EF (x). If we use
Algorithm 1 to compute a relaxed-ε-kernel of the dual F∗, we know that each q∗i ∈ Q∗

ε is

q∗i = αi
1Ψ(a1) + · · ·+ αi

NΨ(aN )

where
∑N

ℓ=1 α
i
ℓ = 1. Additionally, we will let k = |Q∗

ε|. Then we know there is a qi ∈ Qε where

qi(x) = (αi
1 . . . α

i
N )

ψ0(a1)
...

ψ0(aN )

+(αi
1 . . . α

i
N )

ψ1(a1)
...

ψ1(aN )

φ1(x)+· · ·+(αi
1 . . . α

i
N )

ψm(a1)
...

ψm(aN )

φm(x)

To ease notation, for any j ∈ {0, . . . ,m} and i ∈ [k], we write

Ψ̃j =

ψj(a1)
...

ψj(aN )

 ∈ RN αi =

αi
1
...
αi
N

 ∈ RN

so qi(x) = (αi)T Ψ̃0 + (αi)T Ψ̃1φ1(x) + · · · + (αi)T Ψ̃mφm(x). We can re-write qi as a convex
combination of elements in F :

qi(x) = αi
1Ψ(a1)

TΦ(x) + · · ·+ αi
NΨ(aN )TΦ(x)

= αi
1f1(x) + · · ·+ αi

NfN (x)

Let x ∈ Rd and let f∗ = argminf∈Ff(x). Then for any qi ∈ Q,

qi(x) = αi
1f1(x) + · · ·αi

NfN (x) ≥ αi
1f

∗(x) + · · ·+ αi
Nf

∗(x) = f∗(x)

Therefore, LQε
= minq∈Qε

q(x) ≥ LF (x) = minf∈F f(x). A similar argument shows that
UQε

(x) ≤ UF (x).
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Table 3: Dataset details for approximating relaxed-ε-kernels. |Ptrain| and |Ptest| refer to the size
of the train and test point clouds, respectively. The first four columns describe synthetic datasets
while the last two columns describe two real datasets. For the ‘Uniform ball’ dataset, we sample point
clouds uniformly from a d-dimensional ball. Note that for the ‘Uniform ball’ and ‘Uniform Ellipse’
in R10, we use point clouds of size 700 to train and test. For ‘Uniform Ball’, we will sometimes
call it ‘Uniform Disk’ for point clouds in R2. For ‘Ellipse’, we sample from a randomly scaled and
rotated point cloud. For ‘Single Gaussians’, we sample point clouds from a Gaussian with a random
standard deviation and ‘Gaussian Mixture’ refers to point clouds sampled from two to five randomly
placed Gaussian clusters. Note that for ModelNet, we apply random scaling to the point cloud so that
the bounds are between [−5, 5]. See [43] and [26] for more details regarding SQUID and ModelNet,
respectively.

Synthetic Real

Uniform
Ball Ellipse Single

Gaussian
Gaussian
Mixture ModelNet SQUID

|Ptrain| 500, 700 (for R10) 500, 700 (for R10) 500 500 200 350
|Ptest| 500, 700 (for R10) 500, 700 (for R10) 500 500 200 350
# train

point clouds 3000 3000 3000 3000 2048 774

# test
point clouds 750 750 750 750 2048 332

Input dim. 2,3,5,10 2,3,5,10 2,3,5 2,3,5 3 2
Bounds [−5, 5] [−5, 5] [−5, 5] [−5, 5] [−5, 5] [0, 450]

Now we will show that EQε
(x) ≥ (1 − ε)EF (x) for any x ∈ Rd. Given x ∈ Rd, we know that

Φ(x) = (1, φ1(x), . . . , φm(x)) ∈ Rm+1. Define FLin and QLin
ε to be a set of linear functions

FLin =

fLini (x1, . . . , xm) = Ψ(aj)
T


1
x1
...
xm

 : aj ∈ A


QLin

ε =

((αi)T Ψ̃0 · · · (αi)T Ψ̃m)


1
x1
...
xm

 : i ∈ [m]

 .

First, notice that (FLin)∗ = F∗ and (QLin
ε )∗ = Q∗

ε . We know that Q∗
ε is a relaxed-ε-kernel of

F∗ so by Theorem 4.3, QLin
ε is a relaxed-ε-kernel for F∗. Given any x ∈ Rd, we know that

fi(x) = fLini (Φ(x)) so
EF (x) = EFLin(Φ(x)).

Similarly, we know that qj(x) = qLinj (x) so

EQε
(x) = EQLin

ε
(Φ(x)).

Since QLin
ε is a relaxed-ε-kernel for F∗,

EQε(x) ≥ (1− ε)EF (x).

A.4 Additional experimental details and results

All models are implemented in PyTorch and trained on 8 NVIDIA RTX A6000 GPUs. Our code is
publically available1. Additionally, all models are trained using the ADAM optimizer [20] provided
in PyTorch and trained using a learning rate of 0.001. Relaxed-ε-kernel networks are trained for 200
epochs while all extent-measure models are trained for 500 epochs. Additionally, for the processor for

1https://github.com/chens5/coreset-nn
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Table 4: Dataset details for extent measure approximation tasks. |Ptrain| and |Ptest| refer to
the size of the train and test point clouds, respectively. The ‘Uniform Ball’ dataset is used for the
minimum enclosing ball task and consists of point clouds randomly sampled from a d-dimensional
ball. The ‘Uniform Ellipse’ dataset is used for the minimum enclosing ellipse task and consists of
point clouds sampled from randomly scaled and rotated ellipses. The ‘Uniform Annulus’ dataset
is used for the minimum enclosing annulus task and consists of point clouds sampled from annuli
with widths from 0.1 to 3. See [43] and [26] for more details regarding SQUID and ModelNet,
respectively.

Synthetic Real

Uniform
Ball

Uniform
Ellipse

Uniform
Annulus ModelNet SQUID

|Ptrain| 200 100 100 200 350
|Ptest| 200 100 100 200 350
# train

point clouds 3000 3000 3000 2048 774

# test
point clouds 3000 3000 3000 2048 332

Input dim. 2, 3 2 2 3 2
Bounds [−5, 5] [−5, 5] [−5, 5] [−5, 5] [0, 450]

the encode-decode-process models (used for extent measure tasks), we fix the processor to take input
from R5, have three blocks (either SumFormer or Transformer) and output 150 points from Nϕε

. We
choose this configuration as these hyperparameters had the best performance on the relaxed-ε-coreset
task in R5. Additionally, for the frozen training regime, the processor networks (Nϕε

) take input
of a point cloud P̂ in R5 (which could contain arbitrary number of points), output k = 150 points,
and are pre-trained on the ‘Mixed Synthetic’ data in R5. Detailed dataset specifications for the
relaxed-ε-kernel experiments are given in Table 3 and those for extent-measure tasks are given
Table 4. All code (including models, hyperparameter settings, and synthetic dataset generation) is
available.

Size generalization for extent measures. Here we described the train and test set details for the
size generalization experiments on the extent measure tasks described in Section 5, Figure 6 as well
in our motivating example in Section 2. Each model used for our size generalization experiment
is trained on the synthetic R2 datasets detailed in Table 4. For the minimum enclosing ball (MEB)
task, test point clouds have sizes N ∈ 500, 1000, . . . , 17000, with the bounding box from which test
points are sampled defined as [−N/500, N/500]2. For the minimum enclosing ellipse (MEE) and
minimum enclosing annulus (MEA) tasks, test point clouds have sizes N ∈ 100, 200, . . . , 3000, and
the bounding box scales as [−N/100, N/100]2.

Hyperparameter details. For our hyperparameter search on the relaxed-ε-kernel, we chose the
depth of the network from {2, 3, 4}, the hidden dimension from {128, 256, 512, 1024}, and the
embedding dimension from 16, 32. All results in our paper are reported on the best performing models
from our hyperparameter search. For the extent-measure models, we fix the hyperparameters of the
processor based on the best configuration from the ε-kernel task and search over the hyperparameters
(width/depth) of the encoder and decoder networks. The depth of both the encoder and decoder MLPs
are sampled from {2, 3, 4} and the width from {64, 128, 256}. Finally, we also tune the number of
epochs trained and chose to test the models trained for 200 epochs as they had the best validation loss.
We note that we did not observe the transformer OOD performance to improve with longer training
times.

Loss functions. Here, we list all loss functions used to train each task given an input point set P .

• Relaxed-ε-kernel: To train a model to approximate relaxed-ε-kernel, at each epoch t, we
first sample a random set of 100 directions Ωt. We then compute the difference between
the max projection of P and Nϕε

(P ) for d ∈ Ωt as well as the difference between the min
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projection of P and Nϕε(P ) for d ∈ Dt:

Lε(P,Nϕε
(P ), Dt) =

1

|Dt|
∑
u∈Ωt

(
|max
p∈P
⟨u, p⟩ − max

q∈Nϕε (P )
⟨u, q⟩|+ |min

p∈P
⟨u, p⟩ − min

q∈Nϕε (P )
⟨u, q⟩|

)
• Minimum enclosing ball: We aim to approximate the radius of the minimum enclosing ball.

In order to validate that we have actually learned the ball, we also predict the center of ball.
Therefore, given an input point set in Rd, we configureNextent such thatNextent(P ) ∈ Rd+1

where the first d coordinates, Nextent(P )1:d represent the center and the last coordinate
Nextent(P )d+1 represents the radius. Given the ground truth center c ∈ Rd and radius
r ∈ R, the loss function we use to train Nextent is

L(c, r,Nextent(P )) = ∥c−Nextent(P )1:d∥+ (r −Nextent(P )d+1)
2

• Minimum enclosing ellipse: Recall that we aim to predict the minimum area enclosing
ellipse. First, we note that we center all data at the origin for the minimum enclosing
ellipse. Unlike the minimum enclosing ball, we do not predict the center for the ellipse.
Given an input point set P ⊆ Rd, we configure Nextent such that Nextent(P ) ∈ R3 where
Nextent(P )1 represents the major radius, Nextent(P )2 represents the minor radius, and
Nextent(P )3 represents the angle of rotation. Given the ground truth major radius rmaj ∈ R,
minor radius rmin ∈ R and angle of rotation θ ∈ R, the loss function we use to trainNextent

is

L(rmaj, rmin, θ,Nextent(P )) = (rmaj −Nextent(P )1)
2 + (rmin −Nextent(P )2)

2

+ (sin(θ)− sin(Nextent(P )3))
2 + (cos(θ)− cos(Nextent(P )3))

2

• Minimum enclosing annulus: We aim to predict the minimum width of the minimum
enclosing annulus, which can be computed by predicting the inner and outer radii of the
annulus and then taking their difference. Given an input point set P ⊆ Rd,Nextent(P ) ∈ R2

where Nextent(P )d+1 represents the inner radius and Nextent(P )d+2 represents the outer
radius. Then given the ground truth inner radius rinner ∈ R and outer radius router ∈ R, the
loss function we use to train Nextent is

L(c, rinner, router,Nextent(P )) =
|rinner −Nextent(P )1|

rinner
+
|router −Nextent(P )2|

router

A.4.1 Additional experiments for approximating relaxed-ε-kernels

First, we note that we include all complete tables from the main text with error bars in Table 5 and
Table 6. We additionally include results on datasets in higher-dimensional synthetic datasets in R5

in Table 7 and R10 in Table 8. We see largely the same trends, where the Sε performs comparably
to Tε on in-distribution data and then Sε performs much better than Tε on out of distribution data.
Although the classical ε-kernel algorithm sometimes has lower directional error than Sε, we compare
the runtime of the ε-kernel algorithm with all neural approaches in Figure 11 and show that our
neural models are generally much more efficient at inference time than algorithmic approaches. We
also provide more extensive results in Tables 9, 10, and 11, where we detail the performance of each
neural approach on different types of synthetic and real datasets.

For the relaxed-ε-kernel tasks, we also provide several sensitivity analyses showing the effect of
input dimension, fatness of point sets, and the size of relaxed-ε-kernel on the direction error (Edir).
For each of these sensitivity analyses, we also provide a baseline comparison to the relaxed-ε-kernel
algorithm described in Algorithm 1 given ε = 0.1 in order to analyze the behavior of the neural
network with respect to its aligned algorithm. In all cases, the data-driven way of learning the
relaxed-ε-kernel presents significantly more accurate (in terms of directional error) coresets than the
baseline algorithmic implementation.

Effect of input dimension. From Theorem 3.4, we know that the accuracy of the approximation of
the relaxed-ε-kernel will depend on the dimension of the input point cloud. We verify this empirically
in Figure 7 across different sizes of ε-kernels. For this experiment, we train and test each model on
the point clouds with 500 points sampled uniformly from a ball in RD where D ∈ {2, 3, 5}. We can
see in Figure 7 that Edir increases as the input dimension of the point cloud increases.
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Effect of α-fatness. Similar to the relationship between error and input point cloud dimension, we
know from Theorem 3.4 that the accuracy of the approximation of the relaxed-ε-kernel will depend
on the α-fatness of the input point set. To verify this, we train both the SumFormer and Transformer
model on point clouds with 500 points sampled uniformly from a balls in R3 and R2 (disks in the
case of R2). We then test on point clouds of 100 points sampled from ellipsoids which have their
minor axes scaled to simulate point clouds with a range of α-fatness. The results are reported in
Figure 8. Indeed, we see that as α increases (i.e. the point cloud becomes fatter) the accuracy of our
approach increases.

Effect of output size. In order to examine the effect of the output relaxed-ε-kernel size for the
quality of the approximation, we plot the normalized output size (i.e. number of relaxed-ε-kernel
points/total number of input points) against the directional width error. See Figure 9. As expected,
we see that the error decreases as the output size increases.

Effect of input point set size. We also examine the out-of-distribution capabilities of the models
in terms of generalizing to larger point sets. For this experiment, we train each model on the point
clouds with 500 points sampled uniformly from a ball in RD where D ∈ {2, 3, 5} and then test the
models on much larger point clouds (up to 1000 points per cloud) sampled from the uniform ball.
The results are reported in Figure 10 and we find that the SumFormer model generalizes especially
well to out-of-distribution point set sizes (maintains low error).

A.4.2 Additional experiments for approximation of extent measures

We include the full results from the main text (which include the percentage of points excluded
from each covering object). The full results each extent measure task are included in Tables 12, 13,
14, and 15 for minimum enclosing ball in R2, minimum enclosing ball in R3, minimum enclosing
ellipse in R2, and minimum enclosing annulus R2, respectively. We also include comparisons to
classical algorithmic approximations in our full experimental tables. In particular, we evaluate the
standard pipeline of first computing an ε-kernel and then applying the exact algorithm to the resulting
coreset. For MEB and MEE, we use Welzl’s algorithm as the exact solver; for MEA, we use the
quadratic programming formulation implemented in the Computational Geometry Algorithms Library
(CGAL) [35]. Additionally, Figure 12 reports the inference times of the neural models alongside the
runtimes of the corresponding algorithmic approaches.

First, note that our ε-kernel–aligned model, the frozen Sextent, misses a much smaller proportion
of points than other models (even those with lower radius or width prediction error) indicating that
its predicted shape more accurately captures the true enclosing object. Notice that while classical
algorithms can achieve higher accuracy in some cases, our neural models outperform them on the
minimum enclosing annulus task, which is more challenging than the other extent measure tasks
as it is unfaithful and non LP-type. Moreover, as shown in Figure 12, our neural approaches are
substantially faster than all algorithmic baselines (both the exact and the approximation), particularly
for the minimum enclosing annulus. Finally, as emphasized in the main text, neural approximations
offer a key conceptual advantage over classical algorithms beyond gains in speed: they do not require
explicit knowledge of the underlying optimization objective. To train our neural models, only labeled
data and the knowledge that the problem belongs to the general family of extent-measure tasks are
needed. In contrast, classical algorithmic methods require full specification of the objective and often
the design of a custom algorithm to solve each specific problem.

Finally, Figure 13 presents additional results for the size-generalization experiment shown in Figure 6,
where we record the proportion of points excluded as the number of points per cloud increases. Not
only does the frozen Sextent model outperform all other neural baselines in terms of size generalization
and the error (as seen in Figure 6 but also the predicted output from the frozen Sextent model misses
a low proportion of points. Notably, models that exclude fewer points than the frozen Sextent tend
to exhibit higher width or radius error, indicating an overestimate of the enclosing object. This can
also be seen in visualizations of the predicted output from each model in Figure 14, where we see
that the frozen Sextent model can better adapt to out-of-distribution input data.
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A.5 Figures and Tables

Table 5: Edir on datasets in R2 for an output relaxed-ε-kernel of 16 points. We compare Sumformer
and Transformer neural approaches across three different test sets for each train set. Note that ‘Mixed
Synthetic’ has no ‘OOD, Synthetic’ because the train set contains all types of synthetic data. Boldface
indicates the lower error per row.

Test Sets
OOD

Train Set Method In-dist. Synthetic SQUID

Ellipse

Sε 0.060 ± 0.026 0.044 ± 0.042 0.127 ± 0.111
Tε 0.029 ± 0.013 0.098 ± 0.056 0.275 ± 0.112
Sε,B 0.131 ± 0.029 0.354 ± 0.172 0.993 ± 0.002
Tε,B 0.117 ± 0.045 0.63 ± 0.115 0.976 ± 0.007

Gaussian Mixture

Sε 0.014 ± 0.013 0.043 ± 0.040 0.028 ± 0.043
Tε 0.027 ± 0.024 0.097 ± 0.049 0.218 ± 0.101
Sε,B 0.146 ± 0.062 0.146 ± 0.057 0.962 ± 0.011
Tε,B 0.19 ± 0.087 0.383 ± 0.067 0.94 ± 0.015

SQUID

Sε 0.028 ± 0.022 0.504 ± 0.114 0.028 ± 0.022
Tε 0.061 ± 0.052 0.40 ± 0.109 0.061 ± 0.052
Sε,B 0.421 ± 0.511 7.137 ± 3.892 0.421 ± 0.511
Tε,B 0.228 ± 0.207 14.561 ± 6.632 0.228 ± 0.207

Mixed Synthetic

Sε 0.027 ± 0.018 – 0.065 ± 0.071
Tε 0.032 ± 0.024 – 0.296 ± 0.113
Sε,B 0.094 ± 0.058 - 0.971 ± 0.008
Tε,B 0.203 ± 0.181 - 0.939 ± 0.017

Algorithmic
Baselines

Bε,R - 0.180 ± 0.079 0.228 ± 0.139
Bε,E - 0.040 ± 0.049 0.062 ± 0.095
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Table 6: Edir for predicted relaxed-ε-kernels of 64 points in R3. We compare Sumformer and
Transformer neural approaches across three different test sets for each train set. Note that ‘Mixed
Synthetic’ has no ‘OOD, Synthetic’ because the train set contains all types of synthetic data. Boldface
indicates the lower error per row.

Test Sets
OOD

Train Set Method In-Dist. Synthetic ModelNet

Ellipse

Sε 0.049 ± 0.019 0.032 ± 0.024 0.066 ± 0.053
Tε 0.055 ± 0.021 0.106 ± 0.076 0.147 ± 0.077
Sε,B 0.221 ± 0.039 0.462 ± 0.098 4.736 ± 3.49
Tε,B 0.243 ± 0.056 0.555 ± 0.063 3.603 ± 5.454

Gaussian Mixture

Sε 0.047 ± 0.027 0.039 ± 0.026 0.064 ± 0.050
Tε 0.054 ± 0.027 0.066 ± 0.033 0.250 ± 0.125
Sε,B 0.274 ± 0.049 0.289 ± 0.029 1.949 ± 3.49
Tε,B 0.357 ± 0.146 0.851 ± 0.104 4.486 ± 5.514

ModelNet

Sε 0.041 ± 0.037 0.099 ± 0.077 0.041 ± 0.037
Tε 0.049 ± 0.044 0.265 ± 0.118 0.049 ± 0.044
Sε,B 0.378 ± 0.621 0.542 ± 0.069 0.379 ± 0.621
Tε,B 0.542 ± 0.952 0.658 ± 0.142 0.542 ± 0.952

Mixed Synthetic

Sε 0.035 ± 0.029 – 0.055 ± 0.048
Tε 0.042 ± 0.038 – 0.117 ± 0.071
Sε,B 0.174 ± 0.054 - 1.518 ± 2.288
Tε,B 0.289 ± 0.179 - 4.356 ± 5.257

Algorithmic
Baselines

Bε,R - 1.016 ± 9.988 2.176 ± 2.849
Bε,E - 0.062 ± 0.040 0.050 ± 0.047

Table 7: Edir for predicted relaxed-ε-kernels of 200 points in R5. We compare Sumformer and
Transformer neural approaches for in-distribution and out-of-distribution synthetic test sets. Note
that there are no real datasets in R5 so the only test sets here are synthetic.

Train Set Method In-Distribution OOD, Synthetic

Uniform Ball Sε 0.084 ± 0.016 0.091 ± 0.041
Tε 0.118 ± 0.022 0.29 ± 0.117
Sε,B 0.238 ± 0.029 0.694 ± 0.234
Tε,B 0.35 ± 0.043 0.575 ± 0.249

Ellipse Sε 0.085 ± 0.025 0.077 ± 0.027
Tε 0.084 ± 0.024 0.196 ± 0.133
Sε,B 0.399 ± 0.108 0.589 ± 0.256
Tε,B 0.343 ± 0.096 0.614 ± 0.167

Single Gaussian Sε 0.065 ± 0.018 0.10 ± 0.033
Tε 0.065 ± 0.022 0.183 ± 0.053
Sε,B 0.352 ± 0.048 3.75 ± 0.154
Tε,B 0.333 ± 0.044 3.941 ± 0.112

Gaussian Mixture Sε 0.084 ± 0.028 0.087 ± 0.027
Tε 0.091 ± 0.025 0.109 ± 0.032
Sε,B 0.717 ± 0.021 0.465 ± 0.184
Tε,B 0.757 ± 0.278 1.488 ± 0.344

Mixed Synthetic Sε 0.075 ± 0.025 -
Tε 0.087 ± 0.032 -
Sε,B 0.347 ± 0.188 -
Tε,B 0.879 ± 0.599 -

Algorithmic
Baselines

Bε,R - 0.653 ± 0.366
Bε,E - 0.083 ± 0.033
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Table 8: Edir for predicted relaxed-ε-kernels of 200 points in R10. We compare Sumformer and
Transformer neural approaches for in-distribution and out-of-distribution synthetic test sets. Note
that there are no real datasets in R5 so the only test sets here are synthetic.

Train Set Method In-Distribution OOD, Synthetic

Uniform Ball

Sε 0.367 ± 0.0289 0.301 ± 0.074
Tε 0.259 ± 0.0227 0.292 ± 0.044
Sε,B 0.290 ± 0.033 0.459 ± 0.214
Tε,B 0.266 ± 0.029 0.435 ± 0.208

Ellipse

Sε 0.222 ± 0.037 0.275 ± 0.062
Tε 0.251 ± 0.042 0.276 ± 0.041
Sε,B 0.693 ± 0.166 0.518 ± 0.209
Tε,B 0.777 ± 0.192 0.582 ± 0.281

Mixed Synthetic

Sε 0.241 ± 0.036 -
Tε 0.258 ± 0.034 -
Sε,B 0.530 ± 0.281 -
Tε,B 0.535 ± 0.287 -

Algorithmic
Baselines

Bε,R - 0.621 ± 0.225
Bε,E - 0.199 ± 0.034
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Table 9: Directional error across 2D datasets for various ϵ-kernel sizes. Note that we already report
performance for the mixed synthetic data in the tables in the main text so we do not report the
performance here.

Train Set ϵ Method Uniform Disk Ellipse Single Gaussian Gaussian Mixture SQUID

Uniform
Disk

16

Sε 0.040± 0.013 0.109± 0.081 0.125± 0.057 0.074± 0.059 0.101± 0.065
Tε 0.040± 0.013 0.200± 0.094 0.370± 0.078 0.346± 0.144 0.297± 0.110
Sε,B 0.237 ± 0.009 0.544 ± 0.159 0.767 ± 0.017 0.712 ± 0.115 0.995 ± 0.002
Tε,B 0.061 ± 0.007 0.456 ± 0.167 0.720 ± 0.019 0.512 ± 0.159 0.973 ± 0.008

64

Sε 0.009± 0.004 0.065± 0.051 0.214± 0.057 0.061± 0.053 0.264± 0.093
Tε 0.007± 0.004 0.158± 0.079 0.385± 0.058 0.287± 0.123 0.236± 0.099
Sε,B 0.062 ± 0.008 0.443 ± 0.165 0.703 ± 0.020 0.561 ± 0.123 0.975 ± 0.007
Tε,B 0.044 ± 0.011 0.456 ± 0.186 0.702 ± 0.020 0.534 ± 0.134 0.972 ± 0.009

200

Sε 0.006± 0.003 0.069± 0.057 0.128± 0.062 0.097± 0.099 0.174± 0.085
Tε 0.005± 0.003 0.199± 0.110 0.465± 0.041 0.262± 0.110 0.427± 0.109
Sε,B 0.111 ± 0.008 0.473 ± 0.165 0.721 ± 0.019 0.589 ± 0.103 0.982 ± 0.005
Tε,B 0.123 ± 0.010 0.484 ± 0.167 0.739 ± 0.018 0.599 ± 0.144 0.975 ± 0.008

Ellipse

16

Sε 0.045± 0.013 0.058± 0.026 0.042± 0.039 0.067± 0.057 0.130± 0.109
Tε 0.031± 0.010 0.029± 0.013 0.093± 0.056 0.050± 0.041 0.272± 0.108
Sε,B 0.110 ± 0.012 0.131 ± 0.029 0.458 ± 0.039 0.495 ± 0.271 0.993 ± 0.002
Tε,B 0.715 ± 0.061 0.119 ± 0.046 0.601 ± 0.035 0.575 ± 0.247 0.975 ± 0.007

64

Sε 0.011± 0.005 0.015± 0.008 0.034± 0.050 0.078± 0.086 0.088± 0.070
Tε 0.013± 0.005 0.012± 0.006 0.116± 0.057 0.033± 0.032 0.241± 0.087
Sε,B 0.121 ± 0.010 0.146 ± 0.029 0.438 ± 0.039 0.456 ± 0.210 0.976 ± 0.007
Tε,B 0.674 ± 0.049 0.101 ± 0.040 0.613 ± 0.031 0.593 ± 0.231 0.978 ± 0.007

200

Sε 0.004± 0.002 0.005± 0.003 0.033± 0.046 0.057± 0.077 0.118± 0.073
Tε 0.010± 0.004 0.008± 0.005 0.030± 0.027 0.034± 0.033 0.197± 0.079
Sε,B 0.098 ± 0.011 0.118 ± 0.025 0.445 ± 0.038 0.435 ± 0.215 0.989 ± 0.003
Tε,B 0.217 ± 0.028 0.076 ± 0.030 0.436 ± 0.038 0.583 ± 0.413 0.961 ± 0.011

Gaussian

16 Sε 0.056± 0.015 0.097± 0.052 0.032± 0.020 0.071± 0.049 0.091± 0.069
Tε 0.062± 0.017 0.069± 0.029 0.019± 0.014 0.080± 0.052 0.206± 0.095
Sε,B 0.924 ± 0.031 1.174 ± 0.604 0.108 ± 0.030 1.256 ± 0.638 0.946 ± 0.015
Tε,B 2.417 ± 0.109 2.376 ± 1.023 0.246 ± 0.053 2.200 ± 1.126 0.922 ± 0.024

64 Sε 0.029± 0.009 0.050± 0.029 0.011± 0.010 0.039± 0.032 0.078± 0.068
Tε 0.052± 0.015 0.056± 0.027 0.005± 0.007 0.083± 0.058 0.241± 0.100
Sε,B 0.884 ± 0.032 1.102 ± 0.612 0.101 ± 0.032 1.314 ± 0.741 0.949 ± 0.015
Tε,B 2.374 ± 0.102 2.209 ± 0.941 0.152 ± 0.044 2.147 ± 1.089 0.879 ± 0.028

200 Sε 0.017± 0.007 0.057± 0.060 0.003± 0.004 0.056± 0.048 0.067± 0.058
Tε 0.047± 0.015 0.049± 0.020 0.004± 0.006 0.071± 0.049 0.220± 0.099
Sε,B 0.927 ± 0.031 1.131 ± 0.617 0.114 ± 0.030 1.316 ± 0.703 0.944 ± 0.019
Tε,B 2.456 ± 0.125 2.151 ± 0.946 0.144 ± 0.041 2.216 ± 1.116 0.910 ± 0.024

Gaussian Mixture

16
Sε 0.024± 0.008 0.033± 0.015 0.071± 0.059 0.013± 0.013 0.028± 0.037
Tε 0.040± 0.011 0.034± 0.011 0.063± 0.050 0.027± 0.024 0.214± 0.100
Sε,B 0.067 ± 0.010 0.087 ± 0.025 0.188 ± 0.043 0.128 ± 0.058 0.967 ± 0.011
Tε,B 0.686 ±0.051 0.485 ±0.075 0.272 ±0.047 0.190 ±0.086 0.944 ±0.015

64
Sε 0.015± 0.006 0.018± 0.010 0.107± 0.067 0.006± 0.006 0.015± 0.013
Tε 0.032± 0.011 0.017± 0.008 0.026± 0.033 0.009± 0.010 0.156± 0.082
Sε,B 0.062 ± 0.010 0.084 ± 0.024 0.179 ± 0.046 0.121 ± 0.052 0.963 ± 0.011
Tε,B 1.031 ±0.050 0.609 ±0.105 0.316 ±0.046 0.164 ±0.075 0.947 ±0.015

200
Sε 0.005± 0.003 0.009± 0.007 0.100± 0.047 0.003± 0.004 0.012± 0.018
Tε 0.030± 0.012 0.011± 0.006 0.032± 0.033 0.006± 0.007 0.149± 0.084
Sε,B 0.086 ± 0.010 0.103 ± 0.026 0.193 ± 0.046 0.138 ± 0.067 0.966 ± 0.011
Tε,B 1.706 ±0.082 0.815 ±0.140 0.356 ±0.052 0.191 ±0.103 0.940 ±0.014

SQUID

16
Sε 0.548± 0.012 0.528± 0.027 0.547± 0.040 0.395± 0.183 0.029± 0.021
Tε 0.434± 0.041 0.403± 0.060 0.390± 0.081 0.368± 0.163 0.066± 0.051
Sε,B 10.061 ± 0.191 9.954 ± 3.629 2.875 ± 0.296 10.191 ± 4.073 0.283 ± 0.276
Tε,B 19.858 ±0.815 18.238 ±6.542 5.490 ±0.519 16.164 ±6.500 0.231 ±0.224

64
Sε 0.287± 0.014 0.289± 0.032 0.411± 0.047 0.274± 0.173 0.009± 0.008
Tε 0.373± 0.025 0.376± 0.039 0.409± 0.057 0.350± 0.149 0.062± 0.042
Sε,B 16.621 ± 0.499 16.123 ± 4.591 6.463 ± 0.608 12.393 ± 5.642 0.224 ± 0.202
Tε,B 22.050 ±1.050 19.865 ±7.018 5.916 ±0.611 16.114 ±7.801 0.234 ±0.241

200
Sε 0.368± 0.013 0.339± 0.034 0.378± 0.048 0.255± 0.190 0.009± 0.009
Tε 0.322± 0.059 0.346± 0.069 0.463± 0.081 0.379± 0.140 0.047± 0.036
Sε,B 5.683 ± 0.144 5.374 ± 2.142 1.582 ± 0.179 6.337 ± 4.633 0.199 ± 0.199
Tε,B 15.879 ±0.788 15.438 ±4.420 4.426 ±0.487 13.109 ±5.951 0.261 ±0.243

Mixed

16
Sε 0.038± 0.012 0.052± 0.024 0.019± 0.015 0.031± 0.026 0.064± 0.073
Tε 0.035± 0.011 0.046± 0.023 0.017± 0.014 0.040± 0.033 0.307± 0.112
Sε,B 0.046 ± 0.008 0.057 ± 0.016 0.069 ± 0.017 0.124 ± 0.058 0.971 ± 0.008
Tε,B 0.577 ± 0.0509 0.646 ± 0.267 0.220± 0.059 0.512 ± 0.329 0.939 ± 0.017

64
Sε 0.010± 0.004 0.013± 0.008 0.002± 0.004 0.008± 0.008 0.023± 0.030
Tε 0.016± 0.007 0.014± 0.006 0.001± 0.003 0.014± 0.017 0.183± 0.080
Sε,B 0.109 ± 0.010 0.136 ± 0.031 0.108 ± 0.029 0.138 ± 0.065 0.967 ± 0.010
Tε,B 1.339 ± 0.094 0.877 ± 0.265 0.320 ± 0.073 0.561 ± 0.368 0.922 ± 0.024

200
Sε 0.006± 0.003 0.008± 0.005 0.001± 0.002 0.005± 0.006 0.014± 0.022
Tε 0.014± 0.008 0.012± 0.008 0.001± 0.003 0.013± 0.014 0.144± 0.062
Sε,B 0.251 ± 0.012 0.285 ± 0.121 0.261 ± 0.049 0.391 ± 0.222 0.949 ± 0.015
Tε,B 1.428 ± 0.064 1.133 ± 0.366 0.238 ± 0.055 0.468 ± 0.289 0.913 ± 0.024
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Table 10: Edir across all 3D datasets for various ϵ-kernel sizes. Note that we already report performance for the
mixed synthetic data in the tables in the main text so we do not report the performance here.

Dataset ϵ Architecture Uniform Ball Ellipse Single Gaussian Gaussian Mixture ModelNet

Uniform
Ball

16 Sε 0.180 ± 0.030 0.239 ± 0.069 0.159 ± 0.045 0.180 ± 0.072 0.161 ± 0.094
Tε 0.180 ± 0.032 0.358 ± 0.085 0.553 ± 0.030 0.421 ± 0.123 0.426 ± 0.130
Sε,B 0.251 ± 0.031 0.620 ± 0.214 0.774 ± 0.014 0.643 ± 0.128 2.887 ± 4.045
Tε,B 0.149 ± 0.019 0.569 ± 0.2 0.757 ± 0.015 0.623 ± 0.133 3.547 ± 5.67

64 Sε 0.046 ± 0.012 0.051 ± 0.018 0.029 ± 0.014 0.050 ± 0.028 0.067 ± 0.057
Tε 0.041 ± 0.010 0.198 ± 0.079 0.389 ± 0.047 0.257 ± 0.093 0.361 ± 0.111
Sε,B 0.161 ± 0.018 0.582 ± 0.204 0.759 ± 0.015 0.673 ± 0.086 5.920 ± 7.937
Tε,B 0.149 ± 0.019 0.569 ± 0.2 0.757 ± 0.015 0.623 ± 0.133 3.547 ± 5.67

200 Sε 0.021 ± 0.007 0.020 ± 0.008 0.007 ± 0.007 0.029 ± 0.021 0.053 ± 0.047
Tε 0.014 ± 0.005 0.158 ± 0.065 0.332 ± 0.055 0.237 ± 0.097 0.361 ± 0.111
Sε,B 0.152 ± 0.019 0.572 ± 0.203 0.755 ± 0.015 0.670 ± 0.080 6.110 ± 7.866
Tε,B 0.103 ± 0.017 0.543 ± 0.195 0.746 ± 0.016 0.603 ± 0.141 2.817 ± 3.886

Ellipse

16 Sε 0.178 ± 0.029 0.244 ± 0.074 0.159 ± 0.045 0.187 ± 0.076 0.149 ± 0.093
Tε 0.176 ± 0.027 0.244 ± 0.078 0.235 ± 0.063 0.235 ± 0.111 0.232 ± 0.114
Sε,B 0.188 ± 0.014 0.221 ± 0.036 0.562 ± 0.027 0.602 ± 0.191 3.180 ± 3.799
Tε,B 0.257 ± 0.041 0.232 ± 0.048 0.600 ± 0.035 0.898 ± 0.466 3.276 ± 4.107

64 Sε 0.043 ± 0.010 0.049 ± 0.019 0.028 ± 0.013 0.051 ± 0.029 0.065 ± 0.053
Tε 0.047 ± 0.011 0.050 ± 0.018 0.196 ± 0.068 0.075 ± 0.051 0.163 ± 0.089
Sε,B 0.187 ± 0.014 0.221 ± 0.039 0.517 ± 0.030 0.659 ± 0.262 3.510 ± 4.736
Tε,B 0.425 ± 0.046 0.243 ± 0.055 0.625 ± 0.027 0.615 ± 0.117 3.603 ± 5.454

200 Sε 0.021 ± 0.007 0.021 ± 0.009 0.008 ± 0.007 0.030 ± 0.021 0.049 ± 0.045
Tε 0.019 ± 0.006 0.019 ± 0.009 0.039 ± 0.050 0.087 ± 0.074 0.250 ± 0.121
Sε,B 0.177 ± 0.022 0.219 ± 0.058 0.531 ± 0.030 0.677 ± 0.285 3.848 ± 4.900
Tε,B 0.198 ± 0.042 0.219 ± 0.070 0.512 ± 0.032 0.907 ± 0.523 3.609 ± 5.109

Single Gaussian

16 Sε 0.180 ± 0.030 0.252 ± 0.076 0.156 ± 0.043 0.183 ± 0.073 0.200 ± 0.087
Tε 0.239 ± 0.037 0.232 ± 0.051 0.146 ± 0.040 0.227 ± 0.082 0.363 ± 0.121
Sε,B 1.85 ± 0.068 2.332 ± 0.891 0.248 ± 0.04 2.314 ± 0.78 7.204 ± 8.48
Tε,B 2.742 ± 0.080 3.300 ± 1.244 0.252 ± 0.044 3.480 ± 1.063 20.436 ± 24.422

64 Sε 0.057 ± 0.013 0.080 ± 0.034 0.033 ± 0.016 0.063 ± 0.032 0.075 ± 0.052
Tε 0.078 ± 0.016 0.110 ± 0.044 0.037 ± 0.015 0.123 ± 0.054 0.257 ± 0.124
Sε,B 2.883 ± 0.092 3.565 ± 1.341 0.29 ± 0.048 2.6 ± 1.09 9.931 ± 11.224
Tε,B 2.762 ± 0.083 3.249 ± 1.199 0.261 ± 0.041 3.179 ± 0.951 15.886 ± 17.536

200 Sε 0.034 ± 0.009 0.039 ± 0.017 0.013 ± 0.010 0.040 ± 0.024 0.059 ± 0.047
Tε 0.069 ± 0.016 0.075 ± 0.026 0.014 ± 0.010 0.088 ± 0.044 0.219 ± 0.100
Sε,B 1.179 ± 0.052 1.791 ± 0.716 0.17 ± 0.032 2.17 ± 0.712 10.473 ± 14.457
Tε,B 2.707 ± 0.079 3.286 ± 1.236 0.263 ± 0.042 2.997 ± 0.903 16.368 ± 19.089

Gaussian Mixture

16
Sε 0.183 ± 0.031 0.231 ± 0.062 0.163 ± 0.046 0.179 ± 0.072 0.154 ± 0.092
Tε 0.176 ± 0.027 0.204 ± 0.047 0.176 ± 0.049 0.178 ± 0.069 0.209 ± 0.099
Sε,B 0.215 ± 0.015 0.2145 ± 0.039 0.292 ± 0.041 0.259 ± 0.069 1.880 ± 2.784
Tε,B 2.175 ± 0.103 1.408 ± 0.223 0.392 ± 0.049 0.425 ± 0.179 5.125 ± 6.170

64
Sε 0.054 ± 0.013 0.061 ± 0.020 0.032 ± 0.019 0.047 ± 0.027 0.065 ± 0.053
Tε 0.060 ± 0.013 0.059 ± 0.016 0.054 ± 0.027 0.054 ± 0.027 0.250 ± 0.127
Sε,B 0.261 ± 0.015 0.266 ± 0.036 0.343 ± 0.035 0.274 ± 0.049 1.941 ± 3.493
Tε,B 1.222 ± 0.065 0.952 ± 0.198 0.378 ± 0.048 0.357 ± 0.146 4.485 ± 5.514

200
Sε 0.027 ± 0.008 0.030 ± 0.013 0.010 ± 0.009 0.023 ± 0.014 0.042 ± 0.037
Tε 0.032 ± 0.010 0.029 ± 0.012 0.021 ± 0.019 0.030 ± 0.019 0.232 ± 0.098
Sε,B 0.179 ± 0.015 0.215 ± 0.047 0.276 ± 0.040 0.284 ± 0.100 2.111 ± 3.048
Tε,B 1.550 ± 0.086 1.220 ± 0.212 0.352 ± 0.045 0.416 ± 0.185 4.501 ± 7.400

ModelNet

16 Sε 0.209 ± 0.035 0.268 ± 0.075 0.199 ± 0.058 0.206 ± 0.082 0.149 ± 0.098
Tε 0.448 ± 0.029 0.408 ± 0.073 0.683 ± 0.053 0.486 ± 0.126 0.150 ± 0.096
Sε,B 0.255 ± 0.017 0.384 ± 0.088 0.660 ± 0.023 0.627 ± 0.124 0.363 ± 0.538
Tε,B 0.589 ± 0.048 0.775 ± 0.373 0.793 ± 0.019 0.664 ± 0.122 0.533 ± 0.814

64 Sε 0.113 ± 0.022 0.148 ± 0.043 0.182 ± 0.052 0.106 ± 0.084 0.041 ± 0.038
Tε 0.303 ± 0.027 0.217 ± 0.051 0.332 ± 0.060 0.274 ± 0.124 0.048 ± 0.040
Sε,B 0.322 ± 0.019 0.434 ± 0.093 0.693 ± 0.023 0.65 ± 0.127 0.379 ± 1.459
Tε,B 0.593 ± 0.058 0.703 ± 0.229 0.249 ± 0.036 0.476 ± 0.235 4.355 ± 5.257

200 Sε 0.037 ± 0.015 0.047 ± 0.029 0.021 ± 0.015 0.043 ± 0.033 0.024 ± 0.030
Tε 0.169 ± 0.022 0.183 ± 0.040 0.466 ± 0.046 0.286 ± 0.105 0.030 ± 0.025
Sε,B 0.388 ± 0.021 0.451 ± 0.062 0.701 ± 0.024 0.608 ± 0.118 0.379 ± 0.988
Tε,B 0.494 ± 0.047 0.708 ± 0.312 0.791 ± 0.019 0.668 ± 0.114 0.512 ± 0.833

Mixed

16 Sε 0.179 ± 0.030 0.238 ± 0.069 0.157 ± 0.043 0.180 ± 0.075 0.150 ± 0.093
Tε 0.189 ± 0.031 0.245 ± 0.071 0.162 ± 0.043 0.189 ± 0.075 0.235 ± 0.106
Sε,B 0.157 ± 0.017 0.259 ± 0.089 0.207 ± 0.029 0.345 ± 0.135 1.611 ± 2.038
Tε,B 0.416 ± 0.050 0.521 ± 0.187 0.217 ± 0.037 0.477 ± 0.224 5.080 ± 18.203

64 Sε 0.040 ± 0.010 0.047 ± 0.019 0.020 ± 0.012 0.042 ± 0.025 0.055 ± 0.049
Tε 0.044 ± 0.010 0.055 ± 0.024 0.025 ± 0.014 0.066 ± 0.042 0.117 ± 0.068
Sε,B 0.148 ± 0.013 0.183 ± 0.062 0.16 ± 0.024 0.278 ± 0.102 1.518 ± 2.288
Tε,B 0.593 ± 0.058 0.703 ± 0.229 0.249 ± 0.036 0.476 ± 0.235 4.355 ± 5.257

200 Sε 0.017 ± 0.006 0.017 ± 0.009 0.004 ± 0.005 0.022 ± 0.016 0.032 ± 0.032
Tε 0.023 ± 0.007 0.023 ± 0.012 0.005 ± 0.006 0.035 ± 0.029 0.112 ± 0.063
Sε,B 0.154 ± 0.012 0.178 ± 0.035 0.159 ± 0.023 0.244 ± 0.067 1.631 ± 2.385
Tε,B 0.625 ± 0.082 0.726 ± 0.219 0.216 ± 0.037 0.451 ± 0.212 5.681 ± 7.941
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Table 11: Edir across all 5D datasets for various ϵ-kernel sizes. Note that we already report perfor-
mance for the mixed synthetic data in the tables in the main text so we do not report the performance
here.

Train dataset ϵ Method Uniform Ball Ellipse Single Gaussian Gaussian Mixture

Uniform
Ball

16 Sε 0.431 ± 0.043 0.562 ± 0.086 0.426 ± 0.067 0.524 ± 0.102
Tε 0.464 ± 0.048 0.514 ± 0.069 0.676 ± 0.038 0.599 ± 0.092
Sε,B 0.440 ± 0.047 0.742 ± 0.248 0.803 ± 0.012 0.725 ± 0.111
Tε,B 0.352 ± 0.044 0.684 ± 0.202 0.816 ± 0.011 0.741 ± 0.099

64 Sε 0.188 ± 0.025 0.247 ± 0.057 0.159 ± 0.033 0.232 ± 0.058
Tε 0.197 ± 0.027 0.366 ± 0.066 0.538 ± 0.033 0.362 ± 0.092
Sε,B 0.242 ± 0.027 0.621 ± 0.177 0.796 ± 0.011 0.695 ± 0.133
Tε,B 0.248 ± 0.033 0.633 ± 0.199 0.791 ± 0.011 0.702 ± 0.113

200 Sε 0.084 ± 0.016 0.112 ± 0.038 0.058 ± 0.023 0.103 ± 0.038
Tε 0.118 ± 0.023 0.202 ± 0.052 0.369 ± 0.047 0.356 ± 0.113
Sε,B 0.238 ± 0.03 0.63 ± 0.198 0.79 ± 0.011 0.669 ± 0.105
Tε,B 0.23 ± 0.029 0.625 ± 0.193 0.786 ± 0.012 0.704 ± 0.118

Ellipse

16 Sε 0.547 ± 0.066 0.549 ± 0.072 0.554 ± 0.089 0.609 ± 0.107
Tε 0.534 ± 0.066 0.534 ± 0.072 0.577 ± 0.054 0.553 ± 0.102
Sε,B 0.351 ± 0.032 0.394 ± 0.070 0.844 ± 0.017 1.035 ± 0.295
Tε,B 0.370 ± 0.047 0.514 ± 0.158 0.758 ± 0.029 0.872 ± 0.216

64 Sε 0.193 ± 0.024 0.213 ± 0.043 0.168 ± 0.033 0.187 ± 0.048
Tε 0.313 ± 0.051 0.302 ± 0.063 0.543 ± 0.034 0.417 ± 0.095
Sε,B 0.356 ± 0.043 0.498 ± 0.125 0.894 ± 0.011 0.825 ± 0.157
Tε,B 0.351 ± 0.054 0.548 ± 0.174 0.702 ± 0.026 0.902 ± 0.280

200 Sε 0.091 ± 0.017 0.085 ± 0.024 0.069 ± 0.017 0.094 ± 0.031
Tε 0.092 ± 0.018 0.084 ± 0.024 0.369 ± 0.042 0.239 ± 0.091
Sε,B 0.257 ± 0.031 0.399 ± 0.108 0.695 ± 0.02 0.814 ± 0.161
Tε,B 0.35 ± 0.043 0.343 ± 0.096 0.721 ± 0.024 0.77 ± 0.188

Gaussian

16 Sε 0.488 ± 0.066 0.529 ± 0.072 0.448 ± 0.075 0.565 ± 0.142
Tε 0.728 ± 0.061 0.722 ± 0.068 0.467 ± 0.073 0.631 ± 0.095
Sε,B 3.627 ± 0.169 4.249 ± 1.076 0.436 ± 0.064 2.446 ± 0.675
Tε,B 3.601 ± 0.171 4.290 ± 1.114 0.410 ± 0.052 3.043 ± 0.677

64 Sε 0.204 ± 0.027 0.250 ± 0.050 0.163 ± 0.033 0.196 ± 0.049
Tε 0.471 ± 0.055 0.452 ± 0.064 0.205 ± 0.045 0.411 ± 0.099
Sε,B 3.122 ± 0.109 4.051 ± 1.045 0.291 ± 0.035 2.106 ± 0.666
Tε,B 3.434 ± 0.127 4.332 ± 1.130 0.354 ± 0.050 3.225 ± 0.734

200 Sε 0.095 ± 0.017 0.116 ± 0.038 0.065 ± 0.019 0.102 ± 0.032
Tε 0.177 ± 0.026 0.170 ± 0.041 0.065 ± 0.022 0.165 ± 0.056
Sε,B 3.46 ± 0.12 4.421 ± 1.108 0.352 ± 0.048 2.069 ± 0.718
Tε,B 3.297 ± 0.112 4.206 ± 1.096 0.333 ± 0.044 3.018 ± 0.59

Gaussian Mixture

16 Sε 0.546 ± 0.066 0.539 ± 0.074 0.460 ± 0.079 0.501 ± 0.098
Tε 0.622 ± 0.060 0.571 ± 0.071 0.516 ± 0.081 0.504 ± 0.098
Sε,B 0.342 ± 0.030 0.413 ± 0.078 0.438 ± 0.039 0.573 ± 0.194
Tε,B 1.097 ± 0.141 1.314 ± 0.329 0.434 ± 0.040 1.002 ± 0.433

64 Sε 0.193 ± 0.025 0.213 ± 0.041 0.164 ± 0.032 0.170 ± 0.045
Tε 0.197 ± 0.025 0.205 ± 0.039 0.182 ± 0.036 0.174 ± 0.046
Sε,B 0.427 ± 0.025 0.409 ± 0.044 0.465 ± 0.035 0.444 ± 0.113
Tε,B 1.731 ± 0.143 1.925 ± 0.391 0.447 ± 0.035 0.860 ± 0.395

200 Sε 0.093 ± 0.017 0.103 ± 0.030 0.073 ± 0.019 0.084 ± 0.028
Tε 0.097 ± 0.018 0.093 ± 0.025 0.084 ± 0.025 0.091 ± 0.032
Sε,B 0.487 ± 0.045 0.541 ± 0.121 0.366 ± 0.046 0.717 ± 0.207
Tε,B 2.154 ± 0.122 1.953 ± 0.287 0.356 ± 0.042 0.757 ± 0.278

Mixed

16 Sε 0.562 ± 0.065 0.544 ± 0.073 0.485 ± 0.085 0.512 ± 0.101
Tε 0.602 ± 0.063 0.559 ± 0.071 0.477 ± 0.078 0.524 ± 0.095
Sε,B 0.349 ± 0.031 0.412 ± 0.097 0.360 ± 0.037 0.675 ± 0.217
Tε,B 1.883 ± 0.188 2.458 ± 0.684 0.391 ± 0.049 1.525 ± 0.572

64 Sε 0.194 ± 0.026 0.220 ± 0.045 0.162 ± 0.032 0.177 ± 0.047
Tε 0.202 ± 0.025 0.228 ± 0.046 0.168 ± 0.034 0.188 ± 0.051
Sε,B 0.265 ± 0.032 0.351 ± 0.087 0.285 ± 0.04 0.592 ± 0.224
Tε,B 0.977 ± 0.102 1.632 ± 0.448 0.336 ± 0.042 1.276 ± 0.455

200 Sε 0.085 ± 0.017 0.076 ± 0.022 0.060 ± 0.020 0.079 ± 0.031
Tε 0.094 ± 0.018 0.094 ± 0.028 0.064 ± 0.020 0.096 ± 0.047
Sε,B 0.195 ± 0.017 0.294 ± 0.079 0.257 ± 0.034 0.551 ± 0.216
Tε,B 3.092 ± 0.164 2.999 ± 0.699 0.314 ± 0.041 1.575 ± 0.424
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Table 12: Results for minimum enclosing ball (2D). We report the relative error for the predicted
radius (w.r.t to ground truth radius) (Er) and percentage of points excluded from the predicted
enclosing ball (Ep). All processors are configured to output a coarsened set of 16 points and frozen
processors are trained on mixed synthetic data. Boldface indicates the best performing method while
underlines denote best performing neural method.

Train Set Architecture Er Ep(%)

Uniform
Disk

Sextent (Frozen) 0.009 ± 0.008 1.9 ± 1.3
Sextent (E2E) 0.023 ± 0.019 2.3 ± 1.9
Textent (Frozen) 0.099 ± 0.050 0.1 ± 0.3
Textent (E2E) 0.024 ± 0.020 1.4 ± 1.8
SBaseline (E2E) 0.048 ± 0.028 0.5 ± 1.0
TBaseline (E2E) 0.030 ± 0.024 0.3 ± 3.0
SDirect 0.012 ± 0.006 3.2 ± 1.3
TDirect 0.022 ± 0.018 7.1 ± 3.8
ε-kernel + Exact 0.000002 ± 0.00009 0 ± 0

SQUID

Sextent (Frozen) 0.020 ± 0.200 2.0 ± 3.0
Sextent (E2E) 0.010 ± 0.010 2.0 ± 3.0
Textent (Frozen) 0.068 ± 0.045 1.6 ± 3.2
Textent (E2E) 0.190 ± 0.090 4.0 ± 5.0
SBaseline (E2E) 0.027 ± 0.025 2.8 ± 2.5
TBaseline (E2E) 0.039 ± 0.034 4.5 ± 3.8
SDirect 0.058 ± 0.046 3.3 ± 4.4
TDirect 0.685 ± 0.065 83.3 ± 10.7
ε-kernel + Exact 0.00004 ± 0.0006 0 ± 0

Table 13: Results for minimum enclosing ball (3D). We report the relative error for the predicted
radius (Er) and the percentage of points which excluded from the estimated ball (Ep(%)). All frozen
processors are trained on mixed synthetic data. Boldface indicates the best performing method while
underlines denote best performing neural method.

Train Set Architecture Er Ep(%)

Uniform
Ball

Sextent (Frozen) 0.030 ± 0.020 0.7 ± 1.0
Sextent (E2E) 0.035 ± 0.028 2.8 ± 3.4
Textent (Frozen) 0.020 ± 0.018 4.6 ± 3.8
Textent (E2E) 0.076 ± 0.051 2.0 ± 4.0
SBaseline (E2E) 0.056 ± 0.031 1.8 ± 2.5
TBaseline (E2E) 0.035 ± 0.032 8.6 ± 6.5
SDirect 0.014 ± 0.011 1.6 ± 1.5
TDirect 0.028 ± 0.017 1.7 ± 5.9
ε-kernel + Exact 0.001 ± 0.003 0 ± 0

ModelNet

Sextent (Frozen) 0.100 ± 0.070 0.2 ± 0.7
Sextent (E2E) 0.060 ± 0.050 0.2 ± 0.9
Textent (Frozen) 0.077 ± 0.072 0.6 ± 1.3
Textent (E2E) 0.029 ± 0.032 3.3 ± 4.4
SBaseline (E2E) 0.053 ± 0.058 1.6 ± 2.5
TBaseline (E2E) 0.858 ± 0.289 57.3 ± 39.6
SDirect 0.214 ± 0.179 8.1 ± 9.7
TDirect 0.033 ± 0.02 3.6 ± 3.8
ε-kernel + Exact 0.0005 ± 0.0023 0.27 ± 2.67
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Table 14: Minimum enclosing ellipse error for point clouds in R2 on in-distribution test data,
comparing frozen and end-to-end (E2E) training procedures. All frozen processors are trained on
mixed synthetic data. We report the relative error in major (Er,maj) and minor radii (Er,min) and
the percentage of points excluded (Ep(%)). Boldface indicates the best performing method while
underlines denote best performing neural method.

Train Set Architecture Er,min Er,maj Ep (%)

Synthetic
Ellipses

Sextent (Frozen) 0.037 ± 0.037 0.022 ± 0.018 5.1 ± 5.2
Sextent (E2E) 0.056 ± 0.047 0.047 ± 0.035 9.1 ± 5.4
Textent (Frozen) 0.041 ± 0.040 0.027 ± 0.020 7.5 ± 5.4
Textent (E2E) 0.038 ± 0.033 0.022 ± 0.019 6.5 ± 5.3
SBaseline (E2E) 0.378 ± 0.234 0.426 ± 0.387 27.7 ± 25.1
TBaseline (E2E) 0.071 ± 0.660 0.047 ± 0.038 8.8 ± 7.2
SDirect 0.033 ± 0.025 0.039 ± 0.022 9.8 ± 4.4
TDirect 0.035 ± 0.03 0.025 ± 0.019 6.6 ± 4.9
ε-kernel + Exact 0.0004 ± 0.003 0.0001 ± 0.0009 3.3 ± 1.3

SQUID

Sextent (Frozen) 0.056 ± 0.047 0.047 ± 0.035 6.6 ± 5.4
Sextent (E2E) 0.078 ± 0.065 0.050 ± 0.038 13.9 ± 7.2
Textent (Frozen) 0.058 ± 0.051 0.032 ± 0.026 12.5 ± 6.6
Textent (E2E) 0.093 ± 0.074 0.045 ± 0.034 14.4 ± 7.7
SBaseline (E2E) 0.322 ± 0.365 0.250 ± 0.262 32.0 ± 16.6
TBaseline (E2E) 0.357 ± 0.550 0.049 ± 0.041 16.8 ± 18.4
SDirect 0.684 ± 0.729 0.049 ± 0.039 0 ± 0
TDirect 1.483 ± 1.287 0.128 ± 0.064 1.8 ± 0.7
ε-kernel + Exact 0.004 ± 0.028 0.002 ± 0.014 7.7 ± 5.34

Table 15: Minimum enclosing annulus error on in-distribution test data, comparing frozen and
end-to-end (E2E) training procedures. All frozen processors are trained on mixed synthetic data. We
report the relative error in the width of the annuli and the proportion of points excluded

Train Set Architecture Ew Ep (%)

Synthetic
Annuli

Sextent (Frozen) 0.050 ± 0.070 4.26 ± 4.94
Sextent (E2E) 0.038 ± 0.042 5.55 ± 4.64
Textent (Frozen) 0.077 ± 0.104 11.39 ± 8.02
Textent (E2E) 0.083 ± 0.087 12.53 ± 4.64
SBaseline 0.128 ± 0.263 5.27 ± 5.27
TBaseline 0.417 ± 0.574 4.39 ± 8.22
SDirect 0.141 ± 0.117 4.99 ± 6.95
TDirect 0.076 ± 0.120 4.43 ± 6.25
ε-kernel + Exact 0.022 ± 0.07 4.32 ± 5.9

SQUID

Sextent (Frozen) 0.073 ± 0.110 6.31 ± 4.15
Sextent (E2E) 0.087 ± 0.103 8.42 ± 4.64
Textent (Frozen) 0.064 ± 0.084 9.60 ± 4.75
Textent (E2E) 0.104 ± 0.133 6.43 ± 4.21
SBaseline (E2E) 0.191 ± 0.219 7.23 ± 5.04
TBaseline (E2E) 0.118 ± 0.120 11.9 ± 6.86
SDirect 0.041 ± 0.079 9.87 ± 6.05
TDirect 0.065 ± 0.102 10.2 ± 4.66
ε-kernel + Exact 0.111 ± 0.095 0.213 ± 0.122
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Figure 7: Directional width error (Edir) vs. the input dimension of the point cloud. We train each
model on ‘Uniform Ball’ datasets in R2, R3 and R5 and test on in-distribution dataset. We notice that
all models, as well as the baseline algorithm have increasing directional width error as the input point
cloud dimension increases.
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Figure 8: Directional width error (Edir) vs α-fatness on relaxed-ε-kernel approximation task for R2

and R3. We vary the α-fatness of the input data by varying the scale of the minor axes of ellipsoids
in R2 and R3 and then sampling point clouds from such ellipsoids. Each input point cloud has 100
points and the output ε-kernels are fixed at 64.
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Figure 9: Direction width error Edir vs output size of relaxed-ε-kernel size across dimensions. All
models are trained and evaluated on point clouds sampled from uniform balls/disks with 500 points per
set. Notice that, similar to the baseline algorithm, each model will have better results as we increase
output point set size (with SumFormer implementation of Nϕε

still outperforming Transformer).
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Figure 10: Directional width error Edir vs. input point cloud size. All models are trained on the
uniform ball/disk dataset and evaluated on uniform ellipses/ellipsoids of varying sizes.
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Figure 11: Comparison of inference time for each model along with the runtime of the exact and
approximate algorithms for coreset tasks.
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Figure 12: Comparison of inference time for each model along with runtimes of the exact and
approximate algorithms for extent measure tasks. Note that our model, Sextent, is significantly faster
than all classical algorithmic approaches.
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Figure 13: Size generalization across all extent measure tasks. We record the proportion of points
missed by the predicted shapes produced by each model on the extent-measure tasks as both the size
and bounding box of the input point clouds increase.
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(b) Minimum enclosing ellipse.
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Figure 14: Visualizations for each extent measure problem. Notice that our frozen model performs
much better out-of-distribution than other comparable neural models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In sections 3 and 4, we introduce our neural frameworks approximating
solutions for extent measures of point clouds. We also introduce our relaxed-ε-kernel
theory in sections 3 and 4. Finally, we show that our neural networks can produce ε-kernel
approximations in the section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: we discuss limitations of the work in the conclusion. In each theorem, we
point out the assumptions made on the point clouds (e.g. α-fatness).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The entire experimental set-up is given in the appendix and we provide the
code as well.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As stated previously, we provide the code as well as all the synthetic benchmark
datasets. The real datasets are freely available online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The train and test details are given in the beginning of Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in all tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the type/number of GPUs needed in Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we believe we have conformed with the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work concerns mainly approximation theory and neural network archi-
tectures for computational geometric primitives. We see no mechanism by which neural
ε-kernels could cause negative impacts. Our paper is not tied to any applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: All of our real world data is already publicly available. The SQUID and
ModelNet do not have a high risk for misuse as they have already been highly curated and
have no unsafe point clouds/images.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite ModelNet and SQUID.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Neural approximations of relaxed--kernels
	Relaxed -kernels
	Relaxed--kernel approximating NN architecture

	Neural approximations of unfaithful extent measures
	Experiments
	Conclusion and Limitations
	Acknowledgements
	Technical Appendices and Supplementary Material
	Additional details from section:preliminaries
	Additional details from section:linearization
	Proofs details
	Proofs from section:eps-kernel
	Proofs from section:linearization

	Additional experimental details and results
	Additional experiments for approximating relaxed--kernels
	Additional experiments for approximation of extent measures

	Figures and Tables


