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ABSTRACT

Flow-based models are widely used in generative tasks, including normalizing
flow, where a neural network transports from a data distribution P to a normal
distribution. This work develops a flow-based model that transports from P to an
arbitrary Q where both distributions are only accessible via finite samples. We
propose to learn the dynamic optimal transport between P and Q by training a
flow neural network. The model is trained to find an invertible transport map be-
tween P and Q optimally by minimizing the transport cost. The trained optimal
transport flow allows for performing many downstream tasks, including infinites-
imal density ratio estimation and distribution interpolation in the latent space for
generative models. The effectiveness of the proposed model on high-dimensional
data is empirically demonstrated in mutual information estimation, energy-based
generative models, and image-to-image translation.

1 INTRODUCTION

The problem of finding a transport map between two general distributions P and Q in high di-
mension is essential in statistics, optimization, and machine learning. When both distributions are
only accessible via finite samples, the transport map needs to be learned from data. In spite of the
modeling and computational challenges, this setting has applications in many fields. For example,
transfer learning in domain adaption aims to obtain a model on the target domain at a lower cost
by making use of an existing pre-trained model on the source domain (Courty et al., 2014; 2017),
and this can be achieved by transporting the source domain samples to the target domain using the
transport map. The (optimal) transport has also been applied to achieve model fairness (Silvia et al.,
2020). By transporting distributions corresponding to different sensitive attributes to a common dis-
tribution, an unfair model is calibrated to match certain desired fairness criteria (e.g., demographic
parity (Jiang et al., 2020)). The transport map can also be used to provide intermediate interpolating
distributions between P and Q. In density ratio estimation (DRE), this bridging facilitates the so-
called “telescopic” DRE (Rhodes et al., 2020) which has been shown to be more accurate when P
and Q significantly differ. Furthermore, learning such a transport map between two sets of images
can facilitate solving problems in computer vision, such as image restoration and image-to-image
translation (Isola et al., 2017).

This work focuses on a continuous-time formulation of the problem where we are to find an in-
vertible transport map Tt : Rd → Rd continuously parametrized by time t ∈ [0, 1] and satisfying
that T0 = Id (the identity map) and (T1)#P = Q. Here we denote by T#P the push-forward of
distribution P by a mapping T , such that (T#P )(·) = P (T−1(·)). Suppose P and Q have densities
p and q respectively in Rd (we also use the push-forward notation # on densities), the transport map
Tt defines

ρ(x, t) := (Tt)#p, s.t. ρ(x, 0) = p, ρ(x, 1) = q.

We will adopt the neural Ordinary Differential Equation (ODE) approach Chen et al. (2018) where
we represent Tt as the solution map of an ODE, which is further parametrized by a continuous-
time residual network. The resulting map Tt is invertible, and the inversion can be computed by
integrating the neural ODE reverse in time. Our model learns the flow from two sets of finite samples
from P and Q. The velocity field in the neural ODE will be optimized to minimize the transport
cost so as to approximate the optimal velocity in dynamic optimal transport (OT) formulation, i.e.
Benamou-Brenier equation.
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The neural-ODE model has been intensively developed in Continuous Normalizing Flows (CNF)
Kobyzev et al. (2020). In CNF, the continuous-time flow model, usually parametrized by a neural
ODE, transports from a data distribution P (accessible via finite samples) to a terminal analytical
distribution which is typically the normal one N (0, Id), per the name “normalizing”. The study
of normalizing flow dated back to non-deep models with statistical applications (Tabak & Vanden-
Eijnden, 2010), and deep CNFs have recently developed into a popular tool for generative models
and likelihood inference of high dimensional data. CNF models rely on the analytical expression of
the terminal distribution in training. Since our model is also a flow model that transports from data
distribution P to a general (unknown) data distribution Q, both accessible via empirical samples,
we name our model “Q-flow” which is inspired by the CNF literature.

In summary, the contributions of the work include:

• We develop a flow-based model Q-flow net to learn a continuous invertible optimal trans-
port map between arbitrary pair of distributions P and Q in Rd from two sets of samples
of the distributions. We propose to train a neural ODE model to minimize the transport
cost such that the flow approximates the optimal transport in dynamic OT. The end-to-end
training of the model refines an initial flow that may not attain the optimal transport, e.g.,
obtained by training two CNFs or other interpolating schemes.

• Leveraging the trained optimal transport Q-flow net, we propose a new DRE approach
by training a separate continuous-time neural network using classification losses along
the time grid. The proposed DRE method improves the performance in high dimension,
demonstrated by high-dimensional mutual information estimation and energy-based gener-
ative models.

• We show the effectiveness of the approach on simulated and real data. On the image-to-
image translation task, our Q-flow gradually transforms an input image to a target one that
resembles in style and achieves competitive quantitative metrics against the baselines.

1.1 RELATED WORKS

Normalizing flows. When the target distribution Q is an isotropic Gaussian N (0, Id), normal-
izing flow models have demonstrated vast empirical successes in building an invertible transport
Tt between P and N (0, Id) (Kobyzev et al., 2020). The transport is parametrized by deep neural
networks, whose parameters are trained via minimizing the KL-divergence between transported dis-
tribution (T1)#P and N (0, Id). Various continuous (Grathwohl et al., 2019; Finlay et al., 2020) and
discrete (Dinh et al., 2016; Behrmann et al., 2019) normalizing flow models have been developed,
along with proposed regularization techniques (Onken et al., 2021; Xu et al., 2022a;b) that facilitate
the training of such models in practice.

Since our Q-flow is in essence a transport-regularized flow between P and Q, we further review re-
lated works on building normalizing flow models with transport regularization. (Finlay et al., 2020)
trained the flow trajectory with regularization based on ℓ2 transport cost and Jacobian norm of the
network-parametrized velocity field. (Onken et al., 2021) proposed to regularize the flow trajectory
by ℓ2 transport cost and the deviation from the HJB equation. These regularization have shown to
effectively improve over un-regularized models at a reduced computational cost. Regularized nor-
malizing flow models have also been used to solve high dimensional Fokker-Planck equations (Liu
et al., 2022) and mean-field games (Huang et al., 2023).

Distribution interpolation by neural networks. Recently, there have been several works estab-
lishing a continuous-time interpolation between general high-dimensional distributions. (Albergo &
Vanden-Eijnden, 2023) proposed to use a stochastic interpolant map between two arbitrary distri-
butions and train a neural network parametrized velocity field to transport the distribution along the
interpolated trajectory. (Neklyudov et al., 2023) proposed an action matching scheme that leverages
a pre-specified trajectory between P and Q to learn the OT map between two infinitesimally close
distributions along the trajectory. (Liu, 2022) proposed rectified flow which starts from an initial
coupling of P and Q and iteratively rectifies it to converge to the optimal coupling. Same as in
(Albergo & Vanden-Eijnden, 2023; Neklyudov et al., 2023; Lipman et al., 2023), our neural-ODE
based approach also computes a deterministic probability transport map, in contrast to SDE-based
diffusion models (Song et al., 2021). Notably, the interpolant mapping used in these prior works
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is generally not the optimal transport interpolation. In comparison, our proposed Q-flow optimizes
the interpolant mapping parametrized by a neural ODE and approximates the optimal velocity in
dynamic OT (see Section 2). Generally, the flow attaining optimal transport can lead to improved
model efficiency and generalization performance Huang et al. (2023). In this work, the proposed
method aims to solve the dynamic OT trajectory by a flow network, and we experimentally show
that the optimal transport flow benefits high-dimensional DRE and image-to-image translation.

Optimal transport between general distributions. The problem of OT dates back to the work by
Gaspard Monge (Monge, 1781), and since then many mathematical theories and computational tools
have been developed to tackle the question (Villani et al., 2009; Benamou & Brenier, 2000; Peyré
et al., 2019). Several works have attempted to make computational OT scalable to high dimensions,
including (Lavenant et al., 2018) which applied convex optimization using Riemannian structure
of the space of discrete probability distributions, and (Lee et al., 2021) by L1 and L2 versions of
the generalized unnormalized OT solved by Nesterov acceleration. Several deep approaches have
also been developed recently. (Coeurdoux et al., 2023) leveraged normalizing flow to learn an ap-
proximate transport map between two distributions from finite samples, where the flow model has a
restricted architecture and the OT constraint is replaced with sliced-Wasserstein distance which may
not computationally scale to high dimensional data. Several works have also considered casting the
optimal transport problem into a minimax problem based on either the Kantorovich formulation of
(Xie et al., 2019; Korotin et al., 2023) or the Monge formulation (Fan et al., 2022). In comparison,
our approach computes the continuous-time dynamic OT mapping parametrized by the optimal ve-
locity field, which directly provides a continuous interpolation between two distributions and can be
applied to tasks like DRE.

2 PRELIMINARIES

Neural ODE and CNF. Neural ODE Chen et al. (2018) parametrized an ODE in Rd by a residual
network. Specifically, let x(t) be the solution of

ẋ(t) = f(x(t), t; θ), x(0) ∼ p. (1)

where f(x, t; θ) is a velocity field parametrized by the neural network. Since we impose a distribu-
tion P on the initial value x(0), the value of x(t) at any t also observes a distribution p(x, t) (though
x(t) is deterministic given x(0)). In other words, p(·, t) = (Tt)#p, where Tt is the solution map
of the ODE, namely Tt(x) = x +

∫ t

0
f(x(s), s; θ)ds, x(0) = x. In the context of CNF (Kobyzev

et al., 2020), the training of the flow network f(x, t; θ) is to minimize the KL divergence between
the terminal density p(x, T ) at some T and a target density pZ which is the normal distribution.
The computation of the objective relies on the expression of normal density and can be estimated on
finite samples of x(0) drawn from p.

Dynamic OT (Benamou-Brenier). The Benamou-Brenier equation below provides the dynamic
formulation of OT Villani et al. (2009); Benamou & Brenier (2000)

inf
ρ,v

T :=

∫ 1

0

Ex(t)∼ρ(·,t)∥v(x(t), t)∥2dt

s.t. ∂tρ+∇ · (ρv) = 0, ρ(x, 0) = p(x), ρ(x, 1) = q(x),

(2)

where v(x, t) is a velocity field and ρ(x, t) is the probability mass at time t satisfying the continuity
equation with v. The action T is the transport cost. Under regularity conditions of p, q, the minimum
T in (2) equals the squared Wasserstein-2 distance between p and q, and the minimizer v(x, t) can
be interpreted as the optimal control of the transport problem.

3 LEARNING DYNAMIC OT BY Q-FLOW NETWORK

We introduce the formulation and training objective of the proposed OT Q-flow net in Section 3.1.
The training technique consists of the end-to-end training (Section 3.2) and the construction of the
initial flow (Section 3.3).
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P = ρ(⋅,0) Q = ρ(⋅,1)
Dynamic OT by Q-flow

Initialized flow

⋮
Refined flow, iter k

⋮

Figure 1: Illustration of learning the dynamic OT using our Q-flow (blue), which invertibly trans-
ports between P and Q over the interval [0, 1] with the least transport cost. Taking any initial flow
(grey) between P and Q, we iteratively refine flow trajectories to obtain flows with smaller transport
cost (black), converging gradually to the dynamic OT between these two distributions.

3.1 FORMULATION AND TRAINING OBJECTIVE

Given two sets of samples X = {Xi}Ni=1 and X̃ = {X̃j}Mj=1, where Xi ∼ P and X̃j ∼ Q i.i.d.,
we train a neural ODE model f(x, t; θ) (1) to represent the transport map Tt. The formulation is
symmetric from P to Q and vice versa, and the loss will also have symmetrically two parts. We call
P → Q the forward direction and Q → P the reverse direction.

Our training objective is based on the dynamic OT (2) on time [0, 1], where we solve the velocity
field v(x, t) by f(x, t; θ). The terminal condition ρ(·, 1) = q is relaxed by a KL divergence (see,
e.g., (Ruthotto et al., 2020)). The training loss in forward direction is written as

LP→Q = LP→Q
KL + γLP→Q

T , (3)

where LKL represents the relaxed terminal condition and LT is the Wasserstein-2 transport cost to
be specified below; γ > 0 is a weight parameter, and with small γ the terminal condition is enforced.

KL loss. Now we specify the first term in the loss (3) LP→Q
KL . We define the solution mapping of

(1) from s to t as

T t
s(x; θ) = x(s) +

∫ t

s

f(x(t′), t′; θ)dt′, (4)

which is also parametrized by θ, and we may omit the dependence below. By the continuity equation
in (2), ρ(·, t) = (T t

0)#p. The terminal condition ρ(·, 1) = q is relaxed by minimizing

KL(p1||q) = Ex∼p1 log(p1(x)/q(x)), p1 := (T 1
0 )#p.

The expectation Ex∼p1
is estimated by the sample average over (X1)i which observes density p1

i.i.d., where (X1)i := T 1
0 (Xi) is computed by integrating the neural ODE from time 0 to 1.

It remains to have an estimator of log(p1/q) to compute KL(p1||q), and we propose to train a logistic
classification network r1(x;φr) with parameters φr for this. The inner-loop training of r1 is by

min
φr

1

N

N∑
i=1

log(1 + er1(T
1
0 (Xi;θ);φr)) +

1

M

M∑
j=1

log(1 + e−r1(X̃j ;φr)). (5)

The functional optimal r∗1 of the population version of loss (5) equals log(q/p1) by direct compu-
tation, and as a result, KL(p1||q) = −Ex∼p1r

∗
1(x). Now take the trained classification network r1

with parameter φ̂r, we can estimate the finite sample KL loss as

LP→Q
KL (θ) = − 1

N

N∑
i=1

r1(T
1
0 (Xi; θ); φ̂r), (6)

where φ̂r is the computed minimizer of (5) solved by inner loops. In practice, when the density
p1 is close to q, the DRE by training classification net r1 can be efficient and accurate. We will
apply the minimization (5) after the flow net is properly initialized which guarantees the closeness
of p1 = (T 1

0 )#p and q to begin with.
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W2 regularization. Now we specify the second term in the loss (3) that defines the Wasserstein-2
regularization. To compute the transport cost T in (2) with velocity field f(x, t; θ), we use a time
grid on [0, 1] as 0 = t0 < t1 < . . . < tK = 1. The choice of the time grid is algorithmic (since the
flow model is parametrized by θ throughout time) and may vary over experiments, see more details
in Section 3.2. Define hk = tk − tk−1, and Xi(t; θ) := T t

0(Xi; θ), the W2 regularization is written
as

LP→Q
T (θ) =

K∑
k=1

1

hk

(
1

N

N∑
i=1

∥Xi(tk; θ)−Xi(tk−1; θ)∥2
)
. (7)

It can be viewed as a time discretization of T . Meanwhile, since (omitting de-
pendence on θ) Xi(tk) − Xi(tk−1) = T tk

tk−1
(Xi(tk−1)), the population form of (7)∑K

k=1 Ex∼ρ(·,tk−1)∥T
tk
tk−1

(x; θ)∥2/hk in minimization can be interpreted as the discrete-time
summed (square) Wasserstein-2 distance (Xu et al., 2022a)

K∑
k=1

W2(ρ(·, tk−1), ρ(·, tk))2/hk.

The W2 regularization encourages a smooth flow from P to Q with small transport cost, which also
guarantees the invertibility of the model in practice when the trained neural network flow approxi-
mates the optimal flow in (2).

Flow in both directions. To improve the numerical accuracy, we will design a training scheme that
will take into account flow in both directions, T 1

0 and T 0
1 ; note that these transport maps are related

to each other through (4). The formulation in the reverse direction is similar, where we transport
Q-samples X̃i from 1 to 0 using the same neural ODE integrated in reverse time. Specifically,
LQ→P = LQ→P

KL +γLQ→P
T , and LQ→P

KL (θ) = − 1
M

∑M
j=1 r̃0(T

0
1 (X̃j ; θ); φ̂r̃), where φ̂r̃ is obtained

by inner-loop training of another classification net r̃0(x, φr̃) with parameters φr̃ via

min
φr̃

1

M

M∑
j=1

log(1 + er̃0(T
0
1 (X̃j ;θ);φr̃)) +

1

N

N∑
i=1

log(1 + e−r̃0(Xi;φr̃)); (8)

Define X̃j(t; θ) := T t
1(X̃j ; θ), the reverse-time W2 regularization is

LQ→P
T (θ) =

K∑
k=1

1

hk

 1

M

M∑
j=1

∥X̃j(tk−1; θ)− X̃j(tk; θ)∥2
 .

3.2 END-TO-END TRAINING ALGORITHM

In the end-to-end training, we assume that the Q-flow net has already been initiated as an approxi-
mate solution of the desired Q-flow, see more in Section 3.3. We then minimize LP→Q and LQ→P

in an alternative fashion per “Iter”, and the procedure is given in Algorithm 1. Hyperparameter
choices and network architectures are further detailed in Appendix B.

Time integration of flow. In the losses (6) and (7), one need to compute the transported sam-
ples Xi(t; θ) and X̃j(t; θ) on time grid points {tk}Kk=0. This calls for integrating the neural ODE
on [0, 1], which we conduct on a fine time grid tk,s, s = 0, . . . , S, that divides each subinterval
[tk−1, tk] into S mini-intervals. We compute the time integration of f(x, t; θ) using a fixed-grid
four-stage Runge-Kutta method on each mini-interval. The fine grid is used to ensure the numerical
accuracy of ODE integration and the numerical invertibility of the Q-flow net, i.e., the error of using
reverse-time integration as the inverse map (see inversion errors in Table A.1). It is also possible to
first train the flow f(x, t; θ) on a time grid to warm start the later training on a refined grid, so as to
improve convergence. We also find that the W2 regularization can be computed at a coarser grid tk
(S is usually 3-5 in our experiments) without losing the effectiveness of Wasserstein-2 regulariza-
tion. Finally, one can adopt an adaptive time grid, e.g., by enforcing equal W2 movement on each
subinterval [tk−1, tk] Xu et al. (2022b), so that the representative points are more evenly distributed
along the flow trajectory and the learning of the flow model can be further improved.
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Algorithm 1 OT Q-flow refinement

input Pre-trained initial flow network f(x(t), t; θ); train-
ing data X ∼ P and X̃ ∼ Q; hyperparameters:
{γ, {tk}Kk=1,Tot, E,E0, Ein}.

output Refined flow network f(x(t), t; θ)
1: for Iter = 1, . . . ,Tot do
2: (If Iter = 1) Train r1 by minimizing (5) for E0 epochs.
3: for epoch = , 1, . . . , E do {▷ P → Q refinement}
4: Update θ of f(x(t), t; θ) by minimizing LP→Q.
5: Update r1 by minimizing (5) for Ein epochs.
6: end for
7: (If Iter = 1) Train r̃0 by minimizing (8) for E0 epochs.
8: for epoch = , 1, . . . , E do {▷ Q → P refinement}
9: Update θ of f(x(t), t; θ) by minimizing LQ→P .

10: Update r̃0 by minimizing (8) for Ein epochs.
11: end for
12: end for

Inner-loop training of r1 and r̃0.
Suppose the flow net has been suc-
cessfully warm-started, the trans-
ported distributions (T 1

0 )#P ≈ Q
and (T 0

1 )#Q ≈ P . The two
classification nets are first trained
for E0 epochs before the loops
of training the flow model and
then updated for Ein inner-loop
epochs in each outer-loop itera-
tion. We empirically find that the
diligent updates of r1 and r̃0 in
lines 5 and 10 of Algorithm 1
are crucial for successful end-to-
end training of Q-flow net. As we
update the flow model f(x, t; θ),
the push-forwarded distributions
(T 1

0 )#P and (T 0
1 )#Q are conse-

quently changed, and then one will need to retrain r1 and r̃0 timely to ensure an accurate estimate
of the log-density ratio and consequently the KL loss. Compared with training the flow parameter θ,
the computational cost of the two classification nets is light which allows potentially a large number
of inner-loop iterations if needed.

Computational complexity. We measure the computational complexity by the number of func-
tion evaluations of f(x(t), t; θ) and of the classification nets {r1, r̃0}. Suppose the total number of
epochs in outer loop training is O(E), the dominating computational cost lies in the neural ODE
integration, which takes O(8KS · E(M + N)) function evaluations of f(x, t; θ). We remark that
the Wasserstein-2 regularization (7) incurs no extra computation, since the samples Xi(tk; θ) and
X̃j(tk; θ) are available when computing the forward and reverse time integration of f(x, t; θ). The
training of the two classification nets r1 and r̃0 takes O(4(E0 + EEin)(M +N)) additional evalu-
ations of the two network functions since the samples Xi(1; θ) and X̃j(0; θ) are already computed.

3.3 FLOW INITIALIZATION

We propose to initialize the Q-flow net by a flow model that approximately matches the transported
distributions with the target distributions in both directions (and may not necessarily minimize the
transport cost). Such an initialization will significantly accelerate the convergence of the end-to-end
training, which can be viewed as a refinement of the initial flow.

The initial flow f(x, t; θ) may be specified using prior knowledge of the problem if available. Gen-
erally, when only two data sets X, X̃ are given, the initial flow can be obtained by adopting existing
methods in generative flows. In this work, we adopt two approaches: The first method is to construct
the initial flow as a concatenation of two CNF models, each of which flows invertibly between P and
Z and Z and Q for Z ∼ N (0, Id). Any existing neural-ODE CNF models may be adopted for this
initialization (Grathwohl et al., 2019; Xu et al., 2022b). The second method adapts distribution in-
terpolant neural networks. Specifically, one can use the linear interpolant mapping in (Rhodes et al.,
2020; Choi et al., 2022; Albergo & Vanden-Eijnden, 2023) (see Appendix C), and train the neu-
ral network velocity field f(x, t; θ) to match the interpolation (Albergo & Vanden-Eijnden, 2023).
Note that any other initialization scheme is compatible with the proposed end-to-end training of the
Q-flow model to obtain the OT flow.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method on several downstream
tasks. The benefit of improving DRE between P and Q are shown in Sections 4.2–4.4, and the
application to image-to-image translation is presented in Section 4.5. Additional ablation studies
regarding hyper-parameter sensitivity are performed in Appendix B.5.
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(a) Trajectory from P to Q

(b) Estimated log-ratio between Ptk−1 and Ptk by the trained Q-flow-ratio net.

Figure 2: Q-flow trajectory between arbitrary 2D distributions and corresponding log-ratio estima-
tion. Top: intermediate distributions by Q-flow net. Bottom: corresponding log-ratio estimated by
Q-flow-ratio net. Bluer color indicates smaller estimates of the difference log(p(x, tk)/p(x, tk−1))
evaluated at the common support of the neighboring densities.

4.1 INFINITESIMAL DENSITY RATIO ESTIMATION (DRE)

For the DRE task, using the learned OT flow network between P and Q, we propose to train a
separate continuous-time neural network, called the Q-flow-ratio net, by minimizing a classification
loss at time stamps along the flow trajectory. This differs from Choi et al. (2021) which used a ‘time
score matching’ objective, and we also adopt a different time discretization. Details of the method
are provided in Appendix A, see Algorithm A.2. In practice, we found our approach to train the
density ratio network can be more efficient in some cases.

In the experimental results below, we denote our method as “Ours”, and compare against three
baselines of DRE in high dimensions. The baseline methods are: 1 ratio (by training a single
classification network using samples from P and Q), TRE (Rhodes et al., 2020), and DRE-∞ (Choi
et al., 2022). We denote Ptk with density p(·, tk) as the pushforward distribution of P by the
Q-flow transport over the interval [0, tk]. The set of distributions {Ptk} for k = 1, . . . , L builds
a bridge between P and Q.

4.2 TOY DATA IN 2D

Gaussian mixtures. We simulate P and Q as two Gaussian mixture models with three and two
components, respectively, see additional details in Appendix B.1. We compute ratio estimates r̂(x)
with the true value r(x), which can be computed using the analytic expressions of the densities. The
results are shown in Figure A.1. We see from the top panel that the mean absolute error (MAE)
of Ours is evidently smaller than those of the baseline methods, and Ours also incurs a smaller
maximum error |r̂ − r| on test samples. This is consistent with the closest resemblance of Ours to
the ground truth (first column) in the bottom panel. In comparison, DRE-∞ tends to over-estimate
r(x) on the support of Q, while TRE and 1 ratio can severely under-estimate r(x) on the support of
P . As both the DRE-∞ and TRE models use the linear interpolant scheme (16), the result suggests
the benefit of training an optimal-transport flow for DRE.

Two-moon to and from checkerboard. We design two densities in R2 where P represents the
shape of two moons and Q represents a checkerboard, see additional details in Appendix B.1. For
this more challenging case, the linear interpolation scheme (16) creates a bridge between P and Q
as shown in Figure A.4. The flow visually differs from the one obtained by the trained Q-flow net,
as shown in Figure 2(a), and the latter is trained to minimize the transport cost. The result of
Q-flow-ratio net is shown in Figure 2(b). The corresponding density ratio estimates of log p(x, tk)−
log p(x, tk−1) visually reflect the actual differences in the two neighboring densities.

4.3 MUTUAL INFORMATION ESTIMATION FOR HIGH-DIMENSIONAL DATA

We evaluate different methods on estimating the mutual information (MI) between two correlated
random variables from given samples. In this example, we let P and Q be two high-dimensional
Gaussian distributions following the setup in (Rhodes et al., 2020; Choi et al., 2022), where we vary
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the data dimension d in the range of {40, 80, 160, 320}. Additional details can be found in Appendix
B.2.

Figure 3: Estimated MI between two correlated high-
dimensional Gaussian random variables.

Figure 3 shows the results by differ-
ent methods, where the baselines are
trained under their proposed default
settings. We find that the estimated
MI by our method almost perfectly
aligns with the ground truth MI val-
ues, reaching nearly identical perfor-
mance as DRE-∞ does. Meanwhile,
Ours outperforms the other two base-
lines and the performance gaps in-
crease as the dimension d increases.

4.4 ENERGY-BASED MODELING OF MNIST

We apply our approach in evaluating and improving an energy-base model (EBM) on the MNIST
dataset (LeCun & Cortes, 2005). We follow the prior setup in (Rhodes et al., 2020; Choi et al., 2022),
where P is the empirical distribution of MNIST images, and Q is the generated image distributions
by three given pre-trained energy-based generative models: a Gaussian noise model, a Gaussian
copula model, and a Rational Quadratic Neural Spline Flow model (RQ-NSF) (Durkan et al., 2019).
Specifically, the images are in dimension d = 282 = 784, and each of the pre-trained models
provides an invertible mapping F : Rd → Rd, where Q = F#N (0, Id). We train a Q-flow net
between (F−1)#P and (F−1)#Q, the latter by construction equals N (0, Id). Using the trained
Q-flow net, we go back to the input space and train the Q-flow-ratio net using the intermediate
distributions between P and Q. Additional details are in Appendix B.3.

The trained Q-flow-ratio r(x, s; θ̂r) provides an estimate of the data density p(x) by p̂(x) defined as
log p̂(x) = log q(x) −

∫ 1

0
r(x, s; θ̂r)ds, where log q(x) is given by the change-of-variable formula

using the pre-trained model F and the analytic expression of N (0, Id). As a by-product, since our
Q-flow net provides an invertible mapping T 1

0 , we can use it to obtain an improved generative model
on top of F . Specifically, the improved distribution Q̃ := (F ◦ T 0

1 )#N (0, Id), that is, we first use
Q-flow to transport N (0, Id) and then apply F . The performance of the improved generative model
can be measured using the “bits per dimension” (BPD) metric, which is a widely used metric in
evaluating the performance of generative models (Theis et al., 2015; Papamakarios et al., 2017). In
our setting, the BPD can also be used to compare the performance of the DRE.

The results show that Ours reaches the improved performance in Table 1 against baselines: it con-
sistently reaches smaller BPD than the baseline methods across all choices of Q. Meanwhile, we
also note computational benefits in training: on one A100 GPU, Ours took approximately 8 hours to
converge while DRE-∞ took approximately 33 hours. In addition, we show trajectory of improved
samples from Q to Q̃ for RQ-NSF using the trained Q-flow in Figure 4a. Figure A.2 in the appendix
shoes additional improved digits for all three specifications of Q.

4.5 IMAGE-TO-IMAGE TRANSLATION

We use Q-flow to learn the continuous-time OT between distributions of RGB images of handbag
(Zhu et al., 2016) and shoes (Yu & Grauman, 2014), which we denote as P and Q respectively.

Table 1: DRE performance on the energy-based modeling task for MNIST, reported in BPD and
lower is better. Results for DRE-∞ are from (Choi et al., 2022) and results for 1 ratio and TRE are
from (Rhodes et al., 2020).

Choice of Q RQ-NSF Copula Gaussian

Method Ours DRE-∞ TRE 1 ratio Ours DRE-∞ TRE 1 ratio Ours DRE-∞ TRE 1 ratio

BPD (↓) 1.05 1.09 1.09 1.09 1.14 1.21 1.24 1.33 1.31 1.33 1.39 1.96
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(a) MNIST

(b) Handbag → shoes

Figure 4: The trajectory of samples (in rows) from intermediate distributions of the Q-flow, as it
pushes forward the base distribution (leftmost column) to the target distribution (rightmost column).
Figure (a) shows the improvement of generated digits using the Q-flow. Figure (b) shows the image-
to-image translation from handbag to shoes.

We follow the setup in (Korotin et al., 2023), where the goal of the image-to-image translation task
is to conditionally generate shoe images by mapping test images of handbag through our trained
Q-flow model. We train Q-flow in the latent space of a pre-trained variational auto-encoder (VAE)
on P and Q. Additional details are in Appendix B.4.

Figure 4b visualizes continuous trajectories from handbags to shoes generated by the Q-flow model.
We find that Q-flow can capture the style and color nuances of corresponding handbags in the gener-
ated shoes as the flow model continuously transforms handbag images. Figure A.3 in the appendix
shows additional generated shoe images from handbags. Quantitatively, we reach a Frechet Incep-
tion Distance ((Heusel et al., 2017), FID) of 15.95 between generated and true images of shoes.
The FID remains competitive against FIDs from previous baselines, which range from 22.42 by
DiscoGAN (Kim et al., 2017) to 13.77 by NeuralOT (Korotin et al., 2023). Meanwhile, since our
Q-flow model learns a continuous transport map from source to target domains, it directly provides
the gradual interpolation between the source and target samples along the dynamic OT trajectory as
depicted in Figure 4b.

5 DISCUSSION

In this work, we develop Q-flow neural-ODE model that smoothly and invertibly transports between
a pair of arbitrary distributions P and Q. The flow network is trained to find the dynamic optimal
transport between the two distributions and is learned from finite samples from both distributions.
The proposed flow model shows strong empirical performance on simulated and real data for the
tasks of density ratio estimation and image-to-image translation.

For future directions, first, the algorithm of training the Q-flow net can be further enhanced. Be-
cause the computational complexity scales with the number of time steps along the trajectory, more
advanced time discretization schemes, like adaptive time grids, can further improve the computa-
tional efficiency which would be important for high dimensional problems. Second, there are many
theoretical open questions, e.g., the theoretical guarantee of learning the OT trajectory, which goes
beyond the scope of the current work. For the empirical results, extending to a broader class of
applications and more real datasets will be useful.
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