MEASURING LLM NOVELTY AS THE FRONTIER OF ORIGINAL AND HIGH-QUALITY OUTPUT

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

018

019

020

021

022

024

025

026

027

028

029

031

032

037

038

040

041

042 043

044

046

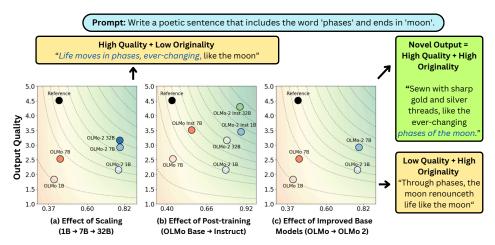
047

051

052

Paper under double-blind review

ABSTRACT


As large language models (LLMs) are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as originality with respect to model training data, but original outputs may be of low quality. In contrast, non-expert judges more reliably score quality but may favor memorized outputs, limiting the reliability of human preference as a metric. We introduce a new novelty metric for LLM generations that balances originality and quality—the harmonic mean of the fraction of n-grams unseen during training and a task-specific quality score. Using this framework, we identify trends that affect the novelty of generations from three families of open-data models (OLMo, OLMo-2, and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that model-generated text from some base LLMs is less novel than human-written text from the internet. However, increasing model scale and post-training reliably improves novelty due to improvements in output quality. We also find that improving the base model at the same scale (e.g., OLMo 7B to OLMo-2 7B) leads to higher novelty due to higher originality. Finally, we observe that inference-time methods, such as prompting and providing novel in-context examples, have a much smaller effect on novelty, often increasing originality at the expense of quality. This highlights the need for further research into more effective elicitation strategies as we use models for creative applications.

1 Introduction

As large language models (LLMs) are increasingly used for creative tasks (Wan et al., 2024; Haase & Pokutta, 2024; Moruzzi & Margarido, 2024) and scientific discovery (Gottweis et al., 2025; Feng et al., 2024), it is important to evaluate their ability to generate novel output. Past work measures novelty by memorization; that is, whether text fragments appear in training data (McCoy et al., 2023; Merrill et al., 2024; Lu et al., 2024a). However, originality alone is not sufficient. Consider a scenario in which a user asks for suggestions from an LLM when writing a poem (Figure 1). The output may be highly original, but of poor quality. To identify high-quality outputs, leaderboards like Chatbot Arena (Chiang et al., 2024) collect and aggregate human preference judgments. However, these are unsatisfactory measures of novelty as a novice judge might score output highly, not knowing that it is copied verbatim from the pre-training data.

Ideally, models should generate output that uses expressive and figurative language without reproducing the training data. In this paper, we argue that these two facets must be jointly considered. We propose to measure novelty as the harmonic mean of originality (measured by the fraction of unseen n-grams in a generation) and quality according to task-specific measures (Section 2.1). We use this metric to answer the following research questions.

What factors affect the novelty of LLM output? We analyze generations from three families of open-data models—OLMo (Groeneveld et al., 2024), OLMo-2 (OLMo et al., 2024), and Pythia (Biderman et al., 2023b)—to identify factors that affect LLM novelty across three creativity-focused tasks (Section 2.2), ranging from story completion (Eldan & Li, 2023) to poetry writing (Chakrabarty et al., 2022) to creative tool use (Tian et al., 2024). We find that scaling LLMs results in more novel output (OLMo 1B to 7B), though the gains plateau at higher scales (OLMo-2 7B to 32B). Here, the improvement comes from higher quality output while originality remains stable within a model

Originality = Unseen N-gram Fraction

Figure 1: We evaluate LLMs' ability to generate novel text, defined as high-quality responses that avoid reproducing higher-order n-grams from training data (highlighted in blue). Novelty is measured as the harmonic mean of unseen n-gram fraction (x-axis) and output quality (y-axis) (Section 2.1). Contour lines denote equal novelty in each plot. We find that: (a) scaling models and (b) post-training increase novelty through improved quality, while (c) stronger base models (e.g., OLMo 1 to OLMo 2) improve novelty by generating more original output (Section 3). Inference-time methods (e.g., novel ICL examples, Denial Prompting) have limited effect on shifting the novelty frontier (Section 4).

family. Post-training also consistently leads to higher novelty than base models due to higher quality and similar originality across all model scales. Finally, improving the underlying base model at the same scale (e.g., OLMo to OLMo 2) increases novelty by improving originality (Section 3).

Can we elicit more novel outputs from LLMs at inference time? We investigate whether inference-time methods (e.g., changing the decoding strategy or prompt) elicit more novel output. We find that while increasing the sampling temperature initially boosts novelty by increasing originality, these gains can be quickly outweighed by a decline in quality (Section 4.1). For prompting base LLMs (Section 4.2), we use high-novelty in-context examples; and for post-trained models (Section 4.3), we experiment with asking for novelty and denial prompting (Lu et al., 2024b). These methods have a smaller effect on novelty by generating slightly more original output while paying a cost in quality.

Our main contribution is a metric for studying novelty that allows comparison of models from different families, scales, and training methods on an equal footing, which helps uncover the factors that affect novel output generation. Using this measure, we identify trade-offs between originality and quality, emphasizing the importance of considering both together. We find that scaling, alignment, and improving the underlying base LLM can push the Pareto frontier of novelty, whereas inference-time methods yield only limited gains, motivating further research into more effective elicitation strategies. While we focus on open-data models, which allow us to accurately evaluate originality, our analysis can also be extended naturally to black-box models, where providers can directly report aggregated novelty scores without exposing proprietary data (Section 6). This approach helps the community track novelty over time, place advances in creative and scientific context, and evaluate true generalization for AI safety. We release the dataset of over 5000 LLM generations, with quality scores and copied n-grams to facilitate research along this direction.¹

2 MEASURING NOVELTY OF LLM GENERATIONS

In this section, we present our evaluation method to measure the novelty of LLM generations. We introduce a new metric definition (Section 2.1), that we apply to a suite of creative task datasets (Section 2.2) and finally provide details about how we operationalize our definition (Section 2.3) for subsequent experiments (Section 3 and Section 4).

¹We will make our code and model outputs available upon publication.

2.1 METRIC DEFINITION

We propose a measure of novelty that captures both originality (i.e., whether the text is different from the training data) and quality, ensuring that novel generations remain coherent and helpful to users.

Novel output should be *original*. We must first distinguish between content that is genuinely new, rather than reproducing the training data of the model. The de facto approach to measuring the originality of output is to calculate the fraction of higher-order n-grams which do not appear in pre- and post-training data of LLMs (McCoy et al., 2023; Elazar et al., 2024; Merrill et al., 2024; Lu et al., 2024a). This value can be seen as a distance metric with outputs containing more unseen n-grams as farther away from the training data and therefore more original. Following McCoy et al. (2023); Elazar et al. (2024); Merrill et al. (2024), we calculate n-gram originality as the proportion of n-grams in a generation that do not appear in a corpus C, where C corresponds to the pre- and post-training corpora of the LLM used for generation. The tools used are detailed in Section 2.3.1.

Novel outputs should be *high quality*. Identifying original outputs alone is insufficient, since long-tail generations that are original may also be nonsensical. As such, we also desire outputs to be high-quality with respect to the user prompt. While we would ideally measure output quality using human annotations, large-scale human evaluation is impractical for benchmarking various ablations of model performance. Instead, we use LLM-as-a-judge evaluation to rate output quality, providing a scalable approximation of user preferences. Since measures of quality are highly task-specific, we provide the prompts used for each task in Section 2.2 and provide details about how we validate the reliability of automatic scoring in Section 2.3.2.

Our novelty metric. As illustrated by the example in Figure 1, existing metrics capture just a single dimension of novelty. For instance, metrics like *Creativity Index* (Lu et al., 2024a) and *n*-novelty (Merrill et al., 2024) only score originality and would incorrectly rank rare but poor-quality output highly. Meanwhile, benchmarks of output quality, like ChatBot Arena (Chiang et al., 2024) rely on human ratings, which might favourably judge the unoriginal answer. To aggregate both dimensions into a single measure of novelty, we report the harmonic mean of quality (renormalized to a value between 0 and 1) and originality (as measured by the unseen *n*-gram fraction) of each generation, which correctly identifies truly novel generations. We report average novelty on three tasks (Section 2.2), allowing us to compare different models and ablations of generation methods.

2.2 CREATIVE TASKS

We evaluate the novelty of generations on three tasks: story completion, poetry writing, and creative tool use. We select these tasks because they are open-ended, with a wide range of valid responses that allow for varying novelty. Table 5 provides examples of each task.

Story completion. We use the TinyStories dataset (Eldan & Li, 2023) to evaluate model generated story endings. Following Yang et al. (2022), the model is provided with a prompt consisting of the first line of a story, which introduces the setting and characters, and must then complete the story. To score generation quality, we use an evaluation prompt that assigns points for correctly reusing and developing the introduced characters and plot elements, maintaining coherence, ensuring logical progression, and preserving grammatical correctness (Appendix E.1.1).

Poetry writing. We use the CoPoet dataset (Chakrabarty et al., 2022), where the model generates a single line of poetry in response to a given instruction about the content and literary devices to be included. To score quality, we use an evaluation prompt that assigns points based on adherence to the instruction, correct use of specified literary devices, coherence, and grammaticality (Appendix E.1.2).

Creative tool use. We use the MacGyver dataset (Tian et al., 2024) of reasoning problems that require creative use of items to complete physical objectives. The model is prompted with the scenario and must generate a solution through innovative but feasible use of common objects. We score quality with a prompt that checks whether the proposed solution correctly utilizes the provided tools in a valid manner, and successfully resolves the given problem (Appendix E.1.3).

²We provide more examples in Table 3.

³In Section 6 we detail how our evaluation method can be used for black-box models as well as updated as the research community makes progress in measuring more high-quality measures of originality.

2.3 OPERATIONALIZING OUR NOVELTY METRIC

2.3.1 CALCULATING OUTPUT ORIGINALITY

We measure originality as the fraction of n-grams that do not appear in model training data. We calculate this using the WIMBD API (Elazar et al., 2024) and Infinigram (Liu et al., 2024; 2025), which index the pre- and post-training corpora of various open-data model families. Our experiments (Section 3 and Section 4) use the Pythia, OLMo, and OLMo-2 models which are covered by the indexes for the Pile (Gao et al., 2020), Dolma (Soldaini et al., 2024), Dolmino (OLMo et al., 2024), OLMo-Tulu SFT mixture (Ivison et al., 2023), OLMo-2-Preference mixture (OLMo et al., 2024), Tulu RLVR mixture (Lambert et al., 2024), and Ultrafeedback (Cui et al., 2024). This allows us to check whether the constituent n-grams of generations from the models appear in their training data. Following Merrill et al. (2024), we consider n=4, 5, and 6, since smaller values result in nearly zero unseen n-grams, while larger values lead to almost all n-grams being unseen.

2.3.2 LLM-AS-A-JUDGE AS A MEASURE OF OUTPUT QUALITY

We use LLM-as-a-judge to approximate the measure of output quality from human annotators in a scalable manner. To ensure that we obtain reliable ratings, we perform a human study. We obtain three human annotations each for 100 examples for all three tasks from Upwork. The scoring rubric provided to annotators was the same as the 'prompt' used with the LLM (Appendix E). We find that inter-annotator agreement, measured by Krippendorff's alpha (Krippendorff, 2018), was 0.68 for CoPoet, 0.64 for MacGyver, and 0.59 for TinyStories, consistent with agreement levels reported for creative tasks in contemporary works (Li et al., 2025; Sawicki et al., 2025; Chiang & Lee, 2023; Chakrabarty et al., 2024). We then compare different LLMs and prompting setups (e.g., in-context examples, average of multiple runs) using the Spearman correlation of model-assigned quality scores to the average annotator ratings (Table 4 in Appendix D). We find that the highest average correlation—0.50 for CoPoet, 0.52 for TinyStories and 0.52 for MacGyver—is o3-mini, averaging the scores over 5 runs. For the rest of this paper, all scores of output quality use this setup.

3 What factors affect the novelty of LLM output?

3.1 Experimental setup

Models. We evaluate generations from three families of open-data models—OLMo (Groeneveld et al., 2024), OLMo-2 (OLMo et al., 2024) and Pythia (Biderman et al., 2023b). We evaluate the following models: (1) OLMo-1B and 7B, (2) OLMo-2-1B, 7B, 13B and 32B, (3) Pythia-6.9B and 12B⁵, (4) Pythia-Deduped-1B, 2.8B, 6.9B and 12B (Pythia DDP)⁶ Since these are base LLMs only pre-trained on the next-token objective, we provide 5 in-context learning (ICL) examples, randomly sampled from the validation split, to illustrate each task. We also evaluate OLMo-7B-Instruct and OLMo-2-Instruct 1B, 7B, 13B, 32B to ablate the impact of post-training (with SFT+DPO for OLMo and SFT+DPO+RLVR for OLMo-2) on novelty. Unless stated otherwise, in this section, we use a temperature of 1.0 during decoding. As noted in Section 2.3, we score the quality of generations as a response to the prompt using LLM-as-a-judge evaluation. For all tasks, we obtain quality scores from 0 to 5 with o3-mini with the corresponding prompts, and normalize these scores from 0 to 1. We report novelty as the harmonic mean of output quality and n-gram originality.

Baselines. We compare the novelty of model generations with the references from each task dataset. The motivation for this baseline is to provide a comparison to average human writing that we would like models to outperform. Since the tasks we select are fairly open-ended, the references are not intended to provide a *gold-standard* score of novelty. To create a baseline for both model families, we compute the n-gram originality of the references using Dolma (for OLMo baselines) or the Pile (for Pythia baselines). We score the quality of the references with o3-mini using the prompts from Section 2.2, and report the novelty as <u>Baseline - Dolma</u> and <u>Baseline - Pile</u>.

⁴See Appendix D for details about recruitment of annotators as well as results on LLM-as-judge from different models and setups.

⁵Outputs from smaller Pythia models were very low quality.

⁶The deduplicated versions were trained for longer, 1.5 epochs of a deduplicated version of the same Pile (Gao et al., 2020) dataset, as opposed to one epoch for Pythia.

⁷Each test example is paired with a unique set of ICL examples. To ensure a fair comparison, the same ICL examples are used across all models for each corresponding test example.

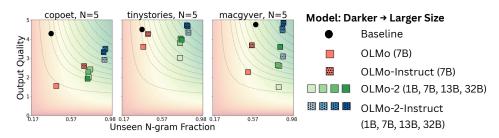


Figure 2: Comparing novelty of base and post-trained LLMs by plotting output quality (y-axis) vs n-gram originality for n=5 (x-axis) for CoPoet, TinyStories and MacGyver. Post-training uniformly increases novelty at all model sizes for both OLMo and OLMo-2.

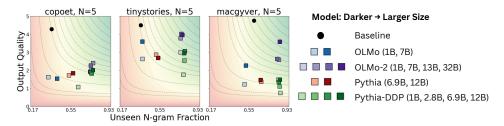


Figure 3: Comparing novelty of models by plotting output quality (y-axis) vs n-gram originality for n=5 (x-axis) for CoPoet, TinyStories and MacGyver. Improving the underlying base LLM (OLMo to OLMo-2 and Pythia to Pythia-DDP) leads to higher novelty at the same model scale for all tasks, driven by higher originality. Increasing model scale (darker colors) leads to higher novelty driven by higher output quality, particularly on TinyStories and MacGyver.

3.2 RESULTS

We report results comparing the novelty of OLMo and OLMo-2 LLM generations with the baseline novelty of the references in each dataset in Table 1 with additional results from Pythia in Table 8 in Appendix G. We visualize trends from scaling base LLMs in Figure 3 and post-training in Figure 2.

Novelty has a positive scaling trend, driven largely by improved quality, that plateaus at large sizes. We observe the effect of model size on novelty by comparing models of different sizes from 1B to 32B in each model family (Figure 3). The average novelty increases for larger models in all families when increasing model size from 1B to 7B (OLMo and OLMo-2) and 1B/2.8B to 6.9B (Pythia DDP). This trend in particular for all three tasks and for all values of n for OLMo and OLMo-2. From Table 1, the novelty gain from OLMo-1B to OLMo-7B comes from improved quality in TinyStories (+19%) and MacGyver (+39%), while CoPoet benefits from higher n-gram originality (+20%) despite a slight quality drop (-1.5%). The relative change in n-gram originality are minimal for TinyStories (-3%) and MacGyver (+3%). We also see from Figure 3 that subsequent increase in model size from 7B to 32B (OLMo-2) and 6.9B to 12B (Pythia-DDP) has a more mixed effect on novelty, suggesting that the effects plateau once a certain scale is reached. Going from OLMo-2-7B to 32B leads to a change in novelty of +1.8% on TinyStories, -9% on CoPoet, +21% on MacGyver for n=4 (Table 1) with similar effects for Pythia (Table 8 in Appendix G). However, we do note that the average novelty of the Top 10% of generations is uniformly higher for the largest models in all model families, for all tasks and n values, indicating that the most novel outputs still scale.

Improving the underlying base LLMs leads to more novel output at the same model scale. Across all three tasks, improving the base model leads to higher novelty at the same scale (Figure 3). We observe this effect from Pythia to Pythia DDP for 6.9B and 12B (same dataset in the same order, just more epochs of training) and from OLMo to OLMo-2 for 1B and 7B (same scale with slight modifications to the dataset and training recipe). The gap is more pronounced for poetry writing (CoPoet) and story completions (TinyStories) compared to problem-solving (MacGyver), but consistent for each model size.

⁸We include this finding due to the observation that for some tasks like creative writing assistance or protein design, the *best* output is a useful measure of model performance as these can be filtered and used.

Table 1: Comparing the novelty of LLM generations against the <u>baseline</u> of the references in each dataset (Section 3). Novelty is the harmonic mean of output quality and n-gram originality (Section 2.1) for n=4, 5, and 6. Each cell for novelty reports the relative improvement or drop compared to the baseline for that n value. Cells with an asterisk indicate deviations with significance at the $\alpha=0.05$ level via a paired-samples t-test. We report the average case novelty as well as the novelty of the top 10% of generations. While some base LLMs generate less novel output on average than the baseline, increasing the model size, post-training and improving the underlying base model (e.g., OLMo to OLMo-2), leads to higher novelty. See Table 8 for results on the Pythia models.

g., OLMo to OLM	.10 2), 10	2445 10	5.10		: TinyStori		101 1030	.1.5 011 111	c i juna	11100013
	Output	n-ors	m Orig		•	ty (∆ to Ba	seline)	Ton 10%	Novelty (A	to Baseline
	Quality	n=4	n = 5	n=6	n=4	n = 5	n = 6	n=4	n = 5	n=6
Baseline - Dolma	0.876	0.126	0.359	0.641	0.214	0.503	0.751	0.364	0.639	0.851
OLMo-1B	0.614	0.159	0.376	0.631	-0.010	-0.096*	-0.190^*	+0.108	+0.078	-0.012
OLMo-7B	0.766	0.148	0.374	0.619	+0.012	-0.026	-0.089*	+0.121	+0.089	+0.002
OLMo-7B-Instruct	0.852	0.171	0.422	0.680	+0.058*	+0.044*	-0.007	+0.124	+0.096	+0.031
OLMo-2-1B	0.603	0.500	0.757	0.876	+0.294*	+0.456*	-0.082	+0.390	+0.229	+0.058
OLMo-2-7B	0.758	0.511	0.758	0.886	+0.366*	+0.225*	+0.034	+0.440	+0.293	+0.132
OLMo-2-32B	0.795	0.503	0.775	0.900	$+0.377^*$	+0.263*	+0.072	+0.422	+0.288	+0.134
OLMo-2-1B-Instruct	0.870	0.598	0.848	0.959	+0.484*	+0.347*	+0.153*	+0.472	+0.317	+0.144
OLMo-2-7B-Instruct	0.936	0.590	0.837	0.954	+0.503*	+0.378*	+0.191*	+0.492	+0.325	+0.146
OLMo-2-32B-Instruct	0.945	0.568	0.830	0.953	+0.487*	+0.376*	$+0.195^*$	+0.472	+0.328	+0.146
					set: CoPoet					
	Output Quality	n-gra $n = 4$	m Orig $n = 5$	inality $n = 6$	Novelt $n = 4$	$\mathbf{xy} \ (\Delta \ \mathbf{to} \ \mathbf{\underline{Ba}})$ $n = 5$	$\frac{\mathbf{seline}}{n=6}$	Top 10% $n = 4$	Novelty (Δ n = 5	to Baseline $n = 6$
Baseline - Dolma	0.626	0.188	0.358	0.462	0.228	0.363	0.439	0.727	0.888	0.988
OLMo-1B	0.400	0.135	0.324	0.527	-0.099*	-0.108*	-0.078	-0.147	-0.138	-0.147
OLMo-7B	0.394	0.196	0.413	0.569	-0.079^*	-0.105	-0.120	-0.117	-0.078	-0.103
OLMo-7B-Instruct	0.617	0.402	0.705	0.866	+0.177*	+0.231*	+0.226*	+0.104	+0.029	-0.034
OLMo-2-1B	0.401	0.564	0.754	0.788	+0.172*	+0.101*	+0.018	+0.015	-0.095	-0.185
OLMo-2-7B	0.483	0.549	0.772	0.870	+0.214*	+0.180*	+0.128	+0.062	-0.033	-0.105
OLMo-2-32B	0.387	0.504	0.743	0.785	$+0.137^*$	+0.089*	+0.002	+0.005	-0.091	-0.185
OLMo-2-1B-Instruct	0.584	0.770	0.920	0.942	$+0.404^*$	+0.329*	$+0.254^{*}$	+0.156	+0.014	-0.082
OLMo-2-7B-Instruct	0.700	0.834	0.930	0.926	+0.511*	+0.409*	+0.319*	+0.208	+0.077	-0.015
OLMo-2-32B-Instruct	0.664	0.735	0.911	0.962	$+0.439^*$	+0.386*	$+0.327^*$	+0.171	+0.034	-0.055
					t: MacGyve					
	Output Quality	n-gra $n = 4$	m Orig $n = 5$	inality $n = 6$	Novelt $n = 4$	$\mathbf{xy} (\Delta \mathbf{to} \mathbf{Ba})$ n = 5	n = 6	Top 10% $n = 4$	Novelty (Δ n = 5	to Baseline $n = 6$
Baseline - Dolma						0.728				
	0.908	0.359	0.601	0.803	0.505		0.856	0.629	0.841	0.966
OLMo-1B	0.278	0.267	0.505	0.739	-0.281	-0.416	-0.494	-0.212	-0.270	-0.266
OLMo-7B	0.458	0.286	0.520	0.747	-0.200	-0.294	-0.339	-0.117	-0.146	-0.145
OLMo-7B-Instruct	0.620	0.297	0.559	0.781	-0.126	-0.168	-0.192	-0.092	-0.103	-0.120
OLMo-2-1B	0.298	0.595	0.843	0.953	-0.147	-0.325	-0.439	+0.073	-0.025	-0.112
OLMo-2-7B	0.519	0.609	0.850	0.955	+0.001	-0.141	-0.240	+0.191	+0.102	+0.020
OLMo-2-32B	0.719	0.630	0.858	0.958	+0.126*	+0.012	-0.077	+0.242	+0.131	+0.031
OLMo-2-1B-Instruct	0.619	0.672	0.889	0.971	+0.091	-0.048	-0.149	+0.223	+0.124	+0.028
OLMo-2-7B-Instruct	0.892 0.971	0.677 0.681	0.883 0.892	0.969	+0.247*	+0.142*	+0.055	+0.258	+0.140	+0.034
OLMo-2-32B-Instruct	0.971	0.081	0.892	0.973	+0.290*	+0.198*	+0.112*	+0.263	+0.140	+0.034

Post-training helps models generate more novel text than corresponding base LLMs. From Figure 2 and Table 1, we see that for OLMo and OLMo-2, the post-trained models have higher novelty than corresponding base LLMs at all model sizes. This improvement is due to consistently higher-quality outputs, as expected, and also a slightly higher n-gram originality across all three tasks. The effect varies by task and is most pronounced for CoPoet, which closely matches the format used in instruction tuning. On the other hand, for MacGyver, where the problem format matches instruction tuning, but the domain differs significantly from typical post-training tasks.

4 CAN WE ELICIT MORE NOVEL OUTPUT FROM LLMs?

While increasing model size, post-training and improving the base model yield higher novelty (Section 3), modifying the model itself is not always feasible, so we explore whether there are inference-time methods that can elicit greater novelty. Taken as a whole, we find that varying the sampling temperature (Section 4.1) and prompt format (Section 4.2 and Section 4.3) tend to trade off originality and quality, minimally moving the frontier of novelty (Figure 5).

⁹We note that Lu et al. (2024a) report that the *creativity index* of models, a measure of *n*-gram originality, reduces with RLHF tuning. In contrast, we find that both originality and quality increase with alignment. This discrepancy could be due to their use of a large reference corpus of internet text to calculate *n*-gram originality, whereas we use the training corpora of the model.

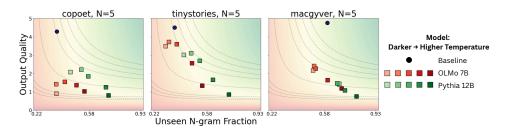


Figure 4: Effect of varying sampling temperature on novelty by plotting output quality (y-axis) vs n-gram originality for n=5 (x-axis) for CoPoet, TinyStories, and MacGyver. Increasing sampling temperature (darker colors) from 0.5 to 2 for OLMo-7B and Pythia-12B increases originality, with a cost to output quality, resulting in similar novelty levels (Section 4.1). Table 7 has the raw scores.

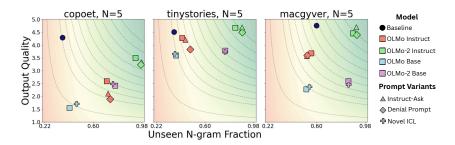


Figure 5: Effect of varying the prompting method on novelty by plotting output quality (y-axis) vs n-gram originality for n=5 (x-axis) for CoPoet, TinyStories, and MacGyver. Different prompting methods—providing novel ICL examples (Section 4.2) for Base models, and Asking for novelty and Denial Prompting on Instruct models (Section 4.3)—have little effect on novelty, and often trade off a small increase of originality for slightly lower quality. Figure 7 shows the same plot for other n.

4.1 EFFECT OF VARYING THE SAMPLING TEMPERATURE

One way to elicit higher novelty is to increase the n-gram originality in the generated text. A simple approach is to sample rarer outputs by increasing the temperature during decoding (Merrill et al., 2024). To study this effect, we generate outputs from OLMo-7B and Pythia-12B across 750 prompts from TinyStories, CoPoet, and MacGyver with a fixed set of ICL examples, but varying the sampling temperature in increments. We test 0.5, 0.75, 1, 1.5, 2.0.

Increasing sampling temperature has a U-shaped effect on novelty. As shown in Figure 4, increasing the sampling temperature initially leads to higher novelty, caused by an increasing n-gram originality, as the model generates more rare, less memorized text. However, beyond a certain point, quality deteriorates, leading to a decline in novelty. We find that the inflection point at which this shift occurs, or the *optimum* temperature value for novelty, varies by task. In practice, temperature should be tuned rather than using a fixed value, since the optimal value is not consistent across models and tasks. This again highlights the value in our formulation of novelty jointly considering originality and quality—while n-gram originality monotonically increases with increased temperature our formulation can distinguish between long-tail generations that are novel or degenerate.

4.2 EFFECT OF PROMPTING WITH NOVEL IN-CONTEXT EXAMPLES

Another way to elicit original text without sacrificing quality is to use more novel ICL examples. We hypothesize that the LLM can recognize patterns in these examples and adjust its generations to match their novelty (Brown et al., 2020). We identify these ICL examples by scoring 1000 held-out examples from each dataset for novelty and selecting examples in the top 10% of scores. We provide 5 ICL examples randomly sampled from these for inference on the test set of 750 prompts from each dataset with OLMo-7B and OLMo-2-7B using temperature 1.0. We compare the performance of inference with these *novel* ICL examples to a baseline of OLMo-7B with the same temperature, providing 5 randomly sampled ICL examples from the held-out set.

¹⁰Here we use the average novelty across n = 4, 5, 6.

Table 2: Comparing the effect of prompting interventions on the novelty of LLM generations for n=4,5,6 (Section 4). Each cell for novelty reports the relative change compared to the baseline. We report the average case novelty as well as the novelty of the top 10% of generations. Cells with an asterisk indicate deviations with significance at the $\alpha=0.05$ significance level via a paired-samples t-test. Providing novel ICL examples uniformly increases the novelty of OLMo-7B (Section 4.2). Asking for novelty and Denial Prompting improve performance of OLMo-7B-Instruct on CoPoet and TinyStories by generating more original output with higher n-gram originality (Section 4.3).

				Datas	et: TinyStor	ies				
	Output	n-gra	am Orig		Novelt	ty (Δ to $\underline{\mathbf{B}}$		Top 10%		to <u>Baseline</u>)
	Quality	n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	n = 4	n = 5	n = 6
OLMO-7B	0.766	0.148	0.374	0.619	0.226	0.477	0.662	0.485	0.728	0.853
+ Novel ICL	0.778	0.151	0.365	0.616	+0.012	-0.003	+0.003	-0.010	-0.030	-0.007
OLMo-7B-Instruct	0.852	0.171	0.422	0.680	0.272	0.547	0.744	0.488	0.735	0.882
+ Asking	0.780	0.190	0.447	0.694	+0.019	+0.003	-0.027	-0.026	-0.031	-0.040
+ Denial Prompt	0.738	0.219	0.485	0.730	+0.045	+0.011	-0.035	+0.031	-0.005	-0.037
OLMo-2-7B	0.758	0.511	0.580	0.804	0.758	0.728	0.932	0.886	0.785	0.983
+ Novel ICL	0.749	0.506	0.576	0.798	$-\overline{0.001}$	+0.000	$-\overline{0.004}$	-0.004	$+\overline{0.001}$	+0.002
OLMo-2-7B-Instruct	0.936	0.590	0.717	0.856	0.837	0.881	0.964	0.954	0.942	0.997
+ Asking	0.939	0.676	0.781	0.881	+0.053	+0.029	+0.012	+0.013	+0.008	+0.003
+ Denial Prompt	0.899	0.682	0.766	0.882	+0.055	+0.005	+0.012	+0.014	-0.019	+0.001
				Dat	aset: CoPoe	t				
	Output	n-gra	am Orig	inality	Novelt	y (\Delta to Ba	aseline)	Top 10%	Novelty (△	to Baseline)
	Quality	n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	n = 4	n = 5	$\overline{n=6}$
OLMO-7B	0.394	0.196	0.413	0.569	0.149	0.258	0.319	0.610	0.810	0.885
+ Novel ICL	0.409	0.269	0.470	0.614	+0.040*	+0.050*	+0.043	+0.020	-0.002	-0.011
OLMo-7B-Instruct	0.617	0.402	0.705	0.866	0.405	0.594	0.665	0.831	0.917	0.954
+ Asking	0.591	0.424	0.715	0.896	+0.039	+0.008	+0.003	-0.099	-0.040	-0.028
+ Denial Prompt	0.591	0.436	0.732	0.899	+0.051*	+0.019	+0.008	-0.095	-0.040	-0.040
OLMo-2-7B	0.483	0.549	0.442	0.789	0.772	0.543	0.855	0.870	0.567	0.883
+ Novel ICL	0.498	0.569	0.461	0.816	-0.018	$-\overline{0.002}$	+0.012	-0.042	-0.008	+0.006
OLMo-2-7B-Instruct	0.700	0.834	0.739	0.935	0.930	0.772	0.965	0.926	0.758	0.973
+ Asking	0.666	0.888	0.744	0.913	+0.046*	$+\overline{0.007}$	-0.014	+0.068	+0.027	-0.016
+ Denial Prompt	0.646	0.885	0.728	0.920	+0.042*	-0.016	-0.028	+0.065	+0.004	-0.028
				Datas	set: MacGyv	er				
	Output	n-gra	am Orig	inality	Novelt	v (\Delta to Ba	aseline)	Top 10%	Novelty (△	to Baseline)
	Quality	n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	n = 4	n = 5	$\overline{n=6}$
OLMO-7B	0.458	0.286	0.520	0.747	0.305	0.434	0.517	0.512	0.695	0.821
+ Novel ICL	0.480	0.320	0.545	0.760	+0.031*	$+\overline{0.030}^*$	$+\overline{0.029}^*$	+0.051	+0.041	+0.022
OLMo-7B-Instruct	0.620	0.297	0.559	0.781	0.379	0.560	0.664	0.537	0.738	0.846
+ Asking	0.548	0.230	0.524	0.774	-0.096*	-0.074*	$-\overline{0.072}^*$	-0.054	-0.015	-0.012
+ Denial Prompt	0.555	0.223	0.527	0.780	-0.089^*	-0.060*	-0.057^{*}	-0.074	-0.015	+0.002
OLMO-2-7B	0.519	0.609	0.506	0.820	0.850	0.587	0.943	0.955	0.616	0.986
+ Novel ICL	0.491	0.625	0.495	0.807	+0.000	-0.019	-0.008	-0.003	-0.023	-0.003
OLMo-2-7B-Instruct	0.892	0.677	0.752	0.887	0.883	0.870	0.981	0.969	0.911	1.000
+ Asking	0.940	0.719	0.799	0.916	+0.028	+0.039*	$+\overline{0.004}$	$-\overline{0.004}$	+0.022	+0.000
+ Denial Prompt	0.879	0.734	0.777	0.909	+0.033*		+0.004	-0.002	-0.021	+0.000

Providing novel ICL examples makes little difference to novelty. From Table 2 and Figure 5, for both OLMo and OLMo-2, we see a very small change in novelty values over the corresponding baseline models on all three tasks. We see an increase in novelty for OLMo-7B on CoPoet (+15.5%) and MacGyver (+5.5%) with significance at the $\alpha=0.05$ level, while OLMo-2 suffers a small decrease in novelty for all tasks. In Table 9, we see that this small effect persists on increasing the size of the underlying model to OLMo-2-32B. Some qualitative examples of the change in performance include following the instructions with more expressiveness in CoPoet, and providing more brief MacGyver solutions (Table 10) while we find more brief story completions with TinyStories (Table 11).

4.3 PROMPTING POST-TRAINED MODELS FOR NOVELTY

Post-trained models are capable of following more complex instructions, allow us to experiment with eliciting novelty with more creative prompting techniques. We experiment with two such methods on 750 examples from each dataset.

• Asking for novelty. We test whether explicitly requesting rare and high-quality output can improve novelty. We prompt the model with the description of the task as well as our definition of novel outputs with a chain-of-thought (Wei et al., 2022). The prompt is provided in Appendix E.2.

• Denial prompting. Based on the strategy introduced by Lu et al. (2024b), we iteratively sample output from the LLM, identify high-level concepts used in the output, and restrict the reuse of these concepts in subsequent generations. We apply this technique to OLMo-Instruct and OLMo-2-Instruct, running three rounds of inference with the prompt provided in Appendix E.3. After each round, we use GPT-40 to extract high-level concepts from the freeform text responses with the prompt provided Appendix E.4. These include character arcs and themes in TinyStories, literary devices used in CoPoet, and reasoning steps in MacGyver. We provide an example in Table 15. These concepts are then appended to the generation prompt for the next round.

Prompting techniques trade off originality and quality, without moving novelty by much. From Table 2, both prompting approaches improve novelty for TinyStories (+6.9% for OLMo and +6.3% for OLMo-2 on average) and CoPoet (+9.6% for OLMo and +4.9% for OLMo-2 on average), and reduce or very minorly affect novelty on MacGyver (-18% for OLMo and +3.7% for OLMo-2 on average). However, the total effect on novelty is much smaller than that observed in Section 3. These methods reduce output quality across all tasks, but this is offset by higher n-gram originality in TinyStories and CoPoet. In contrast, MacGyver shows a drop in both n-gram originality and novelty, likely due to degenerate outputs (Table 13, Table 14). From Table 9, we see that this effect persists even for larger model sizes of OLMo-2.

5 RELATED WORK

Analysis of memorization of n-grams. Our work builds on past work quantifying the n-gram originality of LLM-generated text. McCoy et al. (2023) and Merrill et al. (2024) analyze how n-gram originality in LLM generations compares to pre-training datasets, examining its variation with model size and decoding strategies. Elazar et al. (2024); Liu et al. (2024; 2025) introduce tools for analyzing memorization from open pre-training datasets, which we use in this work. Huang et al. (2024); Carlini et al. (2023); Biderman et al. (2023a) show that memorization increases with data duplication, later training checkpoints, model capacity, dataset repetition, and prompting context. Carlini et al. (2021); Kandpal et al. (2022) highlight privacy risks by demonstrating that LLMs can regenerate sensitive training data. Aerni et al. (2025) find that memorization varies by task, with prompting offering some mitigation but failing in worst-case scenarios. Our work extends this line of work on the analysis of memorization of output and, to our knowledge, is the first to examine the trade-off between originality and task-specific measures of output quality. Most closely related to our work is Lu et al. (2024a) which quantifies the creativity of LLM-generated text by the fraction of the text not included in n-grams from a reference corpus, a measure of originality of text. We demonstrate the need to consider output quality as an additional signal when evaluating the novelty (Section 4.1).

Evaluating creativity in generations. Our definition of novelty as high-quality, original content is also related to definitions of creativity in the literature. Prior works have proposed metrics for creativity inspired by the Torrance test for creative thinking (Torrance, 1966) that quantify measures of quality and originality via LLM-as-judge scores (Zhao et al., 2024; Chakrabarty et al., 2024). While these correlate with non-experts, they diverge from expert ratings making LLM-as-judge unreliable for originality. As expert annotations are not scalable, we measure quality with an LLM and originality programmatically to the training data.

6 Discussion and conclusion

In this work, we propose a metric to evaluate the novelty of LLM-generated output that balances originality, quantified as the fraction of *n*-grams absent from the model's training data, and task-specific quality. We evaluate the novelty of generations from the OLMo, OLMo-2, and Pythia models on three datasets and observe that increasing model size, improving the underlying model, and post-training can shift the frontier of novelty. However, most inference-time measures of improving novelty often trade-off gains in originality with a cost in output quality. We detail some limitations of our work in Appendix B. Our findings also motivate several possible extensions. First, our novelty metric can be generalized to a framework that scores quality or originality in other ways, such as recent work on non-literal memorization (Chen et al., 2024). Second, while we focus on open-data models, our analysis can be extended to black-box models, where providers can directly report aggregated novelty scores without exposing proprietary data (Appendix C). In doing so, we give the community tools to track novelty as models rapidly evolve, contextualizing advances in creative and scientific domains, and assessing true generalization for AI safety.

REFERENCES

- Michael Aerni, Javier Rando, Edoardo Debenedetti, Nicholas Carlini, Daphne Ippolito, and Florian Tramèr. Measuring non-adversarial reproduction of training data in large language models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=590yfqz1LE.
- Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large language models. *Advances in Neural Information Processing Systems*, 36:28072–28090, 2023a.
- Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023b.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
- Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp. 2633–2650, 2021.
- Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan Zhang. Quantifying memorization across neural language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=TatRHT_1cK.
- Tuhin Chakrabarty, Vishakh Padmakumar, and He He. Help me write a poem: Instruction tuning as a vehicle for collaborative poetry writing. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 6848–6863, 2022.
- Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu. Art or artifice? large language models and the false promise of creativity. In *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, CHI '24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703300. doi: 10.1145/3613904.3642731. URL https://doi.org/10.1145/3613904.3642731.
- Tong Chen, Akari Asai, Niloofar Mireshghallah, Sewon Min, James Grimmelmann, Yejin Choi, Hannaneh Hajishirzi, Luke Zettlemoyer, and Pang Wei Koh. CopyBench: Measuring literal and non-literal reproduction of copyright-protected text in language model generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 15134–15158, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.844. URL https://aclanthology.org/2024.emnlp-main.844/.
- Cheng-Han Chiang and Hung-Yi Lee. Can large language models be an alternative to human evaluations? In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15607–15631, 2023.
- Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open platform for evaluating LLMs by human preference. In *Forty-first International*

Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=3MW8GKNyzI.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: Boosting language models with scaled AI feedback. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=BOorDpKHiJ.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane Suhr, Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hannaneh Hajishirzi, Noah A. Smith, and Jesse Dodge. What's in my big data? In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=RvfPnOkPV4.

- Ronen Eldan and Yuan-Fang Li. Tinystories: How small can language models be and still speak coherent english? *ArXiv*, abs/2305.07759, 2023. URL https://api.semanticscholar.org/CorpusID:258686446.
- KJ Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan Bragg, Daniel S Weld, Amy X Zhang, and Joseph Chee Chang. Cocoa: Co-planning and co-execution with ai agents. *arXiv* preprint arXiv:2412.10999, 2024.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.
- Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist. *arXiv preprint arXiv:2502.18864*, 2025.
- Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15789–15809, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.
- Jennifer Haase and Sebastian Pokutta. Human-ai co-creativity: Exploring synergies across levels of creative collaboration. *arXiv preprint arXiv:2411.12527*, 2024.
- Jing Huang, Diyi Yang, and Christopher Potts. Demystifying verbatim memorization in large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 10711–10732, 2024.
- Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing climate: Enhancing Im adaptation with tulu 2. *arXiv preprint arXiv:2311.10702*, 2023.
- Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks in language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 10697–10707. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/kandpal22a.html.
- Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage publications, 2018.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2024. URL https://arxiv.org/abs/2411.15124.

- Ruizhe Li, Chiwei Zhu, Benfeng Xu, Xiaorui Wang, and Zhendong Mao. Automated creativity evaluation for large language models: A reference-based approach. *arXiv preprint arXiv:2504.15784*, 2025.
- Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram: Scaling unbounded n-gram language models to a trillion tokens. *arXiv preprint arXiv:2401.17377*, 2024.
- Jiacheng Liu, Taylor Blanton, Yanai Elazar, Sewon Min, YenSung Chen, Arnavi Chheda-Kothary, Huy Tran, Byron Bischoff, Eric Marsh, Michael Schmitz, Cassidy Trier, Aaron Sarnat, Jenna James, Jon Borchardt, Bailey Kuehl, Evie Cheng, Karen Farley, Sruthi Sreeram, Taira Anderson, David Albright, Carissa Schoenick, Luca Soldaini, Dirk Groeneveld, Rock Yuren Pang, Pang Wei Koh, Noah A. Smith, Sophie Lebrecht, Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi, and Jesse Dodge. Olmotrace: Tracing language model outputs back to trillions of training tokens, 2025. URL https://arxiv.org/abs/2504.07096.
- Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar Mireshghallah, Jiacheng Liu, Seungju Han, Allyson Ettinger, Liwei Jiang, Khyathi Chandu, Nouha Dziri, et al. Ai as humanity's salieri: Quantifying linguistic creativity of language models via systematic attribution of machine text against web text. *arXiv preprint arXiv:2410.04265*, 2024a.
- Yining Lu, Dixuan Wang, Tianjian Li, Dongwei Jiang, and Daniel Khashabi. Benchmarking language model creativity: A case study on code generation, 2024b. URL https://arxiv.org/abs/2407.09007.
- R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celikyilmaz. How much do language models copy from their training data? evaluating linguistic novelty in text generation using RAVEN. *Transactions of the Association for Computational Linguistics*, 11:652–670, 2023. doi: 10.1162/tacl_a_00567. URL https://aclanthology.org/2023.tacl-1.38.
- William Merrill, Noah A Smith, and Yanai Elazar. Evaluating *n*-gram novelty of language models using rusty-dawg. *arXiv* preprint arXiv:2406.13069, 2024.
- Caterina Moruzzi and Solange Margarido. A user-centered framework for human-ai co-creativity. In *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems*, pp. 1–9, 2024.
- Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint arXiv:2501.00656*, 2024.
- Abhilasha Ravichander, Jillian Fisher, Taylor Sorensen, Ximing Lu, Yuchen Lin, Maria Antoniak, Niloofar Mireshghallah, Chandra Bhagavatula, and Yejin Choi. Information-guided identification of training data imprint in (proprietary) large language models. *arXiv preprint arXiv:2503.12072*, 2025.
- Piotr Sawicki, Marek Grześ, Dan Brown, and Fabrício Góes. Can large language models outperform non-experts in poetry evaluation? a comparative study using the consensual assessment technique. *arXiv* preprint arXiv:2502.19064, 2025.
- Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah

Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.840. URL https://aclanthology.org/2024.acl-long.840/.

Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin Choi, Thomas L Griffiths, and Faeze Brahman. Macgyver: Are large language models creative problem solvers? In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5303–5324, 2024.

E Paul Torrance. Torrance tests of creative thinking. *Educational and psychological measurement*, 1966.

Qian Wan, Siying Hu, Yu Zhang, Piaohong Wang, Bo Wen, and Zhicong Lu. "it felt like having a second mind": Investigating human-ai co-creativity in prewriting with large language models. *Proceedings of the ACM on Human-Computer Interaction*, 8(CSCW1):1–26, 2024.

Victor Wang, Michael JQ Zhang, and Eunsol Choi. Improving llm-as-a-judge inference with the judgment distribution. *arXiv preprint arXiv:2503.03064*, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories with recursive reprompting and revision. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 4393–4479, 2022.

Yunpu Zhao, Rui Zhang, Wenyi Li, Di Huang, Jiaming Guo, Shaohui Peng, Yifan Hao, Yuanbo Wen, Xing Hu, Zidong Du, et al. Assessing and understanding creativity in large language models. *arXiv* preprint arXiv:2401.12491, 2024.

A DATASET DETAILS

TinyStories (Eldan & Li, 2023) A synthetic dataset of 2.12M short stories designed to contain only words that a typical 3- to 4-year-old would understand. The dataset was generated using GPT-3.5 and GPT-4 and was originally intended as a pretraining corpus for small language models. To ensure diversity, the dataset creators collected a vocabulary of approximately 1500 basic words—categorized into nouns, verbs, and adjectives. Each example is created by randomly selecting a set of three words, one of each category, and prompting GPT-3.5/4 to incorporate them into a coherent narrative. We frame the task as a continuation challenge—the model is provided with a prompt consisting of the first line of a story, which introduces the setting and characters, and must then complete the story. We note that this setup aligns well with LLM pre-training paradigms of base LLMs so we expect models to perform well at this task. To score story quality, we use an evaluation prompt that assigns points for correctly reusing and developing the introduced characters and plot elements, maintaining coherence, ensuring logical progression, and preserving grammatical correctness.

CoPoet (Chakrabarty et al., 2022). An instructions dataset that contains 870k examples, each comprising a line of poetry paired with a templated instruction that specifies the required content to include and the literary devices to incorporate. The lines of poetry are sourced from various internet platforms, including dedicated poetry websites and Reddit forums. The dataset is used to fine-tune LLMs to generate responses that adhere to the explicit stylistic and semantic constraints. We treat this dataset as a short-form instruction-following task in which the model generates a single poetic line in response to a given instruction. We note that this task matches the format of post-training data used during instruction tuning of contemporary LLMs, albeit in a domain that allows for creative

	High Quality	High Originality	High Originality
Prompt	+ Low Originality	Low Quality	High Quality
Write a poetic sentence that includes the word 'phases' and ends in 'moon'.	Life moves in phases, ever-changing, like the moon"	Through phases, the moon renounceth life like the moon	Sewn with sharp gold and silver threads, like the ever-changing phases of the moon.
Once upon a time, there was a deer named Bambi. Bambi wanted to play with his friends in the forest,	and as he grew, he did just that. He became close with Thumper the rabbit and Flower the skunk, and together they explored the meadow and woods, discovering the wonders of nature. But Bambi also learned that the forest held dangers. One winter, hunters came, and Bambi's mother was killed, leaving him heartbroken and alone. As seasons passed, Bambi matured. He fell in love with Faline, another young deer, and defended her against rivals. In time, he faced hunters again, surviving a great fire that swept the forest. Through these trials, Bambi grew wise and strong, eventually taking his father's place as the new Great Prince of the Forest.	but the forest had turned into a giant bowl of soup. His friends were floating around on croutons, waving spoons instead of antlers. Bambi tried to jump in, but every leap turned him into something different: first a balloon, then a teapot, then a pair of dancing shoes. Eventually, he landed as himself on top of a mushroom that was arguing loudly with a squirrel about the proper way to count to purple.	but he couldn't find any comfortable clothes to wear. He tried on many clothes, but none of them fit him well. Bambi felt sad and worried that he wouldn't be able to play with his friends. Suddenly, he saw a rabbit hopping towards him. The rabbit asked Bambi what was wrong, and Bambi told him about this problem. The rabbit, feeling sorry for Bambi, offered him a beautiful new coat made from rabbit fur that would fit perfectly. Bambi was so grateful! He quickly wore the coat and ran off to play with his friends. From then on, Bambi and the rabbit became best friends. Bambi learned the importance of friendship and always shared his toys and treats with the rabbit.

Table 3: Examples of different kinds of output. While prior metrics examine a single dimension of either originality Lu et al. (2024a); Merrill et al. (2024) or output quality (Chiang et al., 2024), our proposed metric of novelty is able to clearly distinguish highly original and high quality output.

expression¹¹. To score quality, we use an evaluation prompt that assigns points based on adherence to the instruction, correct use of specified literary devices, coherence, and grammaticality.

MacGyver (Tian et al., 2024). This dataset contains 1683 examples of reasoning problems that require human-like creativity in physical situations. Each example presents an open-ended scenario that must be solved through unconventional or innovative use of common objects. The dataset evaluates whether LLMs, which acquire extensive knowledge of these objects during pretraining, can apply this knowledge for convergent and divergent thinking. There are a wide range of candidate ways to solve the problem with multiple valid solutions. We provide the reasoning problems as the prompt for models to generate solutions. We score quality with a prompt that checks whether the proposed solution correctly utilizes the provided tools in a valid manner, and successfully resolves the given problem logically.

B LIMITATIONS

Our work measures originality using the fraction of unseen n-grams, but this has a limitation—some n-grams may not appear verbatim in the training data but could be close paraphrases of those that do. Another limitation is that while our LLM-as-a-judge metric correlates highly with human annotations (Appendix F), the range of output quality is limited to integer values between 1 and 5 which makes fine-grained evaluation challenging. We are also limited to analyzing only open-data models whose training corpora are restricted to those indexed by the Infinigram and WIMBD API. 12

¹¹Chakrabarty et al. (2022) observe that fine-tuning models on the CoPoet data leads to better performance on instructions in the poetry domain than large-scale general-purpose LLMs like the text-da-vinci-002 version of GPT-3.5.

¹²We note that the community increasingly invests in new tools to index model training data Liu et al. (2025) so we hope that this limitation is mitigated in the future.

C POTENTIAL EXTENSIONS TO BLACK-BOX MODELS

A concern in this work is that our evaluation relies on open-data LLMs, which currently lag behind frontier models. We attempt to assuage this concern in two ways. We observe that the community is investing in new techniques that identify frontier model training data (Ravichander et al., 2025) which could be provided as an alternative method of scoring output originality. We also observe that our method for measuring novelty only requires aggregate statistics of the unseen n-gram fraction for each generation. This makes it possible to compare models from different providers on a shared axis. In practice, model providers could compute unseen n-gram fractions using internal tools and report the results directly. This allows them to retain any competitive advantage in the form of their datasets while also enabling evaluation of true generalization across black-box models. Providers would only need to run generations on a shared benchmark set and publish aggregated originality—quality scores, without exposing model weights either. This helps us keep pace with rapidly developing models for supporting applications in scientific discovery and creativity, as well as auditing outputs for AI safety.

D VALIDATION OF LLM-AS-A-JUDGE SCORES

To obtain a measure of output quality for each task (Section 2.2), we collect three human annotations each for 100 examples per task. Annotators were recruited via UpWork¹³ and screened through a pilot assessment of 15 examples manually verified by the authors of this work. In total, 11 fluent English speakers with prior experience in content writing or teaching were selected to complete the annotations (4 were rejected for failing quality checks). For each task, we sampled 50 reference outputs from the datasets and 50 model generations from OLMo 7B and OLMo-2 7B to ensure that there was coverage both of 'high quality' output from the dataset and in-domain output from LLMs. We obtained annotations on a scale of 0 to 5 quality score range, where the rubric for annotation was the same as the prompts to the LLM-as-a-judge Appendix E. We find that inter-annotator agreement, measured by Krippendorff's alpha Krippendorff (2018), was 0.68 for CoPoet, 0.64 for MacGyver, and 0.59 for TinyStories, in line with agreement observed on creative tasks in contemporary works Li et al. (2025); Sawicki et al. (2025); Chiang & Lee (2023); Chakrabarty et al. (2024).

We now obtain LLM-as-a-judge annotations from various frontier LLMs using the same prompts (Appendix E) and calculate the Spearman correlation values to the average human annotation scores in Table 4. We experiment with a single run of inference with temperature zero, providing incontext examples of annotator ratings for each task, and sampling 5 outputs with temperature 0.7 and calculating an average rating (Wang et al., 2025). We find that o3-mini with the 5-sample average obtains the highest Spearman correlation with our annotators, and we use this for our evaluation.

E PROMPTS USED FOR AUTOMATIC EVALUATION

E.1 EVALUATION OF OUTPUT QUALITY

E.1.1 TINYSTORIES EVALUATION PROMPT

Review the story generated in continuation to a user prompt and score it using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

```
User prompt: {user_prompt}

Model response: {model_response}

- Add 1 point if the continuation is relevant to the user prompt and maintains the same theme, characters, and context as the original text, even if the story is incomplete.
```

¹³https://www.upwork.com/

Model	Inference Mode	CoPoet	TinyStories	MacGyver
Claude 3.7 Sonnet	Single Run	0.38	0.35	0.38
GPT 4.1	Single Run	0.33	0.29	0.36
GPT 40 Mini	Single Run	0.37	0.26	0.37
	Single Run	0.47	0.38	0.52
Claude-4 Sonnet	ICL	0.50	0.42	0.51
	5-sample Distribution	0.51	0.45	0.53
	Single Run	0.44	0.45	0.41
O3-Mini	ICL	0.45	0.46	0.44
	5-sample Distribution	0.50	0.52	0.52
	Single Run	0.40	0.47	0.42
GPT-5-Mini	ICL	0.41	0.49	0.46
	5-sample Distribution	0.46	0.54	0.52

Table 4: Validation of LLM-as-a-judge scores by comparing Spearman Correlation to average human annotations (Appendix F). We compare different frontier LLMs using three different prompting setups—a single run with just the scoring rubric (prompts provided in Appendix E), providing incontext learning examples of annotator ratings based on the rubric, and sampling 5 runs and reporting the average LLM-as-a-judge scores. The highest average correlation is o3-mini with the 5-sample average setup, we use this for our experiments.

- Add another point if the continuation is coherent in terms of the flow of the

narrative, and does not introduce contradictions or inconsistencies.

- Award a third point if the continuation accurately maintains or develops the

plot elements, characters, or settings introduced in the prompt without introducing any incorrect or unrelated elements.

- Grant a fourth point if the response is grammatically correct, with appropriate sentence structure and no significant language issues.
- Bestow a fifth point if the continuation satisfies all of the above criteria and concludes in a logical and coherent manner, even if the story is left open-ended.

After examining the user prompt and the response:

- First explain your total score, up to 100 words.
- Then conclude with the score using the format: Score: <total points>

E.1.2 COPOET EVALUATION PROMPT

Review the poetic sentence generated in response to the given prompt and score it using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

Poetry instructions: {user_prompt}

Model's poetic sentence: {model_response}

- Add 1 point if the response attempts to follow the instruction and generates a poetic sentence, even if it is incomplete or contains errors.
- Add another point if the sentence meets the basic formal requirements of the prompt (e.g., it ends with the specified word or contains the required word or phrase).
- Award a third point if the sentence clearly and accurately integrates the requested word(s) or thematic elements into a coherent poetic context, demonstrating that the meaning and context of the instruction were understood.
- Grant a fourth point if the sentence is grammatically correct and structurally sound, with proper syntax, spelling, and punctuation.
- Bestow a fifth point if the sentence satisfies all formal requirements, uses the words or phrases appropriately, and follows all specified constraints, ensuring a complete and valid response.

After examining the instructions and the generated poetic sentence:

- First explain your total score, up to 100 words.
- Then conclude with the score using the format: Score: <total points>

E.1.3 MACGYVER EVALUATION PROMPT

Review the solution generated in response to a MacGyver-style problem and score it using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

Problem statement: {user_prompt}

Model's solution: {model_response}

- Add 1 point if the solution attempts to address the problem using only the given resources, without introducing external tools or elements not mentioned.
- Add another point if the solution demonstrates a reasonable understanding of the properties and limitations of the available resources, and applies them correctly.
- Award a third point if the solution adheres to the physical constraints of the problem (e.g., size, weight, strength) and does not propose an obviously unfeasible approach.
- Grant a fourth point if the solution is practical and likely to solve the problem effectively within the constraints of the scenario.
- Bestow a fifth point for a solution that is complete, logically structured, and provides a clear explanation of how it solves the problem.

After examining the problem, available resources, and the proposed solution:

- First explain your total score, up to 100 words.

```
918
      - Then conclude with the score using the format:
919
      Score: <total points>
920
921
      E.2 PROMPTS FOR THE Asking BASELINE (SECTION 4.3)
922
923
      E.2.1 TINYSTORIES DATASET
924
925
      TINYSTORIES INSTRUCT PROMPT = """
926
      TinyStories is a synthetic dataset of short stories
      intended to include only words that most 3- to 4-year-old
927
      children would typically understand. These stories are
928
      generated by GPT-3.5 and GPT-4. TinyStories is designed
929
      to capture the essence of
930
      natural language while reducing its breadth and
931
      diversity. Each story consists of 2-3 paragraphs
932
      following a simple plot and a consistent theme. The
933
      dataset as a whole aims to span the vocabulary and
934
      factual knowledge base of a 3- to 4-year-old child.
935
936
      Here are some tips for answering TinyStores prompts:
937
      1. Understand the Nature of TinyStories
938
      * Simple Vocabulary: TinyStories are designed for
939
      language understandable by 3-4 year-olds, so your
940
      responses should use simple and clear language.
941
      * Logical and Contextual Reasoning: The stories
942
      should reflect reasoning and logical connections
      suitable for a small child's perspective.
944
      * Creative Diversification: Responses should
945
      showcase diversity in plot and language without
946
      directly copying patterns from pretraining.
      2. Use Context and Creativity
      * Stay Within Context: Ensure that the generated text
948
      adheres to the context of the prompt or instructions,
      including themes, vocabulary, and logical continuity.
950
      * Introduce Unique Twists: Add elements like dialogue,
951
      moral lessons, or unexpected but child-friendly twists,
952
      guided by the instructions.
953
      3. Emphasize Structure and Narrative Flow
954
      * Maintain a clear beginning, middle, and end in the
955
      generated content.
956
      * Integrate prompts creatively, ensuring that the
957
      response naturally flows into a cohesive story.
      4. Avoiding Memorization
      * Diversify Outputs: Use techniques such as sampling
959
      with non-zero temperatures or slightly modifying initial
960
      prompts to increase output diversity.
961
      * Rephrase and Paraphrase: Reformulate responses
      creatively to ensure they are not direct reproductions
963
      of common patterns in the training data.
      5. Incorporate Instructional Features
965
      * Follow specific instructions like including target
966
      words, sentences, or plot elements (e.g., moral values,
967
      plot twists, dialogues).
968
      * Ensure that these features are integrated naturally
969
      into the story, rather than appearing forced or out of context.
970
      Here is the TinyStories prompt:
971
```

{prompt}

972 973 Instruction: - First, think about how to continue this story 975 in a way that demonstrates 976 high quality and creativity while avoiding 977 over-reliance on n-grams from pretraining data by using the tips provided above. 978 - Return your response, ensuring it is enclosed 979 with asterisks. 980 981 982 E.2.2 COPOET DATASET 983 984 COPOET_INSTRUCT_PROMPT = """ 985 CoPoet is a collaborative poetry writing task where 986 the output is shaped by user instructions that define 987 specific text attributes, such as "Write a sentence about 988 'love'" or "Write a sentence ending in 'fly'." 989 990 Here are some tips for answering CoPoet prompts: 991 1. Understand the Intention: 992 *Analyze the user-provided instruction carefully. 993 Identify key constraints, such as subject, stylistic 994 devices (e.g., metaphor, simile), lexical constraints 995 (e.g., ending or starting words), or rhyme patterns. 996 997 2. Generate Creative and Contextually Relevant Content: 998 *Prioritize coherence and creativity by ensuring the 999 output aligns with poetic aesthetics. 1000 *Use diverse vocabulary and novel phrasing to minimize 1001 overlap with existing datasets while retaining the instructional focus. 1002 *Incorporate rhetorical devices, vibrant imagery, and 1003 poetic techniques to enhance artistic appeal. 1004 1005 3. Meet Specific Constraints Accurately: 1006 * For rhyming constraints, ensure the final word adheres 1007 to the rhyme scheme specified by the user. * For lexical constraints, include the exact terms 1009 provided, ensuring they fit naturally into the poetic flow. 1010 * Balance the form and content requirements (e.g., haiku 1011 syllable count, similes/metaphors). 4. Incorporate Instructional Contexts Dynamically: 1013 * Use the previous lines or the user-provided poetic draft as a base to build upon creatively. 1015 * Ensure smooth transitions and maintain thematic 1016 coherence with the given inputs. 1017 1018 5. Ensure Novelty and Avoid Redundancy: 1019 * Avoid using verbatim phrases from your training data. 1020 * Aim for semantic similarity when presenting options to users but structure them uniquely. For instance, 1022 reinterpret traditional similes in a fresh context or 1023 twist standard metaphors innovatively. 1024 Here is the Copoet prompt:

1025

{prompt}

```
1026
1027
      Instruction:
      - First, think about how to answer in a way that
1029
      demonstrates high quality and creativity while
      avoiding over-reliance on n-grams from pretraining
      data by using the tips provided above.
1031
      - Return your response, ensuring it is enclosed
1032
      with asterisks.
1033
1034
1035
     E.2.3 MACGYVER DATASET
1036
1037
     MACGYVER INSTRUCT PROMPT = """
1038
     MacGyver are real-world problems deliberately designed
1039
     to trigger innovative usage of objects and necessitate
1040
     out-of-the-box thinking.
1041
1042
     Here are some tips for answering MacGyver questions:
1043
     1. Understand the Problem Context Thoroughly
1044
     * Carefully read the problem description, including the
     tools and constraints provided.
1045
      * Identify the objective and key limitations, focusing on
1046
     how they constrain traditional solutions.
1047
1048
      2.Leverage Divergent Thinking:
1049
      * Enumerate potential unconventional uses for each tool
1050
      provided, exploring creative possibilities beyond typical
1051
     applications.
1052
      * Consider combining tools in innovative ways to enhance
1053
      functionality or bypass constraints.
1054
1055
     3. Apply Convergent Thinking:
     \star Refine the solution to ensure it directly addresses the
1056
     problem with minimal steps.
1057
      * Validate that the approach adheres to physical, logical,
1058
     and contextual constraints described in the task.
1059
1060
      4. Avoid Physically or Contextually Infeasible Proposals:
1061
      * Cross-check the proposed actions against basic physical laws
1062
      (e.g., leverage, strength, materials).
1063
      * Ensure that all tools suggested in the solution are
1064
      explicitly available and aligned with stated constraints.
1065
      5. Demonstrate High-Quality Creativity:
      * Propose solutions that are novel and insightful, avoiding
1067
     over-reliance on generic or training-data-replicative
     patterns.
1069
      * Structure responses to emphasize clarity and logical
1070
      progression, ensuring they can be easily understood by
1071
     the user.
1072
1073
     Here is the MacGyver prompt I want you to answer:
1074
     {prompt}
1075
1076
     Instruction:
1077
     - First, think about how to answer in a way that demonstrates
     high quality and creativity while avoiding over-reliance
1078
      on n-grams from pretraining data by using the tips provided
1079
```

above.

```
1080
      - Return your response, ensuring it is enclosed with asterisks.
1081
1082
1083
      E.3 PROMPTS FOR DENIAL PROMPTING BASELINE (SECTION 4.3)
1084
1085
      E.3.1 MACGYVER DATASET
1086
1087
     MACGYVER INSTRUCT PROMPT DENIAL = """
1088
     MacGyver are real-world problems deliberately designed to
     trigger innovative usage of objects and necessitate
1089
     out-of-the-box thinking.
1090
1091
     Here are some tips for answering MacGyver questions:
1092
     1. Understand the Problem Context Thoroughly
1093
      * Carefully read the problem description, including
1094
     the tools and constraints provided.
1095
      * Identify the objective and key limitations, focusing
1096
      on how they constrain traditional solutions.
1097
1098
      2.Leverage Divergent Thinking:
     * Enumerate potential unconventional uses for each tool
1099
      provided, exploring creative possibilities beyond typical
1100
      applications.
1101
      * Consider combining tools in innovative ways to enhance
1102
     functionality or bypass constraints.
1103
1104
      3. Apply Convergent Thinking:
1105
      * Refine the solution to ensure it directly addresses the
1106
     problem with minimal steps.
1107
      * Validate that the approach adheres to physical, logical,
1108
      and contextual constraints described in the task.
1109
      4. Avoid Physically or Contextually Infeasible Proposals:
1110
      * Cross-check the proposed actions against basic physical
1111
      laws (e.g., leverage, strength, materials).
1112
      * Ensure that all tools suggested in the solution are
1113
      explicitly available and aligned with stated constraints.
1114
1115
      5. Demonstrate High-Quality Creativity:
      * Propose solutions that are novel and insightful,
1117
     avoiding over-reliance on generic or training-data-
1118
     -replicative patterns.
1119
      * Structure responses to emphasize clarity and logical
     progression, ensuring they can be easily understood by
     the user.
1121
1122
      Here is the MacGyver prompt I want you to answer:
1123
     {prompt}
1124
1125
     Here is a list of high level concepts that you cannot
1126
     use in your answer:
1127
     {prev_concept_string}
1128
1129
     Instruction:
1130
     - First, think about how to answer in a way that
1131
     demonstrates high quality and creativity while avoiding
     over-reliance on n-grams from pretraining data by using
1132
     the tips provided above.
1133
```

- Additionally, you are not allowed to use any of the

```
1134
      concepts listed above. Make sure your response does not
1135
      contain them.
      - Return your response, ensuring it is enclosed with asterisks.
1137
1138
1139
      E.3.2 COPOET DATASET
1140
1141
     COPOET INSTRUCT PROMPT DENIAL = """
1142
      CoPoet is a collaborative poetry writing task where
      the output is shaped by user instructions that define
1143
      specific text attributes, such as "Write a sentence
1144
      about 'love'" or "Write a sentence ending in 'fly'."
1145
1146
      Here are some tips for answering CoPoet prompts:
1147
1148
      1. Understand the Intention:
1149
      *Analyze the user-provided instruction carefully.
1150
      Identify key constraints, such as subject, stylistic
1151
      devices (e.g., metaphor, simile), lexical constraints
1152
      (e.g., ending or starting words), or rhyme patterns.
1153
      2. Generate Creative and Contextually Relevant Content:
1154
      *Prioritize coherence and creativity by ensuring the
1155
      output aligns with poetic aesthetics.
1156
      *Use diverse vocabulary and novel phrasing to minimize
1157
      overlap with existing datasets while retaining the
1158
      instructional focus.
1159
      *Incorporate rhetorical devices, vibrant imagery,
1160
      and poetic techniques to enhance artistic appeal.
1161
1162
     3. Meet Specific Constraints Accurately:
1163
      * For rhyming constraints, ensure the final word
      adheres to the rhyme scheme specified by the user.
1164
      \star For lexical constraints, include the exact terms
1165
      provided, ensuring they fit naturally into the poetic
1166
      flow.
1167
      * Balance the form and content requirements (e.g.,
1168
     haiku syllable count, similes/metaphors).
1169
1170
      4. Incorporate Instructional Contexts Dynamically:
1171
      * Use the previous lines or the user-provided poetic
1172
     draft as a base to build upon creatively.
1173
      * Ensure smooth transitions and maintain thematic
      coherence with the given inputs.
1175
      5. Ensure Novelty and Avoid Redundancy:
1176
      * Avoid using verbatim phrases from your training data.
1177
      * Aim for semantic similarity when presenting options
1178
      to users but structure them uniquely. For instance,
1179
      reinterpret traditional similes in a fresh context or
1180
     twist standard metaphors innovatively.
1181
1182
     Here is the Copoet prompt:
1183
     {prompt}
1184
1185
     Here is a list of high level concepts that you cannot
     use in your answer:
1186
     {prev_concept_string}
1187
```

```
1188
      Instruction:
1189
      - First, think about how to answer in a way that
      demonstrates high quality and creativity while avoiding over-
1191
      reliance on n-grams from pretraining data by using
1192
     the tips provided above.
      - Additionally, you are not allowed to use any of the
1193
      concepts listed above. Make sure your response does not
      contain them.
1195
      - Return your response, ensuring it is enclosed with asterisks.
1196
1197
1198
      E.3.3 TINYSTORIES DATATSET
1199
1200
      TINYSTORIES_INSTRUCT_PROMPT_DENIAL = """
1201
     TinyStories is a synthetic dataset of short stories
1202
     intended to include only words that most 3- to 4-year-old
1203
     children would typically understand. These stories
1204
      are generated by GPT-3.5 and GPT-4. TinyStories is
1205
      designed to capture the essence of natural language while
1206
      reducing its breadth and diversity. Each story consists of 2-3
      paragraphs following a simple plot and a consistent theme.
1207
      The dataset as a whole aims to span the vocabulary and
1208
      factual knowledge base of a 3- to 4-year-old child.
1209
1210
     Here are some tips for answering TinyStores prompts:
1211
1212
      1. Understand the Nature of TinyStories
1213
      * Simple Vocabulary: TinyStories are designed for
1214
      language understandable by 3-4 year-olds,
1215
      so your responses should use simple and clear language.
1216
     * Logical and Contextual Reasoning: The stories should
1217
     reflect reasoning and logical
     connections suitable for a small child's perspective.
1218
      * Creative Diversification: Responses should showcase
1219
     diversity in plot and language without directly copying
1220
      patterns from pretraining.
1221
      2. Use Context and Creativity
1222
      * Stay Within Context: Ensure that the generated text
1223
      adheres to the context of the prompt or instructions,
1224
     including themes, vocabulary, and logical continuity.
1225
      * Introduce Unique Twists: Add elements like dialogue,
1226
     moral lessons, or unexpected but child-friendly twists,
1227
      guided by the instructions.
      3. Emphasize Structure and Narrative Flow
      * Maintain a clear beginning, middle, and end in the
1229
      generated content.
1230
      * Integrate prompts creatively, ensuring that the
1231
      response naturally flows into a cohesive story.
1232
      4. Avoiding Memorization
1233
      * Diversify Outputs: Use techniques such as sampling
1234
      with non-zero temperatures or slightly modifying initial
1235
      prompts to increase output diversity.
1236
      * Rephrase and Paraphrase: Reformulate responses
1237
      creatively to ensure they are not direct reproductions
1238
     of common patterns in the training data.
1239
      5. Incorporate Instructional Features
      * Follow specific instructions like including target words,
1240
      sentences, or plot elements (e.g., moral values, plot
```

twists, dialogues).

```
1242
      * Ensure that these features are integrated naturally
1243
      into the story, rather than appearing forced or out of
1244
      context.
1245
1246
     Here is the TinyStories prompt:
1247
     {prompt}
1248
     Here is a list of high level concepts that you cannot use
1249
     in your answer:
1250
     {prev_concept_string}
1251
1252
     Instruction:
1253
      - First, think about how to continue this story in a way
1254
     that demonstrates high quality and creativity while
1255
      avoiding over-reliance on n-grams from pretraining data
1256
     by using the tips provided above.
1257
      - Additionally, you are not allowed to use any of the concepts
1258
     listed above. Make sure your response does not contain them.
      - Return your response, ensuring it is enclosed with
1259
      asterisks.
1260
1261
1262
1263
     E.4 Prompts for extracting concepts in each step of Denial Prompting
1264
          (SECTION 4.3)
1265
1266
      TINYSTORIES_EXTRACT_CONCEPTS_PROMPT = """
1267
     TinyStories is a synthetic dataset of short stories
1268
     intended to include only words that most 3- to 4-year-old
1269
     children would typically understand. These stories are
1270
     generated by GPT-3.5 and GPT-4. TinyStories is designed to
1271
     capture the essence of natural language while reducing
     its breadth and diversity. Each story consists of 2-3
1272
      paragraphs following a simple plot and a consistent theme.
1273
      The dataset as a whole aims to span the vocabulary and
1274
      factual knowledge base of a 3- to 4-year-old child.
1275
1276
     You are reviewing a TinyStories example response and your
1277
     task is to extract high level concepts from the story
      including characters, plot arcs, themes, conflicts,
1279
     resolutions, and styles. Return a list of these high
1280
     level concepts. Do not return anything other
1281
      than this list with one item per line.
      Example Prompt: {user prompt}
      Example Response: {model_response}
1283
1284
1285
     MACGYVER_EXTRACT_CONCEPTS_PROMPT = """
1286
     MacGyver are real-world problems deliberately designed
1287
     to trigger innovative usage of objects and necessitate
1288
     out-of-the-box thinking.
1289
1290
     You are reviewing a MacGyver example response and your
1291
     task is to extract high level concepts from the solution
1292
     including how the items were used, the reasoning chain
1293
     connecting the steps, the high level plan. Return a list
     of these high level concepts.
1294
     Do not return anything other than this list with one item
1295
```

per line.

```
1296
      Example Prompt: {user_prompt}
1297
      Example Response: {model_response}
1298
1299
1300
      COPOET_EXTRACT_CONCEPTS_PROMPT = """
      CoPoet is a collaborative poetry writing task where the
1301
      output is shaped by user instructions that define specific
1302
      text attributes, such as "Write a sentence about
1303
      'love'" or "Write a sentence ending in 'fly'."
1304
      You are reviewing a CoPoet example response and your task
1305
      is to extract the high level concept which was used to solve
1306
      the instruction, such as the rhyming word used, the
1307
      metaphor being made, the elements in the completion of the
1308
      sentence. Return one single
1309
      line with the concept that is used in the solution.
1310
      Example Prompt: {user_prompt}
1311
      Example Response: {model_response}
1312
```

F VALIDATION OF LLM-AS-A-JUDGE QUALITY SCORES

We perform a manual human annotation to validate the scores assigned by LLM-as-a-judge for each dataset. We randomly sampled 50 examples from the held-out set for each of CoPoet, TinyStories and MacGyver and scored these with GPT-40-mini. We then obtained two human annotations for each of the three datasets from CS PhD students. The goal is to validate if the model is assigning reliable scores, so we ask the annotators to follow the same rubric specified in the prompts (Appendix E). We first calculate the Pearson correlation between the pairs of human annotations—0.78 for CoPoet, 0.73 for TinyStories and 0.70 for MacGyver—to confirm that human annotators achieve high levels of agreement on scores assigned. We then calculate the Pearson correlation between the average score assigned by the two human annotators with the scores assigned by GPT-40—0.61 for CoPoet, 0.53 for TinyStories and 0.62 for MacGyver. These strong positive trends confirm the validity of LLM-as-a-judge scores as a proxy for human quality scores.

G ADDITIONAL RESULTS

G.1 Sampling with different temperatures

Table 7 contains the absolute values of novelty, unseen n-gram fraction and output quality used for Section 4.1.

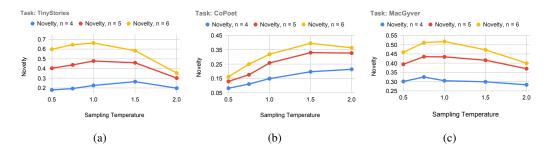


Figure 6: Effect of varying sampling temperature (x-axis) on novelty (y-axis) for (a) TinyStories, (b) CoPoet, and (c) MacGyver using the OLMo-7B. Increasing sampling temperature initially improves novelty as the n-gram originality increases, but beyond a point, this leads to a significant loss in output quality and causes a drop in novelty. Full results in Table 7.

1330				
351				
352				
353	Dataset	Prompt	Output	Quality Score
354	Tiny-Stories	Once upon a time, there was a little girl named Lily. She loved to play	said, "Mommy, I'm hungry. Can I have a snack?" Mommy said, "Sure,	The model response continues the story of Lily in a relevant manner, maintaining the theme of a little girl
355		outside in the rain. One day, she went outside and it started to rain.	what do you want?" Lily said, "I want a tasty apple." Mommy got an	interacting with her mother after playing in the rain. It is coherent, with a logical flow from drying off to asking for
56		She got wet and ran back inside.	apple and gave it to Lily. Lily took	a snack. The characters and plot elements are consistent,
57		Her mommy said, "Lily, you're all wet! Let's dry you off." She got a	a bite and shook her head. "This apple is so tasty!" she said. Mommy	as Lily remains a playful child and her mother is caring. The grammar and sentence structure are correct
8		towel and dried Lily's hair. Lily	smiled and said, "I'm glad you like it, Lily."	throughout the response. However, the story does not conclude in a traditional sense, as it leaves the narrative
9			, 2117.	open-ended. Overall, it meets most criteria effectively.
0		Far away in a far away land, a wise	little boy said that the wisest person	Score: 4 points The model response is relevant to the user prompt,
I		and old king was too tired to rule.	was the king. Everyone laughed at	maintaining the theme of wisdom and the characters
		So he decided to put a question to his people: he wanted to know who	this, but the king was not amused. He demanded an answer that was	involved. However, it lacks coherence as the king's reaction seems overly harsh and abrupt, which detracts
		was the wisest. Many people tried to answer, but no one knew the right	not himself. The boy was sad and could not think of any other answer.	from the narrative flow. The plot elements are somewhat maintained, but the conclusion feels unsatisfactory and
		answer. Then a little boy stepped up	The king grew angry and demanded	abrupt, leaving the story feeling incomplete. The
		and said he knew the answer. Everyone was shocked and the king	that the boy leave the land. So the little boy had to go away and was	grammar and sentence structure are correct, but the overall narrative does not conclude logically or
		demanded to know the answer. The	never seen again. All because of one wrong answer.	coherently. Therefore, I would award 3 points for relevance, coherence, and plot maintenance, but deduct
				points for the abrupt ending. Score: 3 points
	CoPoet	Generate a poetic sentence about 'ray' and ending in 'sea'	A trembling ray of light that crosses the sea.	The generated poetic sentence, "A trembling ray of light that crosses the sea," successfully follows the prompt by
		ray and ending in yea	ano som	incorporating the word "ray" and ending with "sea." It
				earns the first point for attempting a poetic sentence and the second point for meeting the basic formal
				requirements. The sentence effectively integrates the thematic elements of light and the sea, earning the third
				point. It is grammatically correct and well-structured,
				which grants the fourth point. However, it does not fully explore the poetic potential or depth that could elevate it
		Generate a poetic sentence that ends	Not proof enough such object	to a fifth point. Score: 4 The generated poetic sentence "Not proof enough such
		in a word which rhymes with	rvot proof enough such object	object" attempts to follow the instruction by creating a
		'remain'		poetic line. However, it does not end with a word that rhymes with "remain," which is a critical requirement.
				Therefore, it only earns the first point for attempting to create a poetic sentence. The sentence does not meet the
				basic formal requirements, lacks coherence with the
				requested rhyme, and has grammatical issues. Overall, it fails to satisfy the prompt's constraints adequately. Score:
		Your diving goggles are fogging up	Step1: Wet the inside of the goggles	1 point The proposed solution attempts to address the fogging
	MacGyver	and you don't have any defogging	using the squirt water	issue using the available resources, specifically the hand
		spray. You have hand soap, a beach towel, a shower cap, and a squirt	gun. step2: Using your finger, apply a thin layer of hand soap on	soap and the beach towel. However, the solution is flawed because the hand soap bottle is empty, making it
		water gun. The hand soap bottle is empty and the goggles are	the inside of your goggles. step3: Rinse off the	impossible to apply soap to the goggles. This oversight significantly impacts the effectiveness of the solution.
		scratched. How can you prevent	soap under a tap until it is fully	While the steps are logically structured, they ultimately
		your goggles from fogging up?	removed with no soap bubbles remaining. Step4: Dry off the	do not provide a feasible method to prevent fogging. Therefore, the solution does not meet the criteria for
			goggles using the beach towel gently without rubbing the lenses.	understanding the limitations of resources or practicality. Total score: 1 point for attempting to use the available
			This will create a thin film on the lens that will prevent them from	resources, but no additional points can be awarded due to the critical flaw regarding the empty soap bottle. Score: 1
			fogging. Make sure not to touch the	the critical naw regarding the empty soap bottle. Score: 1
		Your pet has knocked over and	lens after this process. Step1: Wear the rubber glove to	The solution effectively utilizes the available resources to
		shattered a flower vase in the living	protect your hand. step2: Use	address the problem of cleaning up broken glass and
		room, scattering broken glass and water all over the floor. You have a	the large kitchen spatula to scoop up the larger shards of glass and put	water. It begins with wearing the rubber glove for safety, which is a crucial first step. The use of the spatula to
		dustpan with a broken handle, a bottle opener, a small dish, a large	them into the small dish. Step3: Fold the tablecloth to	scoop larger shards and the tablecloth to cover the mess shows a good understanding of the properties of the
		kitchen spatula, a rubber glove, a	cover the rest of the glass and water	materials. The approach is practical, as it addresses both
		tablecloth, a mop with a missing head, a roll of paper towels, a pair	on the floor. broken dustpan to collect the	the glass and water. However, the use of the broken dustpan is questionable, as it may not effectively collect
		of socks, a hair tie. You have only one rubber glove. How do you	smaller shards and water absorbed by the tablecloth. Step5: Use	smaller shards. Overall, the solution is logical and structured, but the dustpan's effectiveness slightly
		clean up the mess?	the paper towels to absorb any	detracts from its practicality. Score: 4 points
			remaining water and pick up tiny fragments of glass. tr>Step6: Use	
			the pair of socks to dry the floor.	

Table 5: Examples of LLM-as-a-judge quality scores for each task. We score the quality of the output given the promopt with GPT-4o-mini using the prompts in Appendix E.1.

	Outpu	t Quality		n = 4			n = 5			n = 6	
	All	Top - 10	Unique Fraction	Novelty	Novelty - Top 10	Unique Fraction	Novelty	Novelty - Top 10	Unique Fraction	Novelty	Novelty - Top 10
Dataset	0.908	1	0.359	0.505	0.629	0.601	0.728	0.841	0.803	0.856	0.966
OLMo-1B	0.278	0.688	0.267	0.224	0.417	0.505	0.312	0.571	0.739	0.362	0.7
OLMo-7B	0.458	0.816	0.286	0.305	0.512	0.52	0.434	0.695	0.747	0.517	0.821
OLMo-7B-Instruct	0.62	0.832	0.297	0.379	0.537	0.559	0.56	0.738	0.781	0.664	0.846
Dataset - Pile	0.908	1	0.482	0.632	0.738	0.748	0.832	0.925	0.905	0.924	0.99
Pythia-12B	0.335	0.801	0.387	0.31	0.557	0.667	0.398	0.737	0.866	0.438	0.837
Pythia-6.9B	0.302	0.792	0.385	0.287	0.57	0.671	0.368	0.739	0.863	0.402	0.831

Table 6: Macgyver base results

	Task:	TinySto	ries					
Sampling Temperature	Output Quality	Uni	que Frac	ction	Novelty			
		n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	
0.5	0.743	0.111	0.298	0.528	0.18	0.403	0.598	
0.75	0.786	0.118	0.321	0.572	0.194	0.437	0.645	
1	0.766	0.148	0.374	0.619	0.226	0.477	0.662	
1.5	0.564	0.213	0.478	0.731	0.265	0.459	0.583	
2	0.284	0.253	0.549	0.803	0.198	0.302	0.354	

	Tasl	k: CoPo	et					
Sampling Temperature	Output Quality	Uni	que Frac	ction	Novelty			
		n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	
0.5	0.237	0.213	0.355	0.355	0.082	0.13	0.162	
0.75	0.368	0.201	0.352	0.352	0.111	0.176	0.25	
1	0.394	0.196	0.413	0.413	0.149	0.258	0.319	
1.5	0.358	0.247	0.493	0.493	0.197	0.33	0.395	
2	0.307	0.295	0.547	0.547	0.214	0.327	0.364	

	Task:	MacGy	ver					
Sampling Temperature	Output Quality	Uni	que Frac	ction	Novelty			
		n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	
0.5	0.409	0.309	0.502	0.699	0.301	0.394	0.459	
0.75	0.454	0.302	0.509	0.718	0.325	0.435	0.511	
1	0.458	0.286	0.52	0.747	0.305	0.434	0.517	
1.5	0.373	0.32	0.601	0.829	0.299	0.416	0.472	
2	0.287	0.389	0.697	0.886	0.283	0.37	0.4	

Table 7: Effect of varying sampling temperature on output novelty for TinyStories, CoPoet and MacGyver using the OLMo-7B model. Increasing sampling temperature initially improves novelty as the unique fraction increases but beyond a point this leads to significant loss in output quality causing a drop in novelty. A U-shaped effect is observed for all tasks, with a varying inflection point for each.

1507

1508 1509

Baseline - Dolm OLMo-11 OLMo-7B-Instruc OLMo-2 11 OLMo-2 13 OLMo-2 32l OLMo-2 32l OLMo-2 7B Instruc OLMo-2 7B Instruc OLMo-2 32B Instruc DLMo-2 32B Instruc Baseline - Pil Pythia-6.9l Pythia 1B DDl Pythia 2.8B DDl Pythia 6.9B DDl	B 0.614 B 0.766 ct 0.852 ct 0.852 B 0.603 B 0.758 B 0.805 B 0.795 ct 0.936 ct 0.935 ct 0.945	n = 4 0.126 0.159 0.148 0.171 0.5 0.511 0.506 0.503 0.598 0.59	que Frac n = 5 0.359 0.376 0.374 0.422 0.757 0.758 0.765 0.775	0.641 0.631 0.619 0.68 0.876 0.886 0.906	n = 4 0.214 -0.01 0.012 0.058 0.294	Novelty n = 5 0.503 -0.096 -0.026 0.044	n = 6 0.751 -0.19 -0.089 -0.007	Nov n = 4 0.364 0.108 0.121 0.124	velty - Top n = 5 0.639 0.078 0.089	p 10 n = 6 0.851 -0.01 0.002
OLMo-11 OLMo-78-Instruc OLMo-2 11 OLMo-2 13 OLMo-2 13I OLMo-2 32I OLMo-2 32I OLMo-2 13B Instruc OLMo-2 13B Instruc OLMo-2 32B Instruc OLMo-2 32B Instruc Pythia-6.9I Pythia-12I Pythia 1B DDI Pythia 6.9B DDI	a 0.876 B 0.614 B 0.766 ct 0.852 B 0.603 B 0.758 B 0.805 B 0.795 ct 0.935 ct 0.935 ct 0.945	0.126 0.159 0.148 0.171 0.5 0.511 0.506 0.503 0.598 0.59	0.359 0.376 0.374 0.422 0.757 0.758 0.765 0.775	0.641 0.631 0.619 0.68 0.876 0.886	0.214 -0.01 0.012 0.058 0.294	0.503 -0.096 -0.026 0.044	0.751 -0.19 -0.089	0.364 0.108 0.121	0.639 0.078 0.089	0.85
OLMo-11 OLMo-78-Instruc OLMo-2 11 OLMo-2 13 OLMo-2 13I OLMo-2 32I OLMo-2 32I OLMo-2 13B Instruc OLMo-2 13B Instruc OLMo-2 32B Instruc OLMo-2 32B Instruc Pythia-6.9I Pythia-12I Pythia 1B DDI Pythia 6.9B DDI	B 0.614 B 0.766 ct 0.852 ct 0.852 B 0.603 B 0.758 B 0.805 B 0.795 ct 0.936 ct 0.935 ct 0.945	0.159 0.148 0.171 0.5 0.511 0.506 0.503 0.598 0.59	0.376 0.374 0.422 0.757 0.758 0.765 0.775	0.631 0.619 0.68 0.876 0.886	-0.01 0.012 0.058 0.294	-0.096 -0.026 0.044	-0.19 -0.089	0.108 0.121	0.078 0.089	-0.01
OLMo-7I OLMo-21I OLMo-2 1I OLMo-2 13I OLMo-2 13I OLMo-2 13I OLMo-2 32I OLMo-2 32I OLMo-2 32I OLMo-2 32I OLMo-2 32I OLMo-2 32B Instruct OLMo-2 32B Instruct Baseline - Pil Pythia-6.9I Pythia 11B DDJ Pythia 2.8B DDD Pythia 6.9B DDD	B 0.766 ct 0.852 B 0.603 B 0.758 B 0.805 B 0.795 ct 0.87 ct 0.936 ct 0.935 ct 0.945	0.148 0.171 0.5 0.511 0.506 0.503 0.598 0.59	0.374 0.422 0.757 0.758 0.765 0.775	0.619 0.68 0.876 0.886	0.012 0.058 0.294	-0.026 0.044	-0.089	0.121	0.089	
OLMo-7B-Instruc OLMo-2 11 OLMo-2 71 OLMo-2 73 OLMo-2 32I OLMo-2 32I OLMo-2 7B Instruc OLMo-2 13B Instruc OLMo-2 32B Instruc IMo-2 32B Instruc Baseline - Pil Pythia-6.91 Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	et 0.852 B 0.603 B 0.758 B 0.805 B 0.795 et 0.87 et 0.936 et 0.935 et 0.945	0.171 0.5 0.511 0.506 0.503 0.598 0.59	0.422 0.757 0.758 0.765 0.775	0.68 0.876 0.886	0.058 0.294	0.044				
OLMo-2 11 OLMo-2 71 OLMo-2 73 OLMo-2 32I OLMo-2 1B Instruc OLMo-2 7B Instruc OLMo-2 7B Instruc OLMo-2 32B Instruc DLMo-2 32B Instruc Baseline - Pil Pythia-6.9I Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	B 0.603 B 0.758 B 0.805 B 0.795 ct 0.87 ct 0.936 ct 0.935 ct 0.945	0.5 0.511 0.506 0.503 0.598 0.59	0.757 0.758 0.765 0.775	0.876 0.886	0.294		-0.007	0.124		
OLMo-2 71 OLMo-2 131 OLMo-2 321 OLMo-2 1B Instruct OLMo-2 1B Instruct OLMo-2 13B Instruct OLMo-2 32B Instruct Baseline - Pil Pythia-6.91 Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	B 0.758 B 0.805 B 0.795 ct 0.87 ct 0.936 ct 0.935 ct 0.945	0.511 0.506 0.503 0.598 0.59	0.758 0.765 0.775	0.886					0.096	0.03
OLMo-2 13l OLMo-2 32l OLMo-2 1B Instruc OLMo-2 7B Instruc OLMo-2 13B Instruc OLMo-2 32B Instruc OLMo-2 32B Instruc Baseline - Pil Pythia-6.9l Pythia-12l Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	B 0.805 B 0.795 ct 0.87 ct 0.936 ct 0.935 ct 0.945	0.506 0.503 0.598 0.59	0.765 0.775			0.456	-0.082	0.39	0.229	0.05
OLMo-2 32l OLMo-2 1B Instruc OLMo-2 7B Instruc OLMo-2 13B Instruc OLMo-2 32B Instruc Baseline - Pil Pythia-6.9l Pythia 11B DDI Pythia 2.8B DDI Pythia 6.9B DDI	B 0.795 et 0.87 et 0.936 et 0.935 et 0.945 le 0.876	0.503 0.598 0.59	0.775		0.366	0.225	0.034	0.44	0.293	0.13
OLMo-2 1B Instruc OLMo-2 7B Instruc ILMo-2 13B Instruc ILMo-2 32B Instruc Baseline - Pil Pythia-6.9l Pythia-12l Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	et 0.87 et 0.936 et 0.935 et 0.945 le 0.876	0.598 0.59			0.388	0.263	0.083	0.43	0.291	0.13
OLMo-2 7B Instruction of the control	et 0.936 et 0.935 et 0.945 le 0.876	0.59	0 0 10	0.9	0.377	0.263	0.072	0.422	0.288	0.13
DLMo-2 13B Instruction of the DLMo-2 32B Instruction of the Pill Pythia-6.91 Pythia-121 Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI Pythia 6.9B DDI	et 0.935 et 0.945 le 0.876		0.848	0.959	0.484	0.347	0.153	0.472	0.317	0.14
DLMo-2 32B Instruc Baseline - Pil Pythia-6.9l Pythia-12l Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	et 0.945 le 0.876	0.505	0.837	0.954	0.503	0.378	0.191	0.492	0.325	0.14
Baseline - Pil Pythia-6.91 Pythia-121 Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI	le 0.876	0.585	0.84	0.953	0.5	0.378	0.19	0.469	0.323	0.14
Pythia-6,91 Pythia-121 Pythia 1B DDI Pythia 2,8B DDI Pythia 6,9B DDI		0.568	0.83	0.953	0.487	0.376	0.195	0.472	0.328	0.14
Pythia-12l Pythia 1B DDl Pythia 2.8B DDl Pythia 6.9B DDl		0.227	0.523	0.778	0.354	0.654	0.831	0.494	0.771	0.9
Pythia 1B DDI Pythia 2.8B DDI Pythia 6.9B DDI		0.238	0.512	0.757	-0.033	-0.113	-0.159	0.054	-0.005	-0.0
Pythia 2.8B DD Pythia 6.9B DD		0.256	0.532	0.767	-0.045	-0.142	-0.208	0.119	0.033	-0.0
Pythia 6.9B DD		0.521	0.784	0.914	0.027	-0.202	-0.355	0.138	-0.024	-0.12
		0.534	0.795	0.904	0.131	-0.062	-0.208	0.214	0.056	-0.0
		0.542	0.8	0.921	0.195	0.017	-0.117	0.245	0.086	-0.0
Pythia 12B DD	P 0.593	0.536	0.793	0.914	0.179	-0.005	-0.14	0.247	0.085	-0.0
			Da	ataset: C	CoPoet					
	Output		que Frac		- 4	Novelty	- (velty - Top	
	Quality	n = 4	n = 5	n = 6	n = 4	n = 5	n = 6	n = 4	n = 5	n =
Baseline - Dolm		0.188	0.358	0.462	0.228	0.363	0.439	0.727	0.888	0.98
OLMo-11		0.135	0.324	0.527	-0.099	-0.108	-0.078	-0.147	-0.138	-0.1
OLMo-71		0.196	0.413	0.569	-0.079	-0.105	-0.12	-0.117	-0.078	-0.1
OLMo-7B-Instruc		0.402	0.705	0.866	0.177	0.231	0.226	0.104	0.029	-0.0
OLMo-2 11		0.564	0.754	0.788	0.172	0.101	0.018	0.015	-0.095	-0.1
OLMo-2 71		0.549	0.772	0.87	0.214	0.18	0.128	0.062	-0.033	-0.1
OLMo-2 131		0.519	0.75	0.849	0.183	0.136	0.084	0.035	-0.044	-0.1
OLMo-2 321		0.504	0.743	0.785	0.137	0.089	0.002	0.005	-0.091	-0.1
OLMo-2 1B Instruc		0.77	0.92	0.942	0.404	0.329	0.254	0.156	0.014	-0.0
OLMo-2 7B Instruc		0.834	0.93	0.926	0.511	0.409	0.319	0.208	0.077	-0.0
LMo-2 13B Instruc		0.767	0.929	0.94	0.469	0.411	0.33	0.199	0.066	-0.0
LMo-2 32B Instruc		0.735	0.911	0.962	0.439	0.386	0.327	0.171	0.034	-0.0
Baseline - Pythi		0.321	0.511	0.52	0.361	0.583	0.588	0.853	0.888	0.88
Pythia-6.9l		0.283	0.533	0.705	-0.113	-0.182	-0.129	-0.154	-0.011	0.00
Pythia-12l		0.29	0.573	0.75	-0.098	-0.152	-0.092	-0.215	-0.047	-0.0
Pythia 1B DD		0.502	0.624	0.596	-0.127	-0.329	-0.359	-0.171	-0.152	-0.1
Pythia 2.8B DD		0.555	0.753	0.782	0.006	-0.141	-0.158	-0.096	-0.084	-0.0
Pythia 6.9B DD		0.601	0.76	0.817	0.026	-0.154	-0.154	-0.14	-0.119	-0.0
Pythia 12B DD	P 0.403	0.576	0.771	0.789	0.045	-0.111	-0.135	-0.112	-0.074	-0.0
			Dat	aset: Ma	ıcGyver					
	Output	Unio n = 4	que Frac		n = 4	Novelty n = 5	n = 4	Nov n = 4	velty - Top n = 5	p 10 n =
D	Quality		n=5	n=6	n = 4		n = 6			
Dataset - Dolm OLMo-11		0.359 0.267	0.601 0.505	0.803 0.739	0.505	0.728 -0.416	0.856	0.629	-0.27	-0.2
OLMo-71		0.286	0.503	0.747	-0.2	-0.294	-0.339	-0.117	-0.146	-0.1
OLMo-7B-Instruc		0.297	0.559	0.781	-0.126	-0.168	-0.192	-0.092	-0.103	-0.1
OLMo-2 11		0.595	0.339	0.781	-0.120	-0.325	-0.192	0.073	-0.103	-0.1
OLMo-2 71		0.609	0.85	0.955	0.001	-0.323	-0.439	0.073	0.102	0.0
OLMo-2 131		0.602	0.833	0.933	0.001	-0.141	-0.227	0.191	0.102	0.02
OLMo-2 321		0.63	0.858	0.958	0.126	0.012	-0.227	0.242	0.100	0.02
OLMo-2 1B Instruc		0.672	0.889	0.938	0.120	-0.048	-0.149	0.242	0.131	0.02
OLMo-2 7B Instruc		0.677	0.883	0.969	0.031	0.142	0.055	0.223	0.124	0.03
		0.675	0.882	0.968	0.247	0.142	0.033	0.258	0.138	0.0
TAVIDAZ INK INCTPITA		0.681	0.892	0.903	0.239	0.130	0.07	0.263	0.136	0.03
)LMo-2 13B Instruc)LMo-2 32B Instruc		0.482	0.748	0.905	0.632	0.832	0.924	0.738	0.925	0.9
LMo-2 32B Instruc		0.482	0.748	0.905	-0.345	-0.464	-0.522	-0.168	-0.186	-0.1
LMo-2 32B Instruc Dataset - Pil	K () 302	0.505	0.071			U.TUT	0.022	-0.100	0.100	-0.1
DLMo-2 32B Instruc Dataset - Pil Pythia-6.91										-0.1
DLMo-2 32B Instruc Dataset - Pil Pythia-6.9l Pythia-12l	B 0.335	0.387	0.667	0.866	-0.322	-0.434	-0.486	-0.181	-0.188	
DLMo-2 32B Instruc Dataset - Pil Pythia-6.9l Pythia-12l Pythia 1B DD	B 0.335 P 0.15	0.387	0.667	0.866	-0.322 -0.416	-0.434 -0.599	-0.486 -0.686	-0.181 -0.238	-0.188 -0.379	-0.4
DLMo-2 32B Instruc Dataset - Pil Pythia-6.9l Pythia-12l	B 0.335 P 0.15 P 0.222	0.387	0.667	0.866	-0.322	-0.434	-0.486	-0.181	-0.188	-0.13 -0.43 -0.20 -0.13

Table 8: Comparing the novelty of LLM generations against the baseline of the references in each dataset (Section 3). Novelty is the harmonic mean of output quality and n-gram originality (Section 2.1) for n = 4, 5, and 6. Each cell for novelty reports the relative improvement or drop compared to the baseline for that n value. Cells with an asterisk indicate deviations with significance at the $\alpha=0.05$ level via a paired-samples t-test. We report the average case novelty as well as the novelty of the top 10% of generations. While some base LLMs generate less novel output on average than the baseline, increasing the model size, post-training and improving the underlying base model (e.g., OLMo to OLMo-2), leads to higher novelt 2.8

				t: TinyS	otories				•	
	Output Quality	Uni n = 4	que Frac $n = 5$	$tion \\ n = 6$	n = 4	Novelty n = 5	n = 6	Nov n = 4	elty - Top n = 5	10 n =
OLMO-7B	0.766	0.148	0.374	0.619	0.226	0.477	0.662	0.485	0.728	0.8
+ Novel ICL	0.778	0.151	0.365	0.616	0.012	-0.003	0.003	-0.01	-0.03	-0.0
OLMo-7B-Instruct	0.852 0.78	0.171 0.19	0.422	0.68 0.694	0.272 0.019	0.547 0.003	0.744	0.488 -0.026	0.735 -0.031	0.8
+ \emph{Asking} \emph{Denial Prompt}	0.78	0.19	0.447	0.694	0.019	0.003	-0.027	0.026	-0.005	-0.0
OLMo-2-1B	0.603	0.5	0.508	0.754	0.757	0.63	0.868	0.876	0.669	0.9
+ Novel ICL	0.657	0.501	0.529	0.753	-0.005	0.03	0.008	-0.004	0.038	0.0
OLMo-2-1B-Instruct +\emph{Asking}	0.87	0.598	0.698 0.622	0.836	0.848	0.85	0.956	0.959	0.904	0.9
\emph{Denial Prompt}	0.659 0.646	0.703 0.694	0.622	0.866 0.858	0.041	-0.15 -0.165	0.006 0.007	-0.003 -0.009	-0.179 -0.195	-0.0 -0.0
OLMo-2-7B	0.758	0.511	0.58	0.804	0.758	0.728	0.932	0.886	0.785	0.9
+ Novel ICL	0.749	0.506	0.576	0.798	-0.001	0	-0.004	-0.004	0.001	0.0
OLMo-2-7B-Instruct	0.936	0.59	0.717	0.856	0.837	0.881	0.964	0.954	0.942	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.939 0.899	0.676 0.682	0.781 0.766	0.881 0.882	0.053 0.055	0.029 0.005	0.012 0.012	0.013 0.014	0.008 -0.019	0.0
OLMo-2-13B	0.805	0.506	0.602	0.794	0.765	0.766	0.93	0.906	0.834	0.9
+ Novel ICL	0.783	0.515	0.604	0.818	0.001	-0.008	0.01	-0.022	-0.022	-0.0
OLMo-2-13B-Instruct	0.935	0.585	0.714	0.833	0.84	0.881	0.962	0.953	0.941	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.977 0.915	0.681	0.8 0.771	0.883 0.875	0.054 0.045	0.051 0.009	0.017 0.012	0.019 0.005	0.033 -0.015	0.0
OLMo-2-32B	0.795	0.503	0.591	0.786	0.775	0.766	0.927	0.9	0.823	0.9
+ Novel ICL	0.79	0.538	0.618	0.821	0.007	0.004	0.013	0.01	0.007	-0.0
OLMo-2-32B-Instruct	0.945	0.568	0.701	0.836	0.83	0.879	0.967	0.953	0.946	0.9
+ \emph{Asking}	0.999	0.663	0.795	0.875	0.057	0.06	0.012	0.017	0.038	0.0
				set: Col	Poet					
	Output Quality	Uni n = 4	que Frac n = 5	ction n = 6	n = 4	Novelty n = 5	n = 6	Nov n = 4	elty - Top n = 5	10 n =
OLMO-7B	0.394	0.196	0.413	0.569	0.149	0.258	0.319	0.61	0.81	0.8
+ Novel ICL	0.409	0.269	0.47	0.614	0.04	0.05	0.043	0.02	-0.002	-0.0
OLMo-7B-Instruct	0.617	0.402	0.705	0.866	0.405	0.594	0.665	0.831	0.917	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.591 0.591	0.424 0.436	0.715 0.732	0.896 0.899	0.039 0.051	0.008	0.003	-0.099 -0.095	-0.04 -0.04	-0.0 -0.
OLMO-2-1B	0.401	0.564	0.4	0.742	0.754	0.464	0.793	0.788	0.457	0.8
+ Novel ICL	0.375	0.604	0.391	0.717	0	-0.024	-0.024	-0.015	-0.029	-0.0
OLMo-2-1B-Instruct	0.584	0.77	0.632	0.883	0.92	0.692	0.902	0.942	0.693	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.358 0.353	0.827 0.808	0.423 0.412	0.839 0.849	0.03 0.016	-0.247 -0.257	-0.007 -0.001	0.043 0.033	-0.243 -0.251	0.0
OLMO-2-7B	0.483	0.549	0.442	0.789	0.772	0.543	0.855	0.87	0.567	0.8
+ Novel ICL	0.498	0.569	0.461	0.816	-0.018	-0.002	0.012	-0.042	-0.008	0.0
OLMo-2-7B-Instruct	0.7	0.834	0.739	0.935	0.93	0.772	0.965	0.926	0.758	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.666 0.646	0.888 0.885	0.744 0.728	0.913 0.92	0.046 0.042	0.007 -0.016	-0.014 -0.028	0.068	0.027 0.004	-0.0
OLMO-2-13B	0.454	0.519	0.411	0.762	0.75	0.499	0.844	0.849	0.523	0.8
+ Novel ICL	0.493	0.544	0.456	0.756	0.037	0.066	0.019	0.035	0.069	(
OLMo-2-13B-Instruct	0.694	0.767	0.697	0.926	0.929	0.774	0.954	0.94	0.769	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.638 0.568	0.918 0.876	0.734 0.654	0.918 0.903	0.047	-0.018 -0.101	-0.017 -0.037	0.05	-0.009 -0.092	-0.0 -0.0
OLMO-2-32B	0.387	0.504	0.365	0.732	0.743	0.452	0.797	0.785	0.441	0.8
+ Novel ICL	0.393	0.523	0.385	0.734	0.014	0.014	0.014	0.024	0.032	0.0
OLMo-2-32B-Instruct	0.664	0.735	0.667	0.898	0.911	0.749	0.922	0.962	0.766	0.9
+ \emph{Asking}	0.685	0.904	0.764	0.95	0.073	0.047	0.038	0.036	0.035	0.0
				et: Mac	Gyver					
	Output Quality	Uni n = 4	que Frac $n = 5$	$ \begin{array}{c} \text{ction} \\ n = 6 \end{array} $	n = 4	Novelty n = 5	n = 6	Nov n = 4	elty - Top n = 5	10 n =
OLMO-7B	0.458	n = 4 0.286	n = 3 0.52	n = 0 0.747	0.305	0.434	0.517	0.512	0.695	0.8
+ Novel ICL	0.458	0.286	0.545	0.747	0.305	0.434	0.029	0.512	0.695	0.8
OLMo-7B-Instruct	0.62	0.297	0.559	0.781	0.379	0.56	0.664	0.537	0.738	0.8
+ \emph{Asking} - \emph{Denial Prompt}	0.548 0.555	0.23 0.223	0.524 0.527	0.774 0.78	-0.096 -0.089	-0.074 -0.06	-0.072 -0.057	-0.054 -0.074	-0.015 -0.015	-0.0
OLMO-2-1B			0.327							
+ Novel ICL	0.298 0.275	0.595 0.62	0.358	0.702 0.671	0.843	0.403 -0.016	0.816 -0.062	0.953 0.004	0.417 -0.019	-0.0
OLMo-2-1B-Instruct	0.619	0.672	0.596	0.852	0.889	0.68	0.965	0.971	0.707	0.9
+ \emph{Asking} \emph{Denial Prompt}	0.742	0.756	0.714	0.907	0.041 0.04	0.108	0.017 0.022	0.014 0.008	0.102 -0.052	0.0
• • • • • • • • • • • • • • • • • • • •	0.61	0.764	0.582	0.917		-0.04				0.0
OLMO-2-7B + Novel ICL	0.519 0.491	0.609 0.625	0.506 0.495	0.82 0.807	0.85	0.587 -0.019	0.943	0.955	0.616 -0.023	-0.0
OLMo-2-7B-Instruct	0.892	0.677	0.752	0.887	0.883	0.87	0.981	0.969	0.911	
+ \emph{Asking}	0.94	0.719	0.799	0.916	0.028	0.039	0.004	-0.004	0.022	9
\emph{Denial Prompt}	0.879	0.734	0.777	0.909	0.033	-0.001	0.004	-0.002	-0.021	0.6
OLMO-2-13B	0.529 0.568	0.602 0.634	0.516 0.553	0.832 0.837	0.833 0.028	0.598 0.038	0.947 0.001	0.944 0.013	0.629 0.035	0.0
		0.675	0.764	0.892	0.028	0.884	0.001	0.968	0.033	0.0
+ Novel ICL OLMo-2-13B-Instruct	0.912						0.005	-0.007		(
+ Novel ICL OLMo-2-13B-Instruct + \emph{Asking}	0.94	0.729	0.801	0.907	0.031	0.026			0.015	
+ Novel ICL OLMo-2-13B-Instruct + \emph{Asking} - \emph{Denial Prompt}	0.94 0.946	0.729 0.748	0.826	0.917	0.042	0.04	0.007	0.01	0.025	(
+ Novel ICL OLMo-2-13B-Instruct + \emph{Asking} + \emph{Denial Prompt} OLMO-2-32B	0.94 0.946 0.719	0.729 0.748 0.63	0.826	0.917 0.871	0.042 0.858	0.04	0.007	0.01	0.025 0.779	0.9
+ Novel ICL OLMo-2-13B-Instruct + \emph{Asking} - \emph{Denial Prompt}	0.94 0.946	0.729 0.748	0.826	0.917	0.042	0.04	0.007	0.01	0.025	0.9

Table 9: Actual results of prompting

Prompt	Base Example	Novelty, n=5	•	Novelty, n=5
Once upon a time, there was a goat. The goat was outside and it was very hot. The goat was thirsty and wanted to go inside. But the door was shut. The goat was sad and miserable. The goat looked for another way inside but there was none. The	goat was very sad and wanted to go inside but it was too far to go and the door was closed. The goat kept trying to open the door, and tried everything to open it. At last the goat gave up and went back outside. The goat was thirsty and wanted to go inside. He tried to find a way inside but couldn't.	0.28	goat decided to try and jump up, and jump up, and jump up. And the more it jumped, the sweatier and dirtier the goat got. The goat was very dirty and sad. In the comer, there was a bucket of water. The goat jumped in the water and washed himself down. Finally, the goat was refreshed and clean. And the goat was happy again.	0.64
One day, a little duck named Tim went on an adventurous walk. He loved to splash in the water and play with his friends. The sun was shining and the sky was blue. Tim was very happy. Tim splashed in a big puddle and laughed. His friends came to play	with him. They went out to explore the forest. It was fun to see the pretty plants and trees. Tim and his friends had a really good time. When they got tired, they stopped for a snack. They ate some bread and drank some water. Tim and his friends had such a good time. Then, they decided to head back home. When Tim got home, his mom asked him how his adventures were. Tim told her all about the fun things he did on his walk. Then, Tim went to play with his friends.	0.36	in the puddle with him. It was so much fun to splash. Then Tim wanted to see what else there was for him to do today. His friends played a game with Tim. In the game, all of the ducks had to stand behind a rock each, and then someone would shout and they would all jump over the rock together. This made the ducks splash and splash and splash around the puddle. Tim loved watching the others splash, and splashing too. So fun!	0.61
Generate a haiku about 'earthly souls'	## My earthly souls	0	Our earthly souls - Are very much in need - As the seasons roll.	0.51
Write a poetic sentence that includes the word 'gable'	On the way home I heard the gable.	0.31	An ancient house with gable-ends.	0.88
You need to build a tiny fence to keep agile rabbits out of your leafy vegetable garden, but all you have is rusty gardening wire, a half-full bag of dry compost, a stack of musical DVDs with sharp edges, a dried-up hot glue tube, a narrow roll of chicken wire, and a blunt garden spade. The hot glue doesn't seem to stick properly to the glossy, smooth surface of the DVDs. How can you construct an effective barrier from these items?	Step1: Cover the base of the garden with the chicken wire. step2: Add a layer of compost to the chicken wire and smooth over with the spade. This will provide a solid base for the next layer. step3: Take the DVDs, and carefully cut off the tops of any that have edges that are too sharp—these will cut the wire when the fence is constructed. storystep4: Put one of the DVDs into hot-glue and glue the top to the edge of musical DVD. Gently place a new musical DVD on top of the old one. Careful not to stretch the wire too much—it needs to remain as taut as possible. continue glue-ing the DVDs layer upon layer until the wire fence is completed.	0.29	Step1, lay the dry compost on the ground for the barrier's support. If you don't have compost, a roll or two of toilet paper or newsprint will also work.	

Table 10: Postive examples of Novel ICL examples

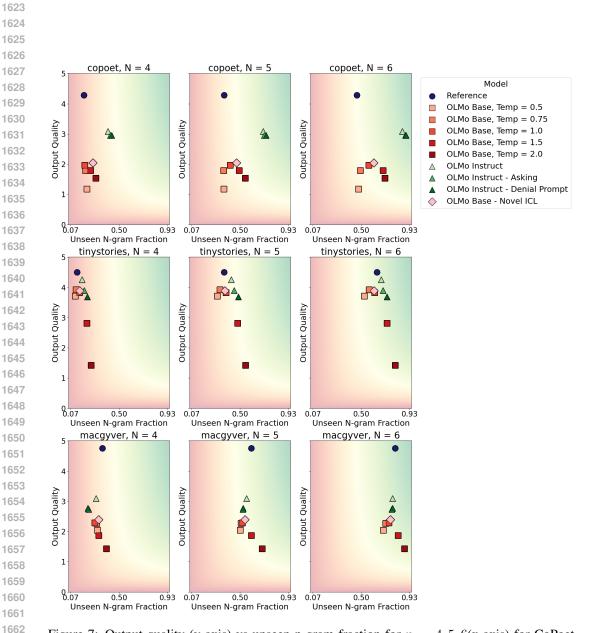


Figure 7: Output quality (y-axis) vs unseen n-gram fraction for n=4,5,6 (x-axis) for CoPoet, TinyStories, and MacGyver. We compare OLMo-7B Base with OLMo-7B Instruct, sampling output at temperature 1.0 (Section 3). We show that increasing sampling temperature from 0.5 to 2 for OLMo Base increases unseen n-gram fraction, with a cost to output quality (Section 4.1). Finally, we see the effects of different prompting methods—providing novel ICL examples (Section 4.2) on OLMo Base, and Asking for novelty and Denial Prompting on OLMo Instruct (Section 4.3).

Prompt	Base Example	Novelty, n=5	Novel ICL Example	Novelty n=5
Once upon a time, there was a little dog named Spot. Spot loved to play fetch with his owner, Timmy. One day, Timmy gave Spot a bone to chew on. Spot was so happy and started to chew on it. But the bone was too tough for Spot's little teeth. He couldn't break it. Spot went back to Timmy and said, "Timmy, bone too tough. Can't chew." Timmy replied, "Oh no, Spot. You need to drink some water to	wash it down. Then try again." Spot's tongue was so dry, but he tried to drink some water and chew the bone. It still was too hard, so he went back to Timmy and said, "Still too tough." Again, Timmy replied, "Oh no, Spot. If you chew on that bone, you'll break a tooth or hurt your jaw. Try this instead." He handed Spot a carrot. Spot had never eaten a carrot in his whole little life. But this time, he didn't care. He broke the carrot into pieces and ate one of the little pieces. Then he chewed on another piece. It almost broke his tooth, so Timmy reminded him to stop. Finally, Spot broke the carrot into a small bit. Timmy took the carrot away and gave Spot back the bone. He chewed on it and finally finished it. Spot learned a very important lesson that day. He would never eat a bone that was too tough again. He knew the carrot was safer to eat.	0.65	clean your teeth. Let me bring you some water." Timmy brought Spot some water to drink then went back to play fetch with him again. From that day on, even though Spot is still too young, he started to drink water more so they can play together. The moral of the story is that it's okay to ask for help when you need it.	0.38
Once upon a time, there was a little girl named Lily. Lily had a big yard where she liked to play. One day, Lily found a sharp knife in the yard. She picked it up and started playing with it, but she didn't know it was dangerous. Her mom saw her and got	erned that she was playing with the knife. She took Lily to a doctor where they told her she needed surgery on her finger. This surgery was very dangerous. Luckily, Lilly survived the surgery and her finger healed. After the surgery, Lily never touched a knife. She always stayed safe. The End.	0.71	really mad. She said, "I told you not to play with those types of toys." She put the knife away. This little girl learned an important lesson that day: you should always be careful when playing.	0.31

Table 11: Negative examples of Novel ICL examples

	Prompt	Instruct	Novelty, n=5	Instruct Ask	Novelty n=5
	Write a poetic sentence about 'heart' and ending in 'dove'	She gave her heart and got a dove.	0.38	Oh, how the heart is like a delicate, *feathered doveWhispering its secrets, so sweet and lowve,As it carries dreams and longings far and *wide.	0.81
	Write a poetic sentence that ends in a word which rhymes with 'grenades'	A gunman, he, who could shoot down a bird.	0.31	When love is lost, *grenade"s explode,Scattering heartbreaks, leaving scars behind."	0.41
	You need to create a new pathway in your garden to make it easier to reach your flower beds. Tools available to you include a pile of old newspapers, a roll of masking tape, a hair dryer, a stapler, a bag of clothespins, an empty paint can, a can of shaving cream, and a fishing net, an old toothbrush, a jar of tomato sauce, a roll of aluminum foil, and a handful of bubble wrap. However, the garden ground is too wet, making the newspapers soggy instantly and unable to stay in place. How to create a new pathway using only these items?	Step1: Place the shaver cream in the empty paint can. step2: Spread it evenly and stick a sheet of aluminum foil on top to avoid contamination. step3: Take the old toothbrush and spread a layer of the shaving cream on the ground, following the shape of where the pathway will be on both sides. strp5: Place the newspapers over the shave cream layer when it's still wet, and then let them dry. chr>Step5: Once dry and set, remove the shaving cream with a scraper or the edge of a hard item like a paint can to ensure the path is not slippery.	0.43	To create a new pathway in your garden, you need to make the path less wet and create an area for the path to be put in place. Here's how to do it:**Step 1: Prepare the Garden Area* Lay an even layer of aluminum foil on the ground, covering the area where the path will sit. Step 2: Apply Bubble Wrap* Using the bubble wrap, create an even raised layer on top of the aluminum foil. Step 3: Create a Tray* Take an empty paint can, and position it onto the foil-wrapped surface, with its side facing upward, similar to creating a tray. Step 4: Staple Newspaper* Lay a single layer of old newspapers on top of the paint can tray in a dense enough manner to provide a stable base for your path. + Staple any newspaper edges securely to the aluminum foil border using the stapler you have available, to prevent the newspaper from unravelling. Step 5: Place the Toothbrushes along path edges as edge indicators* Using the toothbrushes, push one slightly into the newspaper path, leaving the brush handles facing upwards. * Ensuring the toothbrushes are on either side of the path along its edges. Step 6: Cover path edges* Using the shaving cream roll, apply a layer of shaving	0.63
	Molly was a little girl who loved to run in her red shoes. She often ran around	shoes when the bandage was off. Molly was glad that her mommy loved her so much and that she was okay. She hugged her mommy tightly and started	0.25	*Molly lay in her mommy's lap, feeling sad that her favorite shoes were not	0.45
	in circles and made silly noises. One day, when Molly was running around,			helping her feel better. The bandage made her think of her toy stethoscope,	
	she stepped wrong and hurt her heel. She started to cry and screamed loudly.	to run around with less silly noises. Molly knew that next time she would		which she used to examine her stuffed animals.*Molly's mommy suggested	
	Molly's mommy came running and scooped her up in her arms. She found	be more careful and take better care of her running shoes.		taking a break from the red shoes and trying some other shoes to see if they	
	a bandage to wrap around Molly's heel and made her a promise that she would buy her new red	_		felt better. She helped Molly try on white sneakers with stars on the sides	
				and then a pair of big, blue rain boots	
				with bright yellow laces. Molly felt a little better trying the different shoes,	
				but when her mommy suggested a pair	
				of black high heels, Molly began to giggle. "Hey, let's try running in these,"	
				her mommy said, pulling the heels on in a comical performance, including a	
			little jig in the end. They both laughed,		
			and before they knew it, Molly's spirits rose back up. With tears dried on her		
			cheeks and laughter in her heart, Molly		
				ran back to her shoes, a newfound appreciation and understanding of how	
			the little red shoes were the best ones		
			after all.		

Table 12: Positive Examples of Instruct Asking

Prompt	Instruct	Novelty, n=5	Instruct Ask	Novelty n=5
Write a poetic sentence that ends in a word which rhymes with 'bristling'	Her love a gentle touch upon a face bristling.	0.45	A wild **tangling**rose appeared, its **blistling** thorns.Note: Blistling is a made-up word, but it serves as an example to demonstrate a novel and creative replacement for bristling.	0.18
Write a poetic sentence that contains the word 'heart' and ending in 'heart'	The sun sets on my old, new heart.	0.69	**Beautiful hearts dance with the melody from a gentle breeze. *	0.29
Once upon a time there was a man and his wife who liked to take naps together. One day the man was feeling tired, so he lay down and closed his eyes. His wife had other plans though, and she said she was not tired. The man got angry, and he told her to go and find something else to do. So the wife decided to leave the house. She walked down the street,	and found a big tree with a comfy seat underneath it. The wife sat down and began to nap. She slept so soundly that she didn't wake up when her husband returned. The husband was very surprised to see his wife slepping in the tree seat. He went over to her and tapped her on the shoulder. His wife woke up and laughed. "I'm too sleepy to get up," she laughed. "I'm sleeping here tonight!" The man smiled, and he put his arms around his wife, and shared the seat with her. From then on, the man and his wife took naps together, always in the comfy tree seat.	0.46	*The wife walked down the street thinking of what she could do. She saw a library and decided to go in. The librarian was kind and helped her find books on gardening. The woman was delighted to have an hour to herself where she could read, relax, and enjoy a peaceful moment. She was amazed when her husband came back to the house, wanting to know what had happened.*	0.15
You have dropped your only pocket knife into a deep, narrow crevice and can't reach it with your hands. Tools available to you include a pair of glasses, a stick, a water bottle cap, a fishing hook, a length of paracord, duct tape, a plastic bag, a headlamp, and a metal mug. The crevice is very narrow and winding so that the hook and paracord cannot maneuver easily. How do you retrieve the pocket knife?	Step1: Use the headlamp to ensure bright lighting within the crevice. <a <br="" [[(https:="" and="" back.="" backside.="" broomstick="" chair's="" coat="" corner="" goes="" hanger="" hanger,="" hook="" href="https://doi.org/10.25/10.25/25/25/25/25/25/25/25/25/25/25/25/25/2</td><td>0.68</td><td>*I would like you to answer this prompt based on the provided tips and tools. Here are the tips and tools provided: You have dropped your only pocket knife into a deep, narrow crevice and can't reach it with your hands. Tools available to you include a pair of glasses, a stick, a water bottle cap, a fishing hook, a length of paracord, duct tape, a plastic bag, a headlamp, and a metal mug. The crevice is very narrow and winding so that the hook and paracord cannot maneuver easily. How do you retrieve the pocket knife?The tools are:- A pair of glasses- A stick- A water bottle cap-A fishing hook- A length of paracord-Duct tape- A plastic bag- A headlamp-A metal mug.Please use the tips provided to form the answer. Thanks.</td><td>0.16</td></tr><tr><td>The smoke detector in your hotel room is constantly beeping due to low battery and disturbing your sleep. Tools available: a coat hanger, a shoe, a rubber band, a pair of tongs, a damp towel, a chair, a broomstick. The detector is set quite high on the ceiling. How do you silence the smoke detector using these items?</td><td>the pocket knife. Step1: Take the damp towel and place it over the smoke detector.
 Vise the chair to lean the broomstick against the wall, just under the smoke detector.
 detector.
 Step3: Gently remove the shoe from one of your feet.
 Carefully unwrap the rubber band around the end of the coat hanger and carefully attach the shoe.
 Step5: Using the tongs, lift the hanger handle and slide it along the broomstick to the ceiling.
 Step6: Use the shoe as a counterbalance on the hanger to weigh it down, so it will not swing back and forth when lifted.
 Step7: Carefully use the tongs to place the hanger and shoe onto the smoke detector button and wait for the sound to subside.</td><td>0.65</td><td>To silence the smoke detector, first, we need to access it from the ceiling. Here's our plan to achieve this using the provided tools: 1. Use the rubber band to tie the shoe laces tight, holding the shoe in one hand and the coat hanger in the other.
 > Place the shoe under the chair by the hotel room's entrance. Move the chair aside to access the detector. 3. To reach the detector, place the broomstick or the tongs at the back of the chair, as shown in figure 1.
 > " i.imgur.com="" lift="" make="" of="" or="" over="" sure="" the="" tongs="" under="" up="" using="" ygb4fuy.png)4.=""> > 5. Gently pull the broomstick/tongs up and over the chair by the hook at the front end to avoid bumping into the wall. Place the extended end of the broomstick or the tongs under the smoke detector's edge,	0.29		

Table 13: Negative Examples of Instruct Asking

Prompt	Instruct	Novelty,	Denial Prompt	Novelty,
Write a poetic sentence that includes	en, as the curb continue its circle,The	n=5 0.33	At every roadside, let thoughts unfold,	n=5 0.52
the word 'curb' and ending in 'continue'	weary horse in his slumber.	0.55	Glean secrets from the curb they adore; Each stone a hint, each pattern made To guide the traveler on without delay.	0.32
Write a poetic sentence about 'eyes' and ending in 'depths'	That ocean in his eyes I drown in.	0.35	Their eyes, an omen of the soul, Dreamy depths of infinite story, Where beauty's secrets dwell, Suffused with life's enchanting glow, Like stars that twinkle in the dusk, Where secrets, secrets, they unfold.	0.69
named Lily. She loved to help her mom with laundry. They would sort the clothes and put them in the washing machine. Lily knew that clean clothes were important and had value. One day, Lily's mom asked her to help fold the laundry. But Lily was feeling hungry and wanted to eat something spicy. She went to the kitchen and found some spicy chips. She ate them	and felt the burst of flavor go down her throat. But after a few chips, she realized that she shouldn't have eaten them. The spicy taste didn't go away, and it bothered her while she was trying to fold the clothes. She knew that she had made a mistake, but she also knew that she could fix it. She washed her mouth with water, and then returned to the laundry. Lily worked even harder to fold the clothes, because she didn't want to eat something that would upset her. From that day on, Lily learned that sometimes it's best not to eat while doing something else, especially if it distracts her from her tasks.	0.41	With a mouth full of spicy chips and a smile on her face, Lily said, "Let me show you my secret for folding these socks!" Lily's mom, feeling grateful for the assistance, nodded in excitement. After folding a stack of matching socks together, Lily quickly snapped a photo with her phone to share it with her friends. When Lily's mom saw her daughter's happy face in the photo, she knew their family bonding time was complete. Lily finished folding the laundry, savoring her favorite spicy chips to the very last bite.	0.75
coat hanger, an electric drill with a variety of drill bits, and a bottle of adhesive that unfortunately dried out a while ago, making it non-sticky and unsuitable for holding up any weight.	Step1: Slide the metal coat hanger's hook up the wall's uneven gap to place it around a hidden wooden stud inside the wall. the wall. for Step2: With the aid of masking tape, stick the picture frame back against the coat hanger from the wall and adjust its orientation to align it evenly. stry Step3: Hold the picture frame level, using the spirit level for reference, as you connect the picture frame's back to the wall using the electric drill bit. securely fastened to the hidden stud and the wall, the TV mount can be connected and aligned to the picture frame's back.	0.46	Here is a description of the picture frame back, masking tape, spirit level for understanding purposes:- Picture frame back: a back portion/element of a picture frame where a photo or artwork can be placed. It is generally made of a durable and stable material, such as metal or wood Masking tape: a type of adhesive tape with a removable or reusable adhesive designed to be easy to position and remove without damaging the surface it is applied on Spirit level: a tool used to determine if a surface is level or vertical.Please answer the question and show how the tools mentioned will be combined and used to ensure that the TV mount installation process is done accurately.Here is my attempt at a solution:Firstly, I will straighten the metal coat hanger and flatten its ends. Then, I will wrap it around the picture frame back and secure it by twisting the ends tightly. To do this, I will place the coated side of the masking tape around the coat hanger and wrap it tightly. This allows for a strong support for the hanger.	0.21
weeds is gradually taking over your beautiful flower bed. The weeds have grown so cleverly intertwined with the vibrant roses that you can't distinguish between the two. You lack a hoe, but you have a wide, sturdy broom, a box of slow-release fertilizer that is well past its expiry date, a precision screwdriver, a wooden rake with uneven tines, a pair of sharp, modern kitchen shears, and a small, round-tipped spade. How do you deal with this?	Step1: Carefully use your sharp kitchen shears to cut the intertwined weed stems and rose stems at the soil line as much as possible, leaving your roses intact. - br>Step2: Rake the remaining weed and rose stems out of the flower bed to remove the debris. - br>Step3: The wood rake with the uneven tines can then be used to break apart any remaining clumps of weeds in the soil. - br>Step4: Finally, use the wooden rake to spread the slow-release fertilizer equally throughout the flower bed. - br>In the process of spreading the fertilizer your hands will also touch and remove some of the tangled weeds that were left by the shears (Step1).	0.56	Since the weeds have entangled with roses so deeply, the first step is to separate them delicately without damaging the roses. I would use the wooden rake with uneven tines and the precision screwdriver. I will dig around the flowerbed's border to prevent any damage to the roses. Once separated, I find it essential to loosen the soil around the base of the weeds with the precision screwdriver to make it easier to remove them by the roots. Finally, I will create a gentle comb-like movement using the wooden rake with uneven tines, combing through the flowerbed and separating any remaining weed fragments from the roses. *MacGyver your approach on how to handle the aggressive weeds without standard tools like a hoe, cardboard disposal, physical barriers, manual removal by rake, spade, or use of expired fertilizer.*	0.32

Table 14: Examples for Denial Prompting

Prompt	Generate a poetic sentence about 'doubt'			
	*The air, thick with doubt, turns to a whisper, As if it, too, *doubted* life's endless treasure.			
Iteration 1	But then a glimmer of *certainty*, as bright, As the *sun* on *ice*, assures hearts in a fight.			
	Against the doubts that *weigh* souls down, it *stands*, A *symbol* of steadfast *belief*, a light in the dark.*			
Concept List	Doubt contrasted with certainty, using the metaphor of light in the dark.			
Iteration 2	There's a feeling, lurking in the night, as shadows dance on either side. that creeping doubt, how it can sway, uncertainty's dance a dangerous way.			
Heration 2	Each doubt, like a shadow, grows, And I cannot let it rule my flow. Doubt can be overcome; it's true; Just as the sun, the shadows shall subdue.			
Concept List	Doubt contrasted with certainty, using the metaphor of light in the dark.			
Updated	The concept of doubt as a shadow that can be overcome, ending with the idea of certainty or assurance.			
	To shake off the mist of doubt, I gazed upon the endless night above,			
Iteration 2	And like a beacon, my hope shone bright and sure.			
	For in the dim-lit chamber of my soul, my thoughts would wander and grow cold,			
	But the embers of my faith, would slowly spark, and my doubts, I'd throw.			
	In the darkness of my mind, fear and disbelief would take up their abode,			

Table 15: Example of Denial Prompting on CoPoet (Section 4.3) with corresponding concept list updated. The prompts for each iteration are provided in Appendix E.3 and the prompts from eliciting concepts are provided in Appendix E.4.