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Figure 1: Examples of CT image slices (the first row), the ground truth pathology masks (the second
row) and the anomaly maps predicted by our fully self-supervised Screener model (the third row).

ABSTRACT

Accurate detection of all pathological findings in 3D medical images remains a
significant challenge, as supervised models are limited to detecting only the few
pathology classes annotated in existing datasets. To address this, we frame pathol-
ogy detection as an unsupervised visual anomaly segmentation (UVAS) problem,
leveraging the inherent rarity of pathological patterns compared to healthy ones.
We enhance the existing density-based UVAS framework with two key innova-
tions: (1) dense self-supervised learning for feature extraction, eliminating the
need for supervised pretraining, and (2) learned, masking-invariant dense features
as conditioning variables, replacing hand-crafted positional encodings. Trained on
over 30,000 unlabeled 3D CT volumes, our fully self-supervised model, Screener,
outperforms existing UVAS methods on four large-scale test datasets comprising
1,820 scans with diverse pathologies. Furthermore, in a low-shot supervised fine-
tuning setting, Screener surpasses existing self-supervised pretraining methods,
establishing it as a state-of-the-art foundation for pathology segmentation. The
code and pretrained models will be made publicly available.

1 INTRODUCTION

Accurate identification, localization, and classification of all pathological findings in 3D medical
images remain a significant challenge in medical computer vision. While supervised models have
shown promise, their utility is limited by the scarcity of labeled datasets, which often contain annota-
tions for only a few pathologies. For example, Figure[T|shows 2D slices of 3D computed tomography
(CT) images (first row) from public datasets providing annotations of lung cancer, pneumonia, kid-
ney tumors, or liver tumors, while annotations of other pathologies, e.g., pneumothorax, are missing.
This restricts supervised models to narrow, task-specific applications.
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However, unlabeled CT datasets are abundant but often remain unused. Leveraging these datasets,
we aim to develop an unsupervised model capable of distinguishing pathological regions from nor-
mal ones. Our core assumption is that pathological patterns are statistically rarer than healthy pat-
terns in CT images. This frames pathology segmentation as an unsupervised visual anomaly seg-
mentation (UVAS) problem.

Although existing UVAS methods have been extensively explored for natural images, their adapta-
tion to medical imaging is challenging. One obstacle is that uncurated CT datasets include many
patients with pathologies, and there is no automatic way to filter them out to ensure a training set
composed entirely of normal (healthy) images — a common requirement for synthetic-based (Zavr-
tanik et al., [2021; Marimont & Tarronil 2023) and reconstruction-based (Baur et al., 2021} [Schlegl
et al.,|2019) UVAS methods. Density-based approaches (Gudovskiy et al.} 2022; Zhou et al., [2024)
are better suited, as they model image patterns probabilistically and assume abnormal patterns are
rare rather than absent. To model the density of image patterns, existing methods encode them into
feature maps using an ImageNet-pretrained encoder. Therefore, their performance on medical im-
ages degrades due to a domain shift. Supervised medical encoders like STU-Net (Huang et al.| 2023))
might seem viable, but our experiments show they also underperform, likely because their features
are too specific and lack discriminative information for pathology segmentation.

To address these challenges, we propose using dense self-supervised learning (SSL) (O. Pinheiro
et al.l 2020) to pretrain more discriminative feature maps of CT images and employ them in the
density-based UVAS framework. Thus, our model learns the distribution of dense SSL embeddings
and assigns high anomaly scores to image regions where embeddings fall into low-density regions.

Inspired by dense SSL, we also generalize the idea of conditioning in density-based UVAS methods.
Existing works (Gudovskiy et al., [2022; |Zhou et al., |2024) use hand-crafted conditioning variables
such as pixel-wise sinusoidal positional embeddings. We replace them by learned pixel-wise contex-
tual embeddings capturing global characteristics of individual image regions, e.g. their anatomical
position, patient’s age, etc. At the same time, we eliminate local information about presence of
pathologies from the learned conditioning variables by enforcing their invariance to image masking.

We train our model, Screener, on 30,000 unlabeled CT volumes and evaluate it on 1,820 scans in
two settings. First, as a fully unsupervised model, it achieves remarkable results (Figure[I)), signifi-
cantly outperforming existing UVAS methods. Second, after fine-tuning for downstream pathology
segmentation tasks, Screener rivals other state-of-the-art pretrained models.

Our key contributions are four-fold:

* Dense self-supervised features for density-based UVAS. We demonstrate that dense self-
supervised representations can be successfully used and even preferred over supervised fea-
ture extractors in density-based UVAS methods. This enables a novel fully self-supervised
UVAS framework for domains with limited labeled data.

* Learned conditioning variables. We propose novel self-supervised conditioning variables
for density-based UVAS, simplifying the conditional distributions and enabling a simple
Gaussian density model to perform on par with normalizing flows.

* State-of-the-art UVAS results in CT. This work presents the first large-scale evaluation
of UVAS methods for CT images, showing state-of-the-art performance on unsupervised
semantic segmentation of pathologies in diverse anatomical regions, including lung cancer,
pneumonia, liver and kidney tumors.

* State-of-the-art pretraining for pathology segmentation. We introduce a novel pretrain-
ing method that distills Screener into a UNet, enabling supervised fine-tuning and matching
the performance of state-of-the-art self-supervised pretraining methods.

2 BACKGROUND & NOTATION

2.1 DENSITY-BASED UVAS

The core idea of density-based UVAS methods is to assign high anomaly scores to image regions
containing statistically rare patterns. To implement this idea, they involve two models, which we
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call a descriptor model and a density model. The descriptor model encodes image patterns into
vector representations, while the density model learns their distribution and assigns anomaly scores.

The descriptor model fyse is usually a pretrained fully-convolutional neural network. For a 3D
image x € R¥>*WxS it produces feature maps y € Rhxwxsxd* consisting of vectors y[p] €
R, which we call descriptors of positionsp € P ={1,...,h} x {1,...,w} x {1,...,s}.

The density model ggaens (y) estimates the descriptors’ marginal density gy (y) (here, Y denotes the
descriptor of a random position in a random image). For an abnormal pattern at position p, the
descriptor y([p] is expected to lie in a low-density region, resulting in a low ggens (y[p]). Conversely,
normal patterns correspond to high density values. During inference, the negative log-density values,
— log ggeens (y[p]), are used as anomaly segmentation scores.

This framework can be extended with a conditioning mechanism. For each position p, an auxiliary

variable c[p] € R called a condition, is introduced. Instead of modeling the marginal density
qy (y), the conditional density gy |c(y | c) is learned for each condition ¢, where (Y, C) represents
the descriptor and condition at a random position in a random image. At inference, the negative
log-conditional densities, — log ggens (¥[p] | c[p]), serve as anomaly scores. State-of-the-art meth-
ods (Gudovskiy et al., [2022; Zhou et al., |2024)) follow this conditional framework using sinusoidal
positional encodings as conditions.

2.2 DENSE JOINT EMBEDDING SSL

Joint embedding SSL models learn meaningful image embeddings by generating positive pairs —
augmented views of the same image (e.g., random crops). They optimize embeddings to capture
mutual information between views, making them both discriminative (distinguishing images) and
augmentation-invariant (predictable across views). Contrastive methods, e.g., SImCLR (Chen et al.,
2020), explicitly push apart embeddings of different images, while non-contrastive methods, e.g.,
VICReg (Bardes et al.| [2021)), avoid embeddings’ collapse through regularization. Details on Sim-
CLR and VICReg are in the Appendix [B]

Dense SSL methods extend this idea to learn image feature maps consisting of pixel-wise embed-
dings that encode information about different spatial positions in the image. To this end, they define
positive pairs at the pixel level: two embeddings are positive if they correspond to the same absolute
position in the original image, but are predicted from different augmented crops (see the upper part
of Figure [2] for illustration). Thus, dense SSL enforces feature maps to be equivariant w.r.t. crops,
while encouraging dissimilarity between embeddings from different positions. DenseCL (Wang
et al., 2021) and VADER (O. Pinheiro et al., [2020) use contrastive losses, while VICRegL (Bardes
et al.| 2022)) adopts a VICReg objective.

3 METHOD

Novelty statement. Our method, illustrated in Figure[2} enhances the density-based UVAS frame-
work with two key innovations. First, instead of relying on generic backbones, we pretrain our
descriptor model via dense SSL which enables domain-specific, high-resolution, customizable and
more discriminative descriptors (Section [3.I). Second, we introduce novel masking-invariant con-
ditioning variables, also learned via dense SSL (Section [3.2), and largely simplifying further con-
ditional density modeling (Section [3.3). Beyond these contributions, we distill the overall UVAS
inference pipeline to a single UNet architecture, which makes it suitable for further supervised fine-
tuning. This allows us to reinterpret our framework as a novel self-supervised pretraining method.

3.1 DESCRIPTOR MODEL

The success of our method relies on high-quality descriptors that are discriminative of pathology yet
robust to irrelevant normal variations. Dense SSL provides a principled way to achieve this balance:
voxel-level objectives encourage spatial discrimination, while augmentation invariance eliminates
low-level details, leading to a smoother, more semantically structured embedding space in which
similar normal patterns map to high-density areas.
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Figure 2: Illustration of Screener. First, we pretrain a descriptor model to produce discriminative
feature maps, equivariant w.r.t. image crops and rescaling and invariant w.r.t. color jitter. Second,
we train a condition model in the same way as the descriptor model, but also enforcing invariance
to image masking. Third, a density model learns the conditional distribution py | (ylc) of feature
vectors Y = y[p] and C' = c¢[p] extracted by the descriptor and condition models from random
image at random position p. To obtain anomaly maps we apply the density model in a pixel-wise
manner, which can be efficiently implemented using 1 x 1 x 1 convolutions.

Our descriptor model design follows domain-driven, minimalistic principles, differing from the prior
dense SSL literature (Wang et al 2021}, [Bardes et all, [2022). We adopt a UNet-like architecture,
which has proven a strong dense feature extractor in 3D medical imaging. Full resolution output
enables precise localization of small pathologies. Each training batch includes embeddings from
nearby voxels, forcing distinction of even spatially adjacent locations. We omit auxiliary global
objectives or multi-scale feature pyramids — our approach is simple and principled, relying solely
on dense self-supervision at full resolution.

The training process is illustrated in the upper part of Figure |2} From a random CT volume x, we
extract two overlapping, randomly sized 3D crops, resize them to H x W x S, and apply augmen-
tations such as color jitter. The augmented crops, denoted x() and x(?), are passed through the
descriptor model to produce feature maps y") and y(®). From the overlapping region of the two
crops, we randomly select n positions. For each position p, we compute its coordinates p(*) and
p? relative to the augmented views, and extract descriptors 1) =y [p()] and y? = y[p()].
These descriptors form a positive pair, as they correspond to the same position in the original vol-
ume but are predicted from different augmentations. Repeating this process for m different seed
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CT volumes yields a batch of N = n - m positive pairs, denoted {(yl(l),ny)) N . These em-

beddings are then optimized using standard dense SSL objectives, such as InfoNCE (Chen et al.,
2020) or VICReg (Bardes et al., 2021)), described in Appendix [Bl We refer to the resulting models
as DenselnfoNCE and DenseVICReg, respectively.

3.2 CONDITION MODEL

In medical imaging, the statistical plausibility of a local pattern often depends on its broader context,
such as anatomical location or patient characteristics. This motivates modeling the conditional dis-
tribution of descriptors, given relevant contextual variables. Conditioning offers two key advantages:
it simplifies density estimation, as conditional distributions are usually less complex than marginal,
and it may lead to more semantically meaningful anomalies, defined as deviations from what is ex-
pected in a specific context. For example, a pattern normal in one anatomical region or patient group
(e.g., a calcification in an elderly lung) might be abnormal in another (e.g., a calcification in breast).

Conditioning variables can be global (e.g., patient metadata like age or sex) or voxel-wise, en-
abling region-specific conditioning. General-domain UVAS methods (Gudovskiy et al.,2022; |Zhou
et al.l 2024)) utilize sinusoidal positional encodings of absolute spatial coordinates relative to the
image origin. However, since medical scans may not be anatomically aligned, vanilla positional
encodings lack consistent anatomical or patient-specific relevance. Anatomical Positional Embed-
dings (APE) (Goncharov et al.| 2024)) offer an alternative by encoding pixels’ anatomical locations
(though previously used for retrieval, not UVAS conditioning). However, it is domain-specific and
may not capture all patient-level or fine-grained contextual nuances.

To address the aforementioned limitations, we propose a domain-agnostic self-supervised method
for learning conditions. Our key idea is to train a condition model gg.na to predict voxel-wise
embeddings that are consistent across different masked image views. For instance, as illustrated in
Figure[2] the model learns to predict the same condition embedding for a location even if a pathology
is visible in one masked view but not another. Consequently, the learned condition feature maps
become invariant to the presence / absence of anomalies. At the same time, we encourage intra-
subject, i.e. spatial, and inter-subject discriminativeness and expect feature maps to capture voxel-
level features such as anatomical location and tissue type, and patient-level characteristics such as
age or sex, which are robustly inferable from the global image structure. We empirically probe
pathology-related ignorance and anatomical awareness of our condition model in Appendix |D| The
architecture and training procedure for the condition model ggens are exactly the same as those for
the descriptor model, with the sole difference: random masking as an additional augmentation.

3.3 DENSITY MODEL

The conditional density model ggens (y | ¢) can be viewed as a predictive model, which tries to
predict descriptors based on the corresponding conditions. In this interpretation, anomaly scores
{—1og ggens (y[p] | c[p])}pep are position-wise prediction errors. Also note, that marginal density
model ggans () is a special case of conditional model with a constant condition c[p] = const.

During training, we sample a batch of m random crops, {xi}g’ll, each of size H x W x S, from
different CT images. For each crop, the pretrained descriptor and condition models produce the de-
scriptor maps, {y; }/,, and condition maps, {c;}*,, and negative log-likelihood loss is optimized:

min ’1| B2 2~ logape(yilpl | cilp)

)
dens i=1 pcP

At inference, we divide an input CT image into M overlapping patches, {x;}*,, each of size
H x W x S. For each patch, we apply the descriptor, condition, and density models to compute the
anomaly map, {— log ggees (y:[p] | €i[p]) }pe p. These patch-wise anomaly maps are then aggregated
into a single anomaly map aligned with the entire input volume. During aggregation, we average the
predictions in patches’ overlapping regions.

We explore two parameterizations for the density model ggens (y | ¢): Gaussian, as a straightforward
baseline, and normalizing flows, similar to|Gudovskiy et al.|(2022); Zhou et al.| (2024)), as an expres-
sive generative model enabling tractable density estimation. These parameterizations and the details
of their implementation in the context of UVAS framework are further described in Appendix [E}



Under review as a conference paper at ICLR 2026

3.4 DISTILLATION AND SUPERVISED FINE-TUNING

Although unsupervised Screener shows impressive results, supervised fine-tuning is the most prac-
tical way to further improve its performance. The density-based UVAS pipeline, consisting of three
separate models, is not amenable to end-to-end optimization. To enable fine-tuning, we distill the
knowledge from the pretrained Screener into a single UNet architecture. This step can be viewed as
a novel self-supervised pretraining method for pathology segmentation tasks.

During distillation, we sample random image crops, pass them through the pretrained modular
Screener to obtain ground truth anomaly score maps (negative log-density values). We then train
a regression UNet model (last conv has one output channel without activation) to predict these score
maps directly from the input image crops using a simple MSE loss. For supervised fine-tuning on
binary segmentation tasks, we randomly reinitialize the UNet’s last conv layer and append a sig-
moid activation. Then we fine-tune the model on task-specific labeled data using a combination of
voxel-wise binary cross-entropy and Dice losses.

4 EXPERIMENTS

Our experiments can be divided into three main parts:

* Unsupervised setting. We show that our unsupervised Screener significantly outperforms
other UVAS methods on real-word medical CT datasets (Section 4. 1)).

* Fine-tuning setting. We demonstrate that Screener can serve as a state-of-the-art self-
supervised pretraining method. To this end, we fine-tune the distilled Screener (as de-
scribed in Section for pathology segmentation tasks and compare it with supervised
model trained from scratch, as well as other fine-tuned pretrained models (Section @])

* Ablation study. We explore how different choices of descriptor, condition and density
models in our method affect the UVAS results (Section [.3)).

Datasets. We train Screener and other unsupervised models on three CT datasets: NLST (Team)
2011), AMOS (Ji et al.| [2022)), and AbdomenAtlas (Qu et al., |2024). These large-scale datasets
include diverse patients with potential pathologies, but their annotations are not available for data
filtering or training. For evaluation we use four datasets: LIDC (Armato III et al., [2011), MIDRC-
RICORD-1a (Tsai1 et al., 2020), KiTS (Heller et al., 2019) and LiTS (Bilic et al., 2023)). These
datasets provide annotation masks only for certain pathologies. Any other pathologies present in
these datasets are not labeled. Summary table about the datasets is provided in Appendix [F

4.1 UNSUPERVISED SETTING

Evaluation protocol. We compare Screener with baseline UVAS models using voxel-level AU-
ROC and Dice score. The segmentation threshold is selected to maximize Dice score on a subset
of 10 pathological cases, and then kept fixed for the entire test set. Note that Dice scores are sig-
nificantly underestimated due to incomplete ground truth masks: while UVAS models aim to detect
all anomalies, the datasets provide annotations only for specific target pathologies. Detections cor-
responding to other unlabeled pathologies (see Figure [I|and Appendix [A]) are therefore mistakenly
counted as false positives. Voxel-level AUROC is a standard UVAS metric because its estimation
is more robust to the ground truth incompleteness issue. We estimate AUROC across all dataset
voxels by sampling 1000 pathological voxels (contributing to true positive rate) and 1000 out-of-
mask “normal” voxels (for false positive rate) per test image. The sampled “normal” voxels are
overwhelmingly normal, ensuring accurate AUROC estimation despite incomplete annotations.

Results. Quantitative results are presented in Table |1} Qualitative results are shown in Figure
Screener significantly outperforms the UVAS baselines. Autoencoder, f-AnoGAN and Patched
Diffusion Model tend to overfit to pathologies in the training data, and fail to reconstruct fine-
grained normal details (see also Appendix[[). Synthetics-based DRAEM and MOOD-Topl struggle
to generalize to the appearance of real medical pathologies. The density-based MSFlow, relying on
ImageNet-pretrained features, proves ineffective at discriminating pathologies from normal regions
in CT images.
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Table 1: Comparison of Screener and the existing UVAS methods in unsupervised setting.

Model Voxel-level AUROC Dice scor
LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS
Autoencoder (Baur et al.|[2021) 0.71 0.65 0.66 0.68 0.00+0.00 0.09+0.07 0.014+0.02 0.01+0.01
f-AnoGAN (Schlegl et al.|[2019) 0.82 0.66 0.67 0.67 0.00£0.00 0.09+0.07 0.014+0.02 0.01+0.01
Patched Diffusion Model (Behrendt et al.|[2024)  0.87 0.76 0.76  0.80  0.01+0.03 0.14 +0.08 0.02 +0.03 0.02 +0.04
DRAEM (Zavrtanik et al.|/[2021) 0.63 0.72 082 083 0.00£0.00 0.11+0.08 0.03+0.06 0.0240.04
MOOD-TopI (Marimont & Tarroni|[2023) 0.79 0.79 0.77  0.80  0.00=+0.01 0.13+£0.10  0.02+£0.07  0.06 £+ 0.12
MSFlow (Zhou et al.[[2024) 0.71 0.67 0.63 0.63  0.00=+0.01 0.08+£0.06  0.01+£0.01 0.00 £ 0.01
Screener (ours) 0.96 0.87 0.90 0.93 0.05+0.13 0.30+£0.18 0.06+0.09 0.10+0.12
Patched

Input image Autoencoder F-AnoGAN  Diffusion Model DRAEM MOOD-Top1 MSFlow Screener (ours)  Ground truth

Figure 3: Qualitative comparison of anomaly maps produced by baseline UVAS methods and un-
supervised Screener. First column contains CT slices, columns 2 to 7 are the baseline methods’
predictions, column 8 is the Screener’s prediction. Last column depicts the ground truth mask.

4.2 FINE-TUNING SETTING

Evaluation protocol. We fine-tune and test pretrained models on the evaluation datasets via 3-fold
cross-validation. For each training fold, we use only 25 labeled cases, to amplify pretraining benefits
and to conserve computational resources. Full-data fine-tuning results can be found in Appendix [J]
We assess the models using Dice score. We use a Wilcoxon signed-rank test to compare all the
fine-tuned models with the nnUNet (Isensee et al., [2021)) trained from scratch.

Results. Results in Table [2] demonstrate that Screener-based pretraining consistently improves
downstream segmentation performance across all test datasets in low-data fine-tuning setup, with
significant gains on LIDC (a 1.5-fold Dice increase) and LiTS. Screener is competitive with super-
vised pretraining (Huang et al., 2023)) and state-of-the-art self-supervised VoCo (Wu et al., [2024),
and outperform other SSL models (Zhou et al., 2021 [Tang et al., 2022; [Valanarasu et al., |2023).
However, when fine-tuned on full datasets, Screener does not yield any gains compared to train-
ing from scratch (see Appendix [J), which is consistent with the broader observation that many SSL
methods provide their strongest advantages when training data are scarce.

4.3 ABLATION STUDY

Table [3] presents the ablation study of our proposed condition model. We compare our condition
model with two baselines: vanilla sinusoidal positional encodings and APE (Goncharov et al.||2024),
detailed in Appendix |Cl We evaluate condition models in combination with the fixed DenseVICReg
descriptor model and two different density models — Gaussian and normalizing flow — described
in Appendix [E] When we use expressive normalizing flow density model, all conditioning strategies
yield results comparable to each other and to the unconditional model. However, in experiments
with simple Gaussian density models, we see that the results significantly improve as the condition-

"Note that Dice scores are often underestimated in the unsupervised setting, as ground truth masks cover
only certain target pathologies, while UVAS models intentionally detect all pathologies. Many true positives
are thus mistakenly counted as false positives (see Figure [I] and Appendix E]for examples).
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Table 2: Dice scores of Screener and other self-supervised pretrained models after fine-tuning.
We highlight statistically significant improvements (green) or declines (red) relative to nnUNet
trained from random initialization. Note that Grounding DINO (Liu et al., 2023) and LVM-
Med (MH Nguyen et al.| [2023) operate on 2D slices without access to full 3D image context, and
therefore show inferior performance to other baselines which use 3D convolutions or 3D attention.

Model LIDC MIDRC KiTS LiTS
nnUNet (random init.) (Isensee et al.|[2021} 0.21 0.61 0.41 0.45
nnUNet (supervised pretrain.) (Huang et al.|[2023}  0.29 1 40% (p < 0.01) 0.621 2% (p=0.51) 0.46 7 10% (p < 0.01 0.48 1 7% (p < 0.01)

Grounding DINO (Liu et al.||2023)
LVM-Med (MH Nguyen et al.[2023}

Model Genesis (Zhou et al.

120271}

SwinUNETR (Tang et al.[|2022}
DAE (Valanarasu et al.[[2023)

VoCo (Wu et al.||2024)
MAE (Wald et al.|[2025)
DenseVICReg

Screener (ours)

0.09 1 54% (p < 0.01)

0.04 | 80% (p < 0.01)
0.2111% (p = 0.76)
0.16 | 24% (p < 0.01)
0.15 | 26% (p < 0.01)
0.20 | 2% (p = 0.79)
0.24 1 18% (p < 0.01)
0.221 7% (p = 0.15)

0.58 1 5% (p < 0.01)

0.55 | 8% (p < 0.01)
0.59 | 2% (p = 0.05)
0.55 | 9% (p < 0.01)
0.58 | 4% (p < 0.01)
0.61 1 1% (p = 0.89)
0.62 1 3% (p = 0.01)
0.58 | 4% (p < 0.01)

( )
0.19 4 55% (p < 0.01)
0.16 | 62% (p < 0.01)
0.34 | 18% (p < 0.01)
0.19 | 53% (p < 0.01)
0.26 | 38% (p < 0.01)
0.49 7 17% (p < 0.01)
0.35 1 17% (p = 0.04)
0.31 | 26% (p < 0.01)

0.33 1 26% (p < 0.01)

(

0.33 ] 26% (p < 0.01)
0.39 | 12% (p = 0.01)
0.39 | 13% (p < 0.01)
0.36 | 20% (p < 0.01)
0.49 7 10% (p < 0.01)
0.49 1 10% (p < 0.01)
0.44 | 2% (p = 0.92)

0.48 7 7%

77

0.311 49% (p < 0.01) 0.621 3% (p = 0.45)  0.43 1 4% (p = 0.17) (p < 0.01)

ing variables becomes more informative. Remarkably, our proposed masking-invariant condition
model allows Gaussian model to achieve very strong anomaly segmentation results competing with
complex flow-based models.

Table 3: Ablation study of the effect of conditional model for gaussian and flow-based density
models. None in Condition model column means that results are given for a marginal model.

Descriptor model Condition model ~ Density model Voxel-level AUROC Dice score
LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

DenseVICReg, d%* = 32 None Gaussian 0.81 0.81 0.61 0.71 0.00 + 0.00 0.174+0.13 0.00 £ 0.01 0.00 +£0.01
—_—n— Sin-cos pos. —_—— 0.82 0.80 0.74  0.77  0.00 £ 0.00 0.14£0.11 0.01 +£0.02 0.01 £0.02

"n— APE " 0.88 0.80 0.78 0.86  0.00+0.03 0.14 £0.10 0.01+£0.01 0.01 £0.03
[rp— Masking-invariant " 0.96 0.84 0.87 0.90 0.04+0.08 0.214+0.13 0.03+0.05 0.13+0.19

—_—n— None Norm. flow 0.96 0.89 0.88 093 0.05+£0.12 0.31+£0.18 0.04£0.06 0.09 £0.12

"n— Sin-cos pos. " 0.96 0.89 0.90 0.94 0.05+0.13 0.30+0.18 0.06£0.09 0.10+0.12

[rp— APE " 0.96 0.88 0.89 0.94 0.0440.11 0.28+0.18 0.05+0.08 0.09£0.13
—_—n— Masking-invariant _—— 0.96 0.87 0.90 093 0.05+0.13 0.28+0.18 0.07+0.11 0.10+0.13

We also ablate different choices of descriptor model in Table ] We compare DenseInfoNCE and
DenseVICReg and conclude that dense VICReg objective works slightly better. We also compare
two DenseVICReg models with different descriptors’ dimensionality ¢ = 32 or d%¢° = 128 and
conclude that increasing dimensionality does not improve the results. To demonstrate the superior-
ity of our domain-specific self-supervised descriptor model over supervised feature extractors, we
compare them it with ImageNet-pretrained ResNet50 (Zhou et al.,|2024) and STU-Net (Huang et al.,
2023)) — a UNet pretrained in a supervised manner on anatomical structure segmentation tasks.

Table 4: Ablation study of the effect of descriptor model. In these experiments we do not use con-
ditioning and use normalizing flow as a marginal density model. We include MSFlow (Zhou et al.,
2024) to demonstrate that ImageNet-pretrained descriptor model is inappropriate for 3D medical CT
images.

Descriptor model Condition model ~ Density model Voxel-level AUROC Dice score
LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS
ImageNet Sin-cos pos. MSFlow 0.70 0.66 0.64 0.64 0.00%0.01 0.08 & 0.06 0.01£0.01 0.00 & 0.01
STU-Net (Huang et al.{[2023) None Norm. flow 0.52 0.44 0.52  0.64  0.0040.00 0.02 £ 0.03 0.01£0.02 0.0140.01
DenselnfoNCE, d**° = 32 None Norm. flow 0.96 0.87 0.87 091  0.04+0.11 0.28+0.18  0.04+0.06 0.05+0.09
DenseVICReg, d'**° = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.05+0.12 0.314+0.18 0.04+0.06 0.09+0.12
DenseVICReg, i = 128 None Norm. flow 0.96 0.90 0.87 0.93 0.04+£0.09 0.31+0.18 0.03+0.06 0.08 £ 0.12

5 RELATED WORK

Reconstruction-based UVAS. Reconstruction-based methods train a generative model to recon-
struct the original image from its compressed representation (Baur et al.,|2021};|Schlegl et al., 2019)
or from its corrupted, e.g., noised (Behrendt et al., [2024)), version. If training set is anomaly-free
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these models struggle to reconstruct anomalies in the test set and absolute differences between the
original and reconstructed pixel values can be used as anomaly maps. However, when training
dataset contains real anomalies, reconstruction-based models can learn to reconstruct anomalies as
well as normal regions, diminishing their ability to differentiate. Another limitation is that measur-
ing reconstruction errors in raw pixel space can be problematic: some abnormal pixels can acciden-
taly have small reconstruction errors, while some normal fine-grained details, which are inherently
difficult to reconstruct precisely, might yield high reconstruction errors.

Synthetics-based UVAS. These methods rely on generating synthetic image anomalies and train-
ing a supervised model to segment them. Anomalies can be simulated by corrupting random image
regions with noise, replacing them with random patterns from a specialized set (Zavrtanik et al.|
2021)), or using parts of other training images (Marimont & Tarroni, [2023). While these models are
straightforward to implement and train, they overfit to synthetic anomalies and struggle to generalize
effectively to real-world anomalies.

Density-based UVAS. We explain the idea of density-based UVAS in Section Some meth-
ods (Roth et al.,|2022) use non-parametric density models based on memory banks. More scalable
flow-based methods (Yu et al.| 2021} |(Gudovskiy et al., 2022} |Zhou et al.| 2024)), leverage normaliz-
ing flows. In our experiments, we included MSFlow (Zhou et al., 2024), as it was among the top-5
performing methods on MVTecAD (Bergmann et al.l 2021)) at the time.

Medical UVAS. Recognized methods are either reconstruction-based (Baur et al.l [2021}; [Schlegl
et al., [2019; Pinaya et al. 2022} Behrendt et al.| [2024) or synthetics-based (Marimont & Tarroni,
2023). f-AnoGAN (Schlegl et al.,|2019) trains generator g and discriminator d, to generate anomaly-
free images « ~ g¢(z) from latent variables 2. Then, it trains encoder f to map anomaly-free
images x to the latent space, s.t. they can be reconstructed via frozen generator & = g(f(z)) ~
z. Patched Diffusion Model (Behrendt et al., [2024) cuts out image patches and trains a diffusion
model to reconstruct them based on the surrounding context. At inference, an image is split into a
grid of patches and Diffusion model reconstructs each patch from its noised version based on the
remaining clean patches. MOOD-Top1 (Marimont & Tarroni, |2023) is a straightforward synthetics-
based method showing top-1 performance on MOOD (Zimmerer et al.|, [2022).

Medical self-supervised pretraining. Methods like Model Genesis (Zhou et al 2021 and Swi-
nUNETR (Tang et al.,[2022) utilize combinations of contrastive learning, masked image modeling,
and various pretext tasks re-implemented for 3D CT volumes. DAE (Valanarasu et al.| [2023) pre-
train a model to reconstruct original images from their disrupted versions created by local mask-
ing across channel embeddings and low-level perturbations like noise and downsampling. Volume
Contrast (VoCo) (Wu et al., 2024)) employs a contrastive approach to implicitly encode contextual
position priors, treating different image regions as distinct ’classes” and predicting which region a
random sub-volume belongs to by contrasting its representation against base crops. To our knowl-
edge, Screener is the first work to propose and demonstrate the effectiveness of using unsupervised
anomaly segmentation as a pretraining strategy for downstream pathology segmentation tasks.

6 CONCLUSION

Our work addresses the critical challenge of detecting all pathological findings in 3D CT images,
a task hindered by limited labeled data. Assuming the inherent rarity of pathological patterns,
we frame this as a UVAS problem. We propose Screener, a novel density-based UVAS frame-
work with dense SSL, ensuring discriminative and robust domain-specific descriptors, and learned,
masking-invariant conditioning variables that simplify density modeling. Evaluated on four large-
scale datasets, the fully unsupervised Screener achieved state-of-the-art performance, effectively
localizing diverse pathologies. Furthermore, when distilled and fine-tuned, Screener demonstrated
strong performance on supervised segmentation tasks, establishing its value as a novel pretraining
method. Screener represents a significant step towards comprehensive and scalable pathology de-
tection, serving as a powerful unsupervised screening tool and a robust foundation for supervised
applications.
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Limitations & future work. Despite its promising performance, Screener has several limitations
that warrant future investigation. Its reliance on the rarity assumption may lead to false negative
errors for common or widespread pathologies, while statistical anomalies that lack clinical sig-
nificance, e.g. artifacts, could result in false positives (though we analyze robustness to artifacts,
low-dose and contrast agent in Appendix [H). Comprehensive evaluation of UVAS methods remains
challenging due to the lack of ground truth annotations for all potential pathologies. Currently val-
idated on CT, the generalizability of our approach to other medical imaging modalities requires
further exploration. Future work will also explore scaling laws to investigate how performance
scales with model size and training data, potentially unlocking further improvements.
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A DICE SCORES UNDERESTIMATION IN UNSUPERVISED SETTING

B SELF-SUPERVISED LEARNING

InfoNCE. As in SimCLR (Chen et al|(2020), batch of positive pairs {(1/1 )y )) i 1 is passed

through a trainable MLP-projector ggm; and L2-normalized: zl( ) = gom (yl ) /| ggero (yl )|| € R4,

where k= 1,2 and i = 1,..., N. Then, the objective is to maximize similarity in positive pairs
while minimizing similarity in negative pairs. To this end, InfoNCE loss is written as:

N (2)

Z Z —log — exp(( )/T) 0 ) (1)

i=1 ke{1,2} exp((z; (2)>/T) +Zy¢z Ele{l 2} exp((z; * g z;")/7)

VICReg. VICReg objective consists of three terms:
mein - £inv + ﬁ .oy + - L0V (2)

The first term enforces embeddings to be invariant to augmentations:
| X
inv 1 2
L = ~N.D Z ||Z§ )~ Zz( 2. (3)
i=1
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Calcified nodule surrounded by lung opacity Pleural effusion unnanotated
Ground truth mask contains only nodule annotation in the ground truth mask but
Screener’s prediction include both nodule and opacity detected by Screener

Tumor unnanotated in the Consolidation unnanotated

ground truth mask but in the ground truth mask
detected by Screener but detected by Screener

Figure 4: Examples of Screener’s true positive predictions (third row) counted as “’false positives”
due to incompleteness of the ground truth masks (second row), leading to Dice score underestima-
tion.

The second term ensures that individual embeddings’ dimensions have a least unit variance:

D
1
LY = Z ) Z max (0, 1- C,;(f? + 5) . “4)

ke{1,2} = =1

The third term encourages different embeddings’ dimensions to be uncorrelated, increasing the total
information content of the embeddings:

o= 3" %Z (C,{’j.))2 . )

ke{1,2}  i#j

In VICReg, embeddings {zl(k)} are not L2-normalized and obtained through a trainable MLP-
expander which increases the dimensionality up to 8192.

C BASELINE CONDITION MODELS

Sin-cos positional encodings. The existing density-based UVAS methods |Gudovskiy et al.
(2022); Zhou et al.| (2024) for natural images use standard sin-cos positional encodings for con-
ditioning. We also employ them as an option for condition model in our framework. However, let
us clarify what we mean by sin-cos positional embeddings in CT images. Note that we never apply
descriptor, condition or density models to the whole CT images due to memory constraints. Instead,
at all the training stages and at the inference stage of our framework we always apply them to image
crops of size H x W x S, as described in Sections[3.1]and [3.3] When we say that we apply sin-cos
positional embeddings condition model to an image crop, we mean that compute sin-cos encodings
of absolute positions of its pixels w.r.t. to the whole CT image.

13
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Anatomical positional embeddings. To implement the idea of learning the conditional distri-
bution of image patterns at each certain anatomical region, we need a condition model producing
conditions c[p] that encode which anatomical region is present in the image at every position p.
Supervised model for organs’ semantic segmentation would be an ideal condition model for this
purpose. However, to our best knowledge, there is no supervised models that are able to segment
all organs in CT images. That is why, we decided to try the self-supervised APE
(2024) model which produces continuous embeddings of anatomical position of CT image pixels.

D DESCRIPTOR AND CONDITION MODELS PROBING ANALYSIS

Our intuition — introduced in Section 3] and empirically validated in Table 3] — is that an effective
conditioning variables should exclude information about presence / absence of pathologies, while
capturing as much contextual information as possible (e.g., anatomical region, tissue type, patient-
level characteristics etc.). This combination simplifies conditional density modeling and sharpens
anomaly detection.

To make this intuition explicit, we conducted an additional probing experiment comparing the
amount of pathology-related information retained by the descriptor model versus the condition
model. We trained a lightweight segmentation head on top of frozen descriptor vs. condition em-
beddings and evaluated Dice scores on four pathology segmentation tasks. As seen in Table 3} our
condition model probing yields substantially lower Dice scores (p-value < 107! for all datasets).
For lung cancer and liver tumors, scores are essentially zero, confirming that pathology-specific in-
formation is effectively removed. For pneumonia and kidney tumors, non-zero Dice arises largely
because these pathologies occupy substantial portions of the corresponding organs; the segmentation
head tends to predict the whole organ, producing non-zero Dice scores.

Table 5: Probing of frozen descriptor model (DenseVICReg) and condition model (masking-
invariant Dense VICReg) feature maps on supervised pathology segmentation tasks (results are Dice
scores).

Model LIDC MIDRC KiTS LiTS

Descriptor model probe 0.19 +£0.23 0.40+0.19 0.17+0.18 0.254+0.23
Condition model probe ~ 0.00+0.00 0.27+0.16 0.06£0.10  0.01 £0.03

To demonstrate that our condition model indeed captures anatomical information better than base-
lines, we also probe it on liver segmentation task on LiTS. As seen in Table [f] condition model
embeddings separate liver vs. non-liver voxels substantially better than APE and sinusoidal posi-
tional encodings.

Table 6: Probing of our masking-invariant condition model vs. APE vs. sin-cos positional embed-
dings on supervised liver segmentation task (results are Dice scores).

Model LiTS (liver)
Condition model probe 0.82+0.14
APE probe 0.62+0.13

Sin-cos pos. embed. probe  0.36 +0.14

E DENSITY MODELS

Below, we describe simple Gaussian density model and more expressive learnable Normalizing Flow
model.

Gaussian marginal density model is written as
1

1
—log goun(y) = 5(y — 1) £} (y — ) + 5 log det T + const, ©)
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where the trainable parameters #9" are mean vector y and diagonal covariance matrix Y.

Conditional Gaussian density model is written as

1 _ 1
—log ggeens (y | €) = i(y—u@dm(c))T (Bgaens (¢)) 1 (y—ﬂgdcns(c))+§ log det Xgaens (¢) +const, (7)

where f1gans and Ygaens are MLP nets which take condition ¢ € RT™ as input and predict a condi-

tional mean vector figens (c) € R and a vector of conditional variances which is used to construct
the diagonal covariance matrix Ygaen (¢) € R xd™,

As described in Section[3.3] at both training and inference stages, we need to obtain dense negative
log-density maps. Dense prediction by MLP nets figens (¢) and Xgaens(¢) can be implemented using
convolutional layers with kernel size 1 x 1 x 1. In practice, we increase this kernel size to 3 x 3 x 3,
which can be equivalently formulated as conditioning on locally aggregated conditions.

Normalizing flow model of descriptors’ marginal distribution is written as:

foaens (y)
2 O fguen (y)
I det "

—log -+ const, (8)

1
~ log ppen (9) = 5 fpon 1)

where neural net fp must be invertible and has a tractable Jacobian determinant.

Conditional normalizing flow model of descriptors’ conditional distribution is given by:

1 0 faens (y, C
oy | ) = 5l 3 0)* = og et LD conr, ©)

where neural net fy: R % RE™ 5 R must be invertible w.r.t. the first argument, and the
second term should be tractable.

We construct fy by stacking Glow layers |Kingma & Dhariwal| (2018)): act-norms, invertible linear
transforms and affine coupling layers. Note that at both training and inference stages we apply fy

to descriptor maps y € Rixwxsxd™ i o pixel-wise manner to obtain dense negative log-density
maps. In conditional model, we apply conditioning in affine coupling layers similar to |Gudovskiy
et al.| (2022) and also in each act-norm layer by predicting maps of rescaling parameters based on
condition maps.

F DATASETS

We utilized several publicly available datasets for training and evaluation summarized in Table
For training, we used the NLST [Team!/ (2011)), AMOS lJi et al.| (2022, and AbdomenAtlas|Qu et al.
(2024) datasets. NLST data access is controlled by the National Cancer Institute Data Access Com-
mittee and is available for research use. AMOS is released under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). AbdomenAtlas is li-
censed under CC BY-NC-SA 4.0 and intended for academic, research, and educational purposes.
For evaluation, we used the LIDC-IDRI (LIDC) |Armato III et al.| (2011), MIDRC-RICORD-1a
(MIDRC) [Tsai et al.| (2020), KiTS [Heller et al.| (2019), and LiTS Bilic et al.|(2023) datasets. LIDC-
IDRI is available through The Cancer Imaging Archive (TCIA) and is typically used under terms
permitting research and education. MIDRC-RICORD-1a is also available through TCIA under sim-
ilar terms, permitting non-commercial use for research and education. The KiTS dataset (version
2021) is available under a CC BY-NC-SA 4.0 license, primarily for non-commercial research and
educational purposes. The LiTS dataset is available for research purposes, often under a Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
4.0) or similar terms, as specified by its organizers. We have used all datasets in accordance with
their specified licenses and terms of use.

G IMPLEMENTATION DETAILS

For our Screener model, we preprocess CT volumes by cropping them to dense foreground vox-
els (thresholded by —500HU), resizing to 1.5 x 1.5 x 2.25 mm? voxel spacing, clipping intensi-
ties to [—1000, 300]HU and rescaling them to [0, 1] range. As an important final step we apply
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Table 7: Summary information on the datasets that we use for training and testing of all models.

Dataset # 3D images Annotated
pathology
NLST (Teaml 2011) 25,652 —
AMOS (J1 et al.| [2022]) 2,123 -
AbdomenAtlas (Qu et al., 2024) 4,607 —
LIDC (Armato III et al., 2011]) 1,017 lung cancer
MIDRC (Tsai1 et al., [2020) 115 pneumonia
KiTS (Heller et al.l [2019) 298 kidney tumors
LiTS (Bilic et al., [2023) 117 liver tumors

CLAHE Pizer et al.| (1987). CLAHE ensures that color jitter augmentations preserve information
about presence of pathologies during descriptor model training (otherwise, the quality of our method
degrades largely).

We train both the descriptor model and the condition model for 300k batches of m = 8§ pairs of
overlapping patches with NV = 8192 positive pairs of voxels. The training takes about 3 days on
a single NVIDIA RTX H100-80GB GPU. We use AdamW optimizer, warm-up learning rate from
0.0 to 0.0003 during first 10K batches, and then reduce it to zero till the end of the training. Weight
decay is set to 10~% and gradient clipping to 1.0 norm. Patch size is set to H x W x .S = 96 x 96 x 64.

During density model training, we apply average pooling operations with the 3 x 3 x 2 stride to
feature maps produced by the descriptor model and the condition model, following|Gudovskiy et al.
(2022); Zhou et al.| (2024). Thus h x w X s = 32 x 32 x 32. We inject Gaussian noise with
0.1 standard deviation both to the descriptors and conditions in order to stabilize the training. We
train the density model for 500k batches each containing m = 4 patches. This training stage again
takes about 3 days on a single NVIDIA RTX H100-80GB GPU. We use the same optimizer and the
learning rate scheduler as for the descriptor and condition models.

The modular Screener model has 133M parameters, patch-based inference for a whole CT volume on
NVIDIA RTX H100 GPU requires 4 Gb of GPU memory and takes about 5-10 seconds depending
on the number of slices. The distilled Screener has 350M parameters, its patch-based inference
requires 5 Gb of GPU memory and takes 0.5-1.0 seconds. We did not observe any difference in
quality metrics for the distilled model compared to the modular model.
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H ROBUSTNESS ANALYSIS

Voxel-level ROC curves for low dose CTs vs. high dose CTs Voxel-level ROC curves for contrast CTs vs. non-contrast CTs

1.0 1.0

0.6 0.6
o o |
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= | =
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0.2 0.2
—— low dose CT (AUC = 0.944) —— contrast CT (AUC = 0.964)
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Figure 5: Comparison of Screener’s voxel-level AUROCSs on high-dose vs. low-dose and on contrast
vs. non-contrast images from LIDC dataset.

|
-50 -40 -30 -20 -10 0

Figure 6: Examples of Screener performance on low-dose CT and artifacts. First row: Screener
successfully segments lung cancer in low-dose CT. Second row: Screener assigns high anomaly
scores to artifact.
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I ANALYSIS OF RECONSTRUCTION-BASED MODELS

Autoencoder f-AnoGAN

Reconstruction Errors Reconstruction Errors

Inputimage

Figure 7: Reconstructions and anomaly maps predicted by Autoencoder (2021) (second
and third columns) and f-AnoGAN [Schlegl et al.| (2019) (last two columns). Autoencoder overfits to

reconstruct pathologies and thus fails to detect them. Also Autoencoder produces blurry generations,
leading to inaccurate reconstructions and high anomaly scores on fine details (e.g., vessels in the
lungs). f-AnoGAN avoids generating pathologies, but the reconstruction quality still is insufficient,
resuling in false positive errors. GANs are known to be unstable and sensitive to hyperparameters,
necessitating careful tuning and experimentation to achieve optimal results.

Patched Diffusion Model after 1 training epoch Patched Diffusion Model after 7 training epochs

Input image Reconstruction Errors Reconstruction Errors

Figure 8: Reconstructions and anomaly maps predicted by Patched Diffusion Model [Behrendt et al.
(2024) at different epochs. Note that at the beggining of the training (after 1 epoch) it reconstructs
healthy regions better than pathologies. However, after 7 epochs, it begins to reconstruct pathologies
as well.
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J  FULL-DATA FINE-TUNING

In the fine-tuning experiments (Table 2] Section [.2)), in order to amplify the effect of pretraining
we trained all the models on random data subsets consisting of 25 labeled images. Here, in Table
we also provide the results of fine-tuning on full training datasets. As anticipated, the benefits of
pretraining become substantially smaller. Noticeably, only supervised pretraining, VoCo
(2024), and MAE|[Wald et al.| (2025) show statistically significant improvements on some datasets. In
contrast, Screener-based pretraining does not yield gains when abundant labeled data are available.

Table 8: Full-data fine-tuning results for Screener and other self-supervised pretrained models. We
highlight statistically significant improvements (green) or declines (red) relative to nnUNet trained
from random initialization.

Model LIDC MIDRC KiTS LiTS
nnUNet (random init.) 1Isensee et al.] 2021 I 0.56 0.64 0.78 0.59

nnUNet (supervised pretrain.) 0.58 14% (p=0.11) 0.6512% (p=0.12)  0.8012% (p < 0.01)  0.6271 4% (p = 0.06)
Grounding DINO m 0.43 1 23% (p < 0.01)  0.6213% (p<0.01)  0.63]19% (p < 0.01) 0.49 | 18% (p < 0.01)
LVM-Med (MH Nguyen et al] 0.41125% (p < 0.01)  0.6145% (p < 0.01)  0.62)21% (p <0.01) 0.50 | 15% (p < 0.01)
Model Genesis ‘mllﬂﬂ 0.5712% (p < 0.01)  0.6212% (p<0.01) 0.7514% (p <0.01)  0.53 | 10% (p < 0.01)
SWmUNETR ‘M 0.52 1 6% (p < 0.01) 0.61 4% (p <0.01)  0.70 ) 10% (p < 0.01) 0.50 | 16% (p < 0.01)
DAE 0.54 3% (p=0.08)  0.63,2% (p<0.01) 0.7514% (p <0.01)  0.54 | 9% (p < 0.01)
VoCo \hm@gj 0.5713% (p=0.01)  0.6470% (p=0.93) 0.7912% (p=0.05)  0.60 1% (p = 0. 37)
MAE (Wald et al.|2025] 0.55 1 2% (p = 0.21)  0.661 3% (p < 0.01) 0.821 5% (p < 0.01) 0.5971 0% (p = 0.68)
DenseVICReg 0.56 1 0% (p = 0.83)  0.6312% (p<0.01) 0.7711% (p=0.06)  0.58 | 3% (p = 0.19)
Screener (ours) 0.551 0% (p = 0.31) 0.651 1% (p=0.46)  0.76 | 2% (p < 0.01)  0.58 | 2% (p = 0.22)
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