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ABSTRACT

Unsupervised Neural Machine Translation or UNMT has received great attention
in recent years. Though tremendous empirical improvements have been achieved,
there still lacks theory-oriented investigation and thus some fundamental questions
like why certain training protocol can work or not under what circumstances have
not yet been well understood. This paper attempts to provide theoretical insights
for the above questions. Specifically, following the methodology of comparative
study, we leverage two perspectives, i) marginal likelihood maximization and ii)
mutual information from information theory, to understand the different learning
effects from the standard training protocol and its variants. Our detailed analyses
reveal several critical conditions for the successful training of UNMT.

1 INTRODUCTION

Unsupervised Neural Machine Translation or UNMT have grown from its infancy (Artetxe et al.,
2018; Lample et al., 2018a) to close-to-supervised performance recently on some translation scenar-
ios (Lample & Conneau, 2019; Song et al., 2019). Early UNMT works (Artetxe et al., 2017; Lample
et al., 2018a; Yang et al., 2018) adopt complex training strategies including model initialization, syn-
thetic parallel data for warming up the model, adversarial loss for making encoder universal, differ-
ent weight sharing mechanisms etc. Then Lample et al. (2018b) simplifies all these and establishes
a two-components framework, involving an initialization strategy followed by iterative training on
two tasks, i.e. denoising auto-encoding with the DAE loss and online back-translation with the
BT loss. Works afterwards mainly focus on developing better initialization strategies (Lample &
Conneau, 2019; Ren et al., 2019; Song et al., 2019; Liu et al., 2020). Although obtaining impressive
performance, it is unclear why this standard training protocol is possible to be successful. Kim et al.
(2020) and Marchisio et al. (2020) consider the standard training as a black-box and empirically
analyze its success or failure regarding different data settings (i.e. text domains and language pairs).
Unfortunately, due to the lack of theoretical guidelines, some fundamental questions are still re-
mained unknown: what standard training tries to minimize under the general unsupervised training
paradigm (Ghahramani, 2004) and when a certain training protocol can work for training UNMT? In
this paper, we attempt to open the back-box training of UNMT and understand its theoretical essence
from two angles: i) a marginal likelihood maximization view; and ii) an information-theoretic view
by ablating standard training protocol with other variants. Our contributions are as follows.

A. By making an analogy of standard training protocol with marginal likelihood or Evidence Lower
BOund (ELBO) optimization, we visualize the learning curves of the two terms in ELBO objective,
and found that optimizing ELBO is not sufficient for training a successful UNMT model, indicating
that specific regularization design i.e. the DAE loss, quite matters.

B. By leveraging information theory, we present a formal definition on what does it mean to success-
fully train an UNMT model, and then readily derive a sufficient condition and a necessary condition
for successfully training UNMT in principle. In addition, we validate both sufficient and necessary
conditions through empirical experiments, and find that both conditions indeed explain why standard
training protocol works while others suffer from degeneration to learning sub-optimal tasks.

C. Based on explanations for those failed protocols, we continue experiments to settle the role played
by DAE and BT. Firstly, BT is the main task while DAE is a critical auxiliary. Then we clarify that
DAE has more important role than just learning word order, accepted as common knowledge in
almost all previous works, but also preserving the mutual information between encoder input and
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encoder output, which is necessary for successful training. Furthermore, DAE also functions as a
behavior regularizer for decoding with online BT, and prevents BT from yielding degenerated data.

2 UNDERSTANDING UNMT FROM TWO PERSPECTIVES

In this section, we first introduce background about the standard training protocol proposed in Lam-
ple et al. (2018b), which is adopted by almost all later works. Then we introduce the basic concept of
two perspectives on which we rely for analyzing the learning of different training protocol variants.
Due to the space limit, please refer to appendix A.1 for a timely literature review of recent advance.

2.1 STANDARD TRAINING PROTOCOL

The standard training protocol involves standard initialization strategy and standard iterative train-
ing procedure, and they both are built upon a specific design of encoder-decoder parameterization.

Parameterization and initialization UNMT model adopts a shared embedding matrix for a shared
vocabulary with joint BPE (Sennrich et al., 2016), and the two languages share the same encoder and
decoder with only a language embedding for distinguishing the input from different languages. As a
result, unconstrained decoding might generate tokens from the same language as the input. Standard
initialization means using fastTEXT (Bojanowski et al., 2017) to initialize the embedding matrix,
denoted as JointEmb. XLM (Lample & Conneau, 2019) uses a trained encoder to initialize both
encoder and decoder of the UNMT model. We also consider random initialization for completeness.

Iterative training strategy The iterative training strategy involves optimization of two critical losses
by turns, i.e. the DAE loss and the BT loss as defined in Eq. 1 and Eq. 2, where s and t denote the
two languages. DAE loss is constructed through sampling a monolingual sentence x (or y), construct
its noisy version C(x) (C(y)) and minimize the reconstruction error or RecErr:

Ldae = − log ps→s(x|C(x)) + [− log pt→t(y|C(y))], (1)

BT loss is constructed through sampling a monolingual sentence x (or y), construct its corresponding
translation via the current modelM(x) (M(y)) through back-translation and minimize the RecErr:

Lbt = Eŷ∼M(x)[− log pt→s(x|ŷ)] + Ex̂∼M(y)[− log ps→t(y|x̂)], (2)

The online BT process involved in the iterative training strategy can be seen as Co-Training (Blum
& Mitchell, 1998), where two models (with shared weights) constructed on two views (source/target
sentence) generate pseudo labels as the other view (pseudo translation) for training the correspond-
ing dual model. We summarize the whole standard training protocol in Algorithm 1 in appendix A.2.

Constrained decoding Besides the basics, we further introduce the concept of constrained decoding
where the model should be constrained to decode tokens only in the target language regardless of the
shared embedding parameterization. This could give us a simple definition of cross-lingual RecErr
beyond naive RecErr in Eq. 2. Details of the algorithm and the definition are shown in appendix A.3.

2.2 A MARGINAL MAXIMIZATION VIEW

The standard training of UNMT model takes advantage of sole monolingual corpora Ds, Dt, which
is similar to the generative modeling setting where only unlabeled data is available (Ghahramani,
2004). Here we take an analogy of the standard UNMT training as implicitly maximizing marginal of
the monolingual data. Due to the duality of translation (He et al., 2016), the target sentence not only
plays the role of label, but also the input in reverse translation direction. So in essence the standard
UNMT training can be seen as maximizing the marginal log likelihood ofDs andDt simultaneously.
However, since marginals involve infinite summation over a certain view (target/source), a lower
bound is often optimized via Monte Carlo approximation (Kingma & Welling, 2014).

In the following derivation of ELBO (Kingma & Welling, 2019), qφ(y|x) is the posterior distribution
of y when taking y as the latent variable. Here we only derive the bound for x ∈ Ds. A detailed
analogy of the standard UNMT objective and the ELBO objective is presented in Table 1. As you
can see, both objectives have the same reconstruction error terms but different regularization terms:
for ELBO, the model is optimized to stay close with the language model via the KL loss.
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Table 1: An anology of the standard UNMT objective and the negative ELBO objective. Note that
both objectives have the reconstruction term; since in VAE training KL divergence is often referred
to as regularization (Prokhorov et al., 2019), so we call DAE loss the regularization term as well.

reconstruction error regularization term
standard UNMT −Eŷ∼M(x) log pt→s(x|ŷ) − log ps→s(x|C(x))
negative ELBO −Eqφ(y|x) log pθ(x|y) DKL(qφ(y|x)||pθ(y))

log pθ(x) ≥ Eqφ(y|x)
[
log pθ(x|y)

]
−DKL(qφ(y|x)||pθ(y)) (ELBO) (3)

Worth noting that, we are not the first to make a connection between marginal maximization and
the standard UNMT training. In He et al. (2020), they have already proposed an ELBO formulation
for unsupervised sequence transduction task. However, they tend to focus on replacing the standard
UNMT-training-style objective function with the ELBO objective, and propose several critical tricks
such as Gumbel softmax and self-reconstruction for making ELBO really work. Instead, we leverage
ELBO mainly as an anology to the standard UNMT training objective, and through comparative
study with other protocol variants, we can further understand why standard objective and its variants
work or not, even though they all tend to have similar ELBO values. Details are in appendix A.4.

2.3 AN INFORMATION-THEORETIC VIEW

If we denote Y ′ =M(X) as the random variable (r.v.) generated by the modelM over X . There-
fore, if (Y ′, X) gradually contains more and more bilingual knowledge, the model will be able to
generate better translations, eventually leading to the success of UNMT training. Suppose c is a con-
stant predefined by users which controls the satisfactory level for translation performance, we give
a definition to formalize the success of UNMT training from an information-theoretic viewpoint.
Definition 2.1. If I(Y ′, X) > c after training, we say that UNMT training is successful; otherwise,
we say that UNMT training fails. (Caveat, c is concetual quantity, we never instantiate its value.)

Suppose p(x, y′) is the true distribution of 〈x, y′〉, and pt→s(x | y′) is an estimator of p(x | y′). We
obtain the following two conditions for success of training UNMT based on the above definition 2.1.
Proposition 1. (Sufficient condition) If Ep(x,y′) log pt→s(x|y′) ≥ c − H(X), then UNMT training
will be successful.

Proof. Based on Definition 2.1 and the definition of mutual information (MI) and Jensen’s inequal-
ity, we can derive the following inequality (Pimentel et al., 2020):

I(X,Y ′) = H(X)−H(X | Y ′) ≥
H(X)−Hpt→s

(X | Y ′) = H(X) + Ep(x,y′) log pt→s(x | y′) ≥ c (4)

Since the sufficient condition relies on true distribution p(x, y′) which is unknown in practice, we
sample (x, y′) from the empirical distribution ofX and ps→t(y′|x) as approximation. Then the ideal
sufficient condition is reduced to a practical one: If

∑
x Eps→t(y′|x) log pt→s(x|y′) ≥ c − H(X),

then UNMT training will be successful. Since MI is symmetric, we can also have similar formula
regarding s→ t direction with Ep(x′,y) log ps→t(y|x′) ≥ c−H(Y ). They together connect success
of training to the BT loss in Eq. 2: a lower BT loss is more likely to make UNMT training successful.

Furthermore, if we denote the encoder output as a r.v., Z = enc(X), we can obtain the following
necessary condition:
Proposition 2. (Necessary condition). If UNMT training is successful, then I(X,Z) ≥ c.

Proof. Following the Data Processing Inequality (Cover & Thomas, 1991), we have the following
inequality that holds all the time:

I(X,Z) ≥ I(X,Y ′) ≥ c, (5)
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with the Markov chain (or data processing order) X enc−−→ Z
dec−−→ Y ′.

In subsequent experiments, we follow Pimentel et al. (2020) and estimate I(X,Z) = H(X) −
H(X|Z) by calculating H(X) through a statistical 1-gram language model and H(X|Z) through
probing (Conneau et al., 2018) respectively. For estimating I(X,Y ′), we use the token-by-token
point-wise mutual information (PMI) over some pseudo bitext as a surrogate to the sentence-by-
sentence MI. The detailed estimation methods are presented in appendix A.5.

3 EXPERIMENT

Table 2: Variants of training protocol.

Protocol Loss used
standard DAE (Eq. 1) + BT (Eq. 2)
dae-only DAE (Eq. 1)
bt-only BT (Eq. 2)
elbo ELBO (Eq. 3)
elbo-dae ELBO (Eq. 3) + DAE (Eq. 1)

In this section, we conduct a series of carefully-designed
comparative studies of the standard UNMT training pro-
tocol and its variants as well as using the ELBO objective.
Different training protocols that we investigate and their
name abbreviations are listed in Table 2. The

::::::::
logic flow

of this section could be summarized as follows. i) Firstly,
we present the basic experimental settings, the overall per-
formance of carefully-designed ablations, and some high-
lighted observations from those results; ii) as promised
in Sec. 2.2, we visualize the learning curves of different

terms in negative ELBO with a conclusion that marginal maximization is only a necessary but
not sufficient condition for successfully learning translation; iii) we explain both quantitatively
and qualitatively why dae-only and bt-only that implicitly optimizes ELBO cannot work from an
information-theoretic perspective, and highlight the importance of task-specific regularization such
as the DAE loss; iv) we clarify the main and auxiliary relationship between BT and DAE loss, and
further investigate the critical regularization effects of DAE loss.

3.1 EXPERIMENTAL SETTINGS AND OVERALL PERFORMANCE

Dataset and Reproducibility We adopt the publically accessible WMT14 En-Fr and En-De datasets
for our experiments. We strictly follow the data pre-processing pipeline and instructions for training
in the official XLM code repoitory 1. The monolingual data for each language is set to about 5M
sentences from the newscrawl monolingual collection 2. Though we do not focus on improving over
state of the art, adding more monolingual data can indeed largely improve the final performance.
For XLM initialization, we download the pretrained models from the XLM repo; and for JointEmb
initialization, we use fastTEXT (Bojanowski et al., 2017) for learning the word embeddings on the
concatenated monolingual corpora for each language pair (about 10M).

Outline of Overall Performance Here in Table 3, we first report the overall performances with
the standard training protocol and two of its variants dae-only and bt-only under the three initial-
ization strategies (random, jointEmb, XLM); performances of optimizing elbo are also shown with
XLM initialization. There are several observations to be highlighted here. i) Only the standard and
the elbo-dae training protocols lead to decent performances, and the later requires using DAE loss
as well and it is necessary to set the coefficient of the KL regularization term lower than 0.05. ii)
Simply optimizing elbo leads to failure of training. iii) although dae-only seems to lead to very low
performance through largely copying the input, if we continue training with the BT loss alone, we
can surprisingly obtain similar (or sometimes even better) performance compared with standard
training protocol (the +BT loss row), though the initial performance is very low (about 2 BLEU
points), which indicating that it is not necessary that we have initial model with decent performance
to make Co-Training successful. iv) For bt-only, if we continue with standard training, the final
performance still struggles to reach that of standard; actually, for weak initialization methods (ran-
dom, JointEmb), the model could even hardly learn copy, and stay failure all the time. This may
imply that bt-only is learning poisoned inner representation. Actually, according to the information
inequality (5), bt-only will make I(X,Z) to be very low, that is the output of the encoder can hardly
identify the input sentence (Brunner et al., 2020), therefore data quality of Co-Training stays low all
the time. We will design an experiment to prove this in Sec. 3.4.2.

1https://github.com/facebookresearch/XLM
2Please refer to the ‘get-data-nmt.sh‘ script in the XLM repo for more details; we use the default setting.

4



Under review as a conference paper at ICLR 2021

Table 3: Performances (Papineni et al., 2002) of the standard training and its two variants dae-only
and bt-only under three initializations; together with elbo-related protocols with XLM initialization.

Protocol random init. JointEmb init. XLM init.
en-fr fr-en en-de de-en en-fr fr-en en-de de-en en-fr fr-en en-de de-en

standard 12.41 12.36 6.75 8.88 27.37 25.13 17.68 22.34 33.12 29.96 27.29 33.03
dae-only 1.39 1.35 2.68 2.75 2.20 2.19 2.74 2.79 2.32 2.31 3.40 9.61

+BT loss 11.19 10.71 7.79 9.66 26.75 24.96 18.93 23.31 33.14 29.88 26.67 32.87
bt-only 0.25 0. 0. 0.69 0.29 0. 0.15 0.73 0.18 0.19 0.18 0.55
+standard 0.13 0. 0. 0.59 0.16 0. 11.85 15.54 19.30 18.16 20.52 25.65

elbo - - - - - - - - 0. 0. 0. 0.
elbo-dae - - - - - - - - 32.67 29.81 - -

(a) (b) (c)

Figure 1: Negative ELBO learning curve visualization on WMT14 En-Fr validation set under stan-
dard training; each column represents (a) ELBO, (b) reconstruction error and (c) KL estimation.

3.2 VISUALIZING ELBO LEARNING CURVES

In this subsection, we set up to visualize the learning curves of ELBO, together with the two terms
in ELBO, i.e. reconstruction error and KL divergence. The actual ELBO values are negative, but
learning commonly means to minimize certain loss, so here we visualize the negative ELBO. The
lower the value is, the better the ELBO is being optimized. We first demonstrate the learning curves
of standard training, describe some observed phenomena, and then turn to visualize the curves
of other failure training protocols. Note that, since we use two samples (k=2) in the Monte Carlo
approximation, all the terms are twice the value as it should be.

Figure 1 (a) demonstrates the ELBO learning curves of the standard UNMT training under three
initialization strategies. The overall ELBO on the two monolingual datasets is the sum of En⇒Fr
and Fr⇒En directions. As you can see, across all initialization strategies, even though there is clear
mismatch between the standard UNMT objective and the ELBO objective over the regularization
term, we can conclude that standard training implicitly minimizes negative ELBO.

Figure 1 (b) is the visualization of the reconstruction error term within ELBO. It is self-evident that
for standard training, the reconstruction loss represents the cross-lingual translation ability of the
model, so in the original paper (Lample et al., 2018a) the reconstruction BLEU, which correlates
well with the reconstruction error, is used for model selection without given bitext development
set. Figure 1 (c) shows the visualization of the KL divergence term. It is interesting that for all
initialization strategies, the KL value first goes down and then goes up quite a bit till convergence.
This learning phenomenon can be summarized as: the standard training protocol tends to make the
model first fit to behave like language model of the two languages and then fit to translation model
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(a) (b) (c)

Figure 2: Negative ELBO learning curve visualization on WMT14 En-Fr validation set for all failure
variants comparing with the standard training protocol with XLM initialization.

in later stage. And the ’going-up’ reflects the existence of large distance between the distribution of
a language model p(y) and the translation model p(y|x), given same target y.

Next, we continue to visualize the ELBO curves of some failure variants of the training protocol. In
Figure 2, we draw all the ELBO learning curves for those training protocols presented in Table 2
that fail to train a well-performed model under XLM initialization. As you can see in Figure 2
(a), other than standard, before (30x50=) 1500 updates, all variants seem to reach similar ELBO
values. As the training goes on, dae-only and bt-only tend to have exactly the same ELBO value
with the standard training protocol. However, the reconstruction error of bt-only is much higher
than standard, while the KL divergence of dae-only is much higher than that of standard as well.
Both a low reconstruction error and a low KL distance are necessary for successful training. For
elbo-only, there is a quick posterior collapse phenomenon at initial training (before 1k updates) (in
Figure 2 (c) KL becomes very low), however, then the KL slowly goes up, which might be resulted
from the unstableness of ELBO optimization with REINFORCE (He et al., 2020). This indicates
that only requiring ELBO to be optimized as a whole is only the necessary but not the sufficient
condition of successful learning the target translation task.

3.3 WHY MINIMIZED ELBO CAN still LEAD TO TRAINING FAILURE?

An intuitive explanation is that unsupervised learning through marginal likelihood maximization
is under-determined. There are many plausible tasks like language modeling, paraphrasing, sim-
ple sequence copying, translation, that satisfy the inductive bias of the parameterization, and freely
learning with objectives like ELBO can make the model learn any of the plausible tasks if optimiza-
tion finally converges. And learning any one of them can induce minimized ELBO. So what tasks
on earth have dae-only and bt-only finally learned respectively? Table 7 in appendix demonstrates
the decoding behavior of the final models given certain source inputs. We can assume that dae-only
degenerates to the sequence copy task while bt-only degenerates to the language modeling task.

3.3.1 ANALYSIS ON FAILURE OF DAE-ONLY

Learned copy Figure 2 (b) informs us that dae-only has even lower reconstruction error than stan-
dard, which means that even if dae-only is not trained with the language embedding feeding of
another language in the target-side, it can still minimize the reconstruction loss when feed with the
target language embedding. However, Table 7 demonstrates that dae-only has learned almost per-
fect sequence copy. Here we use the definition of cross-lingual RecErr to clarify this phenomenon,
since unconstrained decoding might generate tokens that come from source language and this might
prevent us from distinguishing RecErr of mono-lingual reconstruction (copying, paraphrasing) and
cross-lingual reconstruction (translation).

In previous subsection, we draw all the learning curves in Figure 2 (b) based on naive RecErr without
considering the above situation. Here in Figure 3, according to a modified Definition A.2, we can
draw the cross-lingual RecErr for standard, dae-only and bt-only accordingly. As shown, the
cross-lingual RecErr curve is much higher than the RecErr for dae-only, and it is the highest among
all, indicating that, essentially, the target translation task is learned only by learning a low cross-
lingual reconstruction loss. That is why later work like Liu et al. (2020) directly uses constrained
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Table 4: Token-to-token mutual information esti-
mated over the generated pseudo-bitext.

greedy sample
en-fr fr-en en-fr fr-en

standard 0.55 0.53 0.46 0.52
bt-only 0.06 0.08 0.11 0.12
dae-only 0.57 0.50 0.56 0.58
dae-only(cross) 0.60 0.49 0.43 0.37
random 0.27 0.27 0.27 0.27

Table 5: Controlling the update frequency ra-
tio of DAE and BT losses under XLM init.

τ en-fr fr-en
0.02 24.37 22.82
0.05 27.21 24.55
0.1 33.46 29.78
1 33.12 29.96
2 32.02 29.18
5 2.30 2.29
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Figure 4: The mutual information estimation of
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decoding along the training process.

decoding for BT to accelerate training. We also calculate the correlation between RecErr/cross-
lingual RecErr and BLEU in Figure 5 (see the appendix), the later is much better correlated (-0.37
verses -0.87) with final performance. Moreover, in Table 4, we calculate the mutual information
in pseudo-bitext generated by dae-only under constrained decoding, suprisingly we find that the
MI is very high. However, since dae-only does not expose the model on such data, it never learns
the cross-lingual alignment in the data, which indicates the important role of BT that can actually
learn such cross-lingual MI. These findings support our practical sufficient condition: a lower cross-
lingual RecErr is more likely to make UNMT training successful.

3.3.2 ANALYSIS ON FAILURE OF BT-ONLY

Degeneration to LM As you can see in Figure 2 (c), the sentence-level KL distance between bt-only
and the language model is very small, much lower than standard and others. This indicates that the
learned behavior of bt-only may resemble the behavior of a language model. That is, the UNMT
model learned with bt-only might largely ignore the potential predictive information contained at
the source side, and only relies on decoder’s LM prior.

MI of Pseudo-Bitext The reason why such degeneration happens during the training process can be
intuitively visualized by showing the mutual information contained in the pseudo-bitext generated
with online iterative BT. Table 4 shows the mutual information of the final checkpoints obtained by
standard, bt-only and dae-only. As you can see bt-only has the lowest mutual information between
source and target of the generated bitext. And even if we instead use sampling for generation, the
mutual information is still lower than random bitext (0.12 < 0.27). We also conduct experiment
when at BT phase the model uses sampling instead of greedy, this will alleviate the degeneration a
little bit, but the learning still fails. We further draw the mutual information of pseudo-bitext along
training in Figure 4, and bt-only stays low all the time, while standard have growing values.

3.4 THE CRITICAL ROLE OF BT AND DAE LOSSES

3.4.1 BT LOSS IS THE MAIN TASK WHILE DAE LOSS THE AUXILIARY

In the standard UNMT training protocol, we can think of consecutive learning of DAE and BT losses
as multitasking (Caruana, 1998). However, since the (cross-lingual) BT-loss is directly related to
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Table 6: The estimated mutual information between encoder input X and output Z = enc(X).

protocol standard bt-only elbo-only XLM init.
en 7.603 - 0.079 7.603 - 2.863 7.603 - 4.299 7.603 - 0.142
fr 7.449 - 0.096 7.449 - 2.571 7.449 - 3.980 7.449 - 0.123

I(x, ŷ) which is used to guarantee the success of translation in principle as mentioned in Sec. 2.3.
we may think BT task as the main task and DAE task as the auxiliary task with respect to the target
translation task. This section gives an affirmative answer to this intuition. Since DAE and BT losses
are updated one after another, we can control the update frequency ratio τ between them. This can
control the degree of the model learning towards certain loss and τ = 1 corresponds to the standard
setting. Table 5 shows the results. The larger τ is, the more frequent DAE loss is being updated.
As you can see, it seems the more DAE loss is updated, the training tends to become the dae-only
setting, that is, the model starts to learn copy instead of translation. On the contrary, it does not hurt
so much even BT is updated 10 times more than DAE (τ = 0.1), though increasing BT updates
a lot (larger than 20 times, τ = 0.05) will definitely degrade final performance, which reflects the
important role of DAE’s regularization effect on BT, that is to constrain online inference at BT phase
so as to prevent the model from learning unexpected noise.

3.4.2 DAE NOT JUST HELPS WITH LANGUAGE MODELING, BUT PRESERVES MI

In previous works DAE loss have been recognized as learning word order aka. the language model-
ing ability of the UNMT model Lample et al. (2018a); Artetxe et al. (2018); Lample et al. (2018b);
Yang et al. (2018); Kim et al. (2020). Here we would like to clarify that the most critical functional-
ity of DAE is not just learning language model, but at least preserving the MI between encoder input
and output which matches the necessary condition we introduced in Sec.2.3 2.3. As a result, it can
prevent the model from degeneration during online BT. To this end, we first experiment with a differ-
ent version of DAE loss that ignores word order, that is, when constructing DAE loss from x we first
permute the order of x, denoted by Perm[x] and then optimize − logPs→s(Perm[x]|C(Perm[x]))
instead. For XLM initialization, the final performance only drops from 33.12 to 31.02. This indi-
cates that DAE are not only learning word order, but something more critical, i.e. preserving the MI
between input X and encoder output Z.

We verify this by estimating the MI between X and Z for encoders trained with standard, bt-only,
elbo-only, and a baseline encoder initialized from XLM. Then we only train a random initialized de-
coder over the encoder. In Table 6, each entry consists of two terms with the first term an estimation
of H(X) and the second term an estimation of H(X|Z). As you can see, without the regularization
effect of DAE, bt-only and elbo-only has very large entropy of X|Z, even much larger than the
XLM initialized encoder. This can explain the previous highlighted phenomenon in Table 3, that
is, after bt-only, if we continue train with standard, only XLM initialization can recover certain
performance while the other two stay failure. The reason is that without DAE, the encoder represen-
tation is being contaminated without contain any useful information of X. Actually, DAE not only
preserve the MI between encoder input and output, in Table 4 and Figure 4, we have drawn the cross-
lingual MI, i.e. I(X,Y ′), contained in pseudo-bitext generated by dae-only trained model, it seems
that dae-only with XLM initialization have already learned initial word-to-word translation ability.
This can be further leveraged by online BT to learn towards real sentence-by-sentence translation.

4 CONCLUSION

This paper conducts thorough comparative studies of the standard UNMT training protocol and its
variants from two theoretical views, i) marginal likelihood maximization and ii) mutual information.
We find that standard training implicitly optimizes ELBO so as other failed variants, indicating the
importance of DAE as a regularization for helping the model learn the correct target task. Low BT
losses (cross-lingual reconstruction loss) is a self-evident sufficient condition for successful training
of UNMT, and the high mutual information betweenX andZ = enc(X) is a necessary condition for
preventing the model from degeneration. In addition, DAE loss plays the role of preserving I(X,Z)
as well as I(X,Y ′); meanwhile, online BT is the main task that enables the model to actually learn
from emerging cross-lingual signals unveiled by DAE in the pseudo-bitext.
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A APPENDIX

A.1 RELATED LITERATURE

A.1.1 BETTER INITIALIZATION STRATEGIES FOR UNMT

In our introduction, we have mentioned that if the encoder-decoder model has already achieved
certain decent initial performance, then by using BT loss solely can reach comparative or even bet-
ter performance than XLM initialization. MASS (Song et al., 2019) is the first work that achieves
this, they pretrain a sequence-to-sequence model for predicting a span of a sentence given the span-
dropped sentence as input. They find in their experiments that dropping half of the sentence as a
contiguous span achieves the best result. Recently, mBART (Liu et al., 2020) extends the idea of
denoising pre-training on Lewis et al. (2020a) to the multilingual setting. They pre-train sequence-
to-sequence model on monolingual corpora of 25 languages, and only use BT loss to finetune the
model for UNMT. In their paper, they claim that when relying only on BT, they use constrained
decoding to obtain sentence on the other language at initial epochs to overcome the copy issue.
Conceptually, mBART actually redefines the role of DAE loss as a pre-training objective, and this
largely matches our findings in Table 3’s third row (+BT loss), that is we use DAE loss alone to train
the model under certain initialization and then continue to train it solely with BT, and this matches
the standard training protocol. However, when using DAE as pre-training loss from random ini-
tialization, the model could only achieve 10+ BLEU far less than 30+. Some reason for this gap
might be: 1) the noisy function C of the DAE loss in standard training is a little bit different
than that in BART; 2) we haven’t use such larger corpora for pre-training. We think to find out the
reason might have significant contribution to the community on questions like: a) what is the data-
scale for pre-training to actually work? and b) what kind of self-supervision is more effective than
others? Other works like Ren et al. (2019) directly conduct masked language model pre-training
with explicitly constructed cross-lingual prediction signals, which is obtained from cross-lingual
word translation techniques (Conneau et al., 2017). Although they do not apply their method on
sequence-to-sequence pre-training, and their method could be applied directly to MASS.

A.1.2 PRACTICAL ISSUES OF UNMT

Recently, several works start to criticize the practicality of the standard UNMT training. Kim et al.
(2020) and Marchisio et al. (2020) both claim that domain mismatch of the two monolingual corpora
and the dissimilarity of the language pair correlate well with performance degradation. In Kim et al.
(2020), they investigate pratical scenario with three factors: i) linguistic distance; ii) availability of
large-scale bitext; iii) availability of large-scale monolingual text. They instantiate the factors with 5
chosen language pairs and find that the standard UNMT training protocol only works for pairs with
close linguistic distance and abundent monolingual text. Similar to Kim et al. (2020), Marchisio
et al. (2020) also conduct an extensive empirical evaluation of for unsupervised machine translation
using dissimilar language pairs, domains and authentic low-resource languages. However, instead of
using pure NMT model, they also rely on statistical machine translation model for warming up the
NMT model, which is not the standard training protocol that we have investigated. In fact, although
using different training protocol, they find similar observations as that in Kim et al. (2020).

A.1.3 IMPROVED TRAINING PROTOCOL

Tran et al. (2020) proposes a novel cross-lingual retrieval method for finding comparative sentence
pairs from monolingual corpora of the two language. They use the multilingual pre-trained encoder
of mBART (Liu et al., 2020) to get universal semantic representations of sentences (by doing this,
they just average the token-level vectors from mBART as a single vector for nearest neighbor search)
for retrieval of potentially aligned sentence pairs for iterative self-supervised training. This method
resembles that of Wu et al. (2019) who use the UNMT model’s own encoder representation instead of
a self-supervised pre-trained encoder, and can be seen as its multilingual pre-training extension. All
of the above proposed specific training methods for UNMT together with recent paraphrase-based
pre-training objective (Lewis et al., 2020b) can all be thought of as implicit maximum likelihood
training (Li & Malik, 2018), since the retrieval phase is certain instantiation of k-Nearest-Neighbor
search. Duan et al. (2020) also proposes a new training method by constructing mixed code pseudo-
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bitext. Their method proves the effectiveness of using unsupervisedly induced bilingual lexicon as
’anchor’ for better preventing BT from learning self-generated noised bitext.

A.2 THE STANDARD TRAINING PROTOCOL

Please refer to Algorithm 1 for a detailed description of the standard training protocol.

Algorithm 1: The Standard UNMT Training Protocol
Input:

A large-scale pre-training corpus Dpt;
Two monolingual fine-tuning corpora Ds and Dt;
An untrained encoder-decoderMθe,d with θe and θd
and specifically θee ⊂ θe, θed ⊂ θd as the embeddings.

Output:
The estimated UNMT modelMθe,d .

1: // initialization
2: Learn joint BPE code on Ds ∪ Dt;
3: Apply BPE to the pre-training corpus Dpt;
4: if pretrain = ’JointEmb’ then
5: Apply fastText on Dpt to learn embeddings
6: Initialize θee and θed with the learned joint embeddings
7: else if pretrain = ’XLM’ then
8: TrainMθe,d with self-supervised losse(s) on Dpt;
9: Initialize the θe,d with the learned parameters;

10: else
11: Initialize the θe and θd randomly;
12: end if
13: // fine-tuning
14: step = 0;
15: Sample monolingual batch bs ∈ Ds, bt ∈ Dt
16: Construct denoising language modelling loss

according to Eq. 1;
17: Update model parameters using ADAM by back-propagating Eq. 1;
18: Sample monolingual batch bs ∈ Ds, bt ∈ Dt;
19: UseMθe,d to translate each batch to the other

language side as b̂t and b̂s;
20: Construct back-translation loss according to

Eq. 2 on the two paired bilingual
batches (b̂t, bs), (b̂s, bt);

21: Update model parameters using ADAM by back-propagating Eq. 2;
22: step += 1;
23: if step = MAX STEP then
24: End training;
25: else
26: Go to line 15;
27: end if
28: return Mθe,d ;

A.3 CONSTRAINED DECODING AND CROSS-LINGUAL RECERR

Let us take En-Fr translation task as an example. Since English language and French language share
a large amount of vocabularies, and the sharing will be enhanced due to subword tokenization, i.e.
BPE. The percentage of shared vocabulary of En and Fr are above 70% in our data setting. Thus,
here we leverage a simple but effective heuristic to divide the shared vocabulary into En-dominant
and Fr-dominant subones. The idea is to use a token’s frequency ratio over the English monolingual
and French monolingual corpus as an indicator of language it mostly likely belongs to. Say given a
token t, we can compute its frequency ratio as r = freqen(t)/freqfr(t). If the ratio r is larger than
certain threshold τ , we say t belongs to English since it is mostly in use in English than in French,
and vice versa. In experiment, we set τ = 2 to get reasonable vocabulary division. And then during
decoding, we set the logits of tokens in the other language to −∞ for satisfying our constraint.
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Table 7: Some examples of the degeneration phenomenon for dae-only and bt-only variants.

dae-only fr-en
src L’ avocat de Manning a déposé une plainte formelle pour les traitements subis par Manning en janvier 2011 .
prd L’ avocat de Manning a déposé une plainte formelle pour les mauvais traitements subis par Manning en janvier 2011 .
tgt Manning ’s lawyer filed a formal objection to Manning ’s treatment in January 2011 .

bt-only fr-en
src Le télescope Hubble a observé la naissance de ces étoiles dans la galaxie spirale M83 .
prd The is the only way to ensure that the European Union is able to act .
tgt View of the European Southern Observatory ( ESO ) in the Chilean Andes .
src Le télescope Hubble a observé la naissance de ces étoiles dans la galaxie spirale M83 .
prd The is the only way to ensure that the European Union is able to play its part in the fight against terrorism .
tgt This star birth was captured by the Hubble telescope in the M83 spiral galaxy .

Definition A.1. (RecErr) Given an UNMT modelM, its reconstruction error on a mono-lingual
textD is defined as: 1

|D|
∑
x∈D

1
|x| logP (x|M[x]).HereM[x] denotes the model’s output sequence

through greedy decoding or sampling.
Definition A.2. (Cross-Lingual RecErr) Given an UNMT modelM, the cross-lingual reconstruc-
tion error on a mono-lingual text D is defined as: 1

|D|
∑
x∈D

1
|x| logP (x|M

c[x]). HereMc[x] de-
notes the result of constrained decoding for predicting a sequence of tokens in the other language.

A.4 COMPUTE ELBO

Since in our following experiments, we are going to visualize the learning curve of ELBO along the
training life cycle, we should be able to empirically compute the two terms of ELBO which both
involve expectation over qφ(y|x). Instead of using greedy decoding for obtaining samples, we use
sampling (k=2) to compute reconstruction error and KL divergence, and both terms are computed
via Monte Carlo method. For the KL term, pθ(y) is a language model trained on Dt. Instead of
using token-level ELBO like that used in He et al. (2016), we do not normalize the ELBO values by
the number of tokens in y, and use the sentence-level ELBO value for visualization.

A.5 ESTIMATING H(X), H(X|Z) AND I(X,Y ′)

For estimating I(X,Z) which is the MI between discrete and continuous r.v.s, we use the equality
I(X,Z) = H(X) − H(X|Z), and then estimate H(X) and H(X|Z) respectively. For the entropy
of X , we use a 1-gram language model on the same training corpus for training the UNMT model,
and use the average token-level entropy as a surrogate; as for the entropy of X|Z, we train an extra
reconstruction model over a fixed UNMT encoder to make sure we are using the representation from
certain UNMT model, then we use the reconstruction model (a decoder)’s token-level entropy as a
surrogate. This is motivated by Gao & Chaudhari (2020) who leverage the reconstruction error as a
measure for how much information has discarded in the hidden representation, and also similar to
recent probing methodology (Conneau et al., 2018).

For estimating I(X,Y ′), we use the token-by-token point-wise mutual information (PMI) over some
pseudo bitext as a surrogate to the sentence-by-sentence MI. Note that since we use different es-
timators (continuous v.s. discrete) for computing I(X,Y ′) and I(X,Z), moreover, according to
Pimentel et al. (2020), the model-based estimation of H(X) − H(X|Z) is a lower bound, so it is
hard to compare between I(X,Y ′) and I(X,Z). But values within one estimator are comparable.

Here we give a detailed introduction of how we estimate the above statistics. For estimating the first
two terms, we follow the formula introduced in Pimentel et al. (2020) to estimate the entropy:

Hqθ (X;C) ≈ − 1

N

N∑
i=1

log qθ(X|C). (6)

Here if C = ∅ is null, we use it to estimate H(X); or if C = Z, we use it to estimate H(X|Z).
Estimate H(X) We estimate the token-level entropy instead of sentence-level, that is, X denotes a
token r.v.. The qθ we use is an 1-gram language model on the concatenated En, Fr corpora.

Estimate H(X|Z) The qθ we use to estimate H(X|Z) is a Transformer decoder over fixed encoder
that provides hidden representations Z. So we first train a decoder over the training corpus, and then
use the decoder to provide the log likelihood of every token X .
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(a) (b)

Figure 5: Correlation of the mono-/cross-lingual rec err and the final performance.

Here, to make H(X) and H(X|Z) comparable, the estimates of H(X) and H(X|Z) are calculated
on the same training set held-out, about 50k sentences.

Estimate I(X,Y ′) Given a large amount of pseudo-bitext, we use the point-wise mutual information
as token-level estimates of the actual mutual information in paired sentences, that is:

PMI(X,Y ′) =
1

N
∗ 1

lx · ly

∑
xi,yj

P (xi, yj)

P (xi)P (yj)
. (7)
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