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Abstract

Recent advances in generative AI have spurred the develop-001
ment of world models capable of simulating 3D-consistent002
environments and interactions with static objects. A signif-003
icant limitation of these models is the ability to model dy-004
namic, reactive agents which can intelligently influence and005
interact with the world. We introduce COMBAT, a real-time,006
action-controlled world model trained on the complex 1v1007
fighting game Tekken 3 to address these shortcomings. Our008
work demonstrates that diffusion models can successfully009
simulate a dynamic opponent that reacts to player actions010
while learning its behavior implicitly.011

Our approach utilizes a 1.2 billion parameter Diffusion012
Transformer, conditioned on latent representations from a013
deep compression autoencoder. We employ state-of-the-art014
techniques, including causal distillation and diffusion forc-015
ing to achieve real-time inference. Crucially, we observe016
the emergence of sophisticated agent behavior by training017
the model solely on single-player inputs, without any ex-018
plicit supervision for the opponent’s policy. Unlike tradi-019
tional imitation learning methods which require complete020
action labels, COMBAT learns effectively from partially ob-021
served data to generate responsive behaviors for a control-022
lable primary player (Player 1). We present our results from023
an extensive study and introduce novel evaluation methods024
to benchmark this emergent agent behavior. In the pro-025
cess, establishing a strong foundation for training interac-026
tive agents within diffusion-based world models.027

1. Introduction028

As the fidelity of video generation methods improve with029
increased understanding of real-world phenomena and con-030
text, interactive world models trained on gameplay and031
real-world data have emerged to accelerate these advances032
[4, 5, 24]. Generating spatially and temporally consistent033
world simulations are the primary focus. Yet, in real-world034
scenarios, the most unpredictable components are reactive035
agents that can observe, plan, and influence their environ-036
ment. This is especially evident in autonomous driving,037

navigation, and combat scenarios. 038

Recent work demonstrates that autoregressive diffusion 039
models are very effective for world simulation. Recent 040
advances make these models real-time through distribu- 041
tion matching distillation (DMD) [27, 28] and diffusion 042
forcing [15] to overcome autoregressive drift. This work 043
has enabled neural game simulations for first-person games 044
such as Minecraft and CS:GO [18] and showcase excellent 045
causal understanding of actions and their effects on gener- 046
ated frames. 047

However, real-world and game environments also con- 048
tain rich information about how agents (e.g. humans, NPCs 049
and autonomous systems) respond to environmental dynam- 050
ics. Current methods could greatly benefit from learning 051
agent behavior from this observational data, but the partial 052
observability and unstructured nature poses significant chal- 053
lenges. For example, while we might observe a pedestrian 054
changing pathing to avoid a vehicle; the exact observations 055
and decision processes of the human agent remain hidden. 056

We present COMBAT (Conditional world Model for 057
Behavioral Agent Training), an interactive world model that 058
learns underlying agent behavior and movement dynamics 059
directly from partially observed multi-agent systems. By 060
training a world model on Tekken 3 gameplay with condi- 061
tioning only on Player 1’s input, we observe emergent tac- 062
tical behavior in Player 2 without explicit behavioral super- 063
vision. We select Tekken 3 as it provides an ideal controlled 064
environment with clear visual feedback, deterministic game 065
mechanics, diverse movesets, and frame-precise timing re- 066
quirements. 067

Our approach uses a 1.2B parameter diffusion trans- 068
former trained on 1.2M frames across 1,000 gameplay 069
rounds. We first train a Deep Compression AutoEncoder 070
(DCAE) [8] to obtain highly compressed latent represen- 071
tations, then train the world model to generate temporally 072
consistent gameplay sequences. COMBAT successfully 073
learns to control Player 1 from conditioning signals, while 074
Player 2 emerges with realistic combat behaviors including 075
blocking, counterattacking, and combo execution. Through 076
decoder distillation and CausVid DMD [28] techniques, we 077
achieve real-time generation at interactive frame rates. 078
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Figure 1. An overview of the COMBAT world model. (Top) The model is conditioned on the current state (visual frames and poses)
and Player 1’s control inputs to autoregressively predict subsequent frames. (Bottom) Three distinct generated trajectories showcase the
model’s ability to produce plausible, strategic counter-attacks from Player 2 as an emergent response to Player 1’s actions, without direct
supervision of the opponent’s policy.

We introduce novel benchmarking methods to evaluate079
emergent agent behavior. This includes measurement of be-080
havioral diversity and tactical understanding. Our extensive081
analysis demonstrates that world models can serve as a new082
paradigm for learning agent behaviors from observational083
data, with implications for multi-agent AI systems beyond084
gaming.085

2. Related Work086

2.1. Video Diffusion Models087

The remarkable success of diffusion models in image syn-088
thesis [20, 21] has naturally inspired their extension to video089
generation. Early approaches adapted U-Net architectures090
from image models, achieving results in short-form video091
synthesis [3, 10]. However, the convolutional nature of092
U-Net presents challenges for video: it struggles to cap-093
ture long-range temporal dependencies and scales poorly094
with sequence length, often leading to temporal incoher-095
ence. Our work is positioned at the intersection of gener-096
ative world models, video diffusion architectures, and be-097
havioral modeling. We review key advancements in these098
areas to contextualize our contribution.099

To address these limitations, Transformer-based video100
models have emerged. Peebles et al. [19] demonstrates that101

Diffusion Transformers (DiT) could surpass U-Nets with 102
respect to image generation with superior scaling proper- 103
ties. Subsequent work has applied this architecture to video. 104
Models such as W.A.L.T [11] and CogVideoX [26] show 105
that DiT self-attention mechanisms effectively model com- 106
plex spatiotemporal relationships in video data, enabling 107
longer, more coherent sequences. Our work builds on this 108
foundation, employing a DiT backbone tailored for action- 109
conditioned dynamics in interactive environments. 110

2.2. Neural Game Engines and World Models 111

Recent advances demonstrate that generative models can 112
serve as complete, neural game engines, replacing tradi- 113
tional rendering and state update logic. As an example, 114
GameGAN learns to imitate 2D games from raw pixels and 115
actions using GANs with explicit memory modules [17]. 116
More recently, diffusion transformers have become domi- 117
nant for this task. 118

GameNGen is another example of a fully neural DOOM 119
engine that generates frames conditioned on past frames 120
and actions enabling real-time simulation [24]. DIAMOND 121
trains diffusion-based world models achieving state-of-the- 122
art RL performance while producing playable Counter- 123
Strike simulations [1]. GameGen-X extends this, training 124
on million-clip datasets to enable long-horizon, interactive 125
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open-world gameplay [6].126
These methods validate that neural models can learn127

complex game dynamics from observational data. Our work128
adopts similar architectural foundations but introduces a129
novel objective: modeling emergent behavior of uncon-130
trolled opponents that arises solely from conditioning on131
controllable player actions.132

2.3. Multi-Modal and Behavioral World Models133

While traditional world models focus on visual prediction,134
recent work has enabled greater fidelity and behavioral135
learning. Our work adopts joint RGB-pose representation136
to enforce structural consistency in character movements.137

In parallel, learning agent behavior within world models138
has predominantly followed two paths. The first is model-139
based reinforcement learning, where an agent’s policy140
is trained using a learned dynamics model and an extrin-141
sic reward signal. Works like DreamerV3 exemplify this,142
achieving mastery in diverse domains by learning behav-143
iors entirely within the latent space of a world model [12].144
The second path is imitation learning, which learns poli-145
cies from expert demonstrations. Methods like Generative146
Adversarial Imitation Learning (GAIL) require explicit147
state-action supervision for all agents to mimic expert be-148
havior [14].149

Our approach diverges from both paradigms. We demon-150
strate that complex, reactive multi-agent behaviors emerge151
implicitly as a property of world modeling itself, without152
engineered reward signals and using only partially observed153
data where just one agent’s actions are provided as a condi-154
tion.155

2.4. Optimization Techniques for Interactive Gen-156
eration157

Real-time interactive generation requires addressing both158
architectural efficiency and sampling speed. Recent ad-159
vances in attention mechanisms include FlexAttention [9],160
which enables flexible attention patterns, and Longformer161
[2], which combines local sliding-window attention with162
global context. We incorporate local-global attention pat-163
terns inspired by these works to balance efficiency with tem-164
poral coverage.165

For sampling efficiency, Distribution Matching Distilla-166
tion (DMD) [27, 28] and diffusion forcing [15] have proven167
effective techniques for reducing sampling steps while mit-168
igating autoregressive drift. These techniques enable real-169
time neural simulation for complex games [5, 24]. We adapt170
DMD through CausVid distillation to achieve interactive171
frame rates while preserving behavioral quality.172

The Muon optimizer [16] introduces orthogonalization173
into momentum-based updates, improving conditioning of174
weight updates and outperforming AdamW in training175
speed benchmarks. We incorporate Muon optimization176

to enhance training efficiency of our large-scale diffusion 177
transformers. 178

3. Method 179

Our proposed and studied approach, COMBAT, learns to 180
simulate a complex, multi-agent environment by training a 181
generative world model on video observations. World mod- 182
els have shown promise in mastering diverse domains [12] 183
and creating interactive environments [5, 25]. We extend 184
this paradigm to a competitive fighting game, where the 185
model must learn the opponent’s behavior without explicit 186
action labels. 187

3.1. Problem Formulation 188

The task is as follows: Primarily, learning a conditional 189
video generation model that implicitly captures an oppo- 190
nent’s policy. We select the fighting game Tekken 3 as our 191
environment for three key reasons: 192
1. Bounded Temporal Dependency: The game state is 193

largely Markovian, where 194

P (st+1 | s≤t) ≈ P (st+1 | st−k:t), 195

for a small history window k, since all relevant informa- 196
tion is contained within recent frames. 197

2. Rich Action Space: Characters possess diverse 198
movesets, with over 40 unique actions and complex 199
combos, providing a challenging domain for behavior 200
modeling. 201

3. Strategic Depth: Success requires a blend of rapid re- 202
actions and long-term tactical planning. 203
Formal Problem Statement: Given a dataset of par- 204

tially observed multi-agent trajectories 205

D = {(st, a(1)t , st+1)}Tt=1, 206

where st ∈ RH×W×3 is a game frame and a
(1)
t ∈ {0, 1}8 207

is the observed multi-hot input for Player 1. The actions of 208

Player 2, a(2)t , remain unobserved. Our objective is to learn 209
a conditional world model 210

Pθ(st+1 | st−k:t, a
(1)
t−k:t) 211

that can accurately predict subsequent frames. 212
Key Innovation: Unlike traditional imitation learning 213

methods that require explicit action supervision for all 214
agents [14], COMBAT is trained without Player 2’s action 215
labels. The model must infer Player 2’s policy, 216

π(2)(a
(2)
t | st, a(1)t ), 217

as an emergent property of generating temporally consis- 218
tent and plausible multi-agent interactions. This forces the 219
world model to learn reactive and strategic opponent behav- 220
ior implicitly. 221
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(a) Training overview of COMBAT World Model.
(b) Every 4th DiT block has a global attention
layer to capture long form context.

Figure 2. Architectural diagram of the COMBAT model. (a) The end-to-end training process, where a Diffusion Transformer is conditioned
on action and timestep embeddings to denoise latent frame representations. (b) The internal structure of the DiT backbone, which employs
a hybrid local-global attention pattern to efficiently model long-term dependencies.

3.2. Tekken 3 Gameplay Dataset222

To train our model, we collect a large-scale dataset of223
Tekken 3 gameplay, totaling 1,000 rounds (approximately224
7 hours or 1.2 million frames). The dataset features a va-225
riety of characters and a balanced win–loss ratio between226
the two players. For each frame, captured at a resolution of227
3×448×736, we provide synchronized annotations includ-228
ing: a) action inputs for both players, b) health and timer229
status, c) 68-point body pose coordinates, and d) player230
segmentation masks. Our data collection and annotation231
pipeline will be made publicly available in conjunction with232
the publication of this paper.233

3.3. Model Architecture234

Our world model architecture integrates three main compo-235
nents:236
• a multi-modal variational autoencoder for high-ratio state237

compression,238
• an embedding module for player actions and diffusion239

timesteps, and240
• a Diffusion Transformer (DiT) backbone for autoregres-241

sive prediction in the latent space.242
We train two versions of the model: one using only RGB243

latents and another using a joint visual–pose latent repre-244
sentation.245

3.3.1. Multi-Modal Latent Encoding246

To create an efficient latent representation, we first train a247
340M-parameter joint RGB–pose variational autoencoder.248
This model learns a shared embedding space by compress-249
ing concatenated visual frames (3×448×736) and pose key-250

points into a compact latent tensor of shape 128× 23× 11. 251
Our design is inspired by recent work in high-compression 252
autoencoders for diffusion models [7]. To optimize for real- 253
time performance, the 340M-parameter decoder is subse- 254
quently distilled to a 44M-parameter version by reducing its 255
upsampling block count, which maintains high reconstruc- 256
tion quality at a fraction of the computational cost. 257

Player 1’s action history is projected into a dense em- 258
bedding, encoded as a multi-hot vector over 8 buttons. This 259
action embedding is summed with a sinusoidal time em- 260
bedding for the current diffusion step, temb, to form the final 261
conditioning vector for the DiT backbone. 262

3.3.2. Diffusion Transformer Backbone 263

The core of our generative model is a 1.2B-parameter Dif- 264
fusion Transformer (DiT) [19], which learns to denoise and 265
predict future latent frames. The architecture consists of 16 266
transformer blocks with a model dimension dmodel = 2048 267
and 16 attention heads. The conditioning vector is injected 268
into each block via an Adaptive Layer Normalization Zero 269
(AdaLNZero) layer, and tokenization is performed using 270
linear projection layers for spatio-temporal rasterization, 271
bypassing conventional patch-based embeddings. 272

Each DiT block executes the following sequence: 273

AdaLN → Attention → Gated Residual → 274

AdaLN → MLP → Gated Residual 275

To maintain computational tractability over long 128- 276
frame sequences, we employ a hybrid attention strategy. 277
Most layers use a frame-causal attention mask with a local 278
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sliding window of 16 frames, while every fourth layer ap-279
plies global attention across the entire 128-frame context.280
This structure balances long-range dependency modeling281
with computational efficiency. We apply Rotary Position282
Embeddings (RoPE) [22] across both spatial and temporal283
axes and utilize FlexAttention for an efficient block-sparse284
masking implementation.285

3.4. Accelerated Inference for Real-Time Genera-286
tion287

Enabling real-time interaction is critical for gaming applica-288
tions, but the iterative sampling process of diffusion models289
is computationally intensive. To overcome this, we signifi-290
cantly accelerate inference using two key optimizations.291

First, we distill the fully trained model into a few-292
step sampler using Distribution Matching Distillation293
(DMD) [27]. We adopt the CausVid DMD framework [28]294
to produce a 4-step distilled model that preserves high gen-295
erative fidelity while drastically reducing inference time.296

Second, we further enhance speed by implementing297
static key-value caching, which reuses previously computed298
attention states across generation steps. These optimiza-299
tions are applied to both the RGB and visual–pose world300
models.301

4. Experiments302

To validate our claim that a conditional world model can303
learn reactive agent behavior from partial observations, we304
conduct a series of experiments on the Tekken 3 dataset.305
We first detail our multi-stage training pipeline and model306
architectures. We then introduce our evaluation benchmarks307
and present results comparing our primary models and their308
distilled variants.309

4.1. Implementation Details310

Our training process is divided into three main stages: au-311
toencoder training, world model training, and distillation312
for real-time inference. All models were trained on a cluster313
of 8× NVIDIA H200 GPUs.314

Stage 1: Autoencoder Training. We first train a315
340M parameter Deep Compression AutoEncoder (DCAE)316
to learn a compact latent representation of the game envi-317
ronment. The autoencoder is trained for 68,000 steps (ap-318
prox. 75 hours) on our 1.2 million frame Tekken dataset. It319
compresses raw frames (3× 448× 736) into a latent space320
of 23 × 11 with 128 channels. The training objective is a321
combination of L2 reconstruction loss, perceptual similar-322
ity loss, and a KL divergence term to regularize the latent323
space. For our pose-augmented model, we use an identical324
architecture and training setup.325

Stage 2: World Model Training. We train a 1.2B326
parameter autoregressive Diffusion Transformer (DiT) to327
function as the world model. The DiT architecture consists328

of 16 layers, 16 attention heads, and a model dimension 329
of dmodel = 2048. It employs a combination of local (16 330
frames) and global (128 frames) attention windows to cap- 331
ture both short-term and long-term temporal dependencies. 332
The model is trained on video clips with a sequence length 333
of 128 frames to predict the next latent frame conditioned 334
on Player 1’s actions. We train two distinct world models: 335
one using latents from the RGB-only VAE and another us- 336
ing latents from the pose-augmented VAE. 337

Stage 3: Distillation for Real-Time Inference. To 338
achieve interactive frame rates, we employ two separate dis- 339
tillation techniques: 340

• Decoder Distillation: We first create a lightweight VAE 341
decoder for real-time rendering. Using student-teacher 342
distillation, we reduce the number of upsampling blocks 343
per stage in the decoder from four to one. This process 344
reduces the decoder’s parameter count from 340M to a 345
nimble 44M. 346

• Step Distillation: We use CausVid, a Distribution Match- 347
ing Distillation (DMD) method, to drastically reduce the 348
number of required inference steps for the world model. 349
We distill the fully-trained DiT into a 4-step variant. This 350
distillation process converges in 2,500 steps, utilizing a 351
combination of a DMD loss and a critic loss. We ap- 352
ply this technique to both the RGB-only and the pose- 353
augmented world models. 354

4.2. Evaluation Metrics and Benchmarks 355

Evaluating emergent agent behavior presents a fundamental 356
challenge: How do we measure intelligence that was never 357
explicitly supervised? Traditional video metrics assess vi- 358
sual fidelity, while RL metrics assume access to ground- 359
truth actions or rewards. Since COMBAT learns behavioral 360
patterns implicitly through world modeling, we need novel 361
evaluation approaches capable of detecting tactical compe- 362
tence from generated gameplay alone. 363

4.2.1. Standard Perceptual Metrics 364

To assess the perceptual quality of our generated trajec- 365
tories, we employ a suite of standard metrics. Our eval- 366
uation protocol involves conditioning the models on real 367
Player 1 action sequences extracted from a test set of 300 368
ground-truth videos (roughly 1-2 seconds in length) con- 369
sisting of mixed difficulty gameplay. The generated video 370
is then compared directly against its corresponding ground- 371
truth counterpart from which the actions were sourced. This 372
setup provides a stringent test of the model’s ability to ren- 373
der deterministic outcomes based on specific actions. 374

We report the Fréchet Video Distance (FVD)[23] to mea- 375
sure temporal coherence, the Fréchet Inception Distance 376
(FID)[13] for per-frame visual fidelity, and LPIPS to quan- 377
tify perceptual similarity. Given the high-fidelity nature of 378
the Tekken 3 environment, achieving strong performance on 379
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these metrics against the ground truth is a robust indicator380
of the model’s precision and world-modeling capabilities.

Table 1. All metrics are calculated on a held-out test set of 300
video clips each with 32 frames. Lower is better for all scores.

Model FID ↓ FVD ↓ LPIPS ↓
COMBAT: Pose 49.7 593.4 0.05
COMBAT: Non-Pose 80.9 1156.6 0.07

381

(a) Player 1 Damage Distribution (b) Player 2 Damage Distribution

(c) Player 1 Mean Health Trajectory
(d) Player 2 Mean Health Trajec-
tory

Figure 3. Behavioral Consistency Metrics. A comparison of
generated gameplay (COMBAT) against the ground truth. (a, b)
The per-frame damage distributions for Player 1 and Player 2,
showing that our model learns a realistic mapping of actions to
consequences. (c, d) The mean health trajectories over the course
of a round, indicating that COMBAT captures the natural pacing
of a match.

4.2.2. Behavioral Consistency Metrics382

To verify that our model learns the game’s intrinsic rules383
and pacing, we propose two metrics based on in-game384
health data:385

• Damage Distribution Analysis: This metric assesses386
whether the consequence of individual actions is realis-387

tic. Let H
(t)
i denote the health of player i ∈ {1, 2}388

at frame t, and define per-frame damage as ∆H
(t)
i =389

max(0, H
(t−1)
i −H

(t)
i ). We normalize by the maximum390

health Hmax
i to obtain δ

(t)
i = ∆H

(t)
i /Hmax

i .391
The complete distribution of damage values from all gen-392

erated sequences, {δ(t)i,gen}, is then compared to the dis-393

tribution from all ground-truth sequences, {δ(t)i,real}, using394
the Wasserstein distance. A lower distance signifies that395
the model has learned a more accurate mapping from ac-396
tions to their in-game consequences.397

• Health Trajectory Analysis: This metric evaluates the398
overall temporal flow of the match. Define the normalized399

time s = t/T , where T is the total round duration, and 400

let H̄(s) = 1
2

∑
i H

(t)
i /Hmax

i be the average normalized 401
health at time s for a single round. 402
To establish a baseline for typical match progression, we 403
compute the mean health trajectory by averaging H̄(s) 404
across all rounds in our ground-truth test set. We do the 405
same for our generated rounds. The similarity between 406
these two mean trajectories is then measured using the 407
Mean Squared Error (MSE). A lower MSE indicates that 408
the generated gameplay, on average, exhibits a more real- 409
istic match pace. 410

4.3. Human Evaluation of Emergent Behavior 411

To assess the emergent behavior of Player 2, we conduct 412
human evaluation based on observable action patterns in 413
gameplay. Since Player 2 is trained without explicit super- 414
vision, emergent behavior is defined as actions that react 415
naturally to Player 1’s inputs, demonstrating plausible com- 416
bat strategies such as timely punches, kicks, and defensive 417
maneuvers. 418

We introduce two human-interpretable metrics: Total 419
Action Adherence (TAA) and Action Ratio Consistency 420
(ARC). These metrics are based on human annotations of 421
offensive actions observed in both ground-truth and gener- 422
ated gameplay sequences. 423

4.3.1. Total Action Adherence (TAA) 424

TAA measures whether the agent produces a comparable 425
overall volume of offensive actions relative to human game- 426
play: 427

TAA =
Gkicks +Gpunch

Okicks +Opunch
428

where G· denotes actions performed by the generated 429
agent, and O· the actions performed in original gameplay. 430

A score of 1.0 indicates perfect adherence in activity 431
level. Scores > 1.0 suggest hyperactive behavior, while 432
scores < 1.0 indicate passive behavior. 433

Figure 4. Total Action Adherence across training checkpoints
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4.3.2. Action Ratio Consistency (ARC)434

ARC evaluates whether the stylistic balance between435
punches and kicks aligns with the human player:436

ARC =

Gpunch

Gkicks

Opunch

Okicks

437

A score of 1.0 indicates identical punch-to-kick ratio as438
original gameplay. Scores above 1.0 reflect stronger pref-439
erence for punches, while scores below 1.0 suggest heavier440
reliance on kicks.441

Figure 5. Action Ratio Consistency across training checkpoints

4.3.3. Results442

We evaluated sequences at multiple training checkpoints.443
Table 2 summarizes the results:444

Training Step TAA ARC

Ground Truth 1.00 1.00
Step 500 3.87 1.04
Step 1000 0.88 3.90
Step 1500 1.90 1.79
Step 2000 1.79 1.47

Table 2. TAA and ARC scores at different training checkpoints
compared against human gameplay.

Our evaluation shows that COMBAT successfully learns445
emergent Player 2 behavior through distinct phases. Ini-446
tially, the model is hyperactive, generating nearly four447
times the offensive actions of human players (TAA = 3.87),448
though its punch-to-kick ratio is well-aligned (ARC = 1.04).449
As training progresses, the model reduces hyperactivity in450
further steps. Beyond step 2000, performance declines,451
with later checkpoints showing reduced adherence to origi-452
nal gameplay.453

By the final training stages, the model converges toward454
stable, human-like combat patterns. It learns to regulate ac-455
tivity frequency (TAA 1.8) while achieving balanced fight-456
ing style (ARC 1.5). However, overall consistency degrades457
noticeably.458

The pose-augmented COMBAT model significantly out-459
performs the RGB-only variant across visual quality met-460

rics, confirming that explicit pose information improves 461
generation quality. 462
• Impact of Distillation: Our 4-step distilled models, cre- 463

ated using CausVid DMD, retain substantial visual qual- 464
ity while achieving 12.5× speedup. The pose-augmented 465
4-step model still outperforms the full RGB-only model, 466
demonstrating efficient distillation with minimal quality 467
trade-off. 468
Qualitatively, we observe intelligent behaviors including 469
combo execution, spatial awareness, and adaptation to 470
Player 1’s patterns. These tactical responses emerge natu- 471
rally from our training process without explicit behavioral 472
supervision. 473

5. Conclusion 474

In this work, we introduce COMBAT, a conditional world 475
model that learns complex, emergent agent behavior from 476
partially observed gameplay. Our key finding is that by con- 477
ditioning the model solely on Player 1’s actions it success- 478
fully learns a reactive, tactically coherent policy for Player 479
2 without any direct supervision. The model correctly as- 480
sociates the control inputs with the intended agent and gen- 481
erates plausible counter-attacks. This demonstrates that in- 482
tricate behaviors can arise implicitly from the objective of 483
temporal consistency. 484

We provide an extensive analysis of emergent behavior 485
in world models to enable further analysis and research. 486
We also release our large-scale Tekken 3 dataset complete 487
with synchronized pose and segmentation annotations, and 488
open-source our pipelines for data collection and model 489
training. 490

Our approach is practical for interactive entertainment 491
applications. Through distillation, the COMBAT world 492
model achieves real-time performance, operating at 493
85 FPS on a single NVIDIA A100 GPU. This work repre- 494
sents a contribution as to how generative world models can 495
learn implicit agent policies, and we hope it inspires further 496
research into multi-agent behavioral modeling in complex, 497
interactive environments. 498

6. Future Work 499

We identify two primary directions for future research. 500
First, while DMD step distillation accelerates inference, it 501
degrades agent responsiveness and attack frequency. Future 502
work should develop distillation techniques that preserve 503
behavioral fidelity by incorporating metrics like Action Ra- 504
tio Consistency (ARC) into the optimization objective. 505

Second, integrating reinforcement learning (RL) could 506
guide the world model toward goal-oriented behaviors like 507
maximizing win-rate. This involves training a policy within 508
the generative model’s latent space, establishing a new 509
paradigm for intelligent agents in simulated environments. 510
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