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Abstract

Recent advances in generative Al have spurred the develop-
ment of world models capable of simulating 3D-consistent
environments and interactions with static objects. A signif-
icant limitation of these models is the ability to model dy-
namic, reactive agents which can intelligently influence and
interact with the world. We introduce COMBAT, a real-time,
action-controlled world model trained on the complex 1vI
fighting game Tekken 3 to address these shortcomings. Our
work demonstrates that diffusion models can successfully
simulate a dynamic opponent that reacts to player actions
while learning its behavior implicitly.

Our approach utilizes a 1.2 billion parameter Diffusion
Transformer, conditioned on latent representations from a
deep compression autoencoder. We employ state-of-the-art
techniques, including causal distillation and diffusion forc-
ing to achieve real-time inference. Crucially, we observe
the emergence of sophisticated agent behavior by training
the model solely on single-player inputs, without any ex-
plicit supervision for the opponent’s policy. Unlike tradi-
tional imitation learning methods which require complete
action labels, COMBAT learns effectively from partially ob-
served data to generate responsive behaviors for a control-
lable primary player (Player 1). We present our results from
an extensive study and introduce novel evaluation methods
to benchmark this emergent agent behavior. In the pro-
cess, establishing a strong foundation for training interac-
tive agents within diffusion-based world models.

1. Introduction

As the fidelity of video generation methods improve with
increased understanding of real-world phenomena and con-
text, interactive world models trained on gameplay and
real-world data have emerged to accelerate these advances
[4, 5, 24]. Generating spatially and temporally consistent
world simulations are the primary focus. Yet, in real-world
scenarios, the most unpredictable components are reactive
agents that can observe, plan, and influence their environ-
ment. This is especially evident in autonomous driving,

navigation, and combat scenarios.

Recent work demonstrates that autoregressive diffusion
models are very effective for world simulation. Recent
advances make these models real-time through distribu-
tion matching distillation (DMD) [27, 28] and diffusion
forcing [15] to overcome autoregressive drift. This work
has enabled neural game simulations for first-person games
such as Minecraft and CS:GO [18] and showcase excellent
causal understanding of actions and their effects on gener-
ated frames.

However, real-world and game environments also con-
tain rich information about how agents (e.g. humans, NPCs
and autonomous systems) respond to environmental dynam-
ics. Current methods could greatly benefit from learning
agent behavior from this observational data, but the partial
observability and unstructured nature poses significant chal-
lenges. For example, while we might observe a pedestrian
changing pathing to avoid a vehicle; the exact observations
and decision processes of the human agent remain hidden.

We present COMBAT (Conditional world Model for
Behavioral Agent Training), an interactive world model that
learns underlying agent behavior and movement dynamics
directly from partially observed multi-agent systems. By
training a world model on Tekken 3 gameplay with condi-
tioning only on Player 1’s input, we observe emergent tac-
tical behavior in Player 2 without explicit behavioral super-
vision. We select Tekken 3 as it provides an ideal controlled
environment with clear visual feedback, deterministic game
mechanics, diverse movesets, and frame-precise timing re-
quirements.

Our approach uses a 1.2B parameter diffusion trans-
former trained on 1.2M frames across 1,000 gameplay
rounds. We first train a Deep Compression AutoEncoder
(DCAE) [8] to obtain highly compressed latent represen-
tations, then train the world model to generate temporally
consistent gameplay sequences. COMBAT successfully
learns to control Player 1 from conditioning signals, while
Player 2 emerges with realistic combat behaviors including
blocking, counterattacking, and combo execution. Through
decoder distillation and CausVid DMD [28] techniques, we
achieve real-time generation at interactive frame rates.
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Figure 1. An overview of the COMBAT world model. (Top) The model is conditioned on the current state (visual frames and poses)
and Player 1’s control inputs to autoregressively predict subsequent frames. (Bottom) Three distinct generated trajectories showcase the
model’s ability to produce plausible, strategic counter-attacks from Player 2 as an emergent response to Player 1’s actions, without direct

supervision of the opponent’s policy.

We introduce novel benchmarking methods to evaluate
emergent agent behavior. This includes measurement of be-
havioral diversity and tactical understanding. Our extensive
analysis demonstrates that world models can serve as a new
paradigm for learning agent behaviors from observational
data, with implications for multi-agent Al systems beyond
gaming.

2. Related Work
2.1. Video Diffusion Models

The remarkable success of diffusion models in image syn-
thesis [20, 21] has naturally inspired their extension to video
generation. Early approaches adapted U-Net architectures
from image models, achieving results in short-form video
synthesis [3, 10]. However, the convolutional nature of
U-Net presents challenges for video: it struggles to cap-
ture long-range temporal dependencies and scales poorly
with sequence length, often leading to temporal incoher-
ence. Our work is positioned at the intersection of gener-
ative world models, video diffusion architectures, and be-
havioral modeling. We review key advancements in these
areas to contextualize our contribution.

To address these limitations, Transformer-based video
models have emerged. Peebles et al. [19] demonstrates that

Diffusion Transformers (DiT) could surpass U-Nets with
respect to image generation with superior scaling proper-
ties. Subsequent work has applied this architecture to video.
Models such as W.A.L.T [11] and CogVideoX [26] show
that DiT self-attention mechanisms effectively model com-
plex spatiotemporal relationships in video data, enabling
longer, more coherent sequences. Our work builds on this
foundation, employing a DiT backbone tailored for action-
conditioned dynamics in interactive environments.

2.2. Neural Game Engines and World Models

Recent advances demonstrate that generative models can
serve as complete, neural game engines, replacing tradi-
tional rendering and state update logic. As an example,
GameGAN learns to imitate 2D games from raw pixels and
actions using GANs with explicit memory modules [17].
More recently, diffusion transformers have become domi-
nant for this task.

GameNGen is another example of a fully neural DOOM
engine that generates frames conditioned on past frames
and actions enabling real-time simulation [24]. DIAMOND
trains diffusion-based world models achieving state-of-the-
art RL performance while producing playable Counter-
Strike simulations [1]. GameGen-X extends this, training
on million-clip datasets to enable long-horizon, interactive
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open-world gameplay [6].

These methods validate that neural models can learn
complex game dynamics from observational data. Our work
adopts similar architectural foundations but introduces a
novel objective: modeling emergent behavior of uncon-
trolled opponents that arises solely from conditioning on
controllable player actions.

2.3. Multi-Modal and Behavioral World Models

While traditional world models focus on visual prediction,
recent work has enabled greater fidelity and behavioral
learning. Our work adopts joint RGB-pose representation
to enforce structural consistency in character movements.

In parallel, learning agent behavior within world models
has predominantly followed two paths. The first is model-
based reinforcement learning, where an agent’s policy
is trained using a learned dynamics model and an extrin-
sic reward signal. Works like DreamerV3 exemplify this,
achieving mastery in diverse domains by learning behav-
iors entirely within the latent space of a world model [12].
The second path is imitation learning, which learns poli-
cies from expert demonstrations. Methods like Generative
Adversarial Imitation Learning (GAIL) require explicit
state-action supervision for all agents to mimic expert be-
havior [14].

Our approach diverges from both paradigms. We demon-
strate that complex, reactive multi-agent behaviors emerge
implicitly as a property of world modeling itself, without
engineered reward signals and using only partially observed
data where just one agent’s actions are provided as a condi-
tion.

2.4. Optimization Techniques for Interactive Gen-
eration

Real-time interactive generation requires addressing both
architectural efficiency and sampling speed. Recent ad-
vances in attention mechanisms include FlexAttention [9],
which enables flexible attention patterns, and Longformer
[2], which combines local sliding-window attention with
global context. We incorporate local-global attention pat-
terns inspired by these works to balance efficiency with tem-
poral coverage.

For sampling efficiency, Distribution Matching Distilla-
tion (DMD) [27, 28] and diffusion forcing [15] have proven
effective techniques for reducing sampling steps while mit-
igating autoregressive drift. These techniques enable real-
time neural simulation for complex games [5, 24]. We adapt
DMD through CausVid distillation to achieve interactive
frame rates while preserving behavioral quality.

The Muon optimizer [16] introduces orthogonalization
into momentum-based updates, improving conditioning of
weight updates and outperforming AdamW in training
speed benchmarks. We incorporate Muon optimization

to enhance training efficiency of our large-scale diffusion
transformers.

3. Method

Our proposed and studied approach, COMBAT, learns to
simulate a complex, multi-agent environment by training a
generative world model on video observations. World mod-
els have shown promise in mastering diverse domains [12]
and creating interactive environments [5, 25]. We extend
this paradigm to a competitive fighting game, where the
model must learn the opponent’s behavior without explicit
action labels.

3.1. Problem Formulation

The task is as follows: Primarily, learning a conditional

video generation model that implicitly captures an oppo-

nent’s policy. We select the fighting game Tekken 3 as our

environment for three key reasons:

1. Bounded Temporal Dependency: The game state is
largely Markovian, where

P(si41 | s<t) = P(st41 | St—k:t)s

for a small history window £, since all relevant informa-
tion is contained within recent frames.

2. Rich Action Space: Characters possess diverse
movesets, with over 40 unique actions and complex
combos, providing a challenging domain for behavior
modeling.

3. Strategic Depth: Success requires a blend of rapid re-
actions and long-term tactical planning.

Formal Problem Statement: Given a dataset of par-
tially observed multi-agent trajectories

D = {(ss,af" s}y,

where s; € RE*WX3 jg a game frame and agl) € {0,1}®
is the observed multi-hot input for Player 1. The actions of
Player 2, aiz), remain unobserved. Our objective is to learn

a conditional world model

Py(sp11 | St—k:taagl—)k:t)

that can accurately predict subsequent frames.

Key Innovation: Unlike traditional imitation learning
methods that require explicit action supervision for all
agents [14], COMBAT is trained without Player 2’s action
labels. The model must infer Player 2’s policy,

7@ | se.05")

)

as an emergent property of generating temporally consis-
tent and plausible multi-agent interactions. This forces the
world model to learn reactive and strategic opponent behav-
ior implicitly.
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(a) Training overview of COMBAT World Model. layer to capture long form context.
Figure 2. Architectural diagram of the COMBAT model. (a) The end-to-end training process, where a Diffusion Transformer is conditioned
on action and timestep embeddings to denoise latent frame representations. (b) The internal structure of the DiT backbone, which employs
a hybrid local-global attention pattern to efficiently model long-term dependencies.
3.2. Tekken 3 Gameplay Dataset points into a compact latent tensor of shape 128 x 23 x 11. 251
To train our model, we collect a large-scale dataset of Our design is 1nsp1.red l_)y recent work in hlgh—cpmpressmn 252
. . autoencoders for diffusion models [7]. To optimize for real- 253
Tekken 3 gameplay, totaling 1,000 rounds (approximately } i
I time performance, the 340M-parameter decoder is subse- 254
7 hours or 1.2 million frames). The dataset features a va- N . e
. . . quently distilled to a 44M-parameter version by reducing its 255
riety of characters and a balanced win—loss ratio between . . A .
. upsampling block count, which maintains high reconstruc- 256
the two players. For each frame, captured at a resolution of . I fract fh onal o5
3 x 448 x 736, we provide synchronized annotations includ- tion lqua 1ty ’at a .ractltcl).n oft .e computathna cost. .
ing: a) action inputs for both players, b) health and timer P ayer I’s action 1stolr)./ Ills projected into a dense e}rlr.l— 258
status, c) 68-point body pose coordinates, and d) player be‘?dmg’ escgg?d a_s a multi- dOt Yegtor Qver S'Eultto.ns. This 259
segmentation masks. Our data collection and annotation ECEZP er;l eh 1ng 18 mgr;ne‘ with a smuso1fa t111111e gmi 260
pipeline will be made publicly available in conjunction with © d%n'g or the Curr?nt 111 g{%antCE{)temb, to form the fina 261
the publication of this paper. conditioning vector for the DiT backbone. 262
3.3. Model Architecture 3.3.2. Diffusion Transformer Backbone 263
The core of our generative model is a 1.2B-parameter Dif- 264

Our world model architecture integrates three main compo-
nents:
* a multi-modal variational autoencoder for high-ratio state
compression,
* an embedding module for player actions and diffusion
timesteps, and
* a Diffusion Transformer (DiT) backbone for autoregres-
sive prediction in the latent space.
We train two versions of the model: one using only RGB
latents and another using a joint visual-pose latent repre-
sentation.

3.3.1. Multi-Modal Latent Encoding

To create an efficient latent representation, we first train a
340M-parameter joint RGB—pose variational autoencoder.
This model learns a shared embedding space by compress-
ing concatenated visual frames (3 x448x 736) and pose key-

fusion Transformer (DiT) [19], which learns to denoise and 265
predict future latent frames. The architecture consists of 16 266
transformer blocks with a model dimension d,oqe1 = 2048 267
and 16 attention heads. The conditioning vector is injected 268
into each block via an Adaptive Layer Normalization Zero 269
(AdaLLNZero) layer, and tokenization is performed using 270

linear projection layers for spatio-temporal rasterization, 271
bypassing conventional patch-based embeddings. 272
Each DiT block executes the following sequence: 273
AdaLN — Attention — Gated Residual — 274
AdalLLN — MLP — Gated Residual 275

To maintain computational tractability over long 128- 276
frame sequences, we employ a hybrid attention strategy. 277

Most layers use a frame-causal attention mask with a local 278
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sliding window of 16 frames, while every fourth layer ap-
plies global attention across the entire 128-frame context.
This structure balances long-range dependency modeling
with computational efficiency. We apply Rotary Position
Embeddings (RoPE) [22] across both spatial and temporal
axes and utilize FlexAttention for an efficient block-sparse
masking implementation.

3.4. Accelerated Inference for Real-Time Genera-
tion

Enabling real-time interaction is critical for gaming applica-
tions, but the iterative sampling process of diffusion models
is computationally intensive. To overcome this, we signifi-
cantly accelerate inference using two key optimizations.

First, we distill the fully trained model into a few-
step sampler using Distribution Matching Distillation
(DMD) [27]. We adopt the CausVid DMD framework [28]
to produce a 4-step distilled model that preserves high gen-
erative fidelity while drastically reducing inference time.

Second, we further enhance speed by implementing
static key-value caching, which reuses previously computed
attention states across generation steps. These optimiza-
tions are applied to both the RGB and visual-pose world
models.

4. Experiments

To validate our claim that a conditional world model can
learn reactive agent behavior from partial observations, we
conduct a series of experiments on the Tekken 3 dataset.
We first detail our multi-stage training pipeline and model
architectures. We then introduce our evaluation benchmarks
and present results comparing our primary models and their
distilled variants.

4.1. Implementation Details

Our training process is divided into three main stages: au-
toencoder training, world model training, and distillation
for real-time inference. All models were trained on a cluster
of 8 x NVIDIA H200 GPUs.

Stage 1: Autoencoder Training. We first train a
340M parameter Deep Compression AutoEncoder (DCAE)
to learn a compact latent representation of the game envi-
ronment. The autoencoder is trained for 68,000 steps (ap-
prox. 75 hours) on our 1.2 million frame Tekken dataset. It
compresses raw frames (3 x 448 x 736) into a latent space
of 23 x 11 with 128 channels. The training objective is a
combination of L2 reconstruction loss, perceptual similar-
ity loss, and a KL divergence term to regularize the latent
space. For our pose-augmented model, we use an identical
architecture and training setup.

Stage 2: World Model Training. We train a 1.2B
parameter autoregressive Diffusion Transformer (DiT) to
function as the world model. The DiT architecture consists

of 16 layers, 16 attention heads, and a model dimension

of doder = 2048. It employs a combination of local (16

frames) and global (128 frames) attention windows to cap-

ture both short-term and long-term temporal dependencies.

The model is trained on video clips with a sequence length

of 128 frames to predict the next latent frame conditioned

on Player 1’s actions. We train two distinct world models:
one using latents from the RGB-only VAE and another us-
ing latents from the pose-augmented VAE.

Stage 3: Distillation for Real-Time Inference. To
achieve interactive frame rates, we employ two separate dis-
tillation techniques:

* Decoder Distillation: We first create a lightweight VAE
decoder for real-time rendering. Using student-teacher
distillation, we reduce the number of upsampling blocks
per stage in the decoder from four to one. This process
reduces the decoder’s parameter count from 340M to a
nimble 44M.

¢ Step Distillation: We use CausVid, a Distribution Match-
ing Distillation (DMD) method, to drastically reduce the
number of required inference steps for the world model.
We distill the fully-trained DiT into a 4-step variant. This
distillation process converges in 2,500 steps, utilizing a
combination of a DMD loss and a critic loss. We ap-
ply this technique to both the RGB-only and the pose-
augmented world models.

4.2. Evaluation Metrics and Benchmarks

Evaluating emergent agent behavior presents a fundamental
challenge: How do we measure intelligence that was never
explicitly supervised? Traditional video metrics assess vi-
sual fidelity, while RL metrics assume access to ground-
truth actions or rewards. Since COMBAT learns behavioral
patterns implicitly through world modeling, we need novel
evaluation approaches capable of detecting tactical compe-
tence from generated gameplay alone.

4.2.1. Standard Perceptual Metrics

To assess the perceptual quality of our generated trajec-
tories, we employ a suite of standard metrics. Our eval-
uation protocol involves conditioning the models on real
Player 1 action sequences extracted from a test set of 300
ground-truth videos (roughly 1-2 seconds in length) con-
sisting of mixed difficulty gameplay. The generated video
is then compared directly against its corresponding ground-
truth counterpart from which the actions were sourced. This
setup provides a stringent test of the model’s ability to ren-
der deterministic outcomes based on specific actions.

We report the Fréchet Video Distance (FVD)[23] to mea-
sure temporal coherence, the Fréchet Inception Distance
(FID)[13] for per-frame visual fidelity, and LPIPS to quan-
tify perceptual similarity. Given the high-fidelity nature of
the Tekken 3 environment, achieving strong performance on
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these metrics against the ground truth is a robust indicator
of the model’s precision and world-modeling capabilities.

Table 1. All metrics are calculated on a held-out test set of 300
video clips each with 32 frames. Lower is better for all scores.

Model FID, FVD| LPIPS|
COMBAT: Pose 497 5934 005
COMBAT: Non-Pose  80.9 1156.6  0.07

- ,:};\ ;\\\

(a) Player 1 Damage Distribution (b) Player 2 Damage Distribution

(d) Player 2 Mean Health Trajec-
(c) Player 1 Mean Health Trajectory  tory

Figure 3. Behavioral Consistency Metrics. A comparison of
generated gameplay (COMBAT) against the ground truth. (a, b)
The per-frame damage distributions for Player 1 and Player 2,
showing that our model learns a realistic mapping of actions to
consequences. (¢, d) The mean health trajectories over the course
of a round, indicating that COMBAT captures the natural pacing
of a match.

4.2.2. Behavioral Consistency Metrics

To verify that our model learns the game’s intrinsic rules

and pacing, we propose two metrics based on in-game

health data:

* Damage Distribution Analysis: This metric assesses
whether the consequence of individual actions is realis-

tic. Let Hz-(t) denote the health of player i € {1,2}

at frame ¢, and define per-frame damage as AHi(t) =

max(0, Hi(t_l) - Hi(t)). We normalize by the maximum
health H™ to obtain 6" = AH" / Hmx,
The complete distribution of damage values from all gen-

erated sequences, {52(26“

}, is then compared to the dis-
tribution from all ground-truth sequences, {65?6211}, using
the Wasserstein distance. A lower distance signifies that
the model has learned a more accurate mapping from ac-
tions to their in-game consequences.

¢ Health Trajectory Analysis: This metric evaluates the

overall temporal flow of the match. Define the normalized

time s = ¢/T, where T is the total round duration, and
let H®) = LS~ H® /H™ be the average normalized
health at time s for a single round.

To establish a baseline for typical match progression, we
compute the mean health trajectory by averaging H(*)
across all rounds in our ground-truth test set. We do the
same for our generated rounds. The similarity between
these two mean trajectories is then measured using the
Mean Squared Error (MSE). A lower MSE indicates that
the generated gameplay, on average, exhibits a more real-
istic match pace.

4.3. Human Evaluation of Emergent Behavior

To assess the emergent behavior of Player 2, we conduct
human evaluation based on observable action patterns in
gameplay. Since Player 2 is trained without explicit super-
vision, emergent behavior is defined as actions that react
naturally to Player 1’s inputs, demonstrating plausible com-
bat strategies such as timely punches, kicks, and defensive
maneuvers.

We introduce two human-interpretable metrics: Total
Action Adherence (TAA) and Action Ratio Consistency
(ARC). These metrics are based on human annotations of
offensive actions observed in both ground-truth and gener-
ated gameplay sequences.

4.3.1. Total Action Adherence (TAA)

TAA measures whether the agent produces a comparable
overall volume of offensive actions relative to human game-

play:

G(kicks + Gpunch

TAA =
Okicks + Opunch

where G. denotes actions performed by the generated
agent, and O. the actions performed in original gameplay.

A score of 1.0 indicates perfect adherence in activity
level. Scores > 1.0 suggest hyperactive behavior, while
scores < 1.0 indicate passive behavior.

Total action adherence

—e— AFR Score
5 -~ Ideal Score (1.0)

N

Action frequency ratio

%

o o
& §
R ®

s,

Training steps

Figure 4. Total Action Adherence across training checkpoints
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4.3.2. Action Ratio Consistency (ARC)

ARC evaluates whether the stylistic balance between
punches and kicks aligns with the human player:

G punch

_ Giicks
ARC = Opunch

Okicks
A score of 1.0 indicates identical punch-to-kick ratio as
original gameplay. Scores above 1.0 reflect stronger pref-
erence for punches, while scores below 1.0 suggest heavier
reliance on kicks.

Metric 2: Relative Action Consistency

—a— Mean RAC Score
== Ideal Score (1.0)

500 1000 1500 2000
Training Steps

(Gen Ratio / Orig Ratio)

Figure 5. Action Ratio Consistency across training checkpoints

4.3.3. Results

We evaluated sequences at multiple training checkpoints.
Table 2 summarizes the results:

Training Step TAA ARC
Ground Truth 1.00  1.00

Step 500 387 1.04
Step 1000 0.88 3.90
Step 1500 190 1.79
Step 2000 1.79 147

Table 2. TAA and ARC scores at different training checkpoints
compared against human gameplay.

Our evaluation shows that COMBAT successfully learns
emergent Player 2 behavior through distinct phases. Ini-
tially, the model is hyperactive, generating nearly four
times the offensive actions of human players (TAA = 3.87),
though its punch-to-kick ratio is well-aligned (ARC = 1.04).
As training progresses, the model reduces hyperactivity in
further steps. Beyond step 2000, performance declines,
with later checkpoints showing reduced adherence to origi-
nal gameplay.

By the final training stages, the model converges toward
stable, human-like combat patterns. It learns to regulate ac-
tivity frequency (TAA 1.8) while achieving balanced fight-
ing style (ARC 1.5). However, overall consistency degrades
noticeably.

The pose-augmented COMBAT model significantly out-
performs the RGB-only variant across visual quality met-

rics, confirming that explicit pose information improves

generation quality.

* Impact of Distillation: Our 4-step distilled models, cre-

ated using CausVid DMD, retain substantial visual qual-
ity while achieving 12.5x speedup. The pose-augmented
4-step model still outperforms the full RGB-only model,
demonstrating efficient distillation with minimal quality
trade-off.
Qualitatively, we observe intelligent behaviors including
combo execution, spatial awareness, and adaptation to
Player 1’s patterns. These tactical responses emerge natu-
rally from our training process without explicit behavioral
supervision.

5. Conclusion

In this work, we introduce COMBAT, a conditional world
model that learns complex, emergent agent behavior from
partially observed gameplay. Our key finding is that by con-
ditioning the model solely on Player 1’s actions it success-
fully learns a reactive, tactically coherent policy for Player
2 without any direct supervision. The model correctly as-
sociates the control inputs with the intended agent and gen-
erates plausible counter-attacks. This demonstrates that in-
tricate behaviors can arise implicitly from the objective of
temporal consistency.

We provide an extensive analysis of emergent behavior
in world models to enable further analysis and research.
We also release our large-scale Tekken 3 dataset complete
with synchronized pose and segmentation annotations, and
open-source our pipelines for data collection and model
training.

Our approach is practical for interactive entertainment
applications. Through distillation, the COMBAT world
model achieves real-time performance, operating at
85 FPS on a single NVIDIA A100 GPU. This work repre-
sents a contribution as to how generative world models can
learn implicit agent policies, and we hope it inspires further
research into multi-agent behavioral modeling in complex,
interactive environments.

6. Future Work

We identify two primary directions for future research.
First, while DMD step distillation accelerates inference, it
degrades agent responsiveness and attack frequency. Future
work should develop distillation techniques that preserve
behavioral fidelity by incorporating metrics like Action Ra-
tio Consistency (ARC) into the optimization objective.
Second, integrating reinforcement learning (RL) could
guide the world model toward goal-oriented behaviors like
maximizing win-rate. This involves training a policy within
the generative model’s latent space, establishing a new
paradigm for intelligent agents in simulated environments.
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