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Personalizing oncology treatments
by predicting drug efficacy,
side-effects, and improved
therapy: mathematics, statistics,
and their integration

Zvia Agur,’?* Moran Elishmereni'? and Yuri Kheifetz'?

Despite its great promise, personalized oncology still faces many hurdles, and it
is increasingly clear that targeted drugs and molecular biomarkers alone yield
only modest clinical benefit. One reason is the complex relationships between
biomarkers and the patient’s response to drugs, obscuring the true weight of the
biomarkers in the overall patient’s response. This complexity can be disentangled
by computational models that integrate the effects of personal biomarkers into
a simulator of drug-patient dynamic interactions, for predicting the clinical
outcomes. Several computational tools have been developed for personalized
oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-
estimated tools for predicting survival, etc. We describe representative statistical
and mathematical tools, and discuss their merits, shortcomings and preliminary
clinical validation attesting to their potential. Yet, the individualization power of
mathematical models alone, or statistical models alone, is limited. More accurate
and versatile personalization tools can be constructed by a new application
of the statistical/mathematical nonlinear mixed effects modeling (NLMEM)
approach, which until recently has been used only in drug development. Using
these advanced tools, clinical data from patient populations can be integrated
with mechanistic models of disease and physiology, for generating personal
mathematical models. Upon a more substantial validation in the clinic, this
approach will hopefully be applied in personalized clinical trials, P-trials, hence
aiding the establishment of personalized medicine within the main stream of
clinical oncology. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

onventionally, cancer patients have been treated
following the ‘one-size-fits-all’ paradigm, by drug
protocols that showed acceptable results in many
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patients with a similar diagnosis. However, progress
in human genetics has made it increasingly clear
that cancers of primary sites vary genetically and
hence, respond differently to drugs. The concept
emerging today is to overcome this problem by
personalizing drug treatment according to the specific
molecular characteristics of the patient’s tumor.
Indeed, advances in pharmacogenomics have led
both to the design of personalized drugs that target
particular molecular sites, and to the accelerated
search for biomarkers that can predict how the patient
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will respond to a drug (predictive biomarkers).!™3

At present, the repertoire of biomarkers approved
for clinical use in oncology is rather limited.* It
includes key regulators, such as the epidermal growth
factor receptor (EGFR) for patients with non-small
cell lung cancer, the estrogen receptor (ER) protein,
the Human Epidermal Growth Factor Receptor
(HER2) amplification biomarker, the breast cancer
susceptibility type 1 and 2 (BRCA-1, 2) for patients
of breast cancer (BC) and a few newer ones. Such a
small repertoire is insufficient, especially in view of
the emerging complexity entailed in the use of some
of these biomarkers.®

The concept of ‘personalized medicine’ repre-
sents an important step forward in the evolution of
medical science, toward greater mechanistic under-
standing of health, disease, and treatment. But several
impediments still prevent its bold acceptance. These
include the insufficient validation of the suggested
predictive biomarkers, the current drug development
methodology which is unsuitable for personalized
medicine, the cost of new technologies and the doc-
tors’ reluctance about their acceptance.® These caveats
are further elaborated below.

Biomarker Validation
The clinical benefit of predictive biomarkers is still
obscured by many difficulties, and many potential
biomarkers that have been identified a priori,
subsequently proved to be of poor clinical benefit.”
The generally poor achievements of molecular
biomarkers are not surprising given the emerging
recognition that single mutations do not encompass
the whole array of genetic alterations that characterize
a progressing tumor, and that cancer will increasingly
be seen as a disease defined by its genetic fingerprint.®?
Moreover, a disturbing confusion exists between
surrogate biomarkers, which can represent treatment
endpoints for drug regulatory approval, and predictive
biomarkers which can stratify patients according to
their expected response to specific treatments. The
latter biomarkers, essential for personalized medicine,
do not require as stringent validation as the former.
Yet, drug and diagnostic developers imagine that
the overwhelming validation barriers to the use of
surrogate end points also apply to regulatory issues
that are pertinent to predictive biomarkers.®

How should predictive biomarkers be validated?
Over the last few years, considerable attention of
statisticians has been given to this subject, and many
trial designs have been analyzed with respect to
their efficiency and reliability in validating predictive
biomarkers under different clinical settings.'%!!
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One useful classification distinguishes between
analytical validation, clinical validation, and clinical
utility validation. Analytical validation of predictive
biomarkers checks that, based on the biomarker in
question, one can be more accurate in predicting the
patient’s response than by a gold standard predictor.
Clinical validation checks that the biomarker quantity
correlates with a clinical end point or characteristic.
Clinical utility validation requires that the use of the
biomarker results in improved response in patients.!?
None of these different approaches are, however,
standardized and applied in reality. Below we show
how the use of biomarkers and their validation can
be improved by their integration into computational
personalization support tools.

Clinical Trials

The overall success rate of most clinical trials is
challenged by the large variability among patients,
requiring large study populations to reach statistical
confidence.'” In contrast, patient stratification often
reduces the number of patients that can be recruited
to personalized-therapy trials; traditional statistical
methods for clinical trials do not apply in such
cases. Another limitation of current trial designs is
that they apply the given drug to the patient in
an unchanging regimen. This forces the clinicians
to use these regimens, in spite of problems that
may oblige flexible personal regimens, such as the
slowly emerging drug resistance. It appears, then,
that a different paradigm is needed in personalized
drug development.® The recently suggested concept of
personalized clinical trials (p-trials) introduces the idea
of flexible personalized treatment schedules, based
on personalized mathematical models.'* The latter
dynamic personalization method will be described
below.

Doctors’ Compliance

One of the main caveats in embedding personalized
medicine in the clinical practice is the conservatism
of physicians and the healthcare system, in general.
Physicians are biased toward interventions that
permeate the healthcare system and are reluctant to
adopt new technologies, even when they lead to better
outcomes.>!S In addition, personalized medicine
depends on a substantial reliance on electronic
medical records and decision support systems, but
the healthcare industry is still not comfortable with
information technology.'® A vicious circle exists here,
in which acceptance by the clinical community is a
primary prerequisite for the demonstration of success
of personalized medicine technologies. At the same
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time, success of these technologies is a primary
prerequisite for acceptance by the clinical community.

A new comprehensive framework for reducing
the barriers to successful personalized medicine is
needed, and can be provided by a combined statistical
and mathematical modeling approach. Using such an
approach, drug—patient interactions can be captured
on many levels of biological organization, so that
forces as diverse as molecular effects on a patient’s
disease and population variability of molecular
biomarkers can be put together and implemented
in a decision support algorithm. The algorithm
should be able to quantify the comprehensive effect
of plural clinical and molecular measurements on
the patient’s parameters of the drug-driven disease
progression model, thus improving predictability
of biomarkers and forecasting improved personal
treatment regimens. As a result, personalized medicine
will eventually be better integrated within clinical
trials and the cost-effectiveness of clinical treatment
will increase. Below we review several test cases,
demonstrating the use of statistical and mathematical
models in personalized medicine, as well as put
forward a more advanced methodology, integrating
statistical and mathematical models for improved
personalization.

USE OF MATHEMATICAL MODELS IN
PERSONALIZING ONCOLOGY
TREATMENTS

The disillusionment with predictive biomarkers can
be explained by the complexity of drug—patient
interactions. Highly nonlinear relationships exist
between a molecular biomarker and its realization
in the patient’s reaction to treatment. For example,
the effect of HER2 on the patient’s response
to trastuzumab is often obscured by genetic and
epigenetic changes that limit the binding of drug to
HER2.>!7 The inability to see the direct reflection
of the marker in the patient’s response calls for
an intermediate system which can simulate disease
complexity, factoring in the patient’s molecular profile
and the desired clinical treatment. Mathematical
modeling can be used for constructing such an
intermediate system, because of its power to describe,
quantify and predict multifaceted behavior in a
succinct formal language, enabling to scrutinize the
system’s behavior under various initial conditions.'®
Many mathematical models investigating vari-
ous dynamic aspects of known mechanisms in cancer
growth and therapy have been put forward over
the last 40 years,'™2! and mechanism-based models
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have analyzed common methodologies of chemother-
apy and suggested new approaches.”?>™>* Typically,
however, parameterization of these models is coarse,
and often done in a theoretical manner or reliant
on laboratory data or literature-derived data. There-
fore, they fall short of capturing any specific clinical
scenario, and while contributing to development of
bio-modeling methodologies and to understanding of
general treatment concepts, these models are still not
used for prescribing specific treatment schedules at the
clinical level.

A physician dealing with an individual patient
may be interested in precise short-term goals,
such as, are three treatment cycles sufficient for
stabilizing tumor progression in patient X, or should
a more aggressive regimen be administered? Will
the scheduled drug dose be tolerable in patient X?
etc. Such patient-oriented short-term questions can
possibly be tackled by a dynamic tumor model,
a capacity which is beyond the scope of current
statistical methodologies. Below it is shown how such
treatment decisions can be supported by dynamically
personalized mathematical models, making the need
to use mass historic data redundant.

Therapy-Induced Neutropenia
Chemotherapy-induced neutropenia (CIN), a disorder
in granulocyte development, is the major toxicity of
chemotherapy. It is associated with substantial mor-
bidity, mortality, and excessive hospital admissions.>*
The appearance of grade III/IV CIN frequently leads to
delayed chemotherapy administration, or dose reduc-
tion, both associated with poor clinical outcomes.?2”
These complications motivated the development of
models for predicting CIN and for analyzing gran-
ulopoiesis, as affected by granulocyte colony stim-
ulating factor (G-CSF) support.?®73! One of these
models focused on predicting the individual time to
neutrophil nadir in patients treated by chemotherapy,
a clinically valuable factor in the physician’s decision
making process.3>33 The personalization accuracy of
this model was validated by retrospective clinical data,
as described below.

The model describes granulopoiesis from
myeloid progenitors through the different bone
marrow compartments, to blood neutrophils. It also
features explicit cell-cycle in mitotic compartments
and the effects of G-CSF, the feedback molecule
governing bone marrow maintenance of a quasisteady
neutrophil levels in blood. The secretion, diffusion,
clearance, and interactions of G-CSF with different cell
compartments in the normal neutrophil development
were described as well. The parameters of the
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granulopoiesis model were estimated based on
extensive literature data and neutrophil profiles in
cancer patients subject to chemotherapy.30-34

The granulopoiesis model was integrated with a
docetaxel pharmacokinetic (PK)/pharmacodynamics
(PD) model, in order to predict blood toxicity in
individual docetaxel-treated patients.3%3* A three-
compartment population PK model with linear
elimination was assumed,>® and PK model parameters
were estimated using data from patients treated
by docetaxel (100 mg/m?, 1-h iv infusion®?); the
resulting PK model was then validated by independent
data.?® Docetaxel’s effect on granulopoiesis was
modeled as a direct killing of neutrophil proliferating
progenitors, the most likely targets of docetaxel in
granulopoiesis.3?

Model personalization was done in two stages:
(1) adapt the granulopoiesis model to represent the
patient population, and (2) test the population model
for its accuracy in predicting neutropenia profiles in
individual patients, taken from a new dataset. To this
end, blood counts were collected from 38 docetaxel-
treated metastatic BC patients (from Nottingham City
Hospital, UK, and Soroka Hospital, Israel). Patients
were randomly divided into a training set (n=12),
and a validation set (7 =26; 16 receiving a tri-weekly
docetaxel regimen and 10 receiving a weekly regimen).
Docetaxel schedules and neutrophil baselines (median
5080 neutrophils/uL; range 1800-15,500) were used
as model input. Some population model parameters
were re-estimated by fitting to training data, resulting
in a single parameter set common for all patients,
excluding individual initial baseline neutrophil counts
and individual treatment regimen.’*3* Then, the
baseline neutrophil counts and the treatment regimen
of each patient in the validation set were input into
the population model for predicting the patients’
CIN. Model predictions were compared to clinical
neutrophil profiles in the validation set patients.
The model showed high predictive accuracy of the
timing of the personal nadir, i.e. timing of lowest
observed neutrophil count at each cycle (r=0.99,
95% confidence interval (CI): 0.98-1; Figure 1), and
a good prediction of the neutropenia grade for each
patient from the validation set, positive and negative
predictive values of grade 3-4 neutropenia being
86% and 83 %, respectively (k = 0.69, P < 0.001).30:34
Thus, even with this small dataset, the model gave
accurate personal predictions of neutrophil nadir, a
highly significant factor for chemotherapy design in
the clinic.

It should be noted that the prediction accuracy
required for evaluating the timing of nadir was much
lower than would be required for predicting, for
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FIGURE 1| Model-predicted neutrophil counts over time compared
to the observed neutrophil counts of metastatic BC patients, treated
with different docetaxel schedules. Model predictions of the nadir days
at each cycle vs. the observed nadir days (circles; N = 66; calculated
correlation coefficient is r = 0.99). The dashed line represents the
identity line.

example, the actual neutrophil value at nadir in each
patient. Thus, the small patient cohort sufficed for
this purpose. Moreover, the requirement for a large
dataset was made redundant here by use of data from
additional sources. The neutropenia model, being
designed also on the basis of extensive literature,
was not dependent on the clinical dataset only.
Rather, most of the model parameters-mostly system
parameters-were already estimated at the population
level based on data from literature, and only a few
PK/PD parameters required re-estimation based on the
clinical dataset of the 12 patients in the training set.
Additionally, the variability aspect of this model was
relatively simple, in that the only individually variable
factor was the initial neutrophil count, whereas the
rest of the processes were described on the population
level. Despite this low variability, the model succeeded
in predicting the requested time to nadir individually.
In summary, the prediction goal of the model and
its variability level are key factors in determining the
size of the clinical dataset required for its validation,
and small datasets can be complemented by additional
data from the literature.

Efficacy Response in Mesenchymal
Chondrosarcoma

In this subsection we briefly describe a work
that combines mathematical models and xenograft
experiments for personalizing treatment protocols.
The rationale underlying this work was to generate
xenografts from the patient’s resected metastases,
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FIGURE 2| Vascular tumor growth dynamics. A schematic description of the multiscale mathematical model for vascular tumor growth. Tissues
(medium gray), cells (dark gray), and molecules (light gray) interact as marked by the arrows. Vascular endothelial growth factor (VEGF) and
platlet-derived growth factor (PDGF) are secreted by the tumor cells. VEGF binds to endothelial cells and PDGF to pericytes, to generate new and
mature blood vessels, respectively; the ratio of Angiopoietin1 (Ang1) and Angiopoietin2 (Ang2), secreted both by the tumor and by endothelial cells,

affects the stability of the mature vessels.

in order to validate the model’s ability to predict
shrinkage of the patient’s tumor under a variety
of treatment protocols. This intermediate validation
instrument was necessary, since there was no other
way to develop a personalized mathematical model,
test its ability to predict an improved treatment
on the same patient, and still use the model for
improving treatment of this patient. Once the model
is validated by these xenograft experiments, it is up-
scaled to humans and employed for suggesting an
improved treatment schedule for the patient. The latter
computational step was necessary as the xenograft
experiments on their own cannot practically test a
large number of potential treatment schedules, as the
validated mathematical model can do.

Initially, a mechanistic model for vascular tumor
growth in mesenchymal chondrosarcoma (MCS) was
developed.?” This model was based on a pre-
existing vascular tumor model, which accounts for
the molecular, cellular, and organ level interactions in
tumor growth, angiogenesis, and vessel maturation.
Four proteins that mediate blood vessel formation
and maturation were modeled: vascular endothelial
growth factor (VEGF), platelet-derived growth factor
(PDGF), angiopoietin-1 (Ang-1), and angiopoietin-
2 (Ang-2). Coupled with estimation of model
parameters from the literature and laboratory results,
the former model suitably predicted tumor and
vasculature dynamics in human ovary carcinoma
spheroids xenografted in mice’”™3° (Figure 2).
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This model was adapted to describe treatment
personalization for the MCS patient, as described
below.

A 45-year old male was in excellent health until
a growing mediastinal mass was found. The primary
tumor was resected and defined as MCS, but multiple
new bilateral pulmonary nodules were discovered
immediately after the operation. Following a long
period under chemotherapy, the disease was still pro-
gressing and the patient suffered severe pancytopenia.
An advisory panel was thus formed for identifying an
improved drug treatment for this patient.

Tumor fragments, obtained from the MCS
patient were subcutaneously implanted in nude
male mice (xenografts). Once tumors grew to
50-150mm? in size, animals were pair-matched
by tumor size into treatment and control groups,
and treatment animals were administered drugs by
different monotherapy or combination regimens.
In parallel, the initial vascular tumor model was
adjusted to describe the MCS xenograft dynamics.
This was done by fitting to tumor growth dynamics
in the untreated mice. Using the xenograft-adjusted
model, growth of the MCS xenografts and their
response to various drug therapies was simulated,
in conjunction with the PK/PD models of the
relevant drugs, and with the applied dosing regimens.
Where available, patient-specific chemosensitivity
information was used to construct PK/PD models.
Otherwise, publicly available data were used. This
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FIGURE 3 | Mathematical model predictions of tumor growth
inhibition (TGI), calculated as TGl (%) =100 (1 — (T — To)/(C — Cp)),
where Ty, Cq are initial tumor sizes of the treated and the control tumor
xenografts, respectively; T and C are sizes of treated or control tumor
xenografts, respectively. The drug protocols that were simulated are
shown at the bottom of each histogram bar: B/Doc denotes
bevacizumab, 10 mg/kg, IV, Q3Dx10 +docetaxel, 25 mg/kg, IV, Q7Dx3;
B/Doc/G denotes bevacizumab, 6.7 mg/kg, IV, day 1,8 + docetaxel,

25 mglkg, IV, Q7Dx3 + gemcitabine, 160 mg/kg, IV infusion, 24 hr
(single dose); S denotes sunitinib, 40 mg/kg, PO b.i.d x28; B/D denotes
bevacizumab, 5 mg/kg, IP, Q4Dx6 + docetaxel, 3 mg/kg, IV, QDx8;
B/Sor denotes bevacizumab, 5 mg/kg, IP, Q4Dx6 + Sorafenib, 85 mg/kg,
PO, QDx10; other bars denote predicted TGI by drugs and drug
protocols as above.

model was used to evaluate tumor growth inhibition
(TGI) in the xenografted MCS patient tumors, by
simulating different monotherapies and combinations
of two or three cytotoxic and anti-angiogenic drugs.
Model predictions suggested efficacy (TGI) differences
between the different drug protocols, applied to the
MCS patient’s xenografts (Figure 3). The combination
of bevacizumab and docetaxel was predicted to be
most efficacious in inhibiting the growth of tumors
originating at the MCS lung metastasis. Model
predictions were compared to the experimentally
observed values with 87.1% prediction accuracy.*’
The personalized MCS xenograft model served
as basis for the human model. Gene expression
analyses of key proteins in the patient’s metastases and
in the xenografted tumor (denoted as Met/F1 ratio)
were used to up-scale relevant xenograft parameters.
For example, gene expression analysis shows that the
Met/F1 ratio of Ang-2 is 0.7; values of corresponding
parameters in the xenograft model were multiplied
by this coefficient to yield a new value in the human
model. Published data on the involved drugs were
used to model their PK in the MCS patient. The PD
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functions used in the human modeling were those of
the murine models.

Owing to the above mentioned xenograft
predictions and in vitro results, the mathematical
MCS patient model was used to study the patient’s
response to many different docetaxel/bevacizumab
combination regimens. Simulations show that in
this patient, bevacizumab in combination with once-
weekly docetaxel was most efficacious in suppressing
tumor growth (Figure 4), consistent with the
above CIN model that suggested minimized risk of
docetaxel-driven neutropenic toxicity when the drug
is applied once weekly, rather than at other dosing
schedules (see above).>* Subsequently, the MCS
patient himself received bevacizumab in combination
with once weekly docetaxel, showing dramatic
disease stabilization and a substantial recovery of
hemoglobin, white blood cells, and platelets.*°

This work shows the benefit of the mathematical
model in a prospective trial, albeit in one patient.
Hopefully, following more extensive clinical trials,
models such as the one described will replace
intermediate experimental tests. However, we do
not exclude the possibility that in some treatment
personalization cases, the combined in vitro xenograft
and iz silico modeling approach will still be necessary
to identify personal PD effects. Since this combined
methodology is costly, time consuming, and difficult
to practice routinely in clinics, more practical
methodologies for model personalization should be
sought. Some of the alternatives are described below.

Hormone Therapy in Prostate Cancer

Another example of a clinically-oriented efficacy
model was shown in the prostate cancer (PCa)
case. A mechanistic mathematical model of the
form of a piecewise-linear dynamical ordinary dif-
ferential equation (ODE) system,*'*? was devel-
oped in order to identify the optimal conditions
for replacing continuous hormone (androgen sup-
pression) therapy in PCa patients—the conventional
treatment mode—with intermittent hormone ther-
apy, which has been hypothesized as more advanta-
geous. Signaling pathways evolving with epigenetic
and mutational changes in PCa cells can result
in reversible or irreversible androgen independence.
Therefore, the mechanistic model describes three
populations of tumor cells which are sensitive or
reversibly/irreversibly insensitive to hormone abla-
tion therapy: (1) androgen-dependent (AD) cells;
(2) androgen-independent (Al) cells resulting from
reversible changes; (3) Al cells arising from irre-
versible changes of genetic mutations. Under hor-
mone treatment conditions, cells of state (1) may
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FIGURE 4 | Model predicted effects of different bevacizumab and docetaxel combination regimens on tumor growth in the MCS patient.

change to those of state (2) or (3), and cells of
state (2) may change to those of state (3). Under
no treatment, cells of state (2) may return to ones of
state (1).

The model was tested in 177 PCa patients from
three medical centers. Clinical measurements of the
PCa tumor biomarker prostate specific antigen (PSA),
taken during the first 2.5 treatment cycles, were used
for personalizing the model, and model predictions for
PSA counts in subsequent treatment cycles were made.
Visual comparison to the observed results appeared
in line with the PSA dynamics observed clinically
(Figure 5). The model also showed that PSA dynamics
can be sufficiently described by a linear equation
for each of on/off-treatment periods. The evaluation
was done by comparing the prediction errors of
the radial basis function, a generic nonlinear model,
with those of linear model. Model analysis revealed
that patients can be classified into three treatment
groups, in which (1) relapse can be prevented by
intermittent therapy, if appropriately scheduled, (2)
relapse can only be delayed by intermittent therapy,
and (3) continuous therapy is preferred to intermittent
therapy. Correlations between the classification by
medical doctors’ judgments and the classification by
the mathematical model proved significant. It still
remains to be seen whether this simple model can
adequately describe more radical PCa therapies, where
disease dynamics may be completely different.
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FIGURE 5| Clinical and predicted PSA dynamics. Panels (a), (b),
and (c) are the respective examples of type (1), type (2), and type (3)
patients from the American cohort of 79 patients. In each panel, actual
PSA values (red circles) are shown across intermittent therapy fits (blue
solid lines) and continuous therapy fits (green dashed line). In another
example (d) data from the first two and half treatment cycles was used
to predict the following cycles.

USE OF STATISTICAL MODELS IN
PREDICTING SURVIVAL OF
ONCOLOGY PATIENTS

Clinicians have long been interested in estimating
survival, for example in order to identify cancer
patients that are likely to live at least three months,
who would then derive some benefit from surgery.*3
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Statistical tools that predict survival have been based
on population studies and on personal attributes, such
as tumor size, performance status, pathological stage,
et 43:44

A systematic review of biostatistical survival
models in renal cell carcinoma suggested that the
variability in their predictive power is a function of
the role of tumor histotype in the statistical analyses,
of the consistency of prognostic impact of certain
variables in different histotypes, of the level of model
validation, etc. Possibly, the predictive success of
statistical models may be improved if patients are
categorized according to tumor histotype, or other
disease characteristics.*> Yet this would require a
large and rich initial patient group as a basis for model
development, thus rendering the task more difficult.

Skeletal Metastatic Diseases

Personalized survival estimates are important for
clinical decision-making at different stages of disease
progression, for example, in skeletal metastatic
disease, as they can help identify which patient will
benefit from surgery and which surgical procedure
may be most appropriate. Based on data collected
from the Scandinavian Skeletal Metastasis Registry
for model training, two Bayesian classifiers, denoted
Bayesian-Estimated Tools for Survival (BETS) models,
have been developed for estimating the likelihood
that a patient will survive more than 3 or 12 months
(BETS3 and BETS12, respectively*?); two separate
models had to be developed as Bayesian classifiers
are suited to provide probabilities of one particular
outcome only. Both models were internally validated
using 10-fold cross-validation methods. Subsequently,
the two models were successfully validated by an
independent dataset comprising 815 records that
varied from the training set in the distributions of
the demographic and clinical Parameters.*3

The successful validation of the BETS models,
via independent data, demonstrates that statistical
tools can predict survival quite accurately and, there-
fore, can assist decision-making at important medi-
cal crossroads. The Bayesian Classifier methodology
can account for data uncertainty. In addition, BETS
generate a joint distribution function describing the
probabilistic relationships between various prognostic
factors and display it graphically.*> These two aspects
of BETS are certainly an advantage when doctors’
compliance is at stake.

But the BETS method also has disadvantages. It
is highly specific to estimations in patients with specific
medical conditions (e.g., locations of metastases),
undergoing specific interventions (e.g., surgery), under
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specific treatment philosophies. In addition, it can
estimate the probability of a defined outcome (e.g.,
3month survival), but not a dynamic personal
behavior profile (e.g., tumor growth over time), which
is often critical to predict in the clinical setting.

Overall, the available statistical algorithms for
prognosis (e.g., nomograms for metastatic BC and
prostate cancer patients) are centered on statistical
analysis of past clinical trials. Rather than modeling
dynamical processes, these tools analyze retrospective
patient data where one or more specific end-
points have been monitored. Therefore, they are
limited to prediction of a patient’s state at only
a few predetermined time-points (typically, survival
probability at 1-2 years and median survival months),
and only for the same treatment protocols which were
historically applied, excluding the ability to predict
the outcomes of any treatment modification. As such,
these algorithms cannot satisfy all the specific needs
of the physician, which in many cases fall outside the
historically defined aims.

INTEGRATION OF MECHANISTIC
MATHEMATICAL MODELS WITHIN
DATA-DRIVEN STATISTICS

The application of PK models in drug development
has always been difficult,*® but over the last years a
useful extension of these models has led to a signifi-
cant step forward in the ability to predict population
and personal PK. When data from many patients are
available, population PK models together with inter-
patient PK variability can be used for distinguishing
biomarkers of the patient’s PK, so that subpopulations
of patients that would respond differently to drug
can be singled out.*’7>! This methodology belongs
to a group of population-based statistical and math-
ematical models-nonlinear mixed effects (NLMEM)
models, which has been increasingly applied for drug
development. Termed pharmacometrics, these appli-
cations quantify beneficial effects and side effects
of drugs.*> Generally, oncological pharmacometrics
include, in addition to the mathematical population-
based PK/PD models, also simple disease models that
are limited to linear, exponential, or logistic descrip-
tion of tumor cell growth. But, unlike the ‘bottom-up’
development of mechanism-based models, the model
building process in pharmacometrics is of the ‘top-
down’ methodology, essentially evaluating a range of
plausible models for their accuracy in reproducing
results from large clinical trials.>?53

Pharmacometric models have significantly
impacted drug approval, labeling and trial design
decisions.’®>” Consequently, the number of drug
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submissions to the Food and Drug Administration
(FDA), which included pharmacometric analyses, has
increased by sixfold over the years 2000-2008.°8 Still,
this type of modeling has remained descriptive over the
years, using simple mathematical portrayal of cancer
growth, and focusing on retrieval of the population
behavior. But given the large interpatient variability,
such models cannot precisely describe drug—patient
interactions on the individual level. In order to antici-
pate the response of specific individual patients within
a real-time clinical scenario, NLMEM models must
ascend to the individual perspective. Two examples of
such modeling are given below.

Chemotherapy-Induced Neutropenia
When a chemotherapeutic drug has cytotoxic side-
effects (e.g., CIN), its dose is reduced by fixed
decrements. Attempting to replace this crude method
by a better approach, a semimechanistic NLMEM
myelosuppression model was recently transformed
into a patient-specific dosing tool. The tool,
implemented in MS Excel, is based on a Bayesian
estimation procedure. The procedure uses PK or
PD information processed from neutrophil counts
of a previous treatment cycle in order to adjust
the subsequent cycle dose for obtaining a desired
nadir. In simulations with a hypothetical etoposide-
like drug,’® the prevailing stepwise procedure of dose
adjustment was compared to the model-based dose
adjustment, the latter being superior in targeting a
desired nadir, in terms of number of patients on target
with no increased severe toxicity. In contrast to the
standard method, model-based adjustment may allow
to increase dose for patients with a subtoxic levels.®°
Underlying  the  development of  this
NLMEM/MS Excel tool is the view that CIN
is highly variable between patients and between
treatment cycles in the same patients. In contrast, the
above described fully mathematical CIN model did
not assume a significant interpatient and intercycle
variability. Yet, it yielded accurate personal predic-
tions of neutrophil counts over several treatment
cycles, using only baseline neutrophil counts. A
prospective clinical study for comparing the two
approaches may be worthwhile. Note, however, that
each of these models aimed at achieving different
endpoints: the NLMEM model in the current example
was developed for predicting the neutrophils counts at
the nadir, and for assisting the adequate adjustments
of these minimal values through dose individual-
ization. In contrast, the purely mathematical CIN
model mentioned above was clinically evaluated for
its ability to predict the nadir itself and the neutrophil
profile of the individual patient.
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Metastatic BC
The NLMEM modeling strategy has been recently
applied for personalizing chemotherapy in metastatic
BC, the most common cancer among women. Taxanes
are commonly used cytotoxic treatments in BC,°!
specifically docetaxel, which yields a 47% objective
response rate and an overall survival of 15 months.®?
Since taxanes are expected to remain a principal
chemotherapeutic agent for BC, the ability to quantify
and predict response in a patient-specific manner
is expected to assist in the personalized approach
to BC treatment. Recently, a clinically applicable
statistical/mathematical model for BC patients treated
with docetaxel was developed, using an NLMEM
approach, in order to accommodate the distribution of
PK/PD and biological parameters, naturally observed
among patients, and to account for errors in data
measurement (Kheifetz et al., in preparation).

Data from 33 metastatic BC patients (altogether
64 tumor lesions) under docetaxel treatment were
used for creating the disease/PD model describing
the dynamics of tumor volume, angiogenic capacity,
and long-term effects of docetaxel. Merged with a
population PK model for docetaxel (designed using a
study in 521 patients from 22 Phase II trials), the full
NLMEM model was implemented and calibrated in
Monolix. Twelve molecular biomarkers measured in
the patients (estrogen receptor and VEGF expression,
proliferation and mitotic indices, etc.) were tested
for inclusion as covariates, potentially linking clinical
parameters to individual lesion outcomes via their
direct effects on model parameters. The model success-
fully fit the observed lesion dynamic data, with an R?
value of 0.98 for individual fits. Stringent model selec-
tion criteria that are normally applied in NLMEM
methodology were all satisfied (nonsingular Fisher
Matrix value, low p-values for covariate coefficients,
realistic interindividual variability of parameters, low
condition number of correlation matrices of estima-
tions of parameters, low Akaike information criterion
value, small standard errors of parameter values,
etc.). The sole biomarker found to be well correlated
with lesion elimination was the mitotic index, high
values of which indicated good response to docetaxel.

Results show that, using three lesion data points
(one baseline and two in-treatment) measured in
the individual patient, the personalized NLMEM
model (simulated via a Bayesian Predictor) reliably
predicts the subsequent dynamic response (change
of lesion size over time) in that patient, during
two months following the last measurement. This
work shows the ability of such models to predict
personal patient responses to chemotherapy, based
on early data, and to help personalize treatment
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regimens that will divert the tumor lesion towards
elimination. Implementation of model predictions
in clinical decision-making can be done upon a
large scale model validation and adaptation to the
clinical needs. This can be done by identifying the
critical decision-making junctions during treatment,
in which one protocol out of several authorized ones
has to be elected. In BC, for example, this can
be implemented for patients with recurrent disease,
where recurrence is systemic, or in patients having
stage IV disease with distant metastases when first
diagnosed. If such patients are also estrogen-receptor-
positive, the doctor needs to choose between different
hormone therapies, or between aromatase inhibitors
and antiestrogen drugs, etc. In such decision-making
junctions, the mathematical model can serve for
providing the patient’s individual prognosis for
progression or survival and for predicting response to
the pertinent therapies. This method extends to other
malignancies, and attests to efficient integration of
mixed-effects, biomathematical/statistical, modeling
in the personalized oncotherapy realm.

ADAPTING CLINICAL TRIALS TO
PERSONALIZED TREATMENT
PROTOCOLS BY USE OF
COMPUTATIONAL MODELS

One may argue that computational methods carry
little value for clinical medicine, as it may be
impossible, from the regulatory point of view, to
make changes in an ongoing treatment plan on the
basis of model predictions. Yet in reality, a great deal
of medical deliberation is involved in determining
the therapy route the patient will go through. In
PCa, for example, oncologists base their treatment
decisions on the clinical stage of the disease and on the
evaluation of the primary surrogate marker PSA. This
is done even though the oncologists are aware that
PSA alone is not sufficient for navigating the patient’s
treatment, and it is widely believed that to gain the
maximal therapeutic effect, treatment of PCa patients
must be personalized.'*®? For example, hormone
sensitive PCa patients with potentially good prognosis
are generally over-treated by the standard, androgen
deprivation therapy (ADT), suffering unnecessary
adverse event and, possibly, accelerated emergence
of hormone resistance. In contrast, poor-prognosis
hormone sensitive patients who progress rapidly, do
not benefit from standard ADT; they ought to be
initially treated more aggressively, for example, with
ADT combined with the new second-line hormone
therapy. In addition, 35-55% of castrate resistant

248 © 2014 Wiley Periodicals, Inc.
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PCa patients do not respond to Docetaxel, the first line
chemotherapy, making treatment futile (Dr. Manish
Kohli, personal communication).

We note that, similarly to other cancers, PCa
progression is realized in a transition at different rates,
from a local stage to an advanced stage disease, with
resistance to different drugs emerging and establishing
themselves at different rates. Nevertheless, the current
paradigm in oncology is inflexible and does not follow
the personal disease-drug dynamics: adaptation, when
made, is made a posteriori, rather than in ‘real-time.’
It is therefore important to show that the time-
window at which the patient is most responsive to
a particular treatment protocol can be dynamically
calculated. This will enable to properly plan a
cost-efficient individual therapeutic strategy, which
will extend the patient’s survival and enhance the
quality of life. A computational model based on an
adequate mathematical description of the patient’s
drug-affected disease dynamics may be of aid in this
policymaking process.

But is it possible to validate the prediction
accuracy of personalized mathematical models and
still use them to navigate long-term treatments of
individual patients? It has been shown theoretically
that this can be achieved by a method which entails
dynamic modification of the personalized model and
consequently, of the personalized treatment. This
method was developed on the basis of the notion
that for fully accomplishing personalized medicine,
not only drug entities but also drug regimens
should be dynamically personalized®* (see below).
When this happens, current large-scale clinical trials,
yielding approved ‘packages’ of both drug entity
and accompanying fixed drug regimen, are no more
valid. A new clinical trial methodology, denoted
p-trials, has been suggested, which accommodates
approval of flexible personal drug regimens. In the
suggested p-trials, the range between the minimally
effective dose and the maximally tolerated dose
will be determined in a Phase I clinical trial, as is
conventionally done, whereas the flexible personal
treatment schedule for the individual patient (within
the above determined range) will be governed using
personalized mathematical models.'*

The above marks a change in the perception
of the patient’s treatment at any given moment
as predetermined. Upon recognition by the clinical
community of the advantage in flexible personalized
regimens, the necessary change to be made in the
clinical trial paradigm is relatively minor: the current
paradigm of clinical trials is predicated on the
statistical methodology of hypothesis testing, geared
to ensure that the end result of a clinical trial is
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FIGURE 6 | The suggested approach for creating personalized response predictors uses nonlinear mixed effects modeling to integrate clinical
information with mechanistic mathematical models of drug—patient dynamic interactions.

provided with the prescribed statistical power and
statistical significance. For example, in Phase III,
the trial answers the question, ‘is there convincing
evidence that treatment A (i.e., the package containing
one or several molecules and doses and treatment
intervals and other elements) has a better therapeutic
effect than treatment package B?’ This paradigm
provides a method to determine the necessary number
of subjects in the clinical trial. A failure in a clinical
trial indicates nothing more precise than the failure
of the tested treatment as a whole package. The
same paradigm and the same significance of the
conclusions should hold for testing treatment A versus
treatment B in p-trials. The only difference between the
conventional methodology and p-#rials is that in the
latter, the treatment regimen of the patient is flexible.
The necessary number of subjects in a p-trial should
be determined statistically, as is done in conventional
clinical trials and in adaptive clinical trials.

The p-trials methodology is briefly exemplified
below.

Immunotherapy in Prostate Cancer
The goal of this work was to show that it is feasible
to create personalized patients models, validate them
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in early Phase II trials and use them in real-time
for suggesting an improved treatment regimen, to
be applied to the patient during the same clinical
trial phase. This feasibility test was made using data
from a Phase II clinical trial in PCa immunotherapy,
an area in which personalized therapy is desperately
needed.

Designing drug regimens in PCa, a slowly
progressing malignancy, is not an easy task,
since patients display highly variable PSA profiles.
Immunotherapy design in PCa is even more
complicated, as such treatments must adapt to
the continuously evolving immunoediting of the
tumor, one of the key processes responsible for
the high interindividual variability among cancer
patients. A mechanistic mathematical model for PCa
immunotherapy, describing the dynamic interactions
of tumor cells, immune cells and the vaccine, was
developed for predicting PSA progression in advanced
PCa patients treated by whole-cell autologous
immunotherapy in a Phase I study. A method was
designed for both personalizing the model and for
validating the accuracy of its personalized predictions
early in-trial. To prove its feasibility, personal PSA
counts collected pretreatment and in the early stages
of treatment were used for calibrating the model
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for each of the patients, and reliability of patient-
specific PCa models was demonstrated. In 7 out of
9 patients tested, the model-suggested personalized
vaccination regimens were predicted to stabilize
PSA levels, if applied immediately after individual
model validation.®*®’ This could significantly improve
efficacy of this particular cellular immunotherapy,
which in the actual clinical study failed to show a
meaningful response.®®

The latter study was unique in demonstrating the
feasibility and clinical benefit in an individualized ad
hoc modeling strategy, namely, to create personalized
patients models, validate them early on in the given
patient, and use them in real-time for suggesting an
improved treatment regimen to be applied to that
patient during the same clinical trial phase. In the
broad context, this study highlights why individual
treatments (particularly in immunotherapy, but also
in other oncotherapy modalities) should ideally be
flexible within an approved range of doses, as the
new dynamic personalization and p-trial concepts
suggest.! 403

CONCLUSIONS

‘Personalized medicine is the future. The only
remaining question is how soon it will come about.”®
By reviewing computational predictive tools that were
developed for personalizing oncology treatments,
we hope to contribute to further acceptance of
this approach and, by that, to speeding up the
establishment of personalized medicine as a main
stream clinical practice.

A new type of decision support tools for
personalized medicine is put forward, by which
statistical-oriented mixed-effects PK/PD modeling is
merged with mathematical mechanistic modeling of
cellular and molecular processes at the core of the
drug—patient interactions. This method increases the
probability of proper model selection, via objective
testing of a variety of reasonable model alternatives,
having maximal parsimony and predictive ability,
and minimal bias to data. An important feature
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