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Abstract
Most language model pre-training frameworks001
concatenate multiple documents into fixed-002
length sequences and use causal masking to003
compute the likelihood of each token given its004
context; this strategy is widely adopted due005
to its simplicity and efficiency. However, to006
this day, the influence of the pre-training se-007
quence composition strategy on the generali-008
sation properties of the model remains under-009
explored. In this work, we find that apply-010
ing causal masking can lead to the inclusion011
of distracting information from previous doc-012
uments during pre-training, which negatively013
impacts the performance of the models on lan-014
guage modelling and downstream tasks. In015
intra-document causal masking, the likelihood016
of each token is only conditioned on the previ-017
ous tokens in the same document, which elim-018
inates potential distracting information from019
previous documents and significantly improves020
the performance. Furthermore, we find that021
concatenating related documents can reduce022
some potential distractions during pre-training,023
and our proposed efficient retrieval-based se-024
quence construction method, BM25Chunk, can025
improve in-context learning (+11.6%), knowl-026
edge memorisation (+9.8%), and context util-027
isation (+7.2%) abilities of language models028
without sacrificing efficiency.029

1 Introduction030

Large Language Models (LLMs) are pre-trained031

on large amounts of documents by optimising a032

language modelling objective and show an intrigu-033

ing ability to solve a variety of downstream NLP034

tasks (Brown et al., 2020; Biderman et al., 2023;035

Touvron et al., 2023; Jiang et al., 2023). Previous036

works emphasise the importance of pre-training037

data quality (e.g., Gunasekar et al., 2023; Lee et al.,038

2022; Tirumala et al., 2023; Soboleva et al., 2023)039

and diversity (e.g., Xie et al., 2023; Gao et al., 2021;040

Kaddour, 2023) to improve the generalisation prop-041

erties of language models. However, the influence042

of the pre-training sequence composition strategy 043

remains largely under-explored. 044

For most decoder-only language model pre- 045

training pipelines (e.g., Shoeybi et al., 2019; Ott 046

et al., 2019; Brown et al., 2020; Biderman et al., 047

2023; Geng, 2023; Liu et al., 2023b; Zhang et al., 048

2024), constructing a pre-training instance involves 049

packing, which refers to the process of combin- 050

ing randomly sampled documents into a chunk that 051

matches the size of the context window; and causal 052

masking, which refers to predicting the next to- 053

ken conditioned on all previous tokens, including 054

those from different documents in the chunk. An 055

alternative to causal masking is intra-document 056

causal masking, where the likelihood of each to- 057

ken is conditioned on the previous tokens from the 058

same document; intra-document causal masking 059

is not commonly used in existing open-source pre- 060

training frameworks as it is argued to adversely 061

impact pre-training efficiency (Brown et al., 2020; 062

Pagliardini et al., 2023). However, to the best of 063

our knowledge, there is no systematic analysis in 064

the literature on how causal masking affects the 065

generalisation properties of models despite its role 066

in improving efficiency. 067

To analyse the impact of the packing and mask- 068

ing strategies on pre-training, we pre-train language 069

models using intra-document causal masking (re- 070

ferred to as INTRADoc, Section 2.2) and compare 071

them with models pre-trained via causal masking 072

with several packing strategies by varying the relat- 073

edness of the documents in the pre-training chunks. 074

Specifically, we analyse the results produced by a 075

commonly used baseline method that randomly 076

samples and packs documents (MIXChunk); a 077

method that samples and packs documents from 078

the same source based on their meta-information 079

(UNIChunk); and our proposed efficient retrieval- 080

based packing method, which retrieves and packs 081
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related documents (BM25Chunk, Section 2.1).082

Our experimental results indicate that using083

causal masking without considering the boundaries084

of documents can lead to the inclusion of distract-085

ing information from previous documents during086

pre-training (Section 3 and Section 5.1), negatively087

impacting the performance of the models in down-088

stream tasks (Section 4). We observe that intra-089

document causal masking, which eliminates the po-090

tential distractions from irrelevant documents dur-091

ing pre-training, can significantly improve the per-092

formance of the model while increasing its runtime093

(+4% in our implementation, see Appendix A).094

We also find that improving the relatedness of095

the documents in pre-training chunks can reduce096

some potential distractions from previous docu-097

ments (e.g., UNIChunk avoids packing documents098

from different distributions, such as code and news099

text), which can improve the performance of causal100

masking models on a wide array of downstream101

tasks. Finally, we show that our proposed efficient102

retrieval-based packing method, BM25Chunk, can103

improve a model’s language modelling (+6.8%),104

in-context learning (+11.6%), knowledge memo-105

risation (+9.8%), and context utilisation (+7.2%)106

abilities using causal masking and thus without107

sacrificing pre-training efficiency.108

Our main contributions and findings can be sum-109

marised as follows:110

• We systematically analyse and compare the mod-111

els pre-trained using causal masking and intra-112

document causal masking; our experimental re-113

sults reveal that using causal masking without114

considering the boundaries of documents can re-115

sult in significant performance degradation (Sec-116

tion 3 and Section 4).117

• We find that improving the relatedness of the doc-118

uments in each pre-training chunk benefits causal119

masking models, and our proposed efficient120

retrieval-based packing method (BM25Chunk,121

Section 2.1) can improve the performance of lan-122

guage models significantly.123

• We quantitatively analyse the attention distribu-124

tion of the models during language modelling125

(Section 5.1), and investigate the burstiness prop-126

erty of pre-training chunks (Section 5.2); our find-127

ings indicate that models can be more robust to128

irrelevant contexts and obtain better performance129

when improving the relatedness of documents in130

pre-training chunks.131

2 Packing and Masking Strategies for 132

Pre-Training Sequence Composition 133

In this section, we formally introduce the pre- 134

training data packing strategies, as well as causal 135

masking and intra-document causal masking. 136

2.1 Packing Strategies 137

Let Di represent a corpus, such as Wikipedia, C4, 138

or GitHub, and let D =
⋃

sDs denote the dataset 139

resulting from the union of such corpora. Fur- 140

thermore, each corpus Ds is defined as a set of 141

documents Ds = {d1, . . . , d|Ds|} , where each 142

document di is defined as a sequence of tokens 143

di =
(
x1, . . . , x|di|

)
. 144

A packing strategy involves first selecting a set 145

of documents {di}ni=1 from D, and then packing 146

them into a chunk C with a fixed length |C| = L. 147

Following Brown et al. (2020), we concatenate the 148

documents {di}ni=1 by interleaving them with end- 149

of-sentence ([EOS]) tokens to construct a chunk. A 150

packed sequence (or chunk) C is denoted as: 151

C = (d1[EOS]d2[EOS] . . . SPLIT(dn)), (1) 152

where [EOS] is the end-of-sentence token, SPLIT() 153

truncates the last document such that |C| = L, 154

and the content of the chunk C will be removed 155

from the dataset D to avoid sampling the same 156

documents multiple times. 157

In the following, we introduce three strategies 158

to sample the documents {di}ni=1 from the dataset 159

D for composing each pre-training chunk, namely 160

MIXChunk, UNIChunk, and BM25Chunk. 161

MIXChunk In MIXChunk (baseline), docu- 162

ments di ∈ D are sampled uniformly at random 163

from the entire pre-training corpus D: 164

di ∼ Uniform(D). 165

As a result, in MIXChunk, a chunk can contain 166

documents from different source datasets, e.g., 167

Wikipedia and GitHub, as shown in Figure 1(a). 168

UNIChunk In UNIChunk, each chunk is com- 169

posed of documents from a single source corpus 170

Ds: 171

di ∼ Uniform(Ds), with Ds ⊆ D. 172

This helps to avoid packing documents from dif- 173

ferent distributions (such as code and news text) 174

together. To construct a training batch, we sample 175

sequences from each corpus Ds in proportion to 176

the number of tokens in Ds. 177
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Wikipedia

Github

ArXiv

doc-4doc-3

doc-3doc-1 doc-2

UniChunk

MixChunk

(a) MIXChunk randomly samples documents from all corpora
to construct pre-training sequences, which can pack docu-
ments from different sources. UNIChunk randomly samples
documents from a single source to construct a sequence.

Document Buffer

doc-2

doc-1

Step-1: start from doc-1

doc-3

doc-1 doc-2

Step-2:  retrieve from 
the buffer using doc-1

Step-3:  return doc-2

Step-4:  retrieve from 
the buffer using doc-2

Step-5: return doc-3

BM25Chunk

Step-6: return the remaining
part to the buffer

(b) The sequence construction process in BM25Chunk. The
left part represents a document buffer that caches a set of
documents randomly sampled from the corpus.

Figure 1: Packing strategies for pre-training chunks con-
struction. (a) illustrates the compositions of MIXChunk
and UNIChunk; (b) presents the sequence construction
process of BM25Chunk.

BM25Chunk To improve the relevance of docu-178

ments in pre-training chunks, we employ a BM25-179

based retriever to construct pre-training chunks,180

referred to as BM25Chunk. Specifically, given181

a document di ∈ Ds, we retrieve a sequence of182

documents {di}ni=1 by di+1 = RETRIEVE(di,Ds);183

here, RETRIEVE(di,Ds) retrieves the most similar184

documents to di from Ds based on BM25 scoring.185

However, this retrieval process can be compu-186

tationally inefficient due to the size of the pre-187

training corpus Ds. To improve the efficiency of188

the retrieval step, we restrict the retrieval scope189

to a subset Bs ⊆ Ds of the corpus Ds, reducing190

the computational complexity of retrieval; the pro-191

posed approach is outlined in Figure 1(b). More192

formally, we introduce a document buffer Bs ⊆ Ds193

that contains k documents uniformly sampled from194

Ds, which serves as the retrieval source for con- 195

structing pre-training chunks: 196

d1 ∼ Uniform(Bs), di+1 = RETRIEVE(di,Bs). 197

After retrieving a sequence of documents {di}ni=1 198

from the buffer Bs for constructing a chunk, we 199

refill the buffer by sampling new documents from 200

documents from Ds. The time complexity analysis 201

and more details are presented in Appendix C. 202

2.2 Masking Strategies 203

Another core element of LLM pre-training is the 204

masking strategy, which determines how next- 205

token prediction distributions are conditioned on 206

other tokens in the sequence. 207

Causal Masking In causal masking, each token 208

in a sequence is predicted solely based on all pre- 209

ceding tokens in the sequence. More formally, 210

given a chunk C = (x1, . . . , x|C|) defined as in 211

Equation (1), the likelihood of C is given by: 212

P (C) =

|C|∏
i=1

P (xi | x1, . . . , xi−1), 213

where P (xi | x1, . . . , xi−1) denotes the proba- 214

bility of the token xi given all preceding tokens 215

x1, . . . , xi−1 in the chunk. During pre-training, 216

causal masking implies that, given a chunk C, the 217

probability of each token in C will be conditioned 218

on all preceding tokens, including those belong- 219

ing to different documents. Causal masking is the 220

standard practice when pre-training decoder-only 221

LLMs (e.g., Shoeybi et al., 2019; Brown et al., 222

2020; Zhang et al., 2022; Biderman et al., 2023; 223

Geng, 2023; Liu et al., 2023b; Zhang et al., 2024). 224

Intra-Document Causal Masking In intra- 225

document causal masking, on the other hand, the 226

probability of each token is conditioned on the pre- 227

vious tokens within the same document. More for- 228

mally, given a chunk C defined as in Equation (1), 229

the probability of each token dij belonging to docu- 230

ment di is only conditioned on the preceding tokens 231

within di: 232

P (C) =
n∏

i=1

|di|∏
j

P
(
dij | di1, . . . , di(j−1)

)
. 233

We refer to models trained using intra-document 234

causal masking as INTRADoc. The details of im- 235

plementation are available in Appendix A. 236
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L Model CommonCrawl C4 Wikipedia GitHub StackExchange Book ArXiv Avg.

2K

MIXChunk 13.284 13.884 6.811 5.531 8.051 11.623 5.203 9.172
UNIChunk 11.805 13.650 6.546 5.518 7.839 11.353 5.106 8.831↓0.341
BM25Chunk 11.418 13.677 6.237 4.585 7.623 11.253 5.059 8.550↓0.622
INTRADoc 11.631 13.197 6.084 4.252 7.535 11.130 5.030 8.410↓0.883

8K

MIXChunk 9.645 14.424 7.010 7.496 8.634 11.337 4.911 9.065
UNIChunk 9.478 14.190 6.897 7.006 8.456 11.117 4.812 8.851↓0.214
BM25Chunk 9.144 13.579 6.287 5.463 8.022 10.810 4.715 8.289↓0.776
INTRADoc 8.994 13.173 6.073 5.010 7.894 10.701 4.705 8.079↓0.986

Table 1: Evaluation of perplexity on SlimPajama’s test set. The best score is highlighted in bold, and the second best
is highlighted with an underline. L is the maximum length of the sequence for pre-training. Subscript ↓ presents the
PPL improvement over the baseline method MIXChunk.

3 Language Model Pre-Training237

3.1 Settings238

Pre-Training Corpora In this work, we use239

SlimPajama (Soboleva et al., 2023) as the pre-240

training corpus, which consists of seven sub-241

corpora, including CommonCrawl, C4, Wikipedia,242

GitHub, StackExchange, ArXiv, and Book. This al-243

lows us to investigate packing strategies in a mixed244

corpora setting. We sample documents with 150B245

tokens from SlimPajama as the pre-training corpus246

and ensure each subset maintains the same propor-247

tion of tokens as in the original dataset.248

Pre-Training Models The model implementa-249

tion is based on the LLaMA (Touvron et al., 2023)250

architecture with minor modifications to support251

intra-document causal masking. We pre-train 1.3B252

parameters models using context windows of 2,048253

(referred to as 2K) and 8,192 (8K) tokens. We254

use the same set of documents with the differ-255

ence in pre-training sequence composition to pre-256

train models, including causal masking models,257

i.e., MIXChunk, UNIChunk, and BM25Chunk, and258

intra-document causal masking models INTRADoc.259

More details are available in Appendix B.260

Previous works (Brown et al., 2020; Pagliardini261

et al., 2023) argued that dynamic sequence-specific262

sparse masking reduces training efficiency. Com-263

pared to causal masking, we observe a 4.0% effi-264

ciency degradation on intra-document causal mask-265

ing in our implementation, and the discussion on266

implementation is presented in Appendix A.267

3.2 Results268

For evaluating LLMs trained under different pack-269

ing strategies, in this work, we compute the per-270

plexity (PPL) of a held-out set of documents where271

each document is treated independently. The re-272

sults are summarised in Table 1.273

We can see that BM25Chunk achieves the lowest 274

PPL among the three causal masking models, yield- 275

ing a lower average PPL compared to MIXChunk in 276

the 2K (−0.62) and 8K (−0.78) settings. Further- 277

more, UNIChunk also yields a lower average PPL 278

than the baseline MIXChunk (−0.34 and −0.21). 279

These results indicate that increasing the related- 280

ness of documents in a sequence can improve the 281

language modelling ability of models. 282

When considering models trained via intra- 283

document causal masking, we can see that IN- 284

TRADoc achieves the lowest PPL compared to 285

all models trained via causal masking. This in- 286

dicates eliminating the potential distracting in- 287

formation from irrelevant documents during pre- 288

training benefits the language modelling ability 289

of models. Specifically, we observe that both 290

BM25Chunk and INTRADoc obtain significantly 291

lower PPLs on GitHub, where INTRADoc improves 292

over UNIChunk in both the 2K (−1.3 PPL) and 293

8K (−2.0) models. For UNIChunk, though we 294

avoided packing web text and code, its improve- 295

ment over MIXChunk on GitHub is slight. This 296

phenomenon could imply that code pre-training is 297

more adversely affected by the distraction of un- 298

related context, and both intra-document causal 299

masking and retrieval-based sequence construction 300

strategy can alleviate this issue. 301

4 Experiments on Downstream Tasks 302

In the following, we evaluate the in-context learn- 303

ing, knowledge memorisation, and context utilisa- 304

tion abilities of the models. 305

4.1 In-Context Learning 306

Following Shi et al. (2023), we evaluate in-context 307

learning abilities of the models using seven text 308

classification datasets, namely SST2 (Socher et al., 309

2013), Amazon (Zhang et al., 2015), Yelp (Zhang 310
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L Model SST2 Amazon DBpedia AGNews Yelp Hate Offensive Avg.

2K

MIXChunk 71.53±13.8 81.57±15.7 40.87±3.34 74.98±0.99 86.89±4.81 47.10±7.51 41.82±20.46 63.54
UNIChunk 77.61±10.05 90.88±1.13 36.61±2.15 70.39±2.23 91.16±0.35 46.20±5.67 42.30±14.92 65.02
BM25Chunk 83.73±8.17 90.90±3.20 50.16±2.61 75.98±2.73 91.67±3.68 48.58±5.26 55.36±15.10 70.91
INTRADoc 73.65±13.61 84.06±12.68 46.82±1.82 72.32±2.66 91.91±0.97 55.72±3.47 69.14±5.37 70.52

8K

MIXChunk 76.01±8.14 87.32±3.08 45.94±3.70 68.21±6.21 79.06±9.99 42.85±1.19 37.03±14.28 62.43
UNIChunk 81.61±8.63 88.30±2.68 52.84±2.36 63.16±9.25 83.45±6.41 45.50±3.00 46.84±16.78 65.96
BM25Chunk 80.87±6.16 91.39±1.30 56.57±2.33 74.79±2.89 85.19±6.93 49.12±5.17 48.33±15.88 69.47
INTRADoc 72.38±3.97 93.25±0.91 61.85±6.89 72.49±4.72 92.83±1.38 46.20±3.26 59.59±9.88 71.23

Table 2: In-context learning performance evaluated by text classification accuracy across seven datasets. Accuracy
and deviation (subscript) are calculated using different sets of demonstrations sampled by 16 random seeds.
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Figure 2: Average in-context learning accuracy using
different numbers of few-shot demonstrations – the left
and right figures show the results of 2K and 8K models.

et al., 2015), DBpedia (Lehmann et al., 2015), AG-311

News (Zhang et al., 2015), and TweetEval hate/of-312

fensive tweet detection tasks (Barbieri et al., 2020).313

In Table 2, we report the in-context learning ac-314

curacy values of the models in few-shots learning315

settings, using 20 and 48 demonstrations for 2K316

and 8K models, respectively. We truncate the input317

sequences to fit within their respective context win-318

dows. For models pre-trained using causal mask-319

ing, we can see that UNIChunk produces more ac-320

curate results than MIXChunk, while BM25Chunk321

yields a higher average accuracy than MIXChunk322

for 2K (+11.6%) and 8K (+11.3%) models. These323

results indicate that increasing relatedness of the324

documents in pre-training chunks can improve the325

in-context learning abilities of the models.326

In Figure 2, we present the average accuracy us-327

ing different numbers of few-shot demonstrations.328

We observe that BM25Chunk has an on-par accu-329

racy with INTRADoc on the 2K setting; however,330

INTRADoc obtains a significantly higher accuracy331

compared to BM25Chunk on the 8K setting. It332

may imply that using a longer context window size333

can result in increased distractions for causal mask-334

ing pre-training; meanwhile, constrained by the335

performance of the retrieval method, BM25Chunk336

L Model NQ TQA Avg.

2K

MixChunk 6.19±0.24 14.47±0.75 10.33
UNIChunk 6.70±0.26 15.53±0.74 11.12
BM25Chunk 7.10±0.27 15.57±0.65 11.34
INTRADoc 7.17±0.33 16.04±0.35 11.60

8K

MixChunk 5.08±0.14 10.90±1.34 7.99
UNIChunk 5.25±0.37 10.59±1.10 7.92
BM25Chunk 5.37±0.43 11.09±0.67 8.23
INTRADoc 6.89±0.08 15.09±0.79 10.99

Table 3: Exact Match scores on closed-book closed-
book QA tasks.

decreases the accuracy on the 8K setting. For 8K 337

models, MIXChunk and UNIChunk obtain simi- 338

lar results to their corresponding 2K models, and 339

they do not improve the accuracy when increasing 340

the number of demonstrations. It might be due to 341

the similar levels of distraction in both 2K and 8K 342

settings using random packing strategies. 343

4.2 Knowledge Memorisation 344

We use two open-domain question-answering 345

(ODQA) datasets, namely NaturalQuestions (NQ, 346

Kwiatkowski et al., 2019) and TriviaQA (TQA, 347

Joshi et al., 2017), to evaluate the knowledge mem- 348

orisation properties of the models. We use 12 349

demonstrations for the 2K models and 48 demon- 350

strations for the 8K models. In Table 3, we show 351

the mean Exact Match (EM) scores calculated 352

based on 5 different sets of demonstrations. 353

For models trained with causal masking, we can 354

see that increasing the relatedness of documents 355

in pre-training chunks can improve the knowledge 356

memorisation ability of models. Compared to the 357

baseline MIXChunk, BM25Chunk obtains +9.8% 358

and +3.0% EM improvements on 2K and 8K mod- 359

els, respectively. We also note that intra-document 360

causal masking significantly improves the knowl- 361

edge memorisation ability, especially for 8K mod- 362

els, where INTRADoc improves EM by +12.3% 363
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L Model RACE-h RACE-m SQuAD HotpotQA NQ-open TQA-open Avg.

2K

MIXChunk 32.34±0.43 42.77±0.69 36.70±1.79 7.32±1.31 20.00±0.46 42.72±1.37 30.31
UNIChunk 34.01±0.52 43.52±0.44 37.33±2.31 7.12±1.35 21.16±0.96 42.32±1.10 30.91
BM25Chunk 33.17±0.36 44.92±0.46 37.91±1.84 10.30±0.42 22.10±0.91 46.24±0.63 32.42
INTRADoc 34.49±0.56 44.96±0.59 39.91±1.48 8.29±1.27 21.66±0.85 45.67±1.02 32.49

8K

MIXChunk 31.66±0.47 41.57±0.44 32.79±1.56 10.53±0.70 20.53±0.58 40.53±1.03 29.60
UNIChunk 31.68±0.94 41.64±0.55 34.94±1.84 10.57±1.13 21.76±0.80 39.60±1.77 30.03
BM25Chunk 32.63±0.68 44.14±0.48 39.45±1.05 14.46±0.93 22.17±1.02 43.40±0.38 34.54
INTRADoc 33.17±0.37 45.56±0.38 41.32±2.28 12.60±1.49 22.25±0.13 44.19±0.60 33.18

Table 4: Evaluation results of machine reading comprehension and retrieval-augmented generation tasks.

and +37.5% over MIXChunk for 2K and 8K mod-364

els, respectively. These results support our hypoth-365

esis that reducing the distractions deriving from366

concatenating multiple, potentially unrelated doc-367

uments in pre-training chunks can improve the368

knowledge memorisation ability of the models.369

4.3 Reading Comprehension and370

Retrieval-Augmented Generation371

We evaluate the pre-trained models on a set of372

reading comprehension tasks, namely RACE (Lai373

et al., 2017), SQuAD (Rajpurkar et al., 2016),374

HotpotQA (Yang et al., 2018), and the following375

retrieval-augmented generation (RAG) tasks: NQ,376

TQA, and Multi-Document Question-Answering377

(MDQA, Liu et al., 2023a). For NQ and TQA, we378

use the top two passages retrieved by the dense re-379

triever (Karpukhin et al., 2020; Izacard and Grave,380

2021), denoted as NQ-open and TQA-open. Our381

results for RACE, SQuAD, and RAG tasks are sum-382

marised in Table 4, while the results on MDQA are383

available in Figure 3.384

We can see that BM25Chunk produces more ac-385

curate results than MIXChunk and UNIChunk in all386

tasks and obtains the best average accuracy, show-387

ing that increasing the relatedness of documents in388

pre-training chunks can improve the context utili-389

sation ability. Specifically, BM25Chunk obtains a390

significantly better accuracy on multi-hop QA task391

HotpotQA, showing it can better utilise multiple392

relevant information from the context.393

INTRADoc obtains the best average accuracy in394

the 2K models and obtains the best scores in 5 of 6395

tasks in the 8K models. It indicates that eliminat-396

ing potential distractions from unrelated documents397

and learning each document independently can im-398

prove context utilisation ability. This finding is dif-399

ferent from the ideas in previous works, which sug-400

gested that pre-training with multiple documents in401

one context (Shi et al., 2023) and adding distraction402
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Figure 3: Accuracy on Multi-Document Question-
Answering (MDQA). The x-axis represents the position
of the document that contains the answer. The y-axis
presents the accuracy for a position.

in context during pre-training (Tworkowski et al., 403

2023) benefit context utilisation ability. 404

In MDQA, for each question, there are 30 docu- 405

ments provided in the context, where only one of 406

them contains the answer to the question — MDQA 407

is used to evaluate the ability of models to filter 408

out irrelevant information and identify the relevant 409

parts of a long context. This task has been used 410

to analyse the lost-in-the-middle phenomenon in 411

LLMs where they struggle to retrieve information 412

stored in the middle of long contexts (Liu et al., 413

2023a). In the following, we analyse how the ac- 414

curacy of models varies with the position of rel- 415

evant information in the context. In these exper- 416

iments, we focus on 8K models due to their abil- 417

ity to handle long contexts. The zero-shot results 418

on MDQA are outlined in Figure 3. We observe 419

that both BM25Chunk and INTRADoc tend to pro- 420

duce more accurate predictions than MIXChunk 421

and UNIChunk when the relevant passage is located 422

at the beginning or middle of the context. These 423

results show that BM25Chunk and INTRADoc can 424

better filter irrelevant context and locate relevant 425

information; these results are further corroborated 426
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(a) The distraction proportion of
the first layer; different documents
are separated by [EOS].
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(b) The distraction proportion of
the last layer; different documents
are separated by [EOS].
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(c) The average distraction pro-
portion over layers; different doc-
uments are separated by [EOS].
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(d) The average distraction pro-
portion over layers; different doc-
uments are separated by "\n"

Figure 4: Distracted attention proportions of models. The x-axis presents the token position of the second document;
the y-axis presents the distraction proportion calculated by Equation (2). Figures (a) and (b) show the distraction
proportion of the first and last layers. Figures (c) and (d) are the average distraction proportion over layers. In
Figure (d), we separate documents by a newline token ("\n") and present the distraction proportion of INTRADoc.
The results are averaged from 4096 examples. More analysis is presented in Appendix E.

by our experiments in Section 5.1 where we anal-427

yse the attention distribution of the models during428

the language modelling process.429

5 Discussion and Analysis430

5.1 Can Models Ignore Irrelevant Contexts431

Before the End-of-Sequence Token?432

In the following, we analyse whether models can433

filter irrelevant context during language modelling434

by examining the attention score distributions over435

the context. Specifically, we concatenate two ran-436

domly sampled documents from the SlimPajama437

validation set, separate them by an end-of-sequence438

token [EOS], and check to which extent the atten-439

tion distributions of the model focus on the irrel-440

evant document in the sequence. More formally,441

we define the distraction proportion of the token in442

position p in the current document at layer l as:443

DISTRPROP(l, p) =

|Cd|∑
i=1

alp,i (2)444

where |Cd| denotes the number of tokens in the445

irrelevant document, alp,i is the average multi-head446

attention scores to the i-th token in the irrelevant447

document Cd at layer l, and
∑|Cd|+p

i=1 alp,i = 1. In448

our experiments, we set |Cd| = 256, and the results449

are outlined in Figure 4.450

We can see that the latter positions have lower451

distraction proportions but remain 45%-52% aver-452

age distraction proportion until the 256th token of453

the second document, as shown in Figure 4(c). We454

find that models trained via BM25Chunk (green455

line) tend to have lower distraction proportions than456

other causal masking models, showing that they can457

better recognise relevant information in the context,458

matching the results in Figure 3. The above analy- 459

sis also demonstrates that during the pre-training, 460

causal masking models can be distracted by unre- 461

lated documents in context, and the models can be 462

more robust to irrelevant contexts when reducing 463

distractions in pre-training sequences. 464

Furthermore, in Figure 4(d), we compare IN- 465

TRADoc and causal masking models using "\n" 466

as the separator instead of [EOS], because [EOS] 467

can only appear at the end of sequences during 468

pre-training using intra-document causal masking. 469

The results indicate that INTRADoc has the lowest 470

distraction proportion compared to causal mask- 471

ing models; meanwhile, BM25Chunk consistently 472

has a lower distraction proportion than MIXChunk 473

and UNIChunk using "\n" as the separator. These 474

results match the finding in Section 4.3, where IN- 475

TRADoc and BM25Chunk can better recognise rel- 476

evant information in the context. 477

5.2 Burstiness Property of Sequences 478

Chan et al. (2022); Han et al. (2023) found a pos- 479

itive correlation between the model’s in-context 480

learning ability and burstiness property of the train- 481

ing sequences. Here, burstiness refers to the phe- 482

nomenon where certain types of tokens occur in 483

clusters or bursts rather than being uniformly dis- 484

tributed across all documents. Burstiness is an 485

inherent property of text; for example, a specific 486

medical term might be frequently used in medical 487

articles and rarely appear in general texts. Higher 488

burstiness results in a lower Zipf’s coefficient of to- 489

ken frequency within a sequence (Han et al., 2023). 490

Following Han et al. (2023), we use Zipf’s co- 491

efficient to measure the burstiness property of pre- 492

training sequences. Formally, let r denote the rank 493
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L Method
Zipf’s

Coeffeicient
(α)

In-Context
Learning

(Acc.)

Knowledge
Memorisation

(EM)

2K
MIXChunk 2.122 63.54 10.33
UNIChunk 2.119 65.02 11.12
BM25Chunk 2.107 70.91 11.34

8K
MIXChunk 1.976 62.43 7.99
UNIChunk 1.951 65.96 7.92
BM25Chunk 1.925 69.47 8.23

2K INTRADoc 2.119 70.52 11.60
8K INTRADoc 1.952 71.23 10.99

Table 5: Zipf’s coefficients of token frequency in differ-
ent data. In-context learning and knowledge memorisa-
tion abilities are evaluated in Section 4.

of a token in a sequence, and f is a frequency func-494

tion that maps the rank r to the frequency of that495

token in the sequence. Then, according to Zipf’s496

law, we have that f(r;α) ∝ 1
rα , where α ∈ R+497

is the Zipf’s coefficient; a lower α presents an in-498

creased burstiness property within the sequence.499

In Table 5, we show the Zipf’s coefficients α on500

different pre-training sequences. Our results show501

that, for causal masking approaches that use the502

same chunk size, a lower Zipf’s coefficient, which503

denotes increased burstiness property, often results504

in more accurate results. However, INTRADoc can505

obtain significantly better results than UNIChunk506

with the same Zipf’s coefficient. The above results507

indicate that, for causal masking approaches, the508

correlation between higher burstiness and better509

performance could derive from reduced distrac-510

tions in pre-training chunks. We report additional511

evidence for the burstiness property in Appendix D.512

Note that duplication in pre-training sequences513

can also result in increased burstiness property,514

which may negatively impact the performance of515

language models. We analyse the distinct n-gram516

phrases of pre-training sequences in Appendix D517

and will investigate the impact of duplication using518

different pre-training corpora in future work.519

6 Related Works520

Instance-Level Pre-training Data Composition521

GPT-3 (Brown et al., 2020) was pre-trained by522

packed documents with causal masking, with the523

idea that not adopting any dynamic masking can524

improve pre-training efficiency. Current open-525

source pre-training frameworks, such as Mega-526

tronLM (Shoeybi et al., 2019), FAIRSEQ (Ott et al.,527

2019), EasyLM (Geng, 2023), LLM360 (Liu et al.,528

2023b), also follow this strategy for pre-training.529

Levine et al. (2022) pairs similar sentences within530

the same sequence and Gu et al. (2023) packs doc- 531

uments that contain similar intrinsic tasks for con- 532

tinual pre-training, improving the in-context learn- 533

ing ability of models. Recently, Shi et al. (2023) 534

emphasises that packing relevant documents can 535

enhance language models’ in-context learning and 536

context utilisation; however, our findings indicate 537

that packing documents can adversely affect perfor- 538

mance, and learning each document independently 539

using intra-document causal masking can reduce 540

the distraction and improve the performance. 541

Distribution Properties of Pre-Training Data 542

Chan et al. (2022) shows several data distribution 543

properties can drive in-context learning ability, e.g., 544

large numbers of long-tail classes, dynamic mean- 545

ings of inputs, and Zipf’s distribution of class fre- 546

quency. Han et al. (2023) used a gradient-guided 547

method to select small-scale data for continual pre- 548

training, showing data exhibiting burstiness proper- 549

ties can enhance in-context learning performance. 550

Pre-training Data Quality Gunasekar et al. 551

(2023) selected high-quality data to pre-train a 552

small-size coding model, achieving comparable 553

performance with larger models. Shin et al. (2022); 554

Gao et al. (2021) emphasised the importance of 555

pre-training data diversity. Lee et al. (2022); Tiru- 556

mala et al. (2023); Soboleva et al. (2023); Abbas 557

et al. (2023) showed the importance of data de- 558

duplication on models’ generalisation. In our work, 559

we use diverse and less duplicated pre-training 560

dataset SlimPajama (Soboleva et al., 2023), high- 561

lighting the importance of pre-training sequence 562

composition for language models’ performance. 563

7 Conclusion 564

In this work, we investigate the impact of pre- 565

training sequence compositions by pre-training 566

models from scratch. First, we find causal mask- 567

ing can result in unrelated documents distracting 568

language modelling pre-training and hurting the 569

performance on downstream tasks; we show that 570

intra-document causal masking can significantly 571

improve the performance while decreasing the pre- 572

training efficiency. Second, we find improving the 573

relevance of documents in pre-training chunks for 574

causal masking pre-training can reduce some poten- 575

tial distractions in chunks; our proposed efficient 576

retrieval-based packing method BM25Chunk can 577

improve the performance of language models sig- 578

nificantly without reducing pre-training efficiency. 579
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Limitations580

Efficiency of Intra-Document Causal Masking581

We show that intra-document causal masking is582

an effective method to improve the performance583

while decreasing the pre-training efficiency. We use584

FlashAttention2 (Dao, 2023) to implement intra-585

document causal masking masking without sacrific-586

ing too much efficiency (discussed in Appendix A).587

Still, we do not propose a method to solve this588

efficiency issue completely.589

Objective of Sequences Construction. We dis-590

cuss sequence construction methods, showing the591

importance of sequence compositions on the per-592

formance of models, but these methods lack an593

objective during sequence construction. Since spe-594

cific data distribution properties may be related to595

models’ performance, we will explore using indica-596

tors of distributional properties to guide sequence597

construction in future works.598

Scaling The Size of Language Models. Lim-599

ited by the computation resources, we cannot con-600

duct experiments on larger models with more pre-601

training steps, and different results might be drawn602

when increasing the models at a specific scale.603

However, this work could be directly valuable for604

investigating pre-training relatively small models605

that aim at facilitating the use of language models606

under resource-constrained conditions.607
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A Implementation of Intra-Document870

Masking871

We use FlashAttention2 (Dao, 2023) to implement872

intra-document causal masking. The pseudo-code873

is presented as follows:874

Pseudo-code for intra-document causal masking

# qkv_states: query , key and value
# max_seqlen: max length of documents
# cu_seqlens: boundaries of documents

qkv_states = qkv_project(hidden_states)

qkv_states = qkv_states.view(batch_size , seq_len , 3,
num_heads , head_dim)

qkv_states = rotary_embed(qkv_states)

qkv_states = qkv_states.view(batch_size * seq_len , 3,
num_heads , head_dim)

attn = flash_attn_var_len_qkvpacked_func(qkv_states ,
cu_seqlens , max_seqlen , causal=True)

attn = attn.view(batch_size , seq_len , num_heads *
head_dim)

attn = output_project(attn)

In this implementation of intra-document causal875

masking, we first apply the rotary position embed-876

ding to the hidden states, ensuring INTRADoc uses877

the same position information that is used in causal878

masking for each document.879

We observe a 4% pre-training speed decrease in880

our implementation compared to causal masking881

pre-training, testing on 128 80G A100 GPUs. An-882

other choice to implement intra-document causal883

masking is using a binary attention bias matrix for884

masking tokens that belong to other documents.885

Compared to causal masking using FlashAtten-886

tion2, we observe that it reduces efficiency by887

32% in xFormers, which uses Triton to implement888

FlashAttention with the support for arbitrary mask-889

ing matrix; besides, it reduces efficiency by 52%890

using the standard PyTorch implementation.891

B Pre-Training Details892

Hyperparameters In our experiments, we use893

the 1.3B model, which has 24 layers, a hidden894

size of 2048, and 16 attention heads. We use a895

batch size of 4 million tokens for both the models896

with 2K and 8K context window sizes and pre-train897

models using 150B tokens with 38400 steps, which898

costs 40 hours to pre-training a causal masking899

model using 128 80G A100 GPUs. We use Adam900

optimiser with β1 = 0.90, β2 = 0.95, a weight901

decay of 0.1, and a cosine learning rate scheduler.902

The peak learning rate is 3× 10−4, decreasing to903

3× 10−5 at the end.904

Subset # documents Token proportion

CommonCrawl 42960927 52.2%
C4 76520211 26.7%

GitHub 5233374 5.2%
Books 47848 4.2%
ArXiv 383058 4.6%

Wikipedia 7044397 3.8%
StackExchange 7265708 3.3%

Table 6: Pre-training corpus.

Pre-Training Corpus We sample documents 905

with 150B tokens sampled from SlimPajama for 906

pre-training. All models are pre-trained using the 907

same set of documents. In Table 6, we present the 908

number of documents and the token proportions 909

for each subset. 910

C Analysis of BM25Chunk 911

C.1 Time Complexity Analysis 912

In BM25, the similarity score between a query 913

and a document is based on sparse representations, 914

where each query and document is represented by 915

the terms it contains; such sparse representations 916

are stored in inverted indices, which map terms to 917

the documents that contain them, along with neces- 918

sary statistics such as the term frequency and the 919

document frequency. The time complexity of com- 920

puting similarities between a query and documents 921

in BM25 using an inverted index is O(Q × K), 922

where Q denotes the number of tokens in the query, 923

and K represents the number of total documents. 924

We restrict BM25Chunk’s retrieval process 925

within a document buffer rather than entire large- 926

scale corpora to improve efficiency. The buffer 927

caches k documents, which enables similarity cal- 928

culations between a term and documents to be at 929

most k times. Since each query is a document, it 930

could contain a large number of tokens; we remove 931

the stop words and randomly sample q tokens to re- 932

duce the length. Therefore, the time complexity of 933

sequence construction in BM25Chunk is reduced 934

to O(q × k). In Figure 5, we test the sequence 935

construction speed using different q and k. 936

C.2 Implementation Details 937

We group documents in batches of 5000K and 938

build indexes within each group. The BM25 in- 939

dexes of pre-training corpora with 150B tokens 940

require 244GB storage memory. For both 2K and 941

8K lengths BM25Chunk, the document buffer size 942

k is 3072, and the maximum length of query q is 943
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Figure 5: Pre-training sequence construction speeds us-
ing different buffer sizes k and maximum query lengths
q. Test on 16 CPU cores.

500. The data construction speed is 50.0K tokens944

per second using 16 CPU cores, and speeds using945

different settings are presented in Figure 5.946

C.3 Ablation Studies947

Effectiveness of Document Buffer BM25Chunk948

conducts retrieval within a document buffer, which949

may result in retrieving less relevant documents,950

so we conduct experiments on different document951

buffer sizes to investigate its effectiveness. We952

conduct ablation experiments using 0.3B models953

with a context window of 2048, trained with 13B954

tokens, the compute-optimal number of tokens ac-955

cording to Hoffmann et al. (2022). We present the956

PPL improvement over UNIChunk on the valida-957

tion set of SlimPajama in Table 7. The results show958

that retrieving from different sizes of document959

buffers can improve PPL, indicating the effective-960

ness of retrieving from a small-scale document set.961

BM25Chunk with a buffer size of 4096 achieves962

the best result while increasing the size to 8192963

does not improve the PPL.964

Effectiveness of Retrieval BM25Chunk con-965

ducts multi-hop retrieval to retrieve a sequence of966

documents, which could potentially help models967

learn long-distance relationships across documents,968

and this benefit has been revealed by its high accu-969

racy on HotpotQA, a multi-hop QA task, as shown970

in Section 4.3. An alternative choice is retrieving971

multiple documents at once to fill a pre-training972

chunk, and we present such one-hop retrieval in Ta-973

ble 7. The result indicates that BM25Chunk with974

multi-hop retrieval can improve the PPL more effec-975

tively. Besides, we experiment with random sam-976

pling documents from the buffers without retrieval;977

the result shows the effectiveness of retrieval.978

Model (0.3B) Document
Buffer Size Valid. PPL

MIXChunk - 15.474
INTRADoc - 12.443↓3.031

BM25Chunk
2048 13.657↓1.817
4096 12.528↓2.946
8192 12.684↓2.790

BM25Chunk
w/o multi-hop retrieval 4096 13.497↓1.977
w/o retrieval 4096 14.241↓1.233

CONTRIEVERChunk - 13.720↓1.654

Table 7: PPL on the validation set of SlimPajama.
Subscript↓ is the PPL improvement over MIXChunk.
The label “w/o multi-hop retrieval” means retrieving
multiple documents at once to construct the sequence;
“w/o retrieval” represents random sampling from docu-
ment buffers, which is equivalent to UNIChunk.
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Figure 6: Chunk frequency. The x-axis indicates the
frequency rank of tokens; the y-axis presents the number
of chunks containing a specific token.

Dense Retrieval Method An alternative retrieval 979

method to BM25 is dense retrieval. We use Con- 980

treiver (Izacard et al., 2022) as the dense retriever 981

and compare it with BM25. Following Shi et al. 982

(2023), we embed pre-training documents to dense 983

vectors using Contriever and use FAISS (Johnson 984

et al., 2019) to accelerate the retrieval process in- 985

stead of using the document buffer. Then, we con- 986

struct pre-training chunks using the same process 987

introduced in BM25Chunk. We present the result 988

produced by the dense retrieval method in the last 989

line of Table 7. We observe that the improvement 990

of the dense retrieval method is less than BM25. 991

D Analysis of Data Distribution 992

Properties 993

Chunk Frequency In addition to Zipf’s coeffi- 994

cient, we analyse the burstiness property through 995
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Figure 7: Average distraction proportions over layers. We compare results using different corpora (Wikipedia and
GitHub), distraction length (|Cd| = 256 and 512), and the separator [EOS] and \n). The first row, (a) (b) (c) and (d),
use [EOS] as the separator; the second row, (e) (f) (g) and (h) use \n. The first and the third columns, (a) (c) (e) and
(g), have an irrelevant context length |Cd| of 256; and the others are 512. The first two columns, (a) (b) (e) and (f),
present the results of Wikipedia, and the last two columns, (c) (d) (g) and (h), present the results of GitHub. We
present the baseline y = |Cd|/(|Cd|+x) whose attention scores are uniformly distributed over all preceding tokens.

the chunk frequency of tokens. Specifically, chunk996

frequency refers to the number of chunks where a997

specific token appears. Given a corpus, if a specific998

token appears in fewer chunks, it indicates more999

concentrated occurrences in chunks containing the1000

token, demonstrating a higher burstiness property.1001

In Figure 6, we can see that low-frequency tokens1002

appear in fewer chunks in BM25Chunk compared1003

to MIXChunk and INTRADoc, indicating these low-1004

frequency tokens are gathered through the retrieval-1005

based construction method.1006

Distinct N-gram The burstiness property can cor-1007

relate to the duplication in a sequence, which may1008

negatively affect models, e.g., models may tend to1009

copy phrases from context. We use SlimPajama,1010

a highly deduplicated dataset, as the pre-training1011

corpus, which alleviates the duplication issue. We1012

use the percentage of distinct n-grams within a se-1013

quence to analyse the duplication issue, as shown in1014

Table 10. The results show that BM25Chunk only1015

has a slightly lower percentage of distinct n-grams1016

compared to MIXChunk and UNIChunk.1017

E Analysis of Distraction Proportions in1018

Different Settings1019

In Figure 7, we report the average distraction pro-1020

portion (defined in Equation (2)) over layers us-1021

Method ∆ PPL % ∆ DISTPROP %

MIXChunk 14.6% 3.4%
UNIChunk 15.3% 4.6%
BM25Chunk 13.5% 4.6%
INTRADoc −0.7% −0.6%

Table 8: The PPL and DISTPROP changes after replac-
ing the separator [EOS] by \n. A positive value means
PPL or DISTPROP increases (performance drops).

ing different settings. Specifically, we analyse dis- 1022

traction proportions in different settings by vary- 1023

ing the 1) modalities of corpus: text and code us- 1024

ing Wikipedia and GitHub; 2) the separator token: 1025

[EOS] and line break token \n; 3) the length of 1026

distraction context, |Cd| = 256 and 512. 1027

Comparing different separators [EOS] and \n, 1028

(a) (e), (b) (f), (c) (g), and (d) (h), we observe 1029

that causal masking models can obtain lower dis- 1030

traction proportions using [EOS], indicating causal 1031

masking models can benefit from [EOS] to ignore 1032

irrelevant context during pre-training. We present 1033

the impact of changing the separator from [EOS] 1034

to \n on PPL and distraction proportion in Table 8. 1035

The results show that PPL and DISTPROP increase 1036

after the replacement for causal masking models, 1037

while INTRADoc obtains better results using \n as 1038

the separator since it does not train on sequences 1039

14



L Model CommonCrawl C4 Wikipedia GitHub StackExchange Book ArXiv Avg.

2K

MIXChunk 0.5429 0.4950 0.6238 0.7665 0.5974 0.5001 0.6406 0.5952
UNIChunk 0.5468 0.4984 0.6298 0.7709 0.6011 0.5033 0.6436 0.5991
BM25Chunk 0.5496 0.5021 0.6394 0.7782 0.6041 0.5050 0.6452 0.6034
INTRADoc 0.5507 0.5048 0.6426 0.7793 0.6050 0.5062 0.6458 0.6049

8K

MIXChunk 0.5402 0.4867 0.6219 0.7443 0.5820 0.5042 0.6531 0.5903
UNIChunk 0.5429 0.4888 0.6235 0.7483 0.5859 0.5065 0.6564 0.5932
BM25Chunk 0.5489 0.4952 0.6391 0.7621 0.5919 0.5108 0.6599 0.6011
INTRADoc 0.5506 0.4988 0.6443 0.7643 0.5936 0.5119 0.6597 0.6033

Table 9: Evaluation of next token accuracy on SlimPajama’s test set.

L Method Distinct
2-gram %

Distinct
3-gram %

Distinct
4-gram %

2K

MIXChunk 71.84±14.68 84.06±14.47 89.02±13.16

UNIChunk 71.84±15.07 84.17±14.74 89.16±13.26

BM25Chunk 71.49±15.21 84.00±14.91 89.07±13.41

INTRADoc 80.35±15.26 89.01±13.07 92.61±11.34

8K

MIXChunk 64.81±12.84 80.61±13.69 86.76±12.76

UNIChunk 64.57±14.09 80.61±14.92 86.88±13.64

BM25Chunk 63.49±14.63 80.06±15.64 86.56±14.31

INTRADoc 79.88±14.86 88.90±12.63 92.61±10.96

Table 10: The percentages of the distinct n-grams in
different pre-training sequences.

where documents are separated by [EOS] using1040

intra-document causal masking.1041

Comparing Wikipedia (a) (b) (e) (f) and GitHub1042

(c) (d) (g) (h), MIXChunk is more distracted by the1043

irrelevant context in code generation.1044

Comparing different length distraction contexts,1045

(a) (b), (c) (d), (e) (f) and (g) (h), models are1046

more distracted when |Cd| increases, while much1047

better than the baseline of uniform distribution1048

y = |Cd|/(|Cd|+ x).1049

Comparing INTRADoc (red line) and causal1050

masking models, we observe that intra-document1051

causal masking results in significantly lower dis-1052

traction proportions in all cases. This phenomenon1053

demonstrates that using causal masking without1054

considering the boundaries of documents nega-1055

tively impacts language modelling performance,1056

and the models can be more robust to irrelevant1057

contexts when increasing the relatedness of docu-1058

ments in pre-training chunks.1059

F Next Token Accuracy of Pre-Trained1060

Language Models1061

In addition to PPL, we report the next token accu-1062

racy of pre-trained language models in Table 9.1063
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