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3D-GRAND: A MILLION-SCALE DATASET FOR 3D-
LLMS WITH BETTER GROUNDING AND LESS HALLU-
CINATION
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Stronger Grounding Capability

3D-GRAND: Large, Densely 
Grounded 3D-Text Dataset Reduced Hallucination

Densely-grounded
3D-Text Pairs

3D Rooms

Q: Are there any 
plants in this room? A: Yes.

Q: Have you noticed any 
refrigerators in the room? A: No.

3D-POPE: Benchmark for
3D-LLM Hallucination

Grounding Accuracy

38.0

30.3

3D-GRAND

3D-LLM
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48.05
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Figure 1: We introduce 3D-GRAND, a large-scale, densely grounded 3D-text dataset, and 3D-POPE, a 3D-LLM
hallucination benchmark. Training on 3D-GRAND improves grounding accuracy and reduces hallucinations.

ABSTRACT

The integration of language and 3D perception is crucial for developing embodied
agents and robots that comprehend and interact with the physical world. While
large language models (LLMs) have demonstrated impressive language understand-
ing and generation capabilities, their adaptation to 3D environments (3D-LLMs)
remains in its early stages. A primary challenge is the absence of large-scale
datasets that provide dense grounding between language and 3D scenes. In this
paper, we introduce 3D-GRAND, a pioneering large-scale dataset comprising
40,087 household scenes paired with 6.2 million densely-grounded scene-language
instructions. Our results show that instruction tuning with 3D-GRAND signifi-
cantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs.
As part of our contributions, we propose a comprehensive benchmark 3D-POPE
to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons
among future models. Our experiments highlight a scaling effect between dataset
size and 3D-LLM performance, emphasizing the critical role of large-scale 3D-text
datasets in advancing embodied AI research. Notably, our results demonstrate early
signals for effective sim-to-real transfer, indicating that models trained on large
synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and
3D-POPE, we aim to equip the embodied AI community with essential resources
and insights, setting the stage for more reliable and better-grounded 3D-LLMs.

1 INTRODUCTION

Embodied Artificial Intelligence (EAI) represents a frontier in robotics and machine learning. In EAI,
the integration of perception, language, and action within physical spaces is crucial for developing
intelligent systems capable of meaningfully navigating and interacting with their environments.
Central to this vision is the concept of grounding language in the physical world (Bisk et al., 2020;
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Chandu et al., 2021). Grounding connects abstract linguistic constructs to concrete objects in three-
dimensional space, thereby enabling robots and intelligent agents to effectively understand and
manipulate their surroundings.

Recent advancements in Large Language Models (LLMs) have greatly benefited Embodied Artificial
Intelligence (EAI). LLMs demonstrate exceptional capabilities in understanding language instructions
(OpenAI, 2024b; Touvron et al., 2023), perceiving the environment (Liu et al., 2023; Li et al., 2023a;
Alayrac et al., 2022; Zhu et al., 2023a; Yang et al., 2024a), and planning detailed actions (Brohan
et al., 2023; Huang et al., 2023d). The primary inputs to LLMs, other than pure language, have been
the combination of language and 2D images, categorizing these models as 2D-LLMs. The significant
advancements in 2D-LLMs can be largely attributed to their training on extensive vision-language
datasets. These datasets (Schuhmann et al., 2022; Zhu et al., 2023b), comprising billions of image and
text pairs, have been instrumental in enhancing the models’ understanding of visual content and its
contextual relevance to textual information. These large datasets have provided the foundational data
necessary for training models that excel at integrating visual perception with language processing.
Despite some progress in equipping LLMs to understand 3D scenes (3D-LLMs) (Hong et al., 2023b;
Huang et al., 2023a; Wang et al., 2023b; Huang et al., 2024; Zhu et al., 2023c; Chen et al., 2023;
Qi et al., 2023), these models remain in their early stages due to the scarcity of 3D scene and text
pairs. In this work, we introduce 3D-GRAND, a pioneering million-scale dataset designed for
densely-grounded 3D Instruction Tuning.

Recently, SceneVerse (Jia et al., 2024) concurrently introduced a large-scale 3D vision-language
dataset. However, a significant limitation of this dataset is the absence of object grounding in language,
which is crucial for enhancing model usability in robotics tasks and reducing hallucination. Research
on 2D-LLMs indicates that grounding language to 2D contexts notably mitigates hallucination in
language models (You et al., 2023; Peng et al., 2023; Bai et al., 2023; Lai et al., 2023; Rasheed et al.,
2023; Zhang et al., 2024), thereby enhancing the reliability and interpretability of generated responses.
While 2D grounding has been extensively explored, extending these principles to 3D environments
is still underdeveloped. This situation raises two critical questions: (1) Is there any hallucination
in 3D-LLMs and if so, how severe is it? (2) Can densely-grounded data mitigate hallucination
for 3D-LLMs? These questions underscore a critical need within the research community for the
development of an evaluation benchmark specifically designed for 3D-LLMs and the construction of
a large-scale, 3D-grounded dataset.

To quantify hallucination in 3D LLMs, this work introduces 3D-POPE (3D Polling-based Object
Probing Evaluation). 3D-POPE provides a comprehensive and standardized protocol for evaluating
hallucination that enables systematic assessment and facilitates fair comparisons across 3D-LLMs,
enhancing our understanding of model capabilities in object hallucination. Specifically, we pose
existence questions to 3D-LLMs and evaluate their responses, as illustrated in Fig 1.

To evaluate the role of densely-grounded dataset, we introduce a pioneering million-scale dataset, 3D-
GRAND, for densely grounded 3D instruction tuning. 3D-GRAND includes 40,087 household scenes
paired with 6.2 million scene-language instructions, featuring dense phrase-to-object grounding. We
conduct rigorous human evaluations to ensure the dataset’s quality. Our results trained with 3D-
GRAND highlight the dataset’s effectiveness in enhancing grounding and reducing hallucination for
3D-LLMs. We highlight the effectiveness of incorporating 3D-GRAND in Fig 1 and introduce each
category of 3D-GRAND and provide examples in Fig 2.

To sum up, our contributions include:
• 3D-GRAND, the first million-scale, densely-grounded 3D-text dataset for grounded 3D Instruction

Tuning. 3D-GRAND includes 40K household scenes paired with 6.2M densely-grounded scene-
language instructions.

• 3D-POPE, a suite of benchmarks and metrics that systematically evaluate hallucination, enabling
fair comparisons of future 3D-LLM models in terms of object hallucination.

• Quantitative research findings regarding hallucination, grounding, and scaling that provide guidance
to future research: (1). training 3D-LLMs with 3D-GRAND significantly reduces hallucinations,
particularly when the data is densely grounded; (2). densely grounded instruction tuning sig-
nificantly enhances the grounding capabilities of 3D-LLMs; (3). scaling densely grounded data
consistently improves grounding accuracy and reduces hallucination; and (4). models can success-
fully transfer from sim-to-real, providing an early signal for a low-cost and sustainable future of
scaling synthetic 3D data to help on real tasks.
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Dataset Which part is grounded? Densely Grounded? Language source # 3D Scenes # Language pairs
ReferIt3D (Achlioptas et al., 2020) obj-refer ✗ Human,Template 0.7K 125K
ScanRefer (Chen et al., 2020) obj-refer ✗ Human 0.7K 51K
Scan2Cap (Chen et al., 2021) obj-refer ✗ Human 0.7K 51K
ScanEnts3D (Abdelreheem et al., 2024) obj-refer ✓ Human 0.7K 84K
PhraseRefer (Yuan et al., 2022) obj-refer ✓ Human 0.7K 170K
ScanQA (Azuma et al., 2022) answer ✗ Human 0.7K 41K
SQA3D (Ma et al., 2023) question ✗ Human 0.65K 33.4K
3DVQA (Etesam et al., 2022) ✗ ✗ Template 0.7K 500K
CLEVR3D (Yan et al., 2021) ✗ ✗ Template 8.7K 171K
3DMV-VQA (Hong et al., 2023a) ✗ ✗ Template 4.1K 55K
EmbodiedScan (Wang et al., 2023a) ✗ ✗ Template 3.4K 970K
3DMIT (Li et al., 2024) ✗ ✗ LLM 0.7K 75K
M3DBench (Li et al., 2023b) obj-refer, question ✗ LLM 0.7K 327K
3D-DenseOG (Huang et al., 2023c) scene ✓ Human 0.7K 51K

3D-LLM (Hong et al., 2023b) obj-refer ✗ LLM 0.9K 200K
LL3DA (Chen et al., 2023) question, answer question Template,LLM 0.9K 200K
Chat3D-v2 (Huang et al., 2023a) scene ✓ Human,LLM 0.7K 0.7K
3D-VisTA (Zhu et al., 2023c) question ✗ Template,LLM 3K 278K
LEO (Huang et al., 2024) question ✗ LLM 3K 579K
SceneVerse (Jia et al., 2024) obj-refer ✗ Template,LLM 62K 2.5M

3D-GRAND scene, obj-refer, question, answer ✓ Template,LLM 40K 6.2M

Table 1: Comparison of 3D-GRAND with existing 3D scene datasets with language annotations. 3D-GRAND is
the largest language-grounded dataset.

2 RELATED WORK

Injecting 3D into LLMs. Recent advancements in large language models (LLMs) have inspired
research into extending their capabilities to 3D environments, leading to the development of 3D-
LLMs (Chen et al., 2023; Qi et al., 2023; Yang et al., 2024a; Zhu et al., 2023c). Notable works
in this field include 3D-LLM (Hong et al., 2023b), which integrates 3D point clouds and features
into LLMs to enable tasks such as captioning, question answering, and navigation. LEO (Huang
et al., 2024) excels as an embodied multi-modal generalist agent in perception, grounding, reasoning,
planning, and action in 3D environments, highlighting the potential of 3D-LLMs in understanding
and interacting with the physical world. The most relevant work to our model is Chat-3Dv2 (Wang
et al., 2023b; Huang et al., 2023a), which grounds generated scene captions to objects in 3D scenes.
However, Chat-3Dv2’s dataset is limited to one type of 3D-text task (scene captioning) and only
includes 705 captions from a subset of ScanNet scenes. In 3D-GRAND, we expand this concept by
diversifying 3D-text tasks and increasing the dataset size to a million-scale. Our results demonstrate
promising data scaling effects and sim-to-real transfer, paving the way for future large-scale training
of 3D-LLMs.
Object Hallucination of VLMs. While 2D VLMs have achieved impressive performance, they are
prone to hallucinating objects that do not exist in the provided images, a problem known as object hal-
lucination (Dai et al., 2023; Rohrbach et al., 2018). Several methods have been suggested to mitigate
the object hallucination issue, such as integrating an external object detector zhai2023halle, applying
visually grounded visual instruction tuning you2023ferret,zhang2024groundhog or reinforcement
learning sun2023aligning,gunjal2024detecting, performing iterative refinement zhou2023analyzing,
and adapting the decoding strategies huang2023opera. To quantify and mitigate this issue, several
benchmarks have been proposed. CHAIR (Caption Hallucination Assessment with Image Rele-
vance) (Rohrbach et al., 2018) measures the frequency of hallucinated objects in image captions by
comparing the objects mentioned to the ground truth annotations. POPE (Probing Object Hallucina-
tion Evaluation) (Li et al., 2023c) assesses a VLM’s ability to identify the presence or absence of
objects through yes/no probing questions. However, these studies primarily focus on 2D image-text
datasets like COCO (Lin et al., 2014). In contrast, object hallucination in 3D-LLMs remains largely
unexplored. Our work addresses this gap by introducing 3D-POPE, a comprehensive benchmark for
evaluating object hallucination in 3D-LLMs. To the best of our knowledge, this is the first object
hallucination benchmark for 3D-LLMs.
Grounding Datasets for 3D-LLMs. In the 2D domain, large-scale datasets with grounding infor-
mation have been instrumental in advancing vision-language research. Notable examples include
RefCOCO (Yu et al., 2016), which provides referring expressions for objects in COCO images (Lin
et al., 2014). Additionally, 2D LLMs (Peng et al., 2023; Rasheed et al., 2023; Xu et al., 2023; Lai
et al., 2023; You et al., 2023) have been trained with densely-grounded web-crawled image-text
pairs. In the 3D domain, there is a growing interest in creating datasets that pair 3D scenes with
textual annotations (Yuan et al., 2022; Abdelreheem et al., 2024; Huang et al., 2023c; Chen et al.,
2021). ScanRefer (Chen et al., 2020) pioneered this effort by contributing a dataset of ScanNet (Dai
et al., 2017) scenes with referring expressions. Table 1 introduces the efforts made by the community.
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obj_0

obj_6

obj_1

obj_4

obj_2

obj_7
obj_5

obj_3
Q: The <p>floor lamp</p>[<obj_5>] is below 
the <p>footstool</p>[<obj_1>]. Is it correct?

A: No. The <p>floor lamp</p>[<obj_5>] is 
next to the <p>footstool</p>[<obj_1>]. 

Grounded QA: Spatial Relation (y/n)

Q: Is the color of the <p>corner 
cabinet</p>[<obj_6>] black?

A: No. The <p>corner cabinet</p>[<obj_6>] 
is white.

Grounded QA: Attribute (y/n)

Q: What is the finish of the <p>three-seat 
sofa</p>[<obj_1>]?

A: The finish of the <p>three-seat 
sofa</p>[<obj_0>] is soft, textured fabric 

upholstery.

Grounded QA: Attribute

Q: Can you find any potted plants in the 
room?

A: <ground> <p>potted plant</p>[<obj_7>] 
</ground>

<answer>Yes</answer>.

Grounded QA: Existence

The living room is a blend of Korean, Japanese, Light Luxury, 
and Modern styles, creating an eclectic and comfortable space. 
At the center, the <p>three-seat sofa</p>[<obj_0>] offers 

ample seating with its neutral beige color and soft texture. On 
the opposite side, the <p>tv stand</p>[<obj_1>] in seafoam 
green provides a stylish base for entertainment equipment...

Grounded Scene Description

This is <p>a three-seat sofa</p>[<obj_0>] 
with a neutral beige color. The <p>neutral 
beige sofa</p>[<obj_0>] is positioned in 

front of the <p>tv stand</p>[<obj_1>] and is 
close to the <p>coffee table</p>[<obj_2>].

Grounded Object Reference

Q: What is the spatial relationship between 
<p>neutral beige three-seat 

sofa</p>[<obj_0>] and <p>muted seafoam 
green tv stand</p>[<obj_1>]?

A: The <p>three-seat sofa</p>[<obj_0>] is 
in front of the tv stand [<obj_1>].

Grounded QA: Spatial Relation

Q: What is the number of footstool present 
in the room?

A:<ground> <p>footstools<p> [<obj-3>, 
<obj-4>] </ground>

 <answer>2</answer>.

Grounded QA: Counting
3D-FRONT
(21.8k)

Structured3D
(18.2k)

Grounded QA
(5.5M)

Grounded Scene
Description (118k)

Grounded Object
Reference (488k)

Spatial (y/n)
(1.6M)

Spatial
(573k)

Attribute
(1.6M)

Attribute (y/n)
(908k)

Counting
(190k)

Existence
(532k)

Figure 2: 3D-GRAND dataset and statistics. (Left): 3D-GRAND is a large-scale, densely-grounded 3D-text
dataset with 8 different tasks. (Right): From 40K 3D scenes, 3D-GRAND annotates 6.2M 3D-text pairs.

However, these datasets have limited grounding annotations and often focus on a single task, such as
referring expression comprehension or visual question answering. In contrast, our proposed dataset,
3D-GRAND, stands out by providing 6.2 million densely-grounded scene-language instructions
across a diverse set of 3D-text tasks and 40,087 household scenes. This enables a wide range of
grounding tasks and facilitates the development of more reliable and better-grounded 3D-LLMs.

Among recent datasets, 3D-GRAND is most similar to SceneVerse (Huang et al., 2023c). They are
both million-scale grounding datasets for 3D-LLMs. However, there are a few key differences: (1)
SceneVerse (Huang et al., 2023c) provides only sparse grounding, while 3D-GRAND is densely
grounded. In 3D-GRAND, every noun phrase in the text—whether it’s in captions, QAs, or object
references—is explicitly grounded to a corresponding object in the 3D scene, whereas SceneVerse
does not offer this level of grounding granularity. To elucidate this difference, we present Table 2 and
3 that compares SceneVerse and 3D-GRAND; (2) the language annotations of 3D-GRANDare more
trustworthy and have higher quality. Hallucination is known as one of the most common mistakes
of LLMs (Huang et al., 2023b; Li et al., 2023c; Rohrbach et al., 2018) In 3D-GRAND, we employ
a hallucination filter to check and delete any annotations with hallucinated object IDs. This is not
possible for SceneVerse since they have pure language output. 3D-GRAND is also quality-checked
by humans to ensure the quality.

Scene Caption Object Reference QA
SceneVerse Paragraph-level set-to-set grounding Session-level many-to-one grounding No grounding

3D-GRAND Noun-level one-to-one grounding Noun-level one-to-one grounding Noun-level one-to-one grounding

Table 2: Comparison of grounding granularity in SceneVerse and 3D-GRAND.

Grounding Granularity Object Reference Data

SceneVerse Session-level many-to-one grounding
This is a big cotton sofa. It is between the window and the
wooden table. → sofa-3

3D-GRAND Noun-level one-to-one grounding
This is a big cotton sofa [sofa-3] . It [sofa-3] is
between the window [window-0] and wooden table [table-4] .

Table 3: Example of grounding granularity. 3D-GRAND focuses on dense grounding.

Definitions of grounding granularity:
• Paragraph-level set-to-set grounding: Many sentences in a long paragraph, each containing

several object nouns, are linked to a set of 3D objects without clear associations from specific
sentences/noun phrases to objects.

• Session-level many-to-one grounding: Multiple sentences in one session, where each sentence
can describe several objects (targets and landmarks), are associated with one 3D object.

• Noun-level one-to-one grounding: Each noun phrase in each sentence is explicitly matched with
one 3D object.
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3 3D-GRAND: THE 3D GROUND ANYTHING DATASET

In this section, we introduce 3D-GRAND, a large-scale, densely-grounded 3D-text dataset designed
for grounded 3D instruction tuning. We describe the data collection process, dataset statistics, and
the unique features that make 3D-GRAND a valuable resource for advancing research in 3D-LLMs.

3D scene collection. The majority of 3D-text research is currently based on ScanNet scenes collected
from real camera scans, which are limited in scale. However, recent advancements have led to the
development of numerous synthetic data generation pipelines (Mittal et al., 2023; Deitke et al., 2020;
Ehsani et al., 2021; Deitke et al., 2022; Kolve et al., 2017; Puig et al., 2023; Szot et al., 2021; Manolis
Savva* et al., 2019; Yang et al., 2024b; Höllein et al., 2023; Schult et al., 2023b; Juliani et al., 2020;
Epic Games). Given the scalability of these synthetic data generation pipelines, we explore the
potential of using synthetic 3D scenes to enhance 3D-text understanding.

Synthetic data offers significant advantages, such as lower costs and greater accessibility, making
it an attractive alternative. If models trained on simulated 3D-text data can effectively transfer to
real-world 3D scenes, the research community stands to benefit immensely.

To this end, we curate a diverse collection of 40,087 high-quality 3D indoor scenes from the 3D-
FRONT (Fu et al., 2021) and Structured3D (Zheng et al., 2020) datasets. These datasets are chosen for
their large quantities of synthetic indoor scenes with professionally designed layouts. The collection
includes a variety of room types, such as living rooms, bedrooms, kitchens, office spaces, and
conference rooms. We further process these 3D scenes to generate per-room 3D point clouds. Details
on point cloud rendering and cleaning are provided in the Appendix.

Densely-grounded text annotation. The definition of densely-grounded text is that every noun
phrase of object mentioned in the text should be associated with an 3D object in the 3D scene. This
is illustrated in Figure 2. This is a difficult type of data to get annotations on. Early work such as
ScanEnts3D (Abdelreheem et al., 2024) relies on hiring professional human annotators to obtain such
annotations. The authors report that crowd-sourcing annotators (Amazon Mechanical Turk (AMT)
(Crowston, 2012)) were not able to reliably complete this task and they had to hire professional
annotators (error rate AMT: 16%, professional: <5%). Yet our human quality check shows that
LLMs (GPT-4 (OpenAI, 2024b)) can achieve <8.2-5.6% densely-grounding error rate (see Appendix
for detail). This finding is in accordance with recent studies (Ding et al., 2023; Tan et al., 2024)
reporting LLMs can be human-level annotators. The accuracy of LLM-annotation provides one
motivation for considering LLMs as densely grounding annotation tool.

The second, and perhaps more critical, motivation is the scalability of annotation. While we can
potentially scale up 3D scenes using synthetic data generation pipelines, annotating these scenes
with human effort is both costly and time-consuming, especially for complex tasks like densely
grounding annotation. To put the cost of money and time in perspective, for the data we annotated
in this paper, we estimate that obtaining the same annotations with human annotator would cost at
least $539,000 and require 5.76 years (no eat, no sleep) worth of work from a professional annotator
(earning minimum wage of $10.67 per hour). In contrast, using LLMs (GPT4 (OpenAI, 2024b)), we
achieve the same results for $3,030 within 2 days, representing a 178x reduction in cost and a 1051x
reduction in time. At the time of writing, the cost and time further decreases by 50% to $1,500 and 1
day, with the introduction of GPT-4o (OpenAI, 2024a).

As previously discussed, using humans to annotate 3D scenes can be an exhaustive process. Mean-
while, 2D-LLMs demonstrate remarkable capabilities in understanding visual inputs and generating
language, making them well-suited for creating high-quality, grounded language annotations. How-
ever, due to the hallucination issues and data issues in 2D-LLMs, aggregating information across
images, even those originating from the same scene, is not feasible yet.

In contrast, Large Language Models (LLMs) excel at understanding structural data and generating di-
verse and fluent language (OpenAI, 2024b). They have demonstrated capabilities in spatial reasoning
(Bubeck et al., 2023), solving both elementary and sophisticated math problems (Wu et al., 2023;
Imani et al., 2023). To address the limitations of 2D-LLMs when annotate 3D scenes, we leverage
the strengths of LLMs. By integrating detailed, accurate information into a reliable scene graph, we
provide LLMs with the necessary data to reason effectively and generate precise annotations.

Here are the key steps of applying our pipeline to obtain densely-grounded annotation for any
synthetic 3D scene:
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3D → 2D 2D → Attributes List of Attributes →
Scene Graph

Scene Graph →
Generated Annotations

Generated Annotations → 
Processed Annotations

Sofa
Grey
Cubic
Fabric

Drawer
Brown

Rectangle
Wooden

TV stand
Brown

Rectangular
Wooden

Lamp
White

Rounded
Glass

There is a <lamp-6> that 
offers a comfortable 

light.

There is a <tv_1> sitting 
on the <tv_stand_0>.

There is a <lamp-6> that 
offers a comfortable 

light.

There is a <tv_1> sitting 
on the <tv_stand_0>.

There is a 
<p>lamp</p>[<lamp-6>] that 
offers a comfortable light.

Hallucination 
Filter

❌

JSON

Figure 3: 3D-GRAND Data Curation Pipeline.

• 3D Model to 2D Image. In the 3D-Front dataset, each object is sourced from 3D-Future (Fu
et al., 2021), which provides a ground truth 2D image for each object. For the Structured3D dataset,
individual images for each object are not available. Therefore, we utilize the set-of-mark prompting
technique (Yang et al., 2023), where each object to be annotated is circled in red in the images.
• 2D Image to Attributes. We use GPT-4V to generate detailed language annotations for each 2D
object image, including attributes like name, color, finish, and texture. The naming is now open-
vocabulary, contrary to being class-agnostic.
• List of Attributes to Scene Graph. We structure each individual objects’ annotations into a JSON-
based scene graph that captures the relationships and attributes of objects within the scene. Note that
we obtain this scene graph from synthetic data which we can guarantee the correctness.
• Scene Graph to Generated Annotations. Based on the given scene graph, we will be able to
produce 3D-Grounded Object Reference, 3D-Grounded Scene Description, and 3D-Grounded QA
using GPT-4 (OpenAI, 2024b) with various prompts, which we will show in the appendix.
• Generated Annotations to Processed Annotations. After we acquire raw annotations, we will apply
hallucination filters and template augmentation for the phrase tag to remove low-quality annotations
and augment generated annotations.

With this pipeline, we generate a diverse range of 3D vision-language understanding tasks as shown
in Figure 2. On a high level, these tasks can be categorized into:

• 3D-Grounded Object Reference: Given a 3D scene and an object of interest, 3D-LLM is required
to generate a description that uniquely identifies the target object. The description includes text and
grounding information, not only for the target object but also for any landmark objects mentioned
in the description. This task is conceptually similar to Visual Grounding, Scene-aware Object
Captioning, and Dense Captioning in 2D vision-language research.
• 3D-Grounded Scene Description: Given a 3D scene, the 3D-LLM generates a description that
captures the salient aspects of the environment. The description includes both text and grounding
information, linking the language to specific objects or regions in the scene.
• 3D-Grounded QA: Given a 3D scene and a question about the environment, the 3D-LLM generates
an answer that is grounded in the scene. Both the question and answer include text and grounding
information, ensuring that the 3D-LLM’s responses are contextually relevant and accurate.

Annotation Source Error Rate
ScanEnts3D (AMT) 16%
ScanEnts3D (Professional) <5%
3D-GRAND (LLM, GPT-4) 5.6-8.2%

Table 4: Error rates comparison be-
tween ScanEnts3D and 3D-GRAND
annotations. (AMT = Amazon Me-
chanical Turk)

Human quality check. As shown in Table 4, we conducted exten-
sive human quality checks on 5,100 generated annotations, com-
paring the error rates of our dataset, 3D-GRAND, with those of
previous datasets such as ScanEnts3D (Abdelreheem et al., 2024).
The results demonstrate that large language models (LLMs), such
as GPT-4, can achieve error rates in densely grounded annota-
tions comparable to those of professional human annotators. This
finding aligns with recent studies that suggest LLMs are starting
to reach human-level annotation quality on certain tasks (Tan
et al., 2024). See Appendix for a more detailed description of the
human quality check process and results.
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Dataset 3D-POPE Model Precision Recall F1 Score Accuracy Yes (%)

ScanNet200 Val

Random

Random Baseline 50.00 50.00 50.00 50.00 50.00
3D-LLM (Hong et al., 2023b) 50.03 99.88 66.67 50.07 99.81
3D-VisTA (Zhu et al., 2023c) 50.12 53.58 51.79 49.66 53.95
LEO (Huang et al., 2024) 51.95 77.65 62.25 52.91 74.73
Ours zero-shot (Grounding) 93.34 84.25 88.56 89.12 45.13

Popular

Random Baseline 50.00 50.00 50.00 50.00 50.00
3D-LLM (Hong et al., 2023b) 49.97 99.88 66.61 49.94 99.94
3D-VisTA (Zhu et al., 2023c) 47.40 51.88 49.54 49.49 52.30
LEO (Huang et al., 2024) 48.30 77.65 59.55 47.27 80.38
Ours zero-shot (Grounding) 73.05 84.28 78.26 76.59 57.69

Adversarial

Random Baseline 50.00 50.00 50.00 50.00 50.00
3D-LLM (Hong et al., 2023b) 49.97 99.88 66.61 49.94 99.94
3D-VisTA (Zhu et al., 2023c) 48.28 54.39 51.15 51.14 52.99
LEO (Huang et al., 2024) 48.47 77.98 59.78 47.52 80.45
Ours zero-shot (Grounding) 69.86 84.21 76.37 73.95 60.26

Table 5: 3D-POPE benchmark results for evaluating hallucination in 3D language models. Random Baseline
refers to a model randomly predicting “yes” or “no” with 50% chance, given the 1:1 positive/negative sample
ratio in the dataset.

Dataset highlights. 3D-GRAND possesses several unique features that distinguish it from existing
3D-language datasets: (1). Large-scale: With 40,087 scenes and 6.2 million annotations, 3D-
GRAND is the largest 3D-language dataset to date, providing ample data for training and evaluating
3D-LLMs. (2). Dense grounding: Unlike recent million-scale datasets like SceneVerse, which lack
grounded language annotations, each language annotation in 3D-GRAND is densely grounded to
specific objects or regions within the 3D scenes, facilitating fine-grained language understanding
and generation. (3). Diverse language tasks: 3D-GRAND supports a broad array of grounded
language tasks, including object reference , spatial reasoning, and scene understanding, making it
a comprehensive benchmark for evaluating 3D-LLMs. (4). High-quality annotations: We utilize a
hallucination filter to mitigate hallucination of the language annotations in 3D-GRAND. They are
also human-evaluated to ensure the quality.

These unique features establish 3D-GRAND as a valuable resource for advancing research in 3D-
LLMs and embodied AI. By providing a large-scale, densely-grounded 3D-text dataset, 3D-GRAND
enables the development and evaluation of more capable and reliable 3D-LLMs that can effectively
understand and interact with the physical world.

4 3D-POPE: A BENCHMARK FOR EVALUATING HALLUCINATION IN
3D-LLMS

To systematically evaluate the hallucination behavior of 3D-LLMs, we introduce the 3D Polling-based
Object Probing Evaluation (3D-POPE) benchmark. 3D-POPE is designed to assess a model’s ability
to accurately identify the presence or absence of objects in a given 3D scene.
Dataset. To facilitate the 3D-POPE benchmark, we curate a dedicated dataset from the ScanNet
(Dai et al., 2017) dataset, utilizing the semantic classes from ScanNet200 (Rozenberszki et al., 2022).
Specifically, we use the ScanNet validation set as the foundation for evaluating 3D-LLMs on the
3D-POPE benchmark.
Benchmark design. 3D-POPE consists of a set of triples, each comprising a 3D scene, a posed
question, and a binary answer (“Yes” or “No”) indicating the presence or absence of an object (Fig. 1
middle). To ensure a balanced dataset, we maintain a 1:1 ratio of existent to nonexistent objects when
constructing these triples. For the selection of negative samples (i.e., nonexistent objects), we employ
three distinct sampling strategies:
• Random Sampling: Nonexistent objects are randomly selected from the set of objects not present

in the 3D scene.
• Popular Sampling: We select the top-k most frequent objects not present in the 3D scene, where
k equals the number of objects currently in the scene.

• Adversarial Sampling: For each positively identified object in the scene, we rank objects that are
not present and have not been used as negative samples based on their frequency of co-occurrence
with the positive object in the training dataset. The highest-ranking co-occurring object is then
selected as the adversarial sample. This approach differs from the original POPE (Li et al., 2023c)
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to avoid adversarial samples mirroring popular samples, as indoor scenes often contain similar
objects.

These sampling strategies are designed to challenge the model’s robustness and assess its susceptibility
to different levels of object hallucination.
Metrics. To evaluate the model’s performance on the 3D-POPE benchmark, we use key metrics
including Precision, Recall, F1 Score, Accuracy, and Yes (%). Precision and Recall assess the model’s
ability to correctly affirm the presence of objects and identify the absence of objects, respectively.
Precision is particularly important as it indicates the proportion of non-existing objects generated by
the 3D-LLMs. The F1 Score, combining Precision and Recall, offers a balanced view of performance
and serves as the primary evaluation metric. Accuracy measures the proportion of correctly answered
questions, encompassing both “Yes” and “No” responses. Additionally, the Yes (%) metric reports the
ratio of incorrect “Yes” responses to understand the model’s tendencies regarding object hallucination.

Leaderboard. We establish a public leaderboard for the 3D-POPE benchmark, allowing researchers
to submit their 3D-LLM results and compare their performance against other state-of-the-art models.
The leaderboard reports the evaluation metrics for each model under the three sampling strategies,
providing a transparent and standardized way to assess the hallucination performance of 3D-LLMs.

5 EXPERIMENTS

In this section, we present our experimental setup, including the baselines, datasets, and implementa-
tion details. We then report the results of our approach, denoted as 3D-GRAND on the ScanRefer
(Chen et al., 2020) and the 3D-POPE benchmark, demonstrating the effectiveness in improving
grounding and reducing hallucination. Finally, we conduct an ablation study to analyze the impact of
different components of our model and training strategy.

5.1 EXPERIMENTAL SETUP

Model. Our proposed model is based on Llama-2 (Touvron et al., 2023). The input is object-centric
context, including a scene graph with each object’s category, centroid (x, y, z), and extent (width,
height, depth), along with the text instruction and user query. During training, we utilized ground-
truth centroids and extents. For inference, we used bounding boxes predicted by Mask3D (Schult
et al., 2023a). Examples of input/output and details of the model can be found in the supplementary
material.

Baselines. We compare our 3D-GRAND against the following baselines: 3D-LLM (Hong et al.,
2023b), LEO (Huang et al., 2024), and 3D-Vista (Zhu et al., 2023c). Each model, along with the
specific checkpoint used to obtain the results, is documented in the appendix.

Datasets. We evaluate our model 3D-GRAND on two datasets: 3D-POPE and ScanRefer. 3D-POPE
is our newly introduced benchmark dataset for evaluating object hallucination in 3D-LLMs, as
described in Section 4. For ScanRefer, We utilized the validation split which contains 9,508 natural
language descriptions of 2,068 objects in 141 ScanNet (Dai et al., 2017) scenes.

Metrics. For the ScanRefer benchmark, we use the official evaluation metrics, including Accu-
racy@0.25IoU and Accuracy@0.5IoU. For the 3D-POPE benchmark, we report accuracy, precision,
recall, F1 score, and “Yes” rate under the three sampling strategies described in Section 4.

Implementation Details. The 3D-GRAND model is LoRA-finetuned (Hu et al., 2022) based off
Llama-2. We use DeepSpeed ZeRO-2 (Rasley et al., 2020) and FlashAttention (Dao, 2024) to save
GPU memory and speed up training. The model is trained in BF16 precision on 12 NVIDIA A40
GPUs with a combined batch size of 96 and a learning rate of 2e-4. We use the AdamW (Loshchilov
& Hutter, 2019) optimizer with a weight decay of 0.01 and a cosine learning rate scheduler. We train
the mode for 10k steps, which takes approximately 48 hours.

5.2 RESULTS ON 3D-POPE

We first evaluate these approaches on 3D-POPE and report results on Table 5. Results show that
3D-LLM (Hong et al., 2023b) almost always produces yes responses to any question. 3D-VisTA (Zhu
et al., 2023c) performs similarly to the random baseline. LEO (Huang et al., 2024) tends to answer
yes frequently, but its precision indicates a similar object hallucination rate to the random baseline. In
our evaluation, 3D-GRAND achieved exceptional performance, with 93.34% precision and 89.12%
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Model Generative 3D-LLM? Never seen ScanNet? Acc@0.25 Acc@0.5
Non-LLM based
ScanRefer ✗ ✗ 37.3 24.3
MVT ✗ ✗ 40.8 33.3
3DVG-Trans ✗ ✗ 45.9 34.5
ViL3DRel ✗ ✗ 47.9 37.7
M3DRef-CLIP ✗ ✗ 51.9 44.7
Non-Generative 3D-LLMs
3D-VisTA (zero-shot) ✗ ✓ 33.2 29.6
SceneVerse (zero-shot) ✗ ✓ 35.2 31.1
Generative 3D-LLMs
3D-LLM ✓ ✗ 30.3 -
LLM-Grounder ✓ ✓ 17.1 5.3
3D-GRAND (Ours) ✓ ✓ 38.0 27.4

Table 6: ScanRefer Results for evaluating visual grounding capability of 3D-LLMs. 3D-GRAND achieves the
best zero-shot performance among 3D-LLMs, providing signals for sim-to-real transfer.

Method Det. Unique Multiple Overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Best IoU (upper bound) Mask3D (Top100) 93.7 66.8 91.6 70.7 92.4 69.2
Best IoU (upper bound) Mask3D (Top40) 81.2 58.7 80.7 62.4 80.9 61.0
Non-grounded Model Mask3D (Top40) 51.8 33.1 21.3 17.9 34.2 24.3
Grounded Model (ground later) Mask3D (Top40) 50.4 32.4 26.0 20.5 36.3 25.5
Grounded Model (ground first) Mask3D (Top40) 54.4 36.4 26.0 20.8 38.0 27.4

Best IoU (upper bound) GT 100.0 100.0 100.0 100.0 100.0 100.0
Non-grounded Model GT 90.8 90.8 26.0 26.0 53.4 53.4
Grounded Model GT 91.0 91.0 32.1 32.1 57.0 57.0

Table 7: Ablation Study on Grounding Accuracy (%) on ScanRefer: Training with densely-grounded data
significantly improves grounding accuracy, particularly when multiple distractor objects of the same category
are present in the room.

accuracy when tested with random sampling. However, our model struggles with the more difficult
splits, Popular and Adversarial, which demonstrates the effectiveness and rigorousness of 3D-POPE
as a benchmark. Moreover, we emphasize that our model has never encountered ScanNet during
training. More analysis on 3D hallucination can be found in the supplementary material.

5.3 RESULTS ON SCANREFER

We report results on ScanRefer in Table 6. There are a few important observations on this result:
• Our 3D-LLM trained with 3D-GRAND data achieved the best Acc@0.25 among all models.

Notably, our model surpasses the previous best-performing model, 3D-LLM, by 7.7% on accu-
racy@0.25IoU. We emphasize that our model, unlike 3D-LLM, has never seen ScanNet scenes
during its training (zero-shot) and is only trained on synthetic 3D scenes instead of real scans.
Therefore, these results provide a promising early signal that sim-to-real transfer can be achieved
via our densely-grounded large-scale dataset.

• Our generative 3D-LLM model (one that a user can chat with) performs better or on par compared
to non-generative 3D-LLMs such as 3D-VisTA and SceneVerse. In the past, generative 3D-LLMs
are usually significantly outperformed by non-generative 3D-LLMs, as the latter usually sacrificed
the ability to chat in exchange for incorporating specialized model designs, such as producing
scores for each object candidate. These designs are closer to traditional non-LLM-based specialized
models. But here, we observe that the gap between the two modeling choices is closing with the
help of large-scale densely-grounded data like 3D-GRAND.

• It is worth noting that our model is just a naive text-based model (Sec. 5.1) to demonstrate the
effectiveness of the dataset - in our model, little visual information is conveyed between the mask
proposal to the LLM, contrast to some of the other more sophisticated models where 3D object
embeddings are used to better represent visual information. This means 3D-GRAND as a dataset
has more potential to be unlocked in the future.

5.4 ABLATION STUDY

To better understand the impact of different components of our 3D-LLM, we conduct an ablation
study on the ScanRefer and 3D-POPE benchmarks.
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Figure 4: Data scaling analysis on zero-shot, sim-to-real grounding capability, and hallucination. Grounding
performance consistently improves as data scales up. Model trained with densely-grounded data exhibits better
grounding capability compared to that trained without. Additionally, model hallucinates less when exposed to
more data from 3D-GRAND. Here, the Hallucination Rate is calculated as (1− Precision) on 3D-POPE.

3D-POPE Model Precision

Random 3D-GRAND 93.34
w/o grounding tokens (-1.38)

Popular 3D-GRAND 73.05
w/o grounding tokens (-2.68)

Adversarial 3D-GRAND 69.86
w/o grounding tokens (-2.38)

Table 8: Ablation on 3D-POPE. Without the
grounding tokens, 3D-GRAND hallucinates
more.

Grounding tokens. We show the results of our model
with different types of grounding methods in Table 7. We
also show results on 3D-POPE in Table 8. In general,
the model has a worse grounding performance and more
hallucinations without grounding tokens. “Ground First”
and “ground later” refer to whether the dense grounding
(grounding every single object mentioned) of the object
reference query happens before or after the model outputs
the final answer for the refer expression. The former ef-
fectively constitutes a chain-of-thought reasoning process
(Wei et al., 2022), which is likely why the performance
increases compared to the latter. See Appendix for details.
Mask3D proposals. Finally, we show the upper bound of our approach in Table 7. Our results are
based on Mask3D proposals. Due to the context length of LLM, we only use top-40 proposals.

5.5 DATA SCALING AND SIM-TO-REAL TRANSFER

The results are presented in Figure 4. Our model is trained on synthetic 3D scenes from 3D-FRONT
and Structured3D (Zheng et al., 2020; Fu et al., 2021), and evaluated on real-world 3D scans from
ScanNet (Dai et al., 2017). The grounding performance consistently improves, and the hallucination
rate drops as the densely-grounded data scales up. Notably, our model trained on densely grounded
data scales better than the same model trained without such data. These findings pave the way for a
future where we can scale 3D-text understanding using synthetic scenes obtained from simulation,
which is much cheaper and more accessible to obtain.

6 CONCLUSION

In this paper, we introduced 3D-GRAND, a large-scale, densely-grounded 3D-text dataset designed
for grounded 3D instruction tuning, and 3D-POPE, a comprehensive benchmark for evaluating object
hallucination in 3D-LLMs. Through extensive experiments, we demonstrated the effectiveness of our
dataset on 3D-LLMs in improving grounding and reducing hallucination, achieving state-of-the-art
performance on the ScanRefer and 3D-POPE benchmarks. Our ablation study and qualitative analysis
highlighted the importance of densely-grounded instruction tuning, the data scaling law, and effective
sim-to-real transfer in developing high-performing 3D-LLMs. We hope our contributions and findings
can spark further research and innovation in this field, ultimately leading to the development of more
advanced and capable 3D-LLMs for a wide range of applications.

ETHICS STATEMENT

All 3D indoor scene data used to produce 3D-GRAND are publicly available data that do not contain
any personal information. We have manually and programmatically examined the produced text data
and made sure they do not contain any profanity or harmful languages.
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REPRODUCIBILITY STATEMENT

All data of 3D-GRAND and 3D-POPE will be made free and publicly available with a permissive
license for non-commercial usage. We have also set up infrastructure (e.g., via HuggingFace Datasets)
to host the data to ensure long-term accessibility. All code used to produce the results in the paper is
available in the supplementary material. The code and model weights will also be open-sourced.

REFERENCES

Ahmed Abdelreheem, Kyle Olszewski, Hsin-Ying Lee, Peter Wonka, and Panos Achlioptas. Sca-
nents3d: Exploiting phrase-to-3d-object correspondences for improved visio-linguistic models
in 3d scenes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 3524–3534, 2024.

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas J. Guibas.
ReferIt3D: Neural listeners for fine-grained 3d object identification in real-world scenes. In 16th
European Conference on Computer Vision (ECCV), 2020.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question
answering for spatial scene understanding. In proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 19129–19139, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella
Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph Turian.
Experience grounds language, 2020.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W Black. Grounding ‘grounding’ in NLP.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP 2021, pp. 4283–4305, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.375. URL
https://aclanthology.org/2021.findings-acl.375.

Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in rgb-d
scans using natural language. 16th European Conference on Computer Vision (ECCV), 2020.

Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan,
and Tao Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding, reasoning,
and planning. arXiv preprint arXiv:2311.18651, 2023.

Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X Chang. Scan2cap: Context-aware dense
captioning in rgb-d scans. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 3193–3203, 2021.

11

https://aclanthology.org/2021.findings-acl.375


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Crowston. Amazon mechanical turk: A research tool for organizations and information systems
scholars. In Anol Bhattacherjee and Brian Fitzgerald (eds.), Shaping the Future of ICT Research.
Methods and Approaches, pp. 210–221, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5828–5839, 2017.

Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su, and Pascale Fung. Plausible may not be faithful: Probing
object hallucination in vision-language pre-training, 2023.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve, Roozbeh Mottaghi,
Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca Weihs, Mark Yatskar,
and Ali Farhadi. RoboTHOR: An Open Simulation-to-Real Embodied AI Platform. In CVPR,
2020.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson Han,
Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR: Large-Scale
Embodied AI Using Procedural Generation. In NeurIPS, 2022. Outstanding Paper Award.

Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken Chia, Shafiq Joty, Boyang Li, and Lidong Bing.
Is gpt-3 a good data annotator?, 2023.

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha
Kembhavi, and Roozbeh Mottaghi. ManipulaTHOR: A Framework for Visual Object Manipulation.
In CVPR, 2021.

Epic Games. Unreal engine. URL https://www.unrealengine.com.

Yasaman Etesam, Leon Kochiev, and Angel X Chang. 3dvqa: Visual question answering for 3d
environments. In 2022 19th Conference on Robots and Vision (CRV), pp. 233–240. IEEE, 2022.

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and semantics.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10933–10942,
2021.

Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room:
Extracting textured 3d meshes from 2d text-to-image models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7909–7920, 2023.

Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan.
3d concept learning and reasoning from multi-view images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9202–9212, 2023a.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482–20494, 2023b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Haifeng Huang, Zehan Wang, Rongjie Huang, Luping Liu, Xize Cheng, Yang Zhao, Tao Jin, and
Zhou Zhao. Chat-3d v2: Bridging 3d scene and large language models with object identifiers.
arXiv preprint arXiv:2312.08168, 2023a.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
ICML, 2024.

12

https://www.unrealengine.com
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions, 2023b.

Wencan Huang, Daizong Liu, and Wei Hu. Dense object grounding in 3d scenes. Proceed-
ings of the 31st ACM International Conference on Multimedia, 2023c. URL https://api.
semanticscholar.org/CorpusID:261557394.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023d.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models, 2023.

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li, and Siyuan
Huang. Sceneverse: Scaling 3d vision-language learning for grounded scene understanding. arXiv
preprint arXiv:2401.09340, 2024.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion,
Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A general platform
for intelligent agents, 2020.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

Mingsheng Li, Xin Chen, Chi Zhang, Sijin Chen, Hongyuan Zhu, Fukun Yin, Gang Yu, and Tao
Chen. M3dbench: Let’s instruct large models with multi-modal 3d prompts. arXiv preprint
arXiv:2312.10763, 2023b.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023c.

Zeju Li, Chao Zhang, Xiaoyan Wang, Ruilong Ren, Yifan Xu, Ruifei Ma, and Xiangde Liu. 3dmit:
3d multi-modal instruction tuning for scene understanding. arXiv preprint arXiv:2401.03201,
2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
Sqa3d: Situated question answering in 3d scenes. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=IDJx97BC38.

Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

13

https://api.semanticscholar.org/CorpusID:261557394
https://api.semanticscholar.org/CorpusID:261557394
https://openreview.net/forum?id=IDJx97BC38


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034.

OpenAI. Hello gpt-4o, May 2024a. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Gpt-4 technical report, 2024b.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang, Ruta
Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimír Vondrus,
Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan,
Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and Roozbeh
Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023.

Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiaqi Wang, Dahua Lin, and Hengshuang
Zhao. Gpt4point: A unified framework for point-language understanding and generation, 2023.

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
Cholakkal, Rao M Anwer, Erix Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
grounding large multimodal model. arXiv preprint arXiv:2311.03356, 2023.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020.
URL https://api.semanticscholar.org/CorpusID:221191193.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallu-
cination in image captioning. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii
(eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-
ing, pp. 4035–4045, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1437. URL https://aclanthology.org/D18-1437.

David Rozenberszki, Or Litany, and Angela Dai. Language-grounded indoor 3d semantic segmen-
tation in the wild. In Proceedings of the European Conference on Computer Vision (ECCV),
2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models, 2022.

Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe.
Mask3d: Mask transformer for 3d semantic instance segmentation. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 8216–8223. IEEE, 2023a.

Jonas Schult, Sam Tsai, Lukas Höllein, Bichen Wu, Jialiang Wang, Chih-Yao Ma, Kunpeng Li,
Xiaofang Wang, Felix Wimbauer, Zijian He, Peizhao Zhang, Bastian Leibe, Peter Vajda, and
Ji Hou. Controlroom3d: Room generation using semantic proxy rooms, 2023b.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zhen Tan, Alimohammad Beigi, Song Wang, Ruocheng Guo, Amrita Bhattacharjee, Bohan Jiang,
Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data
annotation: A survey, 2024.

14

https://openai.com/index/hello-gpt-4o/
https://api.semanticscholar.org/CorpusID:221191193
https://aclanthology.org/D18-1437


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu, Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei
Zhang, Kai Chen, Tianfan Xue, et al. Embodiedscan: A holistic multi-modal 3d perception suite
towards embodied ai. arXiv preprint arXiv:2312.16170, 2023a.

Zehan Wang, Haifeng Huang, Yang Zhao, Ziang Zhang, and Zhou Zhao. Chat-3d: Data-efficiently
tuning large language model for universal dialogue of 3d scenes. arXiv preprint arXiv:2308.08769,
2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4, 2023.

Jiarui Xu, Xingyi Zhou, Shen Yan, Xiuye Gu, Anurag Arnab, Chen Sun, Xiaolong Wang, and
Cordelia Schmid. Pixel Aligned Language Models. arXiv preprint arXiv: 2312.09237, 2023.

Xu Yan, Zhihao Yuan, Yuhao Du, Yinghong Liao, Yao Guo, Zhen Li, and Shuguang Cui. Clevr3d:
Compositional language and elementary visual reasoning for question answering in 3d real-world
scenes. arXiv preprint arXiv:2112.11691, 2021.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey,
and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
as an agent. In ICRA, 2024a.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2024), volume 30, pp. 20–25. IEEE/CVF, 2024b.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
In The Twelfth International Conference on Learning Representations, 2023.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

Zhihao Yuan, Xu Yan, Zhuo Li, Xuhao Li, Yao Guo, Shuguang Cui, and Zhen Li. Toward explainable
and fine-grained 3d grounding through referring textual phrases. arXiv preprint arXiv:2207.01821,
2022.

Yichi Zhang, Ziqiao Ma, Xiaofeng Gao, Suhaila Shakiah, Qiaozi Gao, and Joyce Chai. Groundhog:
Grounding large language models to holistic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large
photo-realistic dataset for structured 3d modeling. In Proceedings of The European Conference on
Computer Vision (ECCV), 2020.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023a.

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae
Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-scale
corpus of images interleaved with text, 2023b.

Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan Huang, and Qing Li. 3d-vista: Pre-
trained transformer for 3d vision and text alignment. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2911–2921, 2023c.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION OF OUR MODEL

A.1 MODEL INPUT AND OUTPUT DEMONSTRATION

In Figure 5, we show an example of 3D-GRAND model’s input and output on the Grounded
Object Reference task. Note how in the “Response”, we train the model to generate a
⟨detailed_grounding⟩ pair of tags to densely ground every single object mentioned in the refer
expression after generating the grounding answer in ⟨refer_expression_grounding⟩. The
“ground first” “ground later” in Table 7 means whether the ⟨detailed_grounding⟩ tags happen
before or after the ⟨refer_expression_grounding⟩ tags. Figure 5 is an example of “ground
later”, and Figure 6 shows an example of “ground first”.

Figure 5: 3D-GRAND model input and output on Grounded Object Reference task.

A.2 TRAINING DATA

There are two flavors of models that we fine-tuned: one grounded object reference model, and one
grounded QA model. The grounded object reference model was trained using the grounded object
reference data on 3D-FRONT train split, which consist of 234,791 3D-text pairs, each of which are
densely grounded. This model was used to generate the ScanRefer results presented in Table 6, 7,
and Figure 4 The grounded QA model was trained using a subset of 200k grounded QA: object
existence data from the 3D-FRONT train split. The reason that we select a subset of 200k QAs is
simply because the entire grounded QA dataset is too large and we do not have enough resource
to train on all data. However, as shown in Table 5 and Figure 4, we find even such a subset is very
effective in reducing hallucinations in 3D-LLMs.

We provide official data splits of train, val and test (90%, 5%, 5%) in our dataset release. The val and
test proportion might seem small, but given our dataset’s million-scale, they should be sufficiently
large for any development and evaluation purposes.

A.3 TRAINING DETAILS

The two flavors of model mentioned above are LoRA-finetuned (Hu et al., 2022) based off Llama-2.
We use DeepSpeed ZeRO-2 (Rasley et al., 2020) and FlashAttention (Dao, 2024) to save GPU
memory and speed up training. The model is trained in BF16 precision on 12 NVIDIA A40 GPUs
with a combined batch size of 96 and a learning rate of 2e-4. We use the AdamW (Loshchilov &
Hutter, 2019) optimizer with a weight decay of 0.01 and a cosine learning rate scheduler. We train
the mode for 10k steps, which takes approximately 48 hours.
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Figure 6: Demo of interactive chat interface with the 3D-GRAND model.

B ADDITIONAL 3D-GRAND DATA COLLECTION

B.1 POINT CLOUD GENERATION PIPELINE FOR 3D-FRONT

Here, we present an expanded version of Section 3, focusing on the methodologies employed in the
collection and cleaning of 3D scenes, specifically detailing our process for deriving 3D point clouds
from existing datasets.

Figure 7: Point Cloud Generation for 3D-Front.

In our workflow with 3D-FRONT, layouts and meshes are initially processed in Blender to produce
multi-view images. These images are subsequently used to construct comprehensive point clouds
for entire houses. Both point clouds and per-room meshes are utilized to generate scene-level point
clouds. We avoid direct use of room meshes because they lack color information in ceilings, walls,
and floors, necessitating the final output to be a point cloud.
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For Structure3D, while per-scene multi-view images facilitate direct rendering of per-scene point
clouds, we frequently encounter issues where parts of adjacent scenes are inadvertently reconstructed
due to window transparency. To address this, we employ the layout of each scene to trim extraneous
points, thus enhancing the precision of the resulting point clouds.

C ADDITIONAL 3D POPE RESULTS

C.1 3D POPE RESULTS ON NYU40

Table 9 presents evaluation results for 3D POPE using the NYU40 class set. NYU40 includes a subset
of the classes from ScanNet200 featured in the main results table. The NYU40 class set consolidates
many fine-grained classes into an “other” category, potentially reducing the challenge of negative
sampling in the Popular and Adversarial settings compared to the ScanNet200 scenario.

Dataset 3D-POPE Model Accuracy Precision Recall F1 Score Yes (%)

ScanNet Val (NYU40)

Random

3D-LLM 50.00 50.00 100.00 66.67 100.00
3D-VisTA 50.12 50.08 77.13 60.73 77.01
LEO 54.03 52.70 78.52 63.07 74.50
Ours zero-shot (No Grounding) 86.45 87.26 85.36 86.30 48.91
Ours zero-shot (Grounding) 85.68 88.22 82.34 85.18 46.67

Popular

3D-LLM 50.00 50.00 100.00 66.67 100.00
3D-VisTA 50.27 50.23 77.13 60.84 76.91
LEO 48.86 49.28 77.44 60.23 78.58
Ours zero-shot (No Grounding) 80.85 78.30 85.35 81.68 54.50
Ours zero-shot (Grounding) 81.69 81.32 82.28 81.80 50.59

Adversarial

3D-LLM 50.00 50.00 100.00 66.67 100.00
3D-VisTA 50.44 50.48 77.14 61.03 76.86
LEO 49.77 49.85 77.67 60.73 77.91
Ours zero-shot (No Grounding) 81.47 78.98 85.78 82.24 54.31
Ours zero-shot (Grounding) 82.10 81.72 82.72 82.22 50.61

Table 9: Results of 3D-LLMs under three evaluation settings of 3D-POPE on the validation set of ScanNet using
NYU40 class set. Yes denotes the proportion of answering “Yes” to the given question. The best results in each
block are denoted in bold.

D HUMAN VALIDATION

Because our dataset generation process involves GPT-4V, there is a potential for hallucinations.
We identify three types of possible hallucinations that could impact our dataset: the text might
inaccurately describe an object’s property, such as color or size (termed incorrect object attribute);
it might incorrectly depict the spatial relationship between two objects (termed incorrect spatial
relation); or it might describe an object that does not exist in the referenced scene at all (termed
incorrect object existence). Additionally, inaccuracies in our dataset may also arise from incorrectly
grounding the wrong object.

To validate our dataset against these potential failures, we plan to verify a subset of our data through
crowdsourcing to ascertain the frequency of these failure cases.

D.1 CROWD-SOURCING

We crowd-source the validation of annotations using Hive, a platform commonly used for sourcing
annotations for computer vision tasks. The platform can be accessed at https://thehive.ai/.

We conceptualize our dataset validation as a data annotation problem, employing scene-text pairs
as the data unit. Annotators are instructed to label these pairs as “True” or “False” to indicate the
presence or absence of hallucinations or inaccuracies. Additionally, a “Cannot Decide” option is
provided to accommodate cases where the scene view is unclear.

D.1.1 TASK GENERATION

Hive only supports presenting static images to annotators, so we generate annotation tasks by
composing snapshots of a scene with corresponding text annotations. For each task, we take snapshots
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Figure 8: Example of a dataset validation task presented to crowd-sourcing annotators: It displays a scene from
four different angles alongside the sentence to be validated, which is highlighted. Annotators have the options to
select "True," "Not True," or "Cannot Decide." On the left side of the screen, the instructions are repeated for
annotators’ reference. In this example, "True" is selected.

from four different angles and pair them with a corresponding annotation. To maintain simplicity and
conciseness, we require validation of just one sentence per task, providing some surrounding context
and highlighting the target sentence. For grounding validation, the grounded object is outlined in the
scene with a bounding box, and the referring phrase in the sentence is emphasized. An example of
such a task, along with the annotation interface, is depicted in Figure 8. Figure 9 displays two text
validation tasks and two grounding validation tasks that were presented to annotators.

D.1.2 CROWD-SOURCING VALIDITY

Validating a dataset necessitates a high level of attention from annotators. We curate sets of instruc-
tions, qualifying tasks, and honeypot tasks to ensure that the annotations obtained from crowdsourcing
are reliable. The crowdsourcing process is illustrated in Figure 10.

Before presenting any tasks to the workers, we present them with a set of instruction tasks that show
an example annotation, the correct response (as determined by us), and the reason why that response
is correct. They are paired with an incorrect example and an explanation of why it is incorrect in
order to ensure unbiased annotations. Examples of qualifying instructions are shown in 11. These
instructions are intentionally brief, as we found through trial-and-error that longer, paragraph-based
instructions were largely ignored by annotators.

Qualifying tasks are presented to the annotators before they are shown any real tasks in order to train
them to complete the real task with a high accuracy. Annotators are both shown the correct answer
and a reasoning as to why it is correct for every qualifier. We set the minimum qualifier accuracy
to 0.75 to ensure that annotators must achieve a minimum competency before annotating real tasks.
Every dataset is given between 12 and 30 specially crafted qualifying tasks that demonstrate the
possible inaccuracies that could appear in the data. These qualifiers are divided equally between true
and false examples so as not to bias workers towards any one answer.

Honeypot tasks are randomly mixed in with real tasks in order to ensure that annotators are maintain-
ing a high quality of annotations throughout the entire job. Because we annotate the honeypot tasks
before showing them to annotators, we are able to evaluate any given worker’s accuracy on honeypot
tasks. We set the minimum honeypot accuracy to 0.89 to ensure that annotators are maintaining
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(a) "True" example of a text validation task. (b) "False" example of a text validation task.

(c) "True" example of a grounding validation task. (d) "False example of a grounding validation task.

Figure 9: Examples of tasks presented to annotators for validating both text accuracy and grounding accuracy.
The instruction is displayed at the top of the task, while the center showcases four different views of the scene
to ensure comprehensive coverage of all relevant areas. At the bottom, the annotation is presented with the
pertinent section highlighted.

Instruction Sets Qualifier Tasks

Banned

Real Tasks

Honeypots

Figure 10: Illustration of the crowd-sourcing process. Annotators are first shown instruction sets that describe
both how the task should be completed and the possible inaccuracies that could appear in the data. They are then
presented with qualifier tasks, and annotators who do not get a high enough accuracy on these tasks are banned
from annotating our dataset. Annotators who pass the qualifier are able to annotate real tasks, but are randomly
presented with honeypots that are indistinguishable from real tasks. Annotators who do not get a high enough
accuracy on honeypots are also banned from our dataset.
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TRUE

NOT TRUE

Reason: We can see that the lamp is 
hanging above the table, and nothing 
in the highlighted sentence is false

(a) "True" example instruction for the text valida-
tion task.

TRUE

NOT TRUE

Reason: There are no blue chairs in 
the room, only grey chairs

(b) "False" example instruction for the text valida-
tion task.

TRUE

NOT TRUE

Reason: The red outlined object is 
the armchair, which is the same as 
the highlighted word. The armchair is 
also described correctly in the 
sentence

(c) "True" example instruction for the grounding
validation task.

TRUE

NOT TRUE

Reason: The highlighted phrase is a 
nightstand, but the red outlined 
object is a sofa

(d) "False" example instruction for the grounding
validation task.

Figure 11: Examples of instructions presented to annotators before they are shown any actual tasks for annotation.
For every possible kind of hallucination (incorrect object attribute, spatial relation, or object existence), an
illustrative positive and negative example are presented in order to instruct the annotator to look for all possible
failure cases.

correct annotations. Workers that do not maintain this accuracy are banned from annotating our tasks.
This is higher than the required accuracy for qualifiers because we expect annotators to already be
well trained in our annotation tasks from the instructions and qualifiers. Every data type is given
between 18 and 35 honeypot tasks. The honeypots are also approximately divided equally between
true and false examples so that workers who consistently select a single answer without paying
attention to the task (e.g., someone who always selects “True") will be banned.

To further ensure high-quality annotations, we send each question to 3 different annotators and only
accept an annotation if at least 2 out of the 3 annotators agree with each other on the truthfulness of
an item. If agreement is not reached, the task is returned as inconclusive.

D.2 RESULTS

We perform validation on 10,200 room-annotation pairs. From each of the three data types, 1,700
pairs are sampled for validation of both text truthfulness and grounding accuracy. A subset of 800
rooms is uniformly chosen, with 400 designated for text truthfulness and another 400 for grounding
accuracy. The text data is uniformly sampled from these rooms. We report accuracies for both text
truthfulness and grounding accuracy in Table 10.

We report comprehensive statistics from the annotation process in Table 11. We observe a very low
qualifier pass rate ranging from 11 - 20 % across the different tasks in our data, suggesting that our
qualifiers were effective in allowing only the most attentive annotators qualify to annotate real tasks.
In addition, none of these annotators were banned due to honeypots. This increases our confidence
that our qualification process is effective in training annotators and filtering out those who were not
attentive. We also observe that workers spend roughly the same time on real tasks and honeypot tasks,
suggesting that the honeypots are indistinguishable from real tasks for the annotators. This further
supports the validity of our annotations.
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Table 10: Text Truthfulness and Grounding Accuracy from crowdsourcing. Accuracy is computed by dividing
the number of “True” responses by the total number of tasks (1700).

Method Text Truthfulness Grounding Accuracy
Grounded Scene Description 0.877 0.944
Grounded QA 0.852 0.956
Grounded Object Reference 0.863 0.918

Table 11: Comprehensive annotation metrics. Includes qualifier pass rate, honeypot count, honeypot ban rate,
percent of tasks marked inconclusive (where workers could not come to an agreement on the label), and the
average time that workers spend on both real tasks and honeypot tasks. Each dataset was evaluated on 1700
annotations. At least 2 workers must agree on the label for an annotation to be considered valid.

Category Type % Qualifier Pass Rate # Honeypots % Honeypot Ban Rate % of Inconclusive Tasks Avg. Real Task Speed (s) Avg. Honeypot Speed (s)
(Pass) (Total) (Ban) (Tasks) (Real) (Honeypot)

Text Accuracy
Scene Description 17 35 0 2.03 17.91 17.08
QA 19 18 0 1.35 16.22 16.64
Object Reference 10 38 0 0.82 19.88 17.57

Grounding Accuracy
Scene Description 20 18 0 1.66 9.69 12.84
QA 16 18 0 1.11 6.65 11.14
Object Reference 20 18 0 1.88 9.69 12.84
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