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ABSTRACT

Model Predictive Control (MPC) has been demonstrated to be effective in contin-
uous control tasks. When a world model and a value function are available, plan-
ning a sequence of actions ahead of time leads to a better policy. Existing methods
typically obtain the value function and the corresponding policy in a model-free
manner. However, we find that such an approach struggles with complex tasks,
resulting in poor policy learning and inaccurate value estimation. To address this
problem, we leverage the strengths of MPC itself. In this work, we introduce
Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs
policy learning in a bootstrapped manner. BMPC learns a network policy by im-
itating an MPC expert, and in turn, uses this policy to guide the MPC process.
Combined with model-based TD-learning, our policy learning yields better value
estimation and further boosts the efficiency of MPC. We also introduce a lazy re-
analyze mechanism, which enables computationally efficient imitation learning.
Our method achieves superior performance over prior works on diverse contin-
uous control tasks. In particular, on challenging high-dimensional locomotion
tasks, BMPC significantly improves data efficiency while also enhancing asymp-
totic performance and training stability, with comparable training time and smaller
network sizes. Code is available at https://github.com/bmpc-anonymous/bmpc.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) algorithms that incorporate online planning—often
referred to as plan-based methods—have demonstrated superior performance and data efficiency
across a range of domains, including chess (Silver et al., 2016; 2017; Schrittwieser et al., 2020),
games (Ye et al., 2021), continuous control (Sikchi et al., 2022; Hansen et al., 2023), and the rea-
soning of large language models (Zhao et al., 2024; Putta et al., 2024). By leveraging future states
and rewards predicted by a world model, planning algorithms can evaluate actions online and with
greater accuracy, resulting in a better and more robust policy. This represents a key advantage of
model-based planning, in contrast to model-free algorithms that learn a neural network directly
through trial and error.

In the field of continuous control, model predictive control (MPC) has proven to be an effective
planning approach (Lowrey et al., 2018; Hafner et al., 2019b; Hansen et al., 2022; Schubert et al.,
2023). A notable example is TD-MPC2 (Hansen et al., 2023), an MPC-based MBRL algorithm
with a robust world model, which demonstrates strong performance across a diverse range of con-
tinuous control tasks. Similar to existing methods (Bhardwaj et al., 2020; Sikchi et al., 2022),
TD-MPC2 learns a network policy and a value function in a model-free manner. During inference,
it uses policy-guided MPC for online planning, integrating the world model and the value function.
However, our experiments reveal that despite having high-quality interaction data from MPC, the
model-free policy learning struggles with challenging control tasks. The struggle in policy learning
further indicates poor value learning, which can lead to inaccurate value estimation during MPC and
degrade the overall performance of the MPC policy.

To address this problem, inspired by expert iteration algorithms (Anthony et al., 2017; Silver et al.,
2017), we propose Bootstrapped Model Predictive Control (BMPC), which performs policy learn-
ing in a bootstrapped manner. We first execute MPC guided by the action sequences generated by a
network policy, yielding a bootstrapped MPC expert. The network policy is then updated by imitat-
ing this expert, thus achieving policy improvement. By employing this iterative process, we leverage
the capabilities of MPC planning to boost the efficiency of policy learning. For value learning, we
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Figure 1: Overview. (left) BMPC learns a network policy through expert imitation and lazy rean-
alyze mechanism, planning during inference using guided MPC, and performs model-based value
learning in an on-policy manner. (right) Averaged evaluation performance of the network policy
compared to the MPC policy in BMPC and TD-MPC2 on DMControl tasks. BMPC achieves better
policy learning, which further boosts the performance of MPC. Mean and 95% CIs over 5 seeds.

compute TD-targets online using the world model to mitigate off-policy issues. For imitation target
generation, we adopt a lazy reanalyze mechanism to maintain an expert action dataset, thereby sup-
porting expert imitation from the MPC policy in a computationally efficient manner. An overview
of BMPC is presented in Figure 1.

Through experiments, we show that learning a network policy through expert imitation can better
leverage the strengths of MPC than learning a policy in a model-free manner, thus leading to better
value estimation and MPC performance. Our method, BMPC, achieves superior sample efficiency
over prior data-efficient RL methods across 42 continuous control tasks in DMControl (Tassa et al.,
2018) and HumanoidBench (Sferrazza et al., 2024), with comparable training time and smaller net-
work sizes. In particular, in challenging high-dimensional locomotion tasks, BMPC significantly
improves data efficiency while also enhancing asymptotic performance and training stability. Ad-
ditionally, our lazy reanalyze approach reduces the proportion of reanalyzed samples required by
expert iteration algorithms (Ye et al., 2021; Wang et al., 2024) from 99% to 0.8%, while maintaining
comparable policy learning efficiency. This avoids the need for extensive re-planning, significantly
reducing the computational cost of BMPC.

2 RELATED WORK

Model-based reinforcement learning. MBRL focuses on using a model of the environment to
help an agent make decisions, which typically involves learning a dynamic model and a reward
model from data. To elaborate further, dyna-style approaches (Sutton, 1991; Janner et al., 2019;
Hafner et al., 2019a; Okada & Taniguchi, 2022; Robine et al., 2023; Hafner et al., 2023a) use the
model to simulate additional experiences based on real data, which improves the sample efficiency
of the algorithm. In contrast, plan-based methods leverage the model for planning, resulting in better
policies and further enhancing the sample efficiency of reinforcement learning. In the case of plan-
based MBRL, if the model and value function are sufficiently accurate, planning alone can lead to a
highly effective policy (Hafner et al., 2019b; Hansen et al., 2022; Schubert et al., 2023).

Expert iteration. Typically, planning algorithms need to roll out a large number of trajectories using
the model to explore the solution space, which can be computationally intensive. Expert iteration
methods (Anthony et al., 2017; Silver et al., 2017) improve the efficiency of planning by employing
a network policy to guide the search direction. The planning algorithm, guided by the network
policy, can be considered an expert, allowing the network policy to learn from it and thus achieve
policy improvement. By combining these two aspects, expert iteration can bootstrap the efficiency
of planning and the capability of the network policy. Although tree-search-based expert iteration
has achieved strong performance and data efficiency across a range of domains (Wang et al., 2024),
in the domain of continuous control, pure MPC-based MBRL without expert iteration remains the
superior approach (Hansen et al., 2023).
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Imitating and enhancing MPC. Methods that aim to mimic or enhance MPC have gained signif-
icant attention in RL and robotics. Guided policy search methods (Levine & Koltun, 2013; Levine
et al., 2016; Zhang et al., 2016; Sun et al., 2018) help RL policies explore effectively in challenging
tasks by using an external plan-based policy, such as MPC, to guide the learning of a neural net-
work policy. Pan et al. (2017; 2020); Sacks & Boots (2022); Fishman et al. (2023) propose methods
where a neural network learns by mimicking an MPC controller, either to achieve a faster policy or
to develop a more efficient neural planner. Alternatively, there are approaches that attempt to learn a
residual policy on top of MPC (Silver et al., 2018; Sacks et al., 2024), which serves as another way of
bootstrapping MPC. Additionally, Power & Berenson (2022); Sacks & Boots (2023) aim to improve
MPC via learned sampling distributions. Unlike MBRL, the MPC policy in the aforementioned
methods is derived from a real, carefully designed model, rather than a learned model. Moreover,
these approaches do not adopt the iterative policy optimization scheme like expert iteration.

3 BACKGROUND

Problem formulation. We address reinforcement learning problems in continuous action spaces,
which are modeled as an infinite-horizon Markov Decision Process (MDP). This MDP is defined
by the tuple (S,A,P,R, γ), where S ∈ Rn and A ∈ Rm are state and action spaces, s ∈ S are
states, a ∈ A are actions, P : S × A 7→ S is the state transition function, R : S × A 7→ R
is the reward function, and γ is the discount factor. The objective in reinforcement learning is to
derive a policy π : S 7→ A that maximizes the expected discounted cumulative reward, expressed as
Eπ [

∑∞
t=0 γ

trt], where rt = R(st, π(st)).
TD-MPC2. TD-MPC2 (Hansen et al., 2023) is a plan-based MBRL algorithm that learns a world
model, a Q-function, and a corresponding policy, which are then used for MPC to derive an plan-
based policy π. The model components of TD-MPC2 can be described by a tuple (h, d,R,Q, p),
where z = h(s) is the encoder that maps the observation s into a latent space vector z, z′ = d(z,a)
is the latent-space dynamics model, r̂ = R(z,a) is the reward prediction function, q̂ = Q(z,a) is
the Q-value prediction function, and â = p(z) is the prior neural network policy. In this paper, we
omit the representation of task embedding inputs of TD-MPC2, as we do not focus on its multi-task
capabilities. Similar to model-free approaches like SAC (Haarnoja et al., 2018), TD-MPC2 learns
the Q-function through iterations of the Bellman equation, and the network policy p is optimized
by maximizing the Q-value with entropy regularization, which can be formalized as the following
update rules:

ϕ← argmin
ϕ

E(s,a,r,s′)∼B
[
CE(Qϕ(z,a), r + γQϕ−(z′, pθ(z

′)))
]

(1)

θ ← argmax
θ

Es∼B [Qϕ(z, pθ(z)) + βH(pθ(·|z))] , z = h(s), z′ = h(s′) (2)

whereH is the entropy of p, β is a hyperparameter for loss balancing, θ, ϕ, ϕ− denote the parameters
of the neural networks for p, Q, and the target Q-network, respectively. B represents the replay
buffer. CE is the cross-entropy, used because TD-MPC2 formulates value prediction as a discrete
regression problem. For simplicity, we omit the temporal expansion of the latent vector in update
rules for TD-MPC2; for the full temporally weighted objectives, see Hansen et al. (2023).

MPC with a policy prior. During inference, TD-MPC2 performs MPC planning guided by the prior
policy pθ. Specifically, TD-MPC2 leverages Model Predictive Path Integral (MPPI) (Williams et al.,
2015) as its underlying MPC algorithm. MPPI models the action sequence (at,at+1, ...,at+H) of
length H as being drawn from a time-dependent multivariate Gaussian with diagonal covariance,
parameterized as (µ, σ), where µ, σ ∈ RH×m. During the planning process, MPPI iteratively sam-
ples sequences fromN (µ, σ2), estimates their values by rolling out trajectories with the model, and
updates (µ, σ) based on a weighted average of the top-k sequences, thus maximizing the expected
estimated value of action sequence, which is expressed as:

µ∗, σ∗ = argmax
µ,σ

E
at:t+H∼N (µ,σ2)

[
Q̂(zt,at:t+H)

]
(3)

Q̂(zt,at:t+H)
.
= γHQ(zt+H ,at+H) +

H−1∑
h=t

γhR(zh,ah) (4)
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Figure 2: Performance gap between TD-MPC2 policies. (left) Evaluation performance of the net-
work policy compared to the MPC policy in TD-MPC2. The network policy struggles with complex
tasks like Dog Run and Humanoid Run. Mean and 95% CIs over 5 seeds. (right) Distributions of
action value differences during MPPI over environment steps.

To integrate prior policy guidance, a portion of the sampled sequences is drawn from the distribution
pθ. Ultimately, the first action of the optimized distribution at ∼ N (µ∗

t , σ
∗
t ) is selected for execution

during inference. For more details on the planning procedure, see Hansen et al. (2022).

In this paper, we adopt the same world model architecture and MPPI algorithm as TD-MPC2, and
we use similar mathematical notations to describe our algorithm components.

4 METHOD

4.1 INSUFFICIENT POLICY LEARNING IN MODEL-FREE APPROACH

A model-free approach is adopted in TD-MPC2 to learn both the Q-function and a max-Q network
policy. During inference, it leverages MPC to plan actions, guided by the network policy. Since the
MPC policy—based on the learned model and online planning—typically outperforms the network
policy, it provides higher-quality samples for model-free learning, thereby improving the efficiency
of both policy and value learning. However, we find that in challenging environments, even with
high-quality samples from the MPC policy, the model-free approach still struggles, leading to a
performance gap between the MPC policy and the network policy. This gap indicates inaccurate
value estimation, further degrading the planning performance of MPC.

Figure 2 shows the evaluation performance of both the network policy and MPC policy during
training, on three locomotion tasks in DMControl (Tassa et al., 2018): Walker Run, Humanoid Run,
and Dog Run. In all three tasks, a policy performance gap is evident, though the extent of the gap
varies. In simpler task Walker Run, the network policy performs comparably to the MPC policy.
However, in more complex tasks like Humanoid Run and Dog Run, the network policy struggles to
improve, while the MPC policy maintains high performance.

To better understand the root cause of this performance gap, we analyze the planning process of
MPPI. We represent the prior action sequences generated by the network policy as {ai,pθ

t:t+H}ni=1,
where n is the number of prior action sequences, and the final action sequence selected by MPPI
as ampc

t:t+H . To quantify the optimization achieved by MPPI, we compute the difference between the
value of the final selected sequence and the average value of the prior sequences:

∆Q̂(zt)
.
= Q̂(zt,a

mpc
t:t+H)− 1

n

n∑
i=1

Q̂(zt,a
i,pθ

t:t+H) (5)

where Q̂ denotes the value estimated by the model in Equation 4. Overall, ∆Q̂(zt) reflects the
improvements that MPC makes to action value at time-step t. As illustrated in Figure 2, we plot
the distributions of ∆Q̂ over training steps within an episode. The figure shows that improvements
brought by MPC are continuously increasing in Humanoid Run and Dog Run, whereas in Walker
Run, the network policy already performs well, leaving little room for MPC to further optimize.

These experiments demonstrate that, although TD-MPC2 exhibits strong performance in high-
dimensional locomotion tasks, much of its performance is due to the use of online planning. In
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contrast, network policy learning struggles considerably with these tasks. Consequently, we argue
that this inefficient policy learning indicates poor value learning, reducing the data efficiency of the
algorithm. Specifically, because the value network is learned to represent the value of the corre-
sponding network policy, this gap implies that the terminal value used by MPC is derived from a
weaker policy, which will result in inaccurate value estimation during planning. A natural solution,
which we propose, is to leverage the imitation of the MPC expert to achieve policy learning.

4.2 BOOTSTRAPPED MODEL PREDICTIVE CONTROL

We propose BMPC, a plan-based MBRL algorithm based on TD-MPC2’s world model. BMPC
learns a neural network policy by imitating an MPC expert, and in turn, uses this policy to guide the
MPC process. The world model is leveraged in BMPC to perform on-policy TD-learning of a value
network, which is used for terminal value calculation during MPC. Additionally, we introduce a
lazy reanalyze mechanism to maintain an expert dataset for more computationally efficient imitation
learning. The algorithm for BMPC training is presented in Algorithm 1.

Policy learning through expert imitation. BMPC uses a prior policy pθ to guide the planning
process of MPC. In other words, we can describe this as MPC bootstrapping pθ into an expert
policy, denoted as π(·|z, pθ). Thus, we learn the policy pθ by imitating π, which can be formalized
as the following objective:

Lp(θ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt [KL(π(·|h(st), pθ), pθ(·|zt))/max(1, S)− βH(pθ(·|zt))]

]
, (6)

z0 = h(s0), zt+1 = d(zt,at), S
.
= EMA(Per(KL(π, pθ), 95)− Per(KL(π, pθ), 5), 0.99) (7)

where H is the entropy, KL is the Kullback–Leibler divergence, z0:H are latent vectors rolled out
through model h and d. β and λ are hyperparameters for loss balancing and temporal weighting,
respectively. Empirically, when action space is large, imitating the action distribution π is more ef-
ficient than imitating the exact actions a ∼ π, especially when both the student and expert policies’
distributions belong to the same parametric family. Since the MPC policy is parameterized as a mul-
tivariate Gaussian, we choose to parameterize the neural network policy as a multivariate Gaussian
as well, allowing us to compute the KL divergence in closed form. As the KL divergence between
multivariate Gaussian distributions can vary significantly across tasks and action spaces, affecting
training stability, we normalize the KL loss using moving percentiles S to keep the loss value within
an acceptable range. This method is also commonly used to balance the policy loss and entropy loss
(Hafner et al., 2023a; Hansen et al., 2023).

Model-based TD-learning. Since we do not employ a SAC-style max-Q approach for policy im-
provement, we opt to learn a state value function Vϕ instead of a state-action value function Qϕ. We
construct an n-step TD-target V̂ using the latest model, policy, and target value network. The value
network learns to minimize the cross-entropy loss with respect to the discretized TD-target:

LV (ϕ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt
[
CE(Vϕ(zt), V̂ (h(st)))

]]
, z0 = h(s0), zt+1 = d(zt,at) (8)

V̂ (z′t)
.
= γNVϕ−(z′t+N ) +

N−1∑
k=0

γkR(z′t+k, pθ(z
′
t+k)), z

′
t+1 = d(z′t, pθ(z

′
t)) (9)

where N is the TD horizon, z0:H are latent vectors rolled out through model h and d. V̂ is the
TD-target computed using the model d,R and the policy pθ in an on-policy manner. In practice, we
found that N = 1 is a more suitable choice, likely because the world model of TD-MPC2 is trained
with a short horizon (H = 3, λ = 0.5), limiting its ability to predict rewards over long sequences.
As a result, setting N too large would lead to excessive compounding errors.

Indeed, using the original Q-iteration method for value learning is also a feasible choice. However,
due to the changes in the policy learning approach, this option introduces certain off-policy issues,
which can lead to lower data efficiency and unstable training in tasks where the policy varies sig-
nificantly during training. We compare the results of the two value learning approaches in Section
5.1.
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Lazy reanalyze. In practice, it is costly to compute the policy objective 6 directly, as it requires
re-planning for all samples during every update, which is infeasible for MPC algorithms. Instead,
we choose to maintain imitation targets in the replay buffer through lazy reanalyze, thus resulting in
a surrogate policy objective 10.

Algorithm 1 BMPC training

Require: Initialize pθ, Vϕ, h, d,R randomly.
B, k: replay buffer, lazy reanalyze interval.

1: while not converged do
2: // Collect experience
3: for step t = 0...T do
4: πt ← π(·|h(st), pθ)
5: at ∼ πt

6: (st+1, rt)← env.step(at)
7: B ← B ∪ (st,at, rt, st+1, πt)

8: // Update networks
9: for num updates per episode do

10: {st,at, rt, st+1, πt}t:t+H ∼ B
11: Update h, d,R as in TD-MPC2.
12: Update Vϕ via Equation 8.
13: Update pθ via Equation 10.
14: Update Vϕ− via EMA.
15: // Lazy reanalyze
16: if update step % k == 0 then
17: πt:t+H ← π(·|h(st:t+H), pθ)

18: B update←−−− πt:t+H

During every k-th network update, we draw
b samples from the batch, re-plan them, and
obtain fresh imitation targets, i.e., the mean
and standard deviation of the action distribu-
tion πt = π(·|h(st), pθ). These targets πt are
then placed back into the replay buffer. This re-
analyzing process is performed independently
of the training process. Thus, we can approx-
imately regard the replay buffer as an expert
dataset, and directly sample state-action pairs
from it for supervised learning. To increase ex-
ploration in MPC planning, we additionally add
noise to the prior policy during re-planning.

This approach is inspired by the reanalyze pro-
posed in Schrittwieser et al. (2020), a common
method in sample-efficient expert iteration al-
gorithms (Ye et al., 2021; Wang et al., 2024).
The key difference is that reanalyze performs
re-planning during every network update, with
99%-100% of samples re-planned (i.e., reana-
lyze ratio). These reanalyzed samples are im-
mediately used for imitation learning and then
discarded. In contrast, lazy reanalyze performs
far fewer re-plannings and places the reanalyzed samples back into the buffer for reuse.

Specifically, the reanalyze interval k and the reanalyze batch size b are hyperparameters, where
we choose k = 10 and b = 20, with a batch size of 256 for network updates. Under this setup,
lazy reanalyze achieves a computational cost equivalent to a reanalyze ratio of 0.8%, which is over
100 times lower than the typical reanalyze ratio of 99% (Ye et al., 2021; Wang et al., 2024). When
combined with batched MPPI planning on GPU, lazy reanalyze introduces only a 10%-20% increase
in training wall-time.

The surrogate policy objective with lazy reanalyze can be formalized as:

Llazy
p (θ)

.
= E

(s,a,π)0:H∼B

[
H∑
t=0

λt [KL(πt, pθ(·|zt))/max(1, S)− βH(pθ(·|zt))]

]
(10)

where πt is the expert action distribution we maintain in the replay buffer.

5 EXPERIMENTS

In this paper, we propose BMPC to more effectively leverage the strengths of MPC in continuous
control tasks. Our approach integrates expert imitation for policy learning, performs model-based
TD-learning for value learning, and introduces lazy reanalyze to better utilize re-planning results.
Through our experiments, we aim to answer the following key questions:

• How does BMPC perform as a data-efficient continuous control algorithm compared to the
current state-of-the-art methods?

• Does BMPC lead to better policy learning, and how can this be further leveraged?
• How does lazy reanalyze affect the performance and training time of BMPC?

To ensure a direct comparison, we evaluate BMPC on 28 DMControl (Tassa et al., 2018) tasks used
in the TD-MPC2 (Hansen et al., 2023) 1, and 14 tasks from HumanoidBench (Sferrazza et al., 2024)

1Excluding custom tasks created for multitask training.
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locomotion suite. The tasks covers a diverse range of continuous control challenges, including sparse
reward, locomotion with high-dimensional state and action space (up to A ∈ R61). Visualizations
of the tasks can be found in Appendix D. To avoid ambiguity, we use the term “environment step”
in our experiments, where an environment step refers to the number of inference steps multiplied by
the action repeat (2 in DMControl, 1 in HumanoidBench).

Baselines. We select three state-of-the-art data-efficient RL methods as baselines: (1) SAC
(Haarnoja et al., 2018), a model-free actor-critic algorithm rooted in maximum entropy reinforce-
ment learning; (2) DreamerV3 (Hafner et al., 2023a), a Dyna-style MBRL algorithm that trains a
model through reconstruction loss and learns a model-free policy from trajectories imagined by the
model; (3) TD-MPC2 (Hansen et al., 2023), an MPC-based MBRL algorithm that learns a network
policy and Q-function in a model-free manner, and performs MPC planning at inference based on
them and the model. Both MBRL methods learn an implicit model to roll out sequences in latent
space and predict rewards.

For SAC, we use the results from TD-MPC2 and HumanoidBench; For DreamerV3, we use its
default settings on DMControl tasks, corresponding to a network size of 12M, and use the results
from HumanoidBench; For TD-MPC2, we use its default configuration, corresponding to a network
with 5M parameters. For BMPC, we adopt a network almost identical to TD-MPC2, except that
we replace the Q-network with a V-network. Notably, as we do not use a Q-based method, we
find that BMPC’s performance is less dependent on ensemble networks, allowing us to reduce the
default 5 ensemble value networks to 2. This results in a smaller network for BMPC, with only 3M
parameters. We use the same hyperparameters for BMPC across all tasks, see Table 2, and detailed
baseline configurations are provided in Appendix B.

5.1 RESULTS

Benchmark performance. We first compare BMPC against the baselines across all 28 DMControl
tasks. Due to limited space, we only present results for 10 selected tasks, as shown in Figure 3. The
training curves for all tasks are provided in Appendix C. Our results show that BMPC consistently
achieves either superior or comparable performance relative to the baselines on most tasks. Notably,
on high-dimensional locomotion tasks, such as Dog and Humanoid, BMPC shows significant im-
provements in data efficiency, despite having fewer learnable parameters. The results on DMControl
indicate that BMPC maintains the performance of TD-MPC2 across a wide range of control tasks,
while significantly enhancing performance in tasks where model-free approach struggles.

We further compare BMPC with the baselines on the 7 high-dimensional tasks, as shown in Figure
4. The environment steps are extended from 1M to 4M for a comprehensive comparison. In addition
to its improved data efficiency at short training lengths, BMPC also outperforms the baselines in
terms of asymptotic performance and training stability, as indicated by the confidence intervals of
the curves. Finally, the average steps-to-solve (the number of steps required to achieve 795, which
is 90% of the asymptotic reward) across the 7 tasks for BMPC is 90k steps, while for TD-MPC2 it
is 360k steps, indicating a 300% increase in data efficiency.

On the HumanoidBench locomotion suite, which requires the agent to control a more complex
embodiment—a Unitree robot with a large action space (A ∈ R61)—BMPC maintains supe-
rior performance compared to baselines, further demonstrating its advantage on challenging high-
dimensional tasks. We present results for all tasks in Figure 5.

Leveraging better policy learning. In BMPC, we obtain a network policy through expert imitation.
To verify whether this network policy is better and how we can leverage it, we design ablation
experiments as shown in Figure 6 and Figure 7a.

Figure 6 illustrates the performance gap between the network policy and MPC policy for BMPC and
TD-MPC2 on DMControl, similar to Figure 2. Training curves for all tasks are provided in Appendix
C. Surprisingly, through expert imitation, BMPC enables its network policy to perform nearly on
par with its MPC policy. In contrast, TD-MPC2 exhibits a substantial performance gap between its
network policy and MPC policy, particularly in challenging tasks such as Dog and Humanoid. This
indicates that BMPC’s network policy can serve as a viable final inference strategy without the need
for online planning, which is suitable for real-time control tasks that demand low latency.
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Figure 3: DMControl tasks. Comparing BMPC to baselines on DMControl tasks. In the top left,
we present the average performance of 7 high-dimensional locomotion tasks and all 28 tasks. Mean
and 95% CIs over 5 seeds2. Training curves for all tasks are provided in Appendix C.
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Figure 4: High-dimensional locomotion tasks. Comparison of BMPC with baselines on the 7
most challenging high-dimensional locomotion tasks; The environment steps are extended to 4M
for a comprehensive comparison. In the top left, we present the results averaged over all 7 tasks.
Mean and 95% CIs over 5 seeds.

We further conduct ablation studies to show how this improved network policy contributes to
BMPC’s performance. We introduce three BMPC variants for comparison: (1) Variant 1: based
on TD-MPC2, we use expert imitation to additionally learn a network policy, which is used to guide
MPPI planning, while value learning still relies on the original policy; (2) Variant 2: based on Vari-
ant 1, we use both two network policies to guide MPPI planning simultaneously; (3) Variant 3: we
replace TD-MPC2’s policy learning approach with expert imitation, thus changing the policy used
in value learning, while still learning value based on Q-iteration; (4) BMPC: based on Variant 3, we
adopt model-based on-policy TD-learning. For further details of these variants, see Appendix A.

Figure 7a shows the results of BMPC variants on the Dog Run and Humanoid Run. We find that even
with a better policy, using it to guide MPC does not result in improved performance, as shown by
the results of Variant 1 and Variant 2. The key to performance improvement lies in using this policy

2Except SAC, which uses 3 seeds.
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Figure 5: HumanoidBench locomotion suite. Comparing BMPC to baselines on HumanoidBench
locomotion suite. In the top left, we present the average performance of all 13 tasks except for Reach
due to the different reward scales. Mean and 95% CIs over 3 seeds.
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Figure 6: Performance gap between BMPC policies. (left) Evaluation performance of the network
policy compared to the MPC policy in BMPC and TD-MPC2, The performance gap of BMPC is
barely noticeable. Mean and 95% CIs over 5 seeds. Curves for all tasks are provided in Appendix
C. (right) Distributions of action value differences during MPPI over environment steps for BMPC.

to learn a better value function, as indicated by the results of Variant 3 and BMPC. Additionally,
model-based value learning avoids off-policy issues, leading to improved data efficiency.

Lazy reanalyze ablation. BMPC maintains an expert dataset through lazy reanalyze to achieve
computationally efficient expert imitation. We explore the relationship between the frequency of re-
planning and performance by evaluating lazy reanalyze interval k ∈ {10, 40, 80,∞}, corresponding
to reanalyze ratios of 0.8%, 0.2%, 0.1%, and 0%, respectively. The results, shown in Figure 7b,
indicate that the reanalyze interval k considerably affects BMPC’s performance. However, as k
decreases, the impact becomes less pronounced. Beyond k = 10, further increasing the reanalyze
frequency does not significantly improve performance but results in substantial computational over-
head. Thus, we set k = 10 as the default value. It is worth noting that in all our experiments, the
replay buffer size is 1M, which is quite large for an expert dataset, but even with low-frequency
reanalyzing, the freshness of the data is sufficient to support expert imitation.

Training wall-time. We compare the training wall-time and time-to-solve of BMPC and TD-MPC2
in Walker Walk and Dog Walk, where time-to-solve is defined as the time required to achieve rewards
of 899 and 872, respectively (90% of the asymptotic reward), as shown in Table 1. The experiments
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Figure 7: Ablations. (a) Performance of BMPC variants with different ways to leverage the network
policy, demonstrating the importance of value learning. (b) Performance of BMPC with different
lazy reanalyze interval k; Mean and 95% CIs over 5 seeds.

are conducted using a single RTX 3090 GPU. BMPC and TD-MPC2 have similar training times per
500k steps, although lazy reanalyze increases training time by approximately 20%, this increase is
offset by the reduced size of the network. Due to its high data efficiency, the time-to-solve of BMPC
is 2 times shorter than TD-MPC2 on Dog Walk.

Table 1: Wall-time. Time-to-solve and time per
500k environment steps for the Walker Walk and
Dog Walk. Mean of 3 runs.

Walker Walk Dog Walk
Wall-time(h) TD-MPC2 BMPC TD-MPC2 BMPC
time-to-solve 0.40 0.43 2.03 0.87
h/500k steps 7.67 7.32 8.47 8.71

Notably, our BMPC implementation uses only
a single thread for training and does not fully
parallelize the lazy reanalyze process. Since
lazy reanalyze operates independently of net-
work training, it could be parallelized using a
separate thread to further reduce training time.
Additionally, BMPC’s network policy performs
nearly on par with MPC planning on DMCon-
trol tasks, making it feasible to use the network
policy for inference without planning, which would significantly reduce inference time.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduce BMPC, a plan-based MBRL algorithm that leverages the strong perfor-
mance of MPC to achieve better policy and value learning in continuous control tasks. Our approach
demonstrates superior performance, particularly in complex locomotion tasks, while maintaining a
comparable training time and a smaller network size compared to state-of-the-art methods.

Due to the current world model’s lack of long-horizon prediction capability, BMPC is limited to
a TD-horizon of 1. As the model capability improves, there is potential to extend the TD-horizon
for enhanced value learning. Moreover, BMPC can further benefit from advanced expert iteration
techniques, such as the plan-based value estimation proposed in Wang et al. (2024).

It is also worth exploring the combination of expert imitation with the max-Q gradient for joint pol-
icy improvement, integrating the strengths of both approaches, such as by combining loss functions
or integrating independent value functions for planning.

Finally, BMPC can also be applied in multi-task and offline settings. Although experiments in these
areas have yet to be conducted, we believe BMPC can further harness the capabilities of MPC.

7 REPRODUCIBILITY STATEMENT

We have anonymously open-sourced our work, available at https://github.com/bmpc-
anonymous/bmpc. By running the code with the default configuration, the results presented
in this paper can be reproduced.
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A IMPLEMENTATION DETAILS

Exploration in lazy reanalyze. The network policy of BMPC uses a neural network to obtain the
mean and log standard deviation of a Gaussian distribution. The mean is derived by applying the
tanh function to squash the output. The log standard deviation is first squashed to the range [−1, 1]
using the tanh function, and then linearly mapped to the range [−1, 1] using the tanh function, and
then mapped linearly to the range [log std min, log std max].

During lazy reanalyze, we increase the value of log std min to enhance exploration in MPC.
Specifically, the default values are log std min=−3 and log std max=1. When reanalyzing,
we set log std min=−2 and log std max=1. Mathematically, this adjustment is equivalent to
log stdreanalyze = log std× 0.75 + 0.25.

This mechanism does not increase overall performance but helps prevent BMPC from prematurely
converging to local optima due to iterative policy learning. Increasing the policy std during lazy
reanalyze may further improve the exploration of MPC, but this would likely require increasing the
number of MPPI iterations to ensure convergence, which we opt not to do.

Policy loss. In our experiments, we try both log probability loss in Wang et al. (2024) and KL loss
for expert imitation, observing substantial differences in the policy std. We find that network policy
accurately mimics the std of the MPC policy through KL loss; while using log probability loss tends
to result in a large policy std, affecting the optimality of the algorithm. We speculate this may be due
to the use of lazy reanalyze, leading the expert action dataset to encompass behaviors of different
MPC policies over a longer period, necessitating a larger std for the network policy. Alternatively, it
may result from the MPC policy’s tendency to produce ”shaky actions” 3, leading to a larger policy
std when using log prob loss.

Hyperparameters. We use the same hyperparameters for all tasks. BMPC is based on the world
model and MPPI of TD-MPC2. For the hyperparameters in these components, we use the same
default values as those in TD-MPC2 (Hansen et al., 2023). The hyperparameters of BMPC are
detailed in Table 2.

Table 2: BMPC Hyperparameters. We use the same hyperparameters for all tasks.

Hyperparameter Value
Value loss coef. 1
Policy loss coef. 1
Entropy loss coef. 1× 10−4

Batch size 256
TD horizon (N ) 1
Number of ensemble value networks 2
Lazy reanalyze interval (k) 10
Lazy reanalyze batch size (b) 20
Re-planning horizon 3
Policy log std. min. -3
Policy log std. max. 1
Policy log std. min. (re-planning) -2
Policy log std. max. (re-planning) 1

3see https://github.com/nicklashansen/tdmpc2/issues/26
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BMPC variants. We conduct ablation studies by introducing three BMPC variants in the Experi-
ments section. Below, we provide a detailed explanation of these variants along with their respective
design choices.

Key Facts: The design of BMPC and its variants is guided by the following components:

• A network policy can be learned using:
– (1a) Max-Q gradient-based learning;
– (1b) Expert imitation.

• A network policy is used for:
– (2a) Computing the TD-target during value learning;
– (2b) Guiding the planning process of MPPI.

• The value function can be learned using:
– (3a) Off-policy TD-learning (Q-iteration);
– (3b) On-policy model-based TD-learning.

BMPC Variants: We define the following three BMPC variants based on different combinations of
the above components:

• Variant 1:
– Learn network policy A using (1a) and network policy B using (1b).
– Use policy A for (2a) and policy B for (2b).
– Learn the value function using (3a).

• Variant 2:
– Learn network policy A using (1a) and network policy B using (1b).
– Use policy A for (2a) and both policies A and B for (2b).
– Learn the value function using (3a).

• Variant 3:
– Learn network policy A using (1b).
– Use policy A for both (2a) and (2b).
– Learn the value function using (3a).

BMPC: For comparison, our proposed BMPC approach is defined as follows:

• Learn network policy A using (1b).
• Use policy A for both (2a) and (2b).
• Learn the value function using (3b).

Additional Remarks: For all variants, we use 5 ensemble Q-networks instead of 2 as in BMPC. For
Variant 2, we generate 24 guiding trajectories from each policy (A and B), and increase the number
of elite trajectories in the MPPI process from 64 to 88.
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B BASELINES DETAILS

We report our implementation details of baselines in this section.

SAC. We use the results from TD-MPC2 4 and HumanoidBench 5 for DMControl and Humanoid-
Bench, respectively. For the hyperparameters of SAC, see Hansen et al. (2023) and Sferrazza et al.
(2024).

DreamerV3. For DMControl, we use the latest implementation6, referencing Hafner et al. (2023a),
which differs from the older version Hafner et al. (2023b). We use the default settings on DMC
proprio tasks, corresponding to a network size of 12M and a UTD ratio of 512. We discover that the
performance of DreamerV3 diverges from what is reported in Hansen et al. (2023). For example,
the performance on the Fish Swim has improved, while the performance on the Walker Run has
decreased. This is likely because the newer version of DreamerV3 changes the policy learning
approach in continuous action space, from stochastic backpropagation to the Reinforce. However,
since both results underperform relative to TD-MPC2, this does not affect the overall comparison.
For a comprehensive list of hyperparameters, please refer to the original paper (Hafner et al., 2023a).
For HumanoidBench, we use the results from HumanoidBench repository5.

TD-MPC2. For both DMControl and HumanoidBench, we use the latest code with its default
hyperparameters4. For a comprehensive list of hyperparameters, please refer to their original pa-
per(Hansen et al., 2023).
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Figure 8: Performance of different policies on high-dimensional locomotion tasks. Evaluation
performance of the network policy compared to the MPC policy in BMPC and TD-MPC2 on the 7
high-dimensional locomotion tasks. The environment steps are extended to 4M for a comprehensive
comparison. In the top left, we present the average performance. Mean and 95% CIs over 5 seeds.

4We use results and code in https://github.com/nicklashansen/tdmpc2.
5We use results in https://github.com/carlosferrazza/humanoid-bench.
6We use the code in https://github.com/danijar/dreamerv3.

15

https://github.com/nicklashansen/tdmpc2
https://github.com/carlosferrazza/humanoid-bench
https://github.com/danijar/dreamerv3


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Avg. 28 tasks Avg. 7 high-dim tasks Acrobot Swingup Cartpole Balance Cartpole Balance Sparse

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Cartpole Swingup Cartpole Swingup Sparse Cheetah Run Cup Catch Dog Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Dog Stand Dog Trot Dog Walk Finger Spin Finger Turn Easy

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Finger Turn Hard Fish Swim Hopper Hop Hopper Stand Humanoid Run

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Humanoid Stand Humanoid Walk Pendulum Swingup Quadruped Run Quadruped Walk

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Reacher Hard

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Run

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Stand

0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

Walker Walk

BMPC (ours) TD-MPC2 SAC DreamerV3

Figure 9: All DMControl tasks. Comparing BMPC to baselines on DMControl tasks. In the top
left, we present the average performance of 7 high-dimensional locomotion tasks and all 28 tasks.
Mean and 95% CIs over 5 seeds7.

7Except SAC, which uses 3 seeds.
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Figure 10: Performance of different policies on DMControl. Evaluation performance of the
network policy compared to the MPC policy in BMPC and TD-MPC2. In the top left, we present
the average performance of 7 high-dimensional locomotion tasks and all 28 tasks. Mean and 95%
CIs over 5 seeds.
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D TASK VISUALIZATION

Figure 11: DMControl tasks visualization. Images of all the embodiments we control in the DM-
Control tasks. The tasks include controlling them to run, walk, jump, balance, reach, and perform
actions like swing-up and spin, covering a diverse range of continuous control scenarios.

Figure 12: HumanoidBench locomotion suite visualization. Images of the Unitree robot we con-
trol in the HumanoidBench locomotion suite. The tasks include running, walking, crawling, bal-
ancing, sitting, reaching, and performing actions like walking on stairs or walking while avoiding
collisions with poles, which cover a diverse range of robotic locomotion scenarios.
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