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ABSTRACT

Multilingual language models are widely used to extend NLP systems to low-
resource languages. However, concrete evidence for the effects of multilingual-
ity on language modeling performance in individual languages remains scarce.
Here, we pre-train over 10,000 monolingual and multilingual language mod-
els for over 250 languages, including multiple language families that are under-
studied in NLP. We assess how language modeling performance in each language
varies as a function of (1) monolingual dataset size, (2) added multilingual dataset
size, (3) linguistic similarity of the added languages, and (4) model size (up to
45M parameters). We find that in moderation, adding multilingual data improves
low-resource language modeling performance, similar to increasing low-resource
dataset sizes by up to 33%. Improvements depend on the syntactic similarity of
the added multilingual data, with marginal additional effects of vocabulary over-
lap. However, high-resource languages consistently perform worse in multilingual
pre-training scenarios. As dataset sizes increase, adding multilingual data begins
to hurt performance for both low-resource and high-resource languages, likely due
to limited model capacity (the “curse of multilinguality”). These results suggest
that massively multilingual pre-training may not be optimal for any languages in-
volved, but that more targeted models can significantly improve performance.

1 INTRODUCTION

Multilingual language models have been a fixture of natural language processing (NLP) research
nearly since the introduction of Transformer language models (Devlin et al., 2019; Conneau et al.,
2020a). These models are often pre-trained on over 100 languages simultaneously, and they are
widely used for NLP tasks in low-resource languages (Adelani et al., 2021; Ebrahimi et al., 2022;
Hangya et al., 2022; Imani et al., 2023), cross-lingual transfer learning (Pires et al., 2019; Con-
neau et al., 2020a), and multilingual text generation (Lin et al., 2022; Scao et al., 2022). However,
while multilingual language models produce strong results across many languages, multilingual
pre-training work almost exclusively focuses on pre-training a small number of models with some
fixed distribution over languages (e.g. mBERT, XLM-R, XGLM, and BLOOM; Devlin et al., 2019;
Conneau et al., 2020a; Blevins et al., 2022; Lin et al., 2022; Scao et al., 2022).

Thus, it is largely unknown how different pre-training language distributions, such as different quan-
tities of multilingual data or different selections of languages, affect multilingual language model
performance. Multilingual models have been studied extensively during inference and fine-tuning
(Pires et al., 2019; Conneau et al., 2020b; Karthikeyan et al., 2020; Winata et al., 2021; Chai et al.,
2022; Alabi et al., 2022; Guarasci et al., 2022; Winata et al., 2022; Wu et al., 2022; Eronen et al.,
2023), but these studies rely on the same sets of pre-trained models. Fujinuma et al. (2022) vary
the set of pre-training languages, but they consider only 14 variations of 14 languages, and they
focus on cross-lingual transfer after English fine-tuning. For within-language performance, there
is mixed evidence for the benefits of multilingual vs. monolingual pre-training (Conneau et al.,
2020a; Wu & Dredze, 2020; Pyysalo et al., 2021; §2). As multilingual language models are increas-
ingly used without task-specific fine-tuning (e.g. for text generation; Scao et al., 2022; Lin et al.,
2022), it is critical to better understand how multilingual pre-training affects raw language modeling
performance in individual languages.
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Figure 1: Left: Map of the 252 languages used in our study. Right: Effects of adding multilingual
pre-training data in similar languages, for low-resource (1M token) through high-resource (1B to-
ken) languages in small models. Effects are quantified using the estimated monolingual dataset size
that would achieve similar performance. Adding 1B tokens of multilingual data is similar to adding
22% (low-resource) or removing 63% (high-resource) of the monolingual dataset. Shaded regions
are 99% confidence intervals for the mean.

In our work, we investigate the effects of different multilingual pre-training distributions on language
modeling performance in 252 languages. Our main contributions are:1

• We pre-train over 1900 monolingual baseline models for 252 languages, and we estimate model
performance in each language based on monolingual dataset size (§4). We use these estimates to
quantify the performance of multilingual models in individual languages (§4.3).

• We pre-train over 8400 multilingual language models, and we evaluate how performance in
individual languages varies as a function of monolingual dataset size, multilingual dataset size,
linguistic similarity of the pre-training languages, and model size (up to 45M parameters; §5).
By fixing monolingual tokenizers for all 252 languages, we are able to make valid perplexity
comparisons even across multilingual models, and our results control for tokenization quality.

• We find that moderate amounts of multilingual data improve performance for low-resource lan-
guages, similar to increasing low-resource dataset sizes by up to 33% (§6.1). These improve-
ments depend primarily on the syntactic similarity of the added multilingual data, with marginal
additional effects of lexical (vocabulary) similarity.

• We find that multilingual data consistently hurts high-resource language performance, similar to
reducing dataset sizes by over 85% in some cases (§6.2). Likely due to limited model capacity, as
dataset sizes increase, adding multilingual data begins to hurt performance for both low-resource
and high-resource languages (the curse of multilinguality; §2).

These results have significant practical implications for pre-training multilingual language mod-
els. The benefits of multilinguality on raw language modeling performance seem restricted to cases
where both (1) the model targets performance in low-resource languages and (2) the model has
enough capacity for the added multilingual data. If these assumptions hold, the multilingual data
should be from languages that are linguistically similar to the target low-resource languages. How-
ever, when optimizing performance for multiple high-resource languages, multilingual models may
quickly lead to intractable model sizes while degrading performance in individual languages.

2 RELATED WORK

Multilingual language models for low-resource languages. Recent work has adopted two pri-
mary strategies for extending language models to low-resource languages. The first is to pre-train
one model on a large number of languages, including low-resource languages. This is the strategy
adopted by models such as mBERT (104 languages; Devlin et al., 2019), XLM-R (100 languages;
Conneau et al., 2020a), XGLM (30-100 languages; Lin et al., 2022), BLOOM (46 languages; Scao
et al., 2022), and Glot500 (511 languages; Imani et al., 2023). Oftentimes, these models are later
fine-tuned on a specific low-resource language (e.g. Ebrahimi et al., 2022). The second strategy

1Code will be available at https://github.com/redacted-for-anonymity.
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is pre-train multilingual models on a smaller number of languages that are either closely related or
spoken in a specific region. This strategy is adopted by models such as AfriBERTa (11 African
languages; Ogueji et al., 2021) and IndicNLP (12 Indian languages; Kakwani et al., 2020).

The strategy of pre-training only on similar languages is based on evidence that cross-lingual transfer
learning (e.g. fine-tuning on language L1 and evaluating on L2) occurs primarily between similar
languages (Pires et al., 2019; Conneau et al., 2020b; Ahuja et al., 2022; Oladipo et al., 2022; Eronen
et al., 2023). Features that have been proposed to drive cross-lingual transfer include the geographic
proximity of languages (Winata et al., 2022), shared writing systems (Fujinuma et al., 2022; Imani
et al., 2023), shared morphological systems (Gerz et al., 2018), and shared language families (Winata
et al., 2022). However, Fujinuma et al. (2022) observe better cross-lingual transfer overall when a
wider variety of languages is seen during during pre-training. In any case, these studies all focus
on cross-lingual transfer during fine-tuning, rather than the effects of multilinguality on within-
language performance or pre-training itself.

The curse of multilinguality. In fact, there is mixed evidence for whether multilingual pre-
training improves downstream performance for individual languages. Conneau et al. (2020a) find
that pre-training on an excessive number of languages hurts model performance in each language,
evaluating five subsets of languages on downstream tasks in 16 languages. This phenomenon is
known as the curse of multilinguality or negative interference (Wang et al., 2020). This result is fur-
ther supported by findings that monolingual language models often have better language modeling
performance than massively multilingual models such as mBERT (Pyysalo et al., 2021). However,
Rust et al. (2021) find that this curse of multilinguality may simply be a result of lower quality
tokenization per language in multilingual models. Furthermore, contradicting the curse of multilin-
guality, Wu & Dredze (2020) find that for low-resource languages, multilingual pre-training does
improve downstream task performance relative to monolingual pre-training. Thus, the precise ef-
fects of multilinguality on low-resource and high-resource languages remain unclear.

To quantify these effects, we evaluate language modeling performance in 252 languages while sys-
tematically varying monolingual dataset size, multilingual dataset size, model size, and linguistic
similarity of the added languages. This contrasts with previous studies that have focused only on
individual multilingual models such as mBERT or XLM-R. Our approach allows us to determine
how such models perform after varying pre-training languages and language distributions.

3 COLLECTING A MASSIVELY MULTILINGUAL DATASET

Conducting controlled multilingual language modeling experiments requires a large multilingual
dataset. Notably, broad language coverage is a consistent issue in NLP research (Bender, 2009;
2011; Joshi et al., 2020; Blasi et al., 2022), and one contribution of our work is to compile references
to text data sources for languages that are often under-studied in NLP.2 We compile a dataset of
text in 1572 languages; of these languages, 252 contain enough data (1.5M tokens) to be used
in our language modeling study. While we are unable to redistribute our compiled dataset due
to redistribution licenses and out of respect for the original data collectors, all of our sources are
publicly available (§A.1). As a caveat, we note that many low-resource language datasets (e.g.
language documentation projects) prohibit commercial use, and thus industry labs may be precluded
from using such datasets without explicit permission from the owners.

We collect text corpora from 24 multilingual data sources such as OSCAR (Ortiz Suárez et al.,
2019; Abadji et al., 2021), Wikipedia (Wikipedia, 2023), and No Language Left Behind (Costa-
jussà et al., 2022). Our full list of sources and dataset collection details are reported in §A.1. We
clean and concatenate the datasets for each language, and we deduplicate repeated sequences of 100
or more UTF-8 bytes (Lee et al., 2022). Restricting each language to a maximum of 1B tokens, our
dataset contains 41.4B tokens in 1572 languages. This includes 1329 languages with at least 100K
tokens (largely due to Bible translations) and 252 languages with the required 1.5M tokens for our
language modeling study (1M tokens for pre-training and 500K tokens for evaluation). Despite this
fairly stringent token requirement, our 252 languages cover five continents, 29 language families,
and 30 scripts (i.e. writing systems). Figure 1 shows a geographic map of our 252 languages, using
coordinates from Glottolog (Hammarström et al., 2023). Our list of languages is in §A.7.

2For other recent work on low-resourse language dataset compilation, see Imani et al. (2023).
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4 MONOLINGUAL BASELINES AND EVALUATION METRICS

To study effects of multilinguality on language modeling performance in individual languages, we
first need a method to quantify performance in those languages. Thus, we pre-train 1989 monolin-
gual baseline models for our 252 languages, to use as comparison points for the multilingual models
in later sections. We consider three language model sizes and four dataset sizes per language when
available. Then, we estimate the number of monolingual tokens in a language L required to achieve
a given level of performance in L. We use this estimated number of monolingual tokens as an
interpretable performance metric for multilingual models.

4.1 MODEL ARCHITECTURES AND PRE-TRAINING

We pre-train autoregressive GPT-2 language models from scratch (Radford et al., 2019) with three
sizes from Turc et al. (2019): tiny (4.6M parameters), mini (11.6M parameters), and small (29.5M
parameters). For each language, we pre-train models with four dataset sizes when available: 1M,
10M, 100M, and 1B tokens, not including 500K tokens for evaluation in each case. We call these
dataset sizes low, med-low, med-high, and high resource respectively. We have 252 languages with
at least the low-resource dataset size, 167 with med-low resource, 48 with med-high resource, and
28 with high-resource. Our list of languages is in §A.7. Evaluation loss curves, model details, and
full hyperparameters are reported in §A.3.

Monolingual tokenizers. We train a monolingual SentencePiece tokenizer with maximum vocab-
ulary size 32K for each of our 252 languages (Kudo & Richardson, 2018), and we fix this tokenizer
for all models pre-trained for that language. We train each tokenizer on 10K randomly-sampled
lines of text in the language; for languages where more lines are available, the 10K-line tokenizers
have reasonable vocabulary overlap with tokenizers trained on more lines (§A.2). For example, a
10K-line tokenizer on average covers 93.7% of the 4K most frequent tokens in the vocabulary of
a 10M-line tokenizer. We restrict tokenizer training to 10K lines for all languages to control for
tokenization quality across languages.

4.2 PERPLEXITY AND LOG-LIKELIHOOD EVALUATIONS

As an initial performance metric, we compute the log-likelihood assigned by a language model M
to the unseen evaluation dataset for language L. Each of our monolingual models is evaluated on
its corresponding pre-training language, but these methods also apply to our multilingual models
(which each have a tokenizer fixed for one target language; §5). Averaging over tokens, evaluation
log-likelihood is equivalent to negative log-perplexity, mean token log-probability, or the negative of
the language model’s cross-entropy loss (Equation 1). Because our tokenization remains fixed across
all models with a given target language, perplexities and log-likelihoods are comparable within each
target language. Higher log-likelihood scores indicate better language modeling performance, they
are predictive of model performance on other natural language tasks (Xia et al., 2023), and they can
be computed even for languages without any labeled datasets.

Although log-likelihood scores are comparable for models with the same target language, they vary
substantially across languages. This can be due to features of individual languages, their datasets,
or their tokenization (Gerz et al., 2018). Thus, when model M is pre-trained on language L, we
subtract the log-likelihood score of the baseline tiny monolingual model (BaselineL) trained on 1M
tokens for that language, obtaining a relative log-likelihood as follows:

Relative log-likelihood = meanw

(
log2 PM(w)

)
− meanw

(
log2 PBaselineL(w)

)
(1)

Here, w are tokens in the evaluation dataset for L. As is standard, token probabilities are produced by
the language models M and BaselineL based on preceding context (Brown et al., 2020). Equation 1
is then equivalent to the log-odds of observing the evaluation dataset for L using the model M versus
the baseline model for L. Intuitively, a relative log-likelihood of ℓ in log base two indicates that M
assigns the evaluation dataset 2ℓ times the likelihood assigned by the baseline model. Equivalently,
M has perplexity 2ℓ times lower than the baseline model. In future sections, log-likelihoods refer
to relative log-likelihoods that account for the target language baseline.
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4.3 ESTIMATING MONOLINGUAL TOKEN COUNTS

However, relative log-likelihoods are difficult to interpret when quantifying language model per-
formance in practice; a log-likelihood change of 1.0 does not have concrete practical implications.
Furthermore, log-likelihoods are difficult to compare across model sizes (§A.4). Therefore, when
evaluating multilingual language models in later sections, we quantify performance in a language
L as the estimated number of monolingual tokens in L that would achieve the same log-likelihood
with the same size model. Measuring model performance in terms of estimated monolingual token
counts allows us to quantify the effects of adding multilingual pre-training data across languages
and model sizes.
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Figure 2: Curves predicting monolingual model performance from dataset size. Left: Curves fitted
to all languages for each model size. Bold lines are fitted curves, and lighter lines are ground truth
curves for individual languages. Right: Sample language-specific curves for small models, extrapo-
lating from only two data points (1M and 10M tokens). This still produces reasonable estimates for
100M and 1B tokens. Bold lines are estimated curves, and dashed lines are ground truth values.

Estimating monolingual token counts for models across 252 languages is nontrivial. Previous work
has found that language modeling loss (equivalent to negative log-likelihood) has a power law re-
lationship with dataset size (Kaplan et al., 2020). Indeed, we find that −ax−b + c provides a good
fit on average to relative log-likelihood in all 252 languages, where x is the monolingual dataset
size in log10 tokens (Figure 2, left). In line with previous work (Hoffmann et al., 2022), we observe
that larger datasets improve performance primarily for larger models; at 1M tokens in any language,
different model sizes perform similarly.

However, there is significant variability in the log-likelihood vs. dataset size curve across languages.
For high-resource languages, we can fit a language-specific power law to the data points for 1M,
10M, 100M, and 1B tokens. For lower-resource languages, there are too few data points to fit the
power law from scratch (e.g. three power law parameters with two data points). For these languages,
we fix a as the median parameter value from languages where the curve can be fit. Using this, we fit
a monolingual log-likelihood vs. monolingual token count curve for each language in each model
size (Figure 2, right; details in §A.4).

These curves produce reasonable estimates for the number of monolingual tokens required to achieve
a given level of performance in a language L (§A.4). Even when token estimation accuracy is
imperfect, our estimated monolingual token count is always a monotonic increasing function of eval
log-likelihood, and thus performance rankings between models are preserved. In future sections, we
measure the performance of a multilingual model with target language L in terms of the estimated
number of monolingual pre-training tokens in L that would achieve the same performance.

5 PRE-TRAINING MULTILINGUAL MODELS

Finally, we pre-train multilingual language models that vary along four dimensions: monolingual
data quantity, added multilingual data quantity, model size, and linguistic similarity of the added
languages. Each multilingual model is pre-trained with a specified target language, keeping mono-
lingual tokenization for that language fixed during both pre-training and evaluation. The multilingual
models are pre-trained identically to the monolingual baselines in §4, except adding one epoch of the
multilingual data (i.e. 10M, 100M, or 1B tokens). The multilingual data is randomly interspersed
with the monolingual pre-training data in the target language. Target language evaluation loss curves
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are included in §A.3. In total, we pre-train 8454 multilingual language models ranging from 8M to
45M parameters.

Multilingual tokenizers. Perplexity and log-likelihood evaluations within a language L are only
comparable when they use the same tokenizer. Thus, we must keep the monolingual tokenizer fixed
for any model evaluated on L. However, fixing tokenization for multiple languages simultaneously
results in intractable vocabulary sizes. For example, 252 languages × 32K tokens would result in
a vocabulary size of 8.1M tokens, requiring 1.0B embedding parameters even with our smallest
embedding size of 128. To avoid intractable parameter counts, we pre-train multilingual language
models that each keep tokenization fixed for only one language, which we call the target language
for that model. In each multilingual model, the non-target languages share a multilingual tokenizer
with vocabulary size 32K, trained on 10K randomly-sampled lines from each added language. The
target language and added multilingual datasets are tokenized separately, and the token IDs are
merged for the shared vocabulary items. This merged tokenization process ensures that the target
language tokenization remains unchanged across models.

Manipulated variables. We manipulate four variables in our multilingual language models:

• Monolingual data quantity. As in §4, we consider four monolingual dataset sizes when avail-
able in the target language: 1M, 10M, 100M, and 1B tokens.

• Multilingual data quantity. We always add multilingual data from 10 languages, selected ac-
cording to linguistic similarity as described below. We add an equal number of tokens from each
language, totaling either 10M, 100M, or 1B tokens. To save pre-training computation resources,
we omit the 10M added tokens scenario when the monolingual data is 100M or 1B tokens.

• Linguistic similarity. We use linguistic similarity to define which languages are added to the
target language during multilingual pre-training. Due to limits on computational resources, we
only consider two linguistic similarity levels: similar and dissimilar languages. Our linguis-
tic similarity metric is based on three features: syntactic similarity, geographic proximity, and
lexical similarity (i.e. tokenizer vocabulary overlap). Syntactic and geographic metrics are com-
puted as cosine similarities between languages’ syntactic and geographic vector representations
from lang2vec (Littell et al., 2017), which pulls from the World Atlas of Language Structures
(Dryer & Haspelmath, 2013). Lexical similarity is computed as the log number of shared tokens
in the monolingual tokenizers for two languages (§4.1). We Z-score normalize each of these
similarity metrics over all language pairs, and we define the linguistic similarity between any
two languages as the mean of the three similarity scores. For example, the four most similar
languages to English are Dutch, Swedish, Norwegian, and German. For each target language,
we select either the ten most or least similar languages. To allow us to vary the multilingual data
quantity without changing the added languages, we restrict our added languages to those with at
least 100M tokens in our dataset (i.e. our 48 med-high resource languages).

• Model size. We use the same model sizes as §4. With the added multilingual vocabulary em-
beddings, the models have roughly 8.7M (tiny), 19.8M (mini), and 45.8M (small) parameters.

6 MULTILINGUAL MODEL RESULTS

We find that performance in low-resource languages improves when we add moderate amounts of
multilingual data (§6.1). The amount of improvement depends on the syntactic similarity of the
added languages, with small additional effects of lexical (vocabulary) similarity. High-resource
language performance consistently degrades when we add multilingual data (§6.2). Larger models
have smaller performance degradations for high-resource languages and larger performance im-
provements for low-resource languages in multilingual scenarios, suggesting that many drawbacks
of multilinguality are due to limited model capacity.

6.1 LOW-RESOURCE LANGUAGE RESULTS

In moderation, multilinguality improves low-resource performance. As shown in Figure 3
(top), low-resource languages exhibit performance improvements when adding 100M or 1B tokens
of multilingual data (p < 0.001 for 11 out of 12 comparisons, using paired sample t-tests; §A.5).
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Figure 3: Results for low and med-low resource scenarios. Higher y-axis values indicate better
performance. For example, a small model with 1M monolingual tokens (top right) and 1B added to-
kens of multilingual data in similar languages has similar performance to 1.2M monolingual tokens
alone. Light-colored lines indicate results for individual languages, and bold lines indicate the mean
across languages. Shaded regions are 95% confidence intervals for the mean.

Performance improvements are significantly larger when the added languages are similar vs. dissim-
ilar to the target language (analogous to an average 33% vs. 22% increase in target language dataset
size for small models in the optimal scenario; p < 0.001). Performance improvements are also
larger for larger model sizes (33% vs. 12% equivalent dataset increases for small vs. tiny models;
p < 0.001). Regardless of model size, performance is essentially unaffected when adding only 10M
multilingual tokens (1M tokens in each added language); this result also holds for med-low resource
scenarios (Figure 3, bottom). This suggests that a nontrivial amount of multilingual data is required
for language models to leverage shared characteristics across languages.

However, the benefits of adding more multilingual data quickly plateau in low-resource scenarios
(e.g. adding 100M vs. 1B multilingual tokens). In med-low resource scenarios (Figure 3, bottom),
adding multilingual data hurts performance (p < 0.001 adding 1B multilingual tokens; §A.5) except
in our largest models. Even in the larger models, the benefits of multilinguality decrease when too
much multilingual data is added (Figure 3, right). This suggests that adding multilingual data is
beneficial only in moderation, before models have reached their capacity limits.

Syntactic similarity of added languages drives results. We then investigate whether syntactic,
geographic, or lexical (vocabulary) similarity of the added languages appears to drive multilingual
model improvement. We focus on the low-resource small model scenario (Figure 3, top right) with
100M tokens of added multilingual data. This setup leads to our largest performance improve-
ment on average for low-resource languages; other scenarios are considered in §A.6. We compute
the mean syntactic, geographic, and lexical similarity of the added languages for each target lan-
guage, both when selecting languages based on similarity and dissimilarity. All three similarity
metrics correlate with model performance (relative log-likelihood scores), with Pearson’s r = 0.494,
r = 0.341, and r = 0.346 respectively (Figure 4, left, center). More similar added languages corre-
late with better performance. However, syntactic, geographic, and lexical similarity are also signifi-
cantly correlated with one another (r = 0.242 to 0.602). We use variance partitioning to determine
the amount of variance in model performance accounted for by each feature, along with the variance
accounted for by each feature after regressing out other features (Borcard et al., 1992; QCBS, 2023).
We find that syntactic similarity of the added languages accounts for 24.2% of variance in multi-
lingual model performance; adding geographic and lexical similarity increases this to only 26.4%
(Figure 4, right). We note that syntactic similarity might reflect other typological features of lan-
guages or be serving as a proxy for taxonomic relatedness (Rama & Kolachina, 2012). Still, these
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results suggest that abstract linguistic similarity drives the benefits of multilinguality more so than
surface level features such as vocabulary overlap. This aligns with results for cross-lingual transfer
during fine-tuning (Karthikeyan et al., 2020).
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Figure 4: Left: Correlation between the mean syntactic similarity of the added languages and a
model’s relative log-likelihood score for the target language (Pearson’s r = 0.494). Added lan-
guages are selected to be either similar or dissimilar (§5). A relative log-likelihood of 1.0 indicates
that the model assigns the eval dataset 21.0 times the likelihood assigned by the baseline model for
that language. Center: Correlation (r = 0.346) between the mean lexical (vocabulary) similarity
of the added languages and a model’s relative log-likelihood score. Right: Variance partitioning
into syntactic, geographic, and lexical similarity of the added languages when predicting a model’s
relative log-likelihood score. Additional results in §A.6.

6.2 HIGH-RESOURCE LANGUAGE RESULTS
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Figure 5: Results for med-high and high resource scenarios, using the same format as the low-
resource scenarios in Figure 3. For example, adding 1B tokens of multilingual data to a small model
with 1B monolingual tokens (high-resource; bottom right) is similar to removing over 600M tokens
of the monolingual dataset.

Multilinguality hurts high-resource performance. For all model sizes, multilinguality hurts lan-
guage model performance in med-high and high resource languages (Figure 5; p < 0.001 in all
scenarios adding 1B tokens; §A.5). For high-resource languages in our largest model size, adding
1B multilingual tokens is similar to removing 63% of the dataset in the target language. Degrada-
tions are larger when more multilingual tokens are added. Degradations are also larger for smaller
models (88% vs. 63% equivalent dataset decrease in the target language for tiny vs. small models;
p < 0.001). This suggests that degradations due to multilinguality are likely driven by language
models reaching their capacity limits. Interestingly, degradations are slightly larger given more
similar added languages to the target language (all scenarios in Figure 5; p < 0.05 in 7 out of
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12 scenarios). This indicates that although more similar languages tend to improve low-resource
language performance (§6.1), they surprisingly tend to hurt high-resource language performance.

7 DISCUSSION

Our results demonstrate that for low-resource languages, multilingual language models yield some
benefits. In the optimal case from our study, the benefits are similar to increasing the low-resource
dataset size by about 33% (§6.1). Hence, in scenarios where collecting additional data is difficult
(e.g. for languages spoken in remote geographic locations or with few speakers), pre-training mul-
tilingual models may be a worthwhile endeavor. In these cases, the models should be pre-trained
with multilingual data from maximally similar languages, and it should be ensured that the models
have capacity for the added multilingual data along with the target language data. However, in other
cases, it may be more practical to simply find or collect more data in the target language itself.

For high-resource languages, multilingual language models yield worse performance than the com-
parable monolingual model in essentially all cases. Degradations can be similar to reducing high-
resource dataset sizes by over 85% (§6.2). These degradations can be mitigated by pre-training
larger models, which also appear to maximize benefits for low-resource languages. However, when
pre-training language models even on the order of tens of high-resource languages (Conneau et al.,
2020a; Scao et al., 2022; Lin et al., 2022), a model sufficiently large to accommodate all of the
languages’ data without hitting capacity limitations would be far too large to be practical. Even
if existing large language models (LLMs) are severely over-parameterized, there is evidence that
70B-parameter models are required just for English (Hoffmann et al., 2022). If only considering
performance in individual languages, pre-training targeted language-specific models is likely to be
far more efficient than a single massively multilingual model.

7.1 LIMITATIONS

This work has several limitations. First, we only pre-train language models up to 45M parameters.
Larger models are less likely to hit the capacity limitations that appear to drive the “curse of multi-
linguality”. However, as discussed above, avoiding capacity limitations in multilingual models can
quickly lead to intractable parameter counts. Particularly when pre-training thousands of models for
controlled experiments, larger models may not be worth additional computational and environmen-
tal costs if results can reasonably be extrapolated to larger models (Strubell et al., 2019). In fact, for
low-resource scenarios, smaller models can achieve similar performance to larger models (Figure 2)
while remaining accessible to communities with fewer computational resources.

Second, while we have included more low-resource languages than the vast majority of recent stud-
ies in NLP, we do not have coverage of some regions and language families. For example, our study
does not include any languages indigenous to modern-day Australia or many from the Americas.
This imperfect coverage may lead our results to overestimate overall similarities between languages,
and it may skew our results towards languages that have larger text corpora available on the Internet.

Finally, our results apply primarily to language modeling performance in individual languages. Ef-
fects of multilingual pre-training may be different for specific downstream tasks (e.g. reasoning
tasks or machine translation; Bandarkar et al., 2023; Costa-jussà et al., 2022) or for cross-lingual
transfer learning (Fujinuma et al., 2022). When pre-training multilingual language models, the spe-
cific downstream use cases for the models should be taken into consideration.

8 CONCLUSION

Our work systematically evaluates the effects of multilingual pre-training on language modeling per-
formance in 252 languages. We pre-train over 10,000 monolingual and multilingual language mod-
els, varying monolingual dataset sizes, multilingual dataset sizes, linguistic similarity of the multi-
lingual data, and model sizes. We find that adding multilingual data in similar languages improves
performance for low-resource languages, but improvements decrease as models reach capacity lim-
itations. Multilingual data consistently hurts high-resource language performance. This suggests
that while multilingual language models may be beneficial for low-resource scenarios, massively
multilingual models may be far less practical than previously assumed for raw language modeling.
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Cree corpus: A collection of nêhiyawêwin resources. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6354–6364. Asso-
ciation for Computational Linguistics, 2022. URL https://aclanthology.org/2022.
acl-long.440.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation (LREC’12), pp. 2214–2218. Eu-
ropean Language Resources Association (ELRA), 2012. URL http://www.lrec-conf.
org/proceedings/lrec2012/pdf/463_Paper.pdf.

Jörg Tiedemann. The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and
Multilingual MT. In Proceedings of the Fifth Conference on Machine Translation, pp. 1174–
1182. Association for Computational Linguistics, 2020. URL https://aclanthology.
org/2020.wmt-1.139.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv, 2019. URL https://arxiv.org/
pdf/1908.08962.pdf.

Ulukau. Ulukau: The Hawaiian Electronic Library. https://ulukau.org/index.php?l=
en, 2023.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
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A APPENDIX

A.1 DATASET DETAILS

We first download the first 32M lines for each language in the deduplicated September 2021 re-
lease of OSCAR (Ortiz Suárez et al., 2019; Abadji et al., 2021). We collect additional corpora
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for languages with less than 1M lines in OSCAR (approximately 50M tokens, based on OS-
CAR line lengths) and for languages that do not appear in OSCAR. Additional corpora include:
Wikipedia (Wikipedia, 2023), No Language Left Behind (Costa-jussà et al., 2022), the Leipzig Cor-
pora Collection (Goldhahn et al., 2012), eBible translations (eBible, 2023), FLORES-200 (Costa-
jussà et al., 2022), Tatoeba (Tiedemann, 2012; 2020), AfriBERTa (Ogueji et al., 2021), NusaX
(Winata et al., 2023), AmericasNLP (Mager et al., 2021), AmericasNLI (Ebrahimi et al., 2022),
the Nunavut Hansard Inuktitut–English Parallel Corpus (Joanis et al., 2020), the Cherokee-English
ChrEn dataset (Zhang et al., 2020), the Cherokee Corpus (Cherokee Corpus, 2023), the Cree Corpus
(Teodorescu et al., 2022), Languages of Russia (Zaydelman et al., 2016), the Evenki Life newspa-
per (Zueva et al., 2020), the transcribed Fula Speech Corpora (Cawoylel, 2023), IsiXhosa (Podile
& Eiselen, 2016), the Ewe Language Corpus (Gbedevi Akouyo et al., 2021), the Makerere Lu-
ganda Corpora (Mukiibi et al., 2022), the CMU Haitian Creole dataset (CMU, 2010), the Tigrinya
Language Modeling Dataset (Gaim et al., 2021), and Ulukau (Ulukau, 2023). Our Wikipedia cor-
pora use the Wikimedia dump from August 20, 2023 (Wikimedia, 2023). All other corpora use
their publicly available versions as of August 2023. Links to individual corpora are included at
https://github.com/redacted-for-anonymity.

We clean these corpora by removing lines containing only repetitive characters, exact duplicate
lines, and lines identified as English by the spaCy language detection tool with confidence above
0.95 (Honnibal et al., 2020). We find that English filtering is particularly important for Wikipedia,
from which we also remove redundant lists of links and headers. We manually inspect all files for
egregious unclean text lines, and we remove any patterns found.

All corpora outside of OSCAR are truncated to 2M cleaned lines per language, which encompasses
the entire corpus for most datasets; for example, only 4 out of 239 downloaded Wikipedias are
truncated (recall that we only download additional corpora for languages with less than 1M lines in
OSCAR). After merging corpora per language, repeated sequences of 100 UTF-8 bytes are dedu-
plicated using the code from Lee et al. (2022). Corpora are unshuffled unless their public release is
already shuffled. This allows tokenized sequences to span multiple consecutive lines; the tokenized
sequences are shuffled prior to language model pre-training. Final token counts per language are
listed in §A.7.

A.2 TOKENIZATION QUALITY

To control for tokenization quality across languages, all of our monolingual tokenizers are Senten-
cePiece tokenizers trained on 10K lines of text with maximum vocabulary size 32K (§4.1; Kudo &
Richardson, 2018). We have at least 10K lines of text in each of our 252 languages. All evaluations
(including for multilingual models, which fix the target language monolingual tokenizer) are con-
ducted using these tokenizers. The multilingual tokenizers in §5 are used only for added data during
multilingual pre-training; they are not used for evaluation. To ensure that our monolingual tokeniz-
ers have reasonable quality, we compare their vocabularies with tokenizers trained on more lines of
text. Specifically, for each of our 28 high-resource languages, we train tokenizers on 10K, 100K,
1M, and 10M lines of text. For each training dataset size, we compute the vocabulary overlap with
the 4K and 8K most frequent tokens in the 10M-line tokenizer (the “reference vocabulary”). Figure
6 shows the reference vocabulary overlap for the different training dataset sizes. At 10K lines, the
tokenizer vocabularies on average cover 93.7% of the 4K-token reference vocabulary and 87.8% of
the 8K-token reference vocabulary, indicating reasonable tokenization quality.

A.3 LANGUAGE MODEL PRE-TRAINING DETAILS

Language models are pre-trained using the Hugging Face Transformers library (Wolf et al., 2020)
and code from Chang & Bergen (2022). Hyperparameters are reported in Table 1 (left). All of our
models use the GPT-2 architecture (Radford et al., 2019), changing only the number of layers, at-
tention heads, and embedding sizes as in Turc et al. (2019). Models are pre-trained for 20 epochs
of the target language monolingual data in the low and med-low resource scenarios, 10 epochs in
the med-high resource scenario, and 2 epochs in the high-resource scenario. Based on initial results
using randomly-sampled languages, pre-training on more than 20 epochs often leads to overfitting
(increases in eval loss) in low-resource scenarios. Multilingual models include one epoch of the
multilingual data (§5) randomly interspersed with the target language data. The numbers of pre-
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Figure 6: Vocabulary overlap with the reference vocabulary for tokenizers trained on different num-
bers of lines. The reference vocabulary consists of the 4K (left) or 8K (right) most frequent tokens
in a 10M-line tokenizer for that language. We report the percentage of the reference vocabulary that
is covered by 32K-vocabulary tokenizers with different training dataset sizes. Gray lines indicate
individual languages, and the purple line indicates the mean across languages.

training steps for different dataset configurations are reported in Table 1 (right). Average evaluation
loss curves during pre-training are shown in Figure 7. For each target language, the same 500K
evaluation tokens are held out in all cases. In the monolingual low-resource scenario for each lan-
guage (i.e. 1M pre-training tokens), we pre-train three tiny models (instead of one) and compute
their average evaluation log-likelihood, because these models are used as the baseline models for
relative log-likelihoods (§4.2).

All language model pre-training runs together take a total of 1.87 × 1020 FLOPs. This is less than
1/1500× the computation used to train the original 175B-parameter GPT-3 model (Brown et al.,
2020; 3.14 × 1023 FLOPs). Models are each trained on one NVIDIA GeForce GTX TITAN X,
GeForce RTX 2080 Ti, TITAN Xp, Quadro P6000, RTX A4500, RTX A5000, or RTX A6000
GPU. Our pre-training experiments take approximately 17700 A6000 GPU hours. Dataset clean-
ing, tokenization, and merging takes approximately 5880 CPU core hours, largely due to dataset
tokenization with each multilingual tokenizer.

Hyperparameter Tiny Mini Small
Layers 2 4 4
Embedding size 128 256 512
Hidden size 128 256 512
Intermediate hidden size 512 1024 2048
Attention heads 2 4 8
Attention head size 64 64 64
Learning rate 1e-3 7e-4 5e-4
Activation function GELU
Max sequence length 128
Position embedding Absolute
Batch size 128
Learning rate decay Linear
Warmup steps 10% of pre-training
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Attention dropout 0.1

Mono. Mono. Multi. Pre-training
tokens epochs tokens steps

1M 20 0 1250
1M 20 10M 1875
1M 20 100M 7500
1M 20 1B 63750

10M 20 0 12500
10M 20 10M 13125
10M 20 100M 18750
10M 20 1B 75000

100M 10 0 62500
100M 10 100M 68750
100M 10 1B 125000

1B 2 0 125000
1B 2 100M 131250
1B 2 1B 187500

Table 1: Left: Language model pre-training hyperparameters (Devlin et al., 2019; Turc et al., 2019;
Radford et al., 2018). To prevent overfitting (increasing loss on the eval dataset), learning rates are
halved for mini and small models in the low-resource scenario, to 4e-4 and 2e-4 respectively (§4.1).
Right: Pre-training steps for different monolingual and multilingual dataset sizes. There is always
one epoch of the multilingual dataset (§5).
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Figure 7: Target language evaluation loss curves during pre-training, for different model sizes and
language resource scenarios. Each individual curve corresponds to a dataset configuration in Table
1 (right), averaging the loss curve over languages.

A.4 MONOLINGUAL TOKEN ESTIMATION DETAILS

We overview our monolingual token estimation process in §4.3, and we provide details here. As
motivation, we note that relative log-likelihood scores are not comparable across model sizes. For
example, suppose that adding a multilingual dataset D improves a model’s eval log-likelihood score
by 1.0 in both small and large models. In this case, it would be unclear whether the effect of D is
intuitively “equal” in the two model sizes; doubling the likelihood of the eval dataset is likely more
difficult in the larger model, so we might interpret D as having a larger effect on the larger model
despite the same change in log-likelihood. To avoid this ambiguity, we measure model performance
using the estimated number of monolingual tokens in the target language that would achieve similar
performance. In the case above, adding the multilingual dataset D might be similar to adding n1

monolingual tokens to the smaller model, but similar to adding n2 > n1 monolingual tokens to the
larger model.

To estimate this, we first fit a power law −ax−b + c for each of our 252 languages, predicting a
model’s relative log-likelihood score (§4.2) based on its pre-training dataset size in log10 tokens.
Each language has up to four ground truth values, corresponding to our monolingual models pre-
trained on 1M, 10M, 100M, and 1B tokens. When all four points are available (i.e. our 28 high-
resource languages), we are able to fit a power law from scratch. From these languages, we estimate
the medians and standard deviations of a, b, and c. For languages with fewer than four data points,
we constrain a, b, and c to be within 2.5 standard deviations from the median parameter value. If this
leads the curve fitting to diverge, we loosen this constraint to 5.0, 7.5, then 10.0 standard deviations
from the median.

For languages where the curve fitting still does not converge or languages with too few data points
(e.g. med-low resource languages with data points only for 1M and 10M tokens), we fix a as the
median parameter value from the high-resource languages. We fit only b and c, which we constrain
using standard deviations in the same way as described above. If the curve fitting still does not
converge when fixing a (e.g. low-resource languages with a data point only for 1M tokens), we fix
both a and b as their median values. In that case, we only fit c, which is equivalent to simply shifting
the median curve up or down by a constant. All curve fitting is implemented using scipy (Virtanen
et al., 2020).

Finally, in many cases, we compare multilingual models to monolingual models with a specific
known dataset size. The multilingual models in §6 are all compared to corresponding monolin-
gual models without any added multilingual data. For example, a multilingual model with 10M
monolingual tokens and 100M added multilingual tokens (relative log-likelihood score y1) would
be compared to a monolingual model with 10M monolingual tokens alone (relative log-likelihood
score y0). In these cases, we constrain our curve-fitting to pass through the point corresponding to
the reference monolingual model (e.g. in the example described, the curve would be required to
pass through the ground truth point (7.0, y0) for 107.0 monolingual tokens alone). This only slightly
alters the curve predicting relative log-likelihood score from log10 tokens, but it ensures that our
baseline monolingual models in §6 lie exactly at 1M, 10M, 100M, and 1B tokens (Figures 3 and 5).

Once we have fitted a curve predicting a model’s relative log-likelihood score from log10 pre-
training tokens in a language L, we use this curve to estimate the number of tokens required to
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achieve any relative log-likelihood score. Then, we have two metrics for a multilingual model’s
performance on target language L: (1) the model’s relative log-likelihood score itself and (2) the
estimated number of monolingual tokens in L that would achieve that relative log-likelihood. The
latter metric is easily interpretable, and it facilitates comparisons across languages and model sizes.
We note that the estimated token count is a monotonic increasing function of relative log-likelihood
score in all cases. Thus, even if the estimated token counts are not perfectly accurate, they preserve
performance rankings between models (e.g. between our multilingual models and the monolingual
baselines). A language model with target language L will have a higher estimated token count if
and only if it assigns a higher log-likelihood score to the evaluation dataset for L.
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Figure 8: Estimated monolingual token counts for held-out monolingual models. Token counts
are estimated from each model’s relative log-likelihood score using a curve fitted to the specific
language (§A.4). Estimations are extrapolating one order of magnitude out from the points used to
fit the curve. In practice, we generally do not need to extrapolate this far for our results. The black
line indicates perfect accuracy.

Still, we evaluate the quality of our monolingual token count estimation process. For each language
L, we have up to four monolingual models (1M, 10M, 100M, and 1B pre-training tokens). We hold
out one (or multiple) of the models, and we estimate its monolingual token count based on a curve
fitted to the other monolingual models for L. We note that these estimations are extrapolating at
minimum one order of magnitude away from the models used to fit the curve, because the models
are exactly one order of magnitude apart in terms of pre-training tokens. The results in §6 do not
need to extrapolate this far. Still, even with this larger extrapolation, we obtain reasonable estimates
of monolingual token counts in the held-out scenarios (Figure 8). The root-mean-square errors are
0.340, 0.317, and 0.335 log10 tokens for tiny, mini, and small models respectively.

A.5 STATISTICAL TESTS

We run paired sample t-tests to assess the statistical significance of our results from §6. For each
reported p-value, we compare models that differ by exactly one of: monolingual dataset size, mul-
tilingual dataset size, linguistic similarity of the added languages, or model size. We pair models
by language, so each pair differs by only the manipulated variable. To avoid potential artifacts from
our token estimation process, we compare model relative log-likelihoods directly (§4.2) unless com-
paring across two model sizes (because relative log-likelihood improvements and degradations are
difficult to compare across model sizes; §A.4). If comparing across model sizes, we compare the
estimated monolingual token counts of the models. In both cases, we use a paired sample t-test.
To decrease the chance of false positive results, we only run the statistical tests whose p-values
are reported in the main text, and we account for multiple comparisons using Bonferroni correc-
tion (Bonferroni, 1936). For estimates of significance, the plots in §6 also include 95% confidence
intervals for means.

A.6 EFFECTS OF LINGUISTIC SIMILARITY ON MODEL PERFORMANCE

In §6.1, we find that the mean syntactic similarity of the added languages accounts for more vari-
ance in multilingual model performance (relative log-likelihood scores) than geographic and lexical
(vocabulary) similarity. In that section, we consider the low-resource scenario with 100M added
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multilingual tokens in small models. Here, we report the same results for tiny, mini, and small mod-
els. Variance partitioning results are shown in Figure 9. In all cases, syntactic similarity accounts
for more variance than geographic and lexical similarity. Correlations between different similarity
measures and model performance for mini models with 100M added multilingual tokens are plotted
in Figure 10.
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Figure 9: Variance partitioning into syntactic, geographic, and lexical similarity of the added lan-
guages when predicting a model’s performance (relative log-likelihood score) for tiny (left), mini
(center), and small (right) models with 100M tokens of added multilingual data.
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Figure 10: Correlations between different similarity measures (between target language and added
languages) and multilingual model performance (relative log-likelihood) in the target language.

A.7 LIST OF LANGUAGES

The 252 languages included in our language modeling study are listed in Table 2. These lan-
guages are those with at least 1.5M tokens in our dataset (§A.1). We restrict all languages to
a maximum of 1B tokens. In lower resource scenarios, higher resource languages are subsam-
pled to mimic the lower resource scenario. For example, we have 167 med-low resource lan-
guages when including the subsampled med-high and high resource languages. We distinguish
between the same language in multiple scripts (e.g. Serbian in Cyrillic vs. Latin script) and
macrolanguages vs. their individual constituent languages (e.g. Quechua vs. Cusco Quechua
and Ayacucho Quechua). The full list of 1572 languages in our dataset can be found at https:
//github.com/redacted-for-anonymity.

Language Language Script Tokens Resource Language Family
(ISO 639-3) (ISO 15924) Category

1 Bulgarian bul cyrl 1024512000 high Indo-European
2 Chinese zho hans 1024512000 high Sino-Tibetan
3 Czech ces latn 1024512000 high Indo-European
4 Danish dan latn 1024512000 high Indo-European
5 Dutch nld latn 1024512000 high Indo-European
6 English eng latn 1024512000 high Indo-European
7 Finnish fin latn 1024512000 high Uralic
8 French fra latn 1024512000 high Indo-European
9 German deu latn 1024512000 high Indo-European
10 Hebrew heb hebr 1024512000 high Afro-Asiatic
11 Hungarian hun latn 1024512000 high Uralic
12 Indonesian ind latn 1024512000 high Austronesian
13 Iranian Persian pes arab 1024512000 high Indo-European
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14 Italian ita latn 1024512000 high Indo-European
15 Japanese jpn jpan 1024512000 high Japonic
16 Korean kor hang 1024512000 high Koreanic
17 Modern Greek ell grek 1024512000 high Indo-European
18 Polish pol latn 1024512000 high Indo-European
19 Portuguese por latn 1024512000 high Indo-European
20 Romanian ron latn 1024512000 high Indo-European
21 Russian rus cyrl 1024512000 high Indo-European
22 Spanish spa latn 1024512000 high Indo-European
23 Standard Arabic arb arab 1024512000 high Afro-Asiatic
24 Swedish swe latn 1024512000 high Indo-European
25 Thai tha thai 1024512000 high Tai-Kadai
26 Turkish tur latn 1024512000 high Turkic
27 Ukrainian ukr cyrl 1024512000 high Indo-European
28 Vietnamese vie latn 1024512000 high Austro-Asiatic
29 Lithuanian lit latn 787855616 medhigh Indo-European
30 Hindi hin deva 774095488 medhigh Indo-European
31 Catalan cat latn 771223680 medhigh Indo-European
32 Slovak slk latn 746472192 medhigh Indo-European
33 Norwegian Bokmål nob latn 612469888 medhigh Indo-European
34 Estonian est latn 500367232 medhigh Uralic
35 Bengali ben beng 419860608 medhigh Indo-European
36 Latvian lav latn 379466368 medhigh Indo-European
37 Serbian srp cyrl 279173376 medhigh Indo-European
38 Slovenian slv latn 270027392 medhigh Indo-European
39 Tamil tam taml 257684608 medhigh Dravidian
40 Albanian sqi latn 240805504 medhigh Indo-European
41 Azerbaijani aze latn 178155008 medhigh Turkic
42 Urdu urd arab 143181312 medhigh Indo-European
43 Nepali npi deva 139989120 medhigh Indo-European
46 Macedonian mkd cyrl 124803328 medhigh Indo-European
47 Kazakh kaz cyrl 124020480 medhigh Turkic
48 Georgian kat geor 122249472 medhigh Kartvelian
49 Armenian hye armn 121111040 medhigh Indo-European
50 Belarusian bel cyrl 108812544 medhigh Indo-European
44 Esperanto epo latn 102911872 medlow Constructed
45 Croatian hrv latn 102911872 medlow Indo-European
51 Malayalam mal mlym 90062848 medlow Dravidian
52 Icelandic isl latn 88493056 medlow Indo-European
53 Welsh cym latn 86114176 medlow Indo-European
54 Telugu tel telu 81769088 medlow Dravidian
55 Galician glg latn 81455616 medlow Indo-European
56 Hausa hau latn 81195520 medlow Afro-Asiatic
57 Mongolian mon cyrl 79270528 medlow Mongolic
58 Marathi mar deva 78900992 medlow Indo-European
59 Asturian ast latn 76998272 medlow Indo-European
60 Afrikaans afr latn 75925632 medlow Indo-European
61 Basque eus latn 75490304 medlow Basque
62 Burmese mya mymr 75295104 medlow Sino-Tibetan
63 Bosnian bos latn 73321472 medlow Indo-European
64 Central Kanuri knc arab 72147840 medlow Nilo-Saharan
65 Somali som latn 71963648 medlow Afro-Asiatic
66 Tatar tat cyrl 71448448 medlow Turkic
67 Cebuano ceb latn 71133568 medlow Austronesian
68 Kannada kan knda 69977600 medlow Dravidian
69 Central Khmer khm khmr 67915392 medlow Austro-Asiatic
70 Gujarati guj gujr 65388416 medlow Indo-European
71 Panjabi pan guru 64354560 medlow Indo-European
72 Bashkir bak cyrl 64024832 medlow Turkic
73 Central Kurdish ckb arab 60765440 medlow Indo-European
74 Maltese mlt latn 59164544 medlow Afro-Asiatic
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75 Serbo-Croatian hbs latn 58518784 medlow Indo-European
76 Tajik tgk cyrl 57351424 medlow Indo-European
77 Tagalog tgl latn 55507456 medlow Austronesian
78 Kirghiz kir cyrl 55496576 medlow Turkic
79 Tigrinya tir ethi 55378816 medlow Afro-Asiatic
80 Malay msa latn 55249152 medlow Austronesian
81 Igbo ibo latn 53409920 medlow Niger-Congo
82 Sinhala sin sinh 53101952 medlow Indo-European
83 Irish gle latn 51020544 medlow Indo-European
84 Amharic amh ethi 49825536 medlow Afro-Asiatic
85 Uzbek uzb latn 49750144 medlow Turkic
86 Swahili swa latn 49580928 medlow Atlantic-Congo
87 Luxembourgish ltz latn 46355968 medlow Indo-European
88 Yoruba yor latn 45996544 medlow Niger-Congo
89 Haitian hat latn 43803264 medlow Creole
90 Kinyarwanda kin latn 42016128 medlow Niger-Congo
91 Samoan smo latn 41137664 medlow Austronesian
92 Javanese jav latn 40730368 medlow Austronesian
93 Norwegian Nynorsk nno latn 40680192 medlow Indo-European
94 Lao lao laoo 40182528 medlow Tai-Kadai
95 Nyanja nya latn 39635968 medlow Niger-Congo
96 Sindhi snd arab 39586304 medlow Indo-European
97 Southern Pashto pbt arab 39270656 medlow Indo-European
98 Sundanese sun latn 39227648 medlow Austronesian
99 Maori mri latn 39110528 medlow Austronesian
100 Occitan oci latn 39094784 medlow Indo-European
101 Plateau Malagasy plt latn 38467200 medlow Austronesian
102 Pushto pus arab 37981184 medlow Indo-European
103 Scottish Gaelic gla latn 37471488 medlow Indo-European
104 Shona sna latn 37057152 medlow Niger-Congo
105 Waray war latn 36727424 medlow Austronesian
106 Zulu zul latn 36472960 medlow Niger-Congo
107 Dari prs arab 36289920 medlow Indo-European
108 Northern Uzbek uzn latn 35988736 medlow Turkic
109 Uighur uig arab 35028992 medlow Turkic
110 Assamese asm beng 34396032 medlow Indo-European
111 Southern Sotho sot latn 34028544 medlow Niger-Congo
112 Lushai lus latn 33796480 medlow Sino-Tibetan
113 Standard Malay zsm latn 32638592 medlow Austronesian
114 Xhosa xho latn 31847680 medlow Niger-Congo
115 Sicilian scn latn 31407104 medlow Indo-European
116 Lombard lmo latn 31299456 medlow Indo-European
117 Eastern Yiddish ydd hebr 30456448 medlow Indo-European
118 Egyptian Arabic arz arab 30198528 medlow Afro-Asiatic
119 Limburgan lim latn 30182912 medlow Indo-European
120 Odia ory orya 29186688 medlow Indo-European
121 South Azerbaijani azb arab 29091584 medlow Turkic
122 Ayacucho Quechua quy latn 29080448 medlow Quechuan
123 West Central Oromo gaz latn 27978240 medlow Afro-Asiatic
124 Halh Mongolian khk cyrl 27626624 medlow Mongolic
125 Venetian vec latn 26978816 medlow Indo-European
126 Banjar bjn latn 26552448 medlow Austronesian
127 Gilaki glk arab 26084736 medlow Indo-European
128 Ganda lug latn 25706752 medlow Niger-Congo
129 Papiamento pap latn 24957568 medlow Creole
130 Sanskrit san deva 24549760 medlow Indo-European
131 Rundi run latn 24451072 medlow Niger-Congo
132 Chinese zho hant 23736832 medlow Sino-Tibetan
133 Achinese ace latn 23719936 medlow Austronesian
134 Tswana tsn latn 23584384 medlow Niger-Congo
135 Western Panjabi pnb arab 22000640 medlow Indo-European
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136 Twi twi latn 21262208 medlow Atlantic-Congo
137 Iloko ilo latn 21032576 medlow Austronesian
138 Chechen che cyrl 20793856 medlow Nakh-Daghestanian
139 Tsonga tso latn 20281984 medlow Niger-Congo
140 Yakut sah cyrl 19829248 medlow Turkic
141 Western Frisian fry latn 19808384 medlow Indo-European
142 Kurdish kur latn 19233152 medlow Indo-European
143 Ewe ewe latn 18750848 medlow Niger-Congo
144 Oriya ori orya 18473216 medlow Indo-European
145 Latin lat latn 17430272 medlow Indo-European
146 Chuvash chv cyrl 16924288 medlow Turkic
147 Minangkabau min latn 16113024 medlow Austronesian
148 Faroese fao latn 15750272 medlow Indo-European
149 Breton bre latn 14796032 medlow Indo-European
150 Yue Chinese yue hant 14777472 medlow Sino-Tibetan
151 Pedi nso latn 14619264 medlow Niger-Congo
152 Tosk Albanian als latn 14432000 medlow Indo-European
153 Crimean Tatar crh latn 13975296 medlow Turkic
154 Northern Kurdish kmr latn 13480832 medlow Indo-European
155 Kabyle kab latn 13282688 medlow Afro-Asiatic
156 Fon fon latn 13019904 medlow Niger-Congo
157 Low German nds latn 12879488 medlow Indo-European
158 Inuktitut iku cans 12683776 medlow Eskimo-Aleut
159 Maithili mai deva 12227712 medlow Indo-European
160 Lingala lin latn 12203136 medlow Niger-Congo
161 Guarani grn latn 12139904 medlow Tupian
162 Tibetan bod tibt 12052224 medlow Sino-Tibetan
163 Pangasinan pag latn 11895296 medlow Austronesian
164 Bemba bem latn 11693952 medlow Niger-Congo
165 Wolof wol latn 11647872 medlow Niger-Congo
166 Tumbuka tum latn 11176320 medlow Atlantic-Congo
167 Luo luo latn 11028992 medlow Eastern Sudanic
168 Malagasy mlg latn 10417152 low Austronesian
169 Oromo orm latn 10022016 low Afro-Asiatic
170 Dimli diq latn 9850112 low Indo-European
171 Yiddish yid hebr 9727872 low Indo-European
172 Tuvinian tyv cyrl 9700736 low Turkic
173 Min Nan Chinese nan latn 9654656 low Sino-Tibetan
174 Balinese ban latn 9067776 low Austronesian
175 Fijian fij latn 8515328 low Austronesian
176 Central Aymara ayr latn 8513792 low Aymaran
177 Aragonese arg latn 8144384 low Indo-European
178 Ligurian lij latn 7909120 low Indo-European
179 Dhivehi div thaa 7748608 low Indo-European
180 Luba-Lulua lua latn 7352192 low Niger-Congo
181 Silesian szl latn 7311872 low Indo-European
182 Nigerian Fulfulde fuv latn 6747136 low Niger-Congo
183 Swiss German gsw latn 6581888 low Indo-European
184 Swati ssw latn 6076160 low Niger-Congo
185 Betawi bew cyrl 5948160 low Creole
186 Friulian fur latn 5731584 low Indo-European
187 Sardinian srd latn 5723904 low Indo-European
188 Bavarian bar latn 5696512 low Indo-European
189 Tok Pisin tpi latn 5505792 low Creole
190 Umbundu umb latn 5479936 low Niger-Congo
191 Nigerian Pidgin pcm latn 5292160 low Creole
192 Eastern Mari mhr cyrl 5290752 low Uralic
193 Ido ido latn 4775808 low Constructed
194 Russia Buriat bxr cyrl 4556800 low Mongolic
195 Bhojpuri bho deva 4365440 low Indo-European
196 Bambara bam latn 4271232 low Mande
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197 Chokwe cjk latn 4177792 low Atlantic-Congo
198 Southwestern Dinka dik latn 4137728 low Nilotic
199 Dyula dyu latn 3980416 low Mande
200 Mossi mos latn 3948544 low Niger-Congo
201 Turkmen tuk latn 3940864 low Turkic
202 Piemontese pms latn 3818368 low Indo-European
203 Central Kanuri knc latn 3756288 low Nilo-Saharan
204 Wu Chinese wuu hans 3689728 low Sino-Tibetan
205 Kongo kon latn 3668224 low Atlantic-Congo
206 Dargwa dar cyrl 3564800 low Nakh-Daghestanian
207 Buginese bug latn 3539840 low Austronesian
208 Kabuverdianu kea latn 3463936 low Indo-European
209 Kabiyè kbp latn 3286272 low Niger-Congo
210 Kimbundu kmb latn 3169536 low Atlantic-Congo
211 Hawaiian haw latn 2996352 low Austronesian
212 Sango sag latn 2924928 low Niger-Congo
213 Mirandese mwl latn 2819584 low Indo-European
214 Kachin kac latn 2732160 low Sino-Tibetan
215 Ingush inh cyrl 2641408 low Nakh-Daghestanian
216 Kikuyu kik latn 2636544 low Niger-Congo
217 Romansh roh latn 2578304 low Indo-European
218 Kaqchikel cak latn 2560256 low Mayan
219 Kabardian kbd cyrl 2523264 low Northwest Caucasian
220 Volapük vol latn 2522880 low Constructed
221 Mandarin Chinese cmn hans 2511744 low Sino-Tibetan
222 Kituba mkw cyrl 2431872 low Creole
223 Magahi mag deva 2379776 low Indo-European
224 Central Bikol bcl latn 2348672 low Austronesian
225 Kashmiri kas deva 2302592 low Indo-European
226 Cusco Quechua quz latn 2273280 low Quechuan
227 Literary Chinese lzh hant 2267648 low Sino-Tibetan
228 Walloon wln latn 2234880 low Indo-European
229 Akan aka latn 2143360 low Niger-Congo
230 Berber ber latn 2132352 low Afro-Asiatic
231 Chhattisgarhi hne deva 2104576 low Indo-European
232 Interlingua ina latn 2066816 low Constructed
233 Upper Sorbian hsb latn 2062720 low Indo-European
234 Latgalian ltg latn 2061952 low Indo-European
235 Santali sat olck 1973888 low Austro-Asiatic
236 Susu sus arab 1948160 low Mande
237 Nuer nus latn 1941760 low Eastern Sudanic
238 Vlaams vls latn 1928064 low Indo-European
239 Quechua que latn 1901184 low Quechuan
240 Udmurt udm cyrl 1857664 low Uralic
241 Veps vep latn 1844736 low Uralic
242 Avaric ava cyrl 1772288 low Nakh-Daghestanian
243 Swahili swh latn 1768960 low Niger-Congo
244 Lak lbe cyrl 1715328 low Nakh-Daghestanian
245 Erzya myv cyrl 1714432 low Uralic
246 Urdu urd deva 1697408 low Indo-European
247 Ossetian oss cyrl 1697024 low Indo-European
248 Uighur uig latn 1627648 low Turkic
249 Lezghian lez cyrl 1625344 low Nakh-Daghestanian
250 Goan Konkani gom deva 1604096 low Indo-European
251 Shan shn mymr 1589248 low Tai-Kadai
252 Serbian srp latn 1543424 low Indo-European

Table 2: Languages included in our language modeling study.
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