
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEEDBACK-DRIVEN BEHAVIORAL SHAPING
FOR SAFE OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning safe policies in offline reinforcement learning (RL) requires access to
a cost function, but dense annotations are rarely available. In practice, experts
typically provide only sparse supervision by truncating trajectories at the first un-
safe action, leaving a single terminal cost label. We frame this challenge as a
credit assignment problem: the agent must determine which earlier actions con-
tributed to the violation to learn safer behavior. To address this, we propose an
approach that redistributes sparse stop-feedback into dense per-step costs using
return decomposition, and then integrates these inferred costs into constrained of-
fline RL. Across highway driving and a simulated continuous control task, our
method achieves substantially lower violation rates compared to baselines, while
preserving reward performance.

1 INTRODUCTION

Safe reinforcement learning (RL) seeks to optimize performance while enforcing constraints on
unsafe outcomes (Achiam et al., 2017; Gu et al., 2024). In offline RL, agents learn from fixed
datasets without interacting with the environment, avoiding unsafe exploration but inheriting the
safety profile of the behavior policy that generated the data (Fujimoto et al., 2019; Levine et al.,
2020; Fujimoto & Gu, 2021). When that behavior policy is unaware of safety, naı̈ve offline RL
produces policies that replicate unsafe decisions. Incorporating safety constraints in this setting is
particularly challenging, as costs are often not explicitly observed in the dataset.

A practical source of supervision arises when an expert provides trajectory-level “stop” feedback,
where unsafe behavior is flagged by immediately halting execution of the trajectory. Each unsafe
trajectory is therefore truncated at the first safety violation, yielding a binary cost signal of 1 at that
step and 0 beforehand. This form of feedback is realistic in practice (for example, a human overseer
or automated monitor terminating execution upon observing unsafe behavior) and has been proposed
as a practical way to communicate safety constraints to an RL agent (Poletti, 2023). However, the
resulting signal is extremely sparse, since only the final unsafe state is penalized, leaving earlier
precursor decisions unaddressed. As in sparse reward problems in RL (Arjona-Medina et al., 2019),
credit assignment becomes difficult: without further processing, the agent learns only to avoid the
terminal unsafe state rather than anticipating earlier hazards.

In this work, we address the problem of offline safe reinforcement learning from trajectory-level stop
feedback. We introduce the Redistribution-based Cost Inference (RCI) framework, an approach
for converting sparse trajectory labels into dense per-step cost signals suitable for offline policy
learning. As illustrated by Figure 1, RCI comprises three components: (i) an expert annotates unsafe
trajectories with stop labels; (ii) a return decomposition algorithm redistributes these sparse labels
into dense per-step costs by inferring which earlier actions contributed to unsafe outcomes; and (iii)
an offline constrained RL algorithm trains a policy using the inferred costs. This approach enables
agents to predict risks throughout trajectories rather than only learning from terminal feedback.

We compare RCI against several baselines on two domains: a highway driving task and a simu-
lated robot control task, using datasets generated by unsafe, random, and mixed behaviour policies.
Our results demonstrate that RCI significantly outperforms baselines, achieving substantially lower
violation rates while maintaining comparable returns across both domains.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Replay Data

Safe Runs

Unsafe Runs Return
Decomposition

Dense Cost
Function

Constrained Policy
Learning Safe Policy

Stop Feedback

Figure 1: Overview of the Redistribution-based Cost Inference (RCI) framework. Unsafe trajec-
tories are truncated at the first violation, producing sparse stop-feedback. A return decomposition
model redistributes this terminal label into dense per-step costs, assigning higher penalties to pre-
cursor actions. These inferred costs, combined with rewards, form a dense cost-augmented dataset
that a constrained offline RL algorithm uses to learn a safe policy.

2 PRELIMINARIES

In reinforcement learning (RL), a task is modeled as a Markov decision process (MDP), defined by
the tuple (S,A, P, r, γ). Here S is the state space, A is the action space, P (s′|s, a) is the transition
dynamics, r(s, a) is the reward function, and γ ∈ [0, 1) is the discount factor. A policy π(a|s) gener-
ates trajectories τ = (s0, a0, s1, . . . , sT ) with cumulative reward R(τ) =

∑T
t=0 γ

tr(st, at) (Sutton
et al., 1998). The objective is to find a policy that maximizes the expected return E[R(τ)]. This
formulation captures the standard reinforcement learning setting where the agent seeks to maximize
long-term reward.

In offline RL, the agent does not interact with the environment during training; instead, it learns
from a fixed dataset D = {τi}Ni=1 of trajectories generated by a behavior policy µ. This avoids
unsafe or costly trial-and-error, but introduces the problem of distributional shift: the learned policy
π may select actions outside the support of µ, where value estimates are unreliable, a phenomenon
known as extrapolation error. To address this, offline RL methods constrain the learned policy to
remain close to the dataset distribution or penalize value estimates for unseen actions (Fujimoto
et al., 2019; Kumar et al., 2020; Wu et al., 2019). For example, BCQ restricts the Bellman backup
to dataset-supported actions, updating via

Q(s, a)← r(s, a) + γ max
a′∈AD(s′)

Q(s′, a′),

whereAD(s′) denotes candidate actions generated to remain close to the dataset D (Fujimoto et al.,
2019). These techniques help stabilize training and ensure the resulting policy remains within the
regions supported by the data.

2.1 CONSTRAINED MARKOV DECISION PROCESSES

A constrained Markov decision process (CMDP) extends the MDP framework by introducing a cost
function and a safety budget. Formally, a CMDP is given by (S,A, P, r, c, γ, d), where c(s, a)
is a cost function representing constraint violations and d is an allowable threshold. The agent’s
objective is to maximize E[R(τ)] subject to E[C(τ)] ≤ d, where C(τ) =

∑T
t=0 γ

tc(st, at) (Altman,
1998). This formulation balances performance and safety, for example, an autonomous vehicle
should minimize accidents while still reaching its destination efficiently. A common approach to
solving CMDPs is Lagrangian relaxation, where the problem is converted to maximizing E[R(τ)−
λC(τ)] with λ adjusted until the cost constraint is satisfied (Achiam et al., 2017; Gu et al., 2024).

3 RELATED WORK

Offline Safe Reinforcement Learning. Offline safe RL combines the principles of CMDPs with
offline training. The goal is to maximize expected return while ensuring that cost constraints are sat-
isfied using only fixed datasets. Recent approaches incorporate conservative critics or cost penalties

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

into offline algorithms to enforce safety constraints Polosky et al. (2022); Xu et al. (2022). A key
limitation is that most methods assume the cost function is explicitly available in the dataset.

Cost Inference from Sparse Feedback. Cost inference from sparse or delayed feedback repre-
sents a fundamental challenge in safe reinforcement learning, particularly when dense safety signals
are unavailable. Traditional approaches assume access to well-specified per-step cost functions,
but in practice, experts often provide only trajectory-level feedback or sparse annotations at critical
unsafe transitions (Poletti, 2023; Low & Kumar, 2025).

Recent work has begun to address segment-level safety feedback. Low & Kumar (2025) propose
TrACES, which learns a dense safety scoring model from sparse trajectory labels. Their approach
is multiplicative and queries the labeler online for additional signals during training, enabling re-
finement of the inferred costs. Similarly, Chirra et al. (2024) introduce RLSF, which formulates
surrogate objectives to transform segment-level feedback into classification tasks, but also relies on
interactive access to the feedback in online learning. These settings differ fundamentally from ours:
in offline RL the dataset is fixed, the labeler cannot be queried for more information, and any safety
supervision must be incorporated post hoc without correction. Our framework addresses this offline
constraint by redistributing trajectory-level labels into dense costs in a return-equivalent manner.

Credit Assignment. The core challenge for using sparse signal lies in credit assignment: deter-
mining which specific actions or state-action pairs within a trajectory contributed to eventual safety
violations. This problem parallels sparse reward scenarios in standard RL, where agents must at-
tribute delayed outcomes to earlier decisions (Arjona-Medina et al., 2019; Sutton et al., 1998). When
safety feedback arrives only at trajectory termination points, naı̈ve approaches that penalize solely
the final unsafe state fail to capture the causal chain leading to violations.

Return decomposition techniques, originally developed for sparse reward problems (Arjona-Medina
et al., 2019), provide another avenue for cost redistribution. Methods such as RUDDER train se-
quence models to predict cumulative returns and then redistribute terminal signals backward through
time based on each step’s contribution to the final outcome. While primarily designed for rewards,
these techniques can be adapted to redistribute sparse cost signals, maintaining return equivalence
while providing denser supervision for policy training (Zhang et al., 2023; Arjona-Medina et al.,
2019).

4 METHODOLOGY

We formalize the problem of learning a safe policy from an offline dataset with
sparse trajectory-level labels. The dataset D = {τi} consists of trajectories τ =
{(s0, a0, r0), (s1, a1, r1), . . . , (sT , aT , rT )}. If a trajectory τ is deemed entirely safe, it has no ter-
mination label and runs until a normal end. If it is unsafe, the expert provides a stop label at the first
unsafe transition (st, at) and the trajectory is truncated at t. We can represent the expert’s feedback
as a function F(τ) that returns a set of hazardous time indices in the trajectory (at most one per
trajectory, the first unsafe index, or ∅ if none). Using this, we define a safety cost for each transition
in the dataset as:

c(st, at) =

{
1, if t ∈ F(τ);
0, otherwise.

Each unsafe trajectory contributes a single nonzero cost at its termination point, and safe trajectories
contribute zero costs throughout. This induces a sparse cost signal in D. The goal is to learn a
policy π that maximizes the expected reward Eπ[R(τ)] while minimizing safety violations, ideally
satisfying Eπ[C(τ)] ≤ d for some desired cost budget d. The policy must be learned solely from D
and the cost annotations, with no additional online interactions (Garcı́a & Fernández, 2015; Achiam
et al., 2017; Tessler et al., 2018).

The main difficulties are: (1) incomplete cost information, since we do not have a known cost
function c(s, a) for all states but only examples of failures in the dataset; (2) credit assignment, since
costs are labeled at a single time step per unsafe trajectory and the agent must infer which earlier
actions led to that outcome; and (3) distributional shift, since the learned policy may deviate from

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the behavior that generated D, leading to unknown states where safety is not guaranteed (Fujimoto
et al., 2019; Kumar et al., 2020; Wu et al., 2019).

We address (1) and (2) by inferring a dense cost signal c̃(s, a) from the dataset that assigns each
transition a penalty, such that risky actions receive larger values. To address (3), we employ policy
constraints based on BCQ (Fujimoto et al., 2019; Fujimoto & Gu, 2021) to keep the policy in regions
covered by D, under the assumption that D contains some safe behavior.

The first component of our approach is the feedback mechanism that supplies the initial safety labels
in the data. In practice, having a human review every trajectory in a large dataset is costly, and in
realistic deployments one might use a combination of automated detectors and human oversight. A
stop label at (st, at) is interpreted as a cost c(st, at) = 1. To ensure the agent does not learn from
unsafe parts of trajectories, we discard any experience after the stop point. This yields a processed
dataset Dsafe of transitions with each transition labeled safe or unsafe, with unsafe transitions being
rare.

To address the credit assignment problem, we introduce a return-decomposition approach to infer
a dense cost representation from the sparse labels. We use the RUDDER algorithm, which trains a
predictive sequence model on each trajectory to estimate the remaining cumulative cost from each
state-action pair (Arjona-Medina et al., 2019).

Formally, let each trajectory τ = (s0, a0, . . . , sT , aT ) be labeled by the expert with an episodic cost
C(τ) ∈ {0, 1}, where C(τ) = 1 if the trajectory was truncated at the first unsafe transition and
C(τ) = 0 otherwise. We train a sequence model Ĉ(s0:t) to predict the total episodic cost C(τ)
given the trajectory prefix up to time t. The model is optimized by minimizing the prediction error
of Ĉ(s0:T ) with respect to the sparse label C(τ). Once trained, the redistributed per-step cost is
defined by the difference in predicted return between successive prefixes: c̃t = Ĉ(s0:t)− Ĉ(s0:t−1),
with the baseline cost Ĉ(s0:−1) = 0 by convention. This decomposition ensures return equivalence:∑T

t=0 c̃t = C(τ) (Arjona-Medina et al., 2019), as detailed in Appendix A.1.

Intuitively, if the predicted cumulative cost rises sharply at a particular timestep, the corresponding
state-action is assigned higher c̃t, reflecting its contribution to eventual failure. Conversely, at the
failure point itself, the raw sparse label may be redistributed backward, assigning more “blame” to
precursors.

These c̃t values serve as dense, trajectory-consistent cost signals that replace the sparse labels. While
in this work we instantiate redistribution using RUDDER (Arjona-Medina et al., 2019), any return-
equivalent decomposition methods such as GRD (Zhang et al., 2023) could be used, making RCI
decomposition agnostic.

4.1 POLICY OPTIMIZATION

It is worth noting that our framework is modular. In principle, one can pair cost redistribution step
can be paired with any offline RL algorithm. Similarly, while we use RUDDER for decomposition
and redistribution, any alternative method that is return equivalent and assigns meaningful per-step
signals can be substituted. Our approach is outlined in Algorithm 1.

We use BCQ-Lag from the OSRL library (Liu et al., 2023) to perform constrained offline learning
using the redistributed cost signals. BCQ consists of a Q-network Qθ(s, a), a variational autoen-
coder Gω(s) to model the behavior policy, and a perturbation network ξϕ(s, a) that refines sampled
actions. At each step, candidate actions are sampled via a = Gω(s) + ξϕ(s, a) and evaluated by the
Q-function.

To enforce safety, the Q-update incorporates a cost penalty with a Lagrange multiplier λ. The target
value becomes:

y = r(s, a) + γ max
a′∈Acand(s′)

[Qθ′(s′, a′)− λ c̃(s′, a′)] , (1)

where Acand(s
′) are actions sampled from Gω(s

′) and perturbed by ξϕ. The Q-networks are trained
to minimize the squared Bellman error with this target (Fujimoto et al., 2019). The policy networks

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(Gω, ξϕ) are updated to maximize Q(s, a), promoting high-reward, low-cost actions (Liu et al.,
2023).

The Lagrange multiplier is updated after each batch using:

λ← max (0, λ+ α(Cbatch − d)) , (2)

where Cbatch is the average cost in the sampled batch and d is the cost budget. This dynamic adjust-
ment penalizes the policy when safety violations exceed the threshold (Altman, 1998).

Algorithm 1 Redistribution-based Cost Inference (RCI) Framework

1: Input: Dataset D = {τi}Ni=1, Labeler L, Return decomposition algorithmAdecomp, Constrained
Offline RL algorithm AOSRL, Cost budget d

2: Output: Safe policy π
3: for each trajectory τi ∈ D do
4: F (τi)← L(τi) ▷ Feedback Collection

5: C(τi)←
{
1 if F (τi) ̸= ∅
0 otherwise

6: for t = 0, 1, . . . , Ti do

7: csparse(st, at)←
{
1 if t ∈ F (τi)

0 otherwise
8: end for
9: end for

10: Ĉ ← Train sequence model with Adecomp on {(τi, C(τi))} ▷ Return Decomposition
11: for each trajectory τi ∈ D do
12: for t = 0, 1, . . . , Ti do
13: c̃t ← Ĉ(s0:t)− Ĉ(s0:t−1) ▷ with Ĉ(s0:−1) = 0
14: end for
15: end for
16: Ddense ← {(st, at, rt, c̃t)} ▷ Constrained Policy Learning
17: π ← AOSRL(Ddense, d)
18: return π

5 EXPERIMENTS

Environments. We evaluate our approach on two benchmark environments: HighwayEnv
(Leurent, 2018) and Safe-FetchReach (de Lazcano et al., 2024). In HighwayEnv, the ego
vehicle must navigate highway traffic while avoiding collisions. The state space includes vehicle
positions, velocities, and surrounding traffic configurations, while actions control acceleration and
throttle. Safe-FetchReach is a robotic manipulation task in which a 7-DOF robotic arm must
reach target positions while avoiding a spherical hazard region. The state space encompasses joint
angles, gripper position, and target coordinates, with actions controlling joint velocities. Full speci-
fications of state, action, reward, and unsafe labeling are provided in Appendix A.2.

(a) HighwayEnv (b) Safe-FetchReach

Figure 2: Snapshots of the benchmark environments. (2a) an ego vehicle navigating highway traffic.
(2b) a 7-DOF robotic arm reaching a target while avoiding a hazard region.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dataset Generation. For both environments, we generate offline datasets using PPO-trained behav-
ioral policies that prioritize task performance while disregarding safety constraints (Schulman et al.,
2017). In HighwayEnv, the behavioral policy optimizes for speed, progress, and lane changes,
resulting in aggressive driving behaviors including close overtaking and occasional collisions with
other vehicles. The policy explicitly prioritizes the fast lane and does not maintain safe following
distances. In Safe-FetchReach, the behavioral policy focuses solely on reaching the goal posi-
tion, completely ignoring the unsafe spherical region during trajectory execution. It should be noted
that Figure 4 and 8 show the evaluations on policy trained on the mixed data composition, where
offline data consists of rollouts from PPO and random policy.

Feedback Collection. To simulate realistic safety feedback, we use an automated evaluator to
examine each trajectory and provide binary stop/continue labels. The evaluator identifies the first
unsafe transition in each trajectory and discards all subsequent steps, mimicking real-world expert
intervention. For HighwayEnv, unsafe transitions are detected when the ego vehicle approaches
within a critical distance threshold of other vehicles. For Safe-FetchReach, violations occur
when the gripper enters the predefined hazard region. This labeling protocol results in sparse safety
signals with terminal costs at violation points.

Baselines and Implementation. We compare against three baselines: (1) Reward-Only (Vanilla),
which ignores safety costs entirely; (2) Sparse, which uses the raw terminal cost labels without
redistribution; and (3) Hazard, which trains a classifier to assign c(st, at) = P1(st, at)+P2(st, at),
where P1 is the probability that the (st, at) is in an unsafe trajectory and P2 is the probability
that (st+1, at+1) is the unsafe event. All methods use identical BCQ architectures with actor-critic
networks, VAE for action generation, and perturbation networks for policy regularization (Fujimoto
et al., 2019). For experiments, RCI integrates RUDDER-based cost redistribution (3b), where we
instantiate an LSTM as the sequence model for return decomposition and prediction residuals are
folded at the end of trajectories to ensure return equivalence (Arjona-Medina et al., 2019). Complete
hyperparameter settings for all domains are provided in Appendix 1.

0 100 200 300
Timestep

La
be

l

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sparse safety label

0 100 200 300
Timestep

Co
st

0.005

0.000

0.005

0.010

0.015

0.020

0.025

(b) Dense redistributed cost

Figure 3: Cost inference on a sampled trajectory from HighwayEnv. (3a) Sparse supervision yields
only a terminal cost at the unsafe step. (3b) RUDDER redistributes this signal into dense per-step
costs, assigning higher values to precursor actions.

Evaluation Protocol. For each environment and baseline, we perform hyperparameter selection
over cost budget values entirely in the offline setting. Specifically, we conduct an empirical sweep
using the percentile range Pq | q ∈ [10, 50] of the dataset’s trajectory cost distribution, where Pq

denotes the qth percentile. All methods are trained exclusively on the offline datasets, with three
independent runs per configuration. Final policies are then evaluated over 1000 online episodes. The
best policy is chosen based on achieving the lowest violation rate while maintaining competitive task
reward performance, reflecting the trade-off between safety and reward optimization. Importantly,
the same safety criterion is applied for offline data labeling and online evaluation.

5.1 RESULTS

We present all experiments and ablations on the HighwayEnv. We then include a complementary
evaluation on Safe-FetchReach, to demonstrate that our method generalizes continuous control
tasks, though we restrict analysis to the core results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In Figure 4, we report two key metrics: Return (normalized task reward) and Violation Rate (per-
centage of episodes with safety violations). Normalized return is computed per task as Rnorm =

R−Rmin

Rmax−Rmin
, where Rmin and Rmax are taken from the pooled distribution of episode returns across

all evaluated policies and seeds on that task Liu et al. (2023). This ensures values are comparable
across baselines within the same task.

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

0

10

20

30

40

50

60

Vi
ol

at
io

n 
Ra

te
 (%

)

BCQ-Vanilla BCQ-Sparse BCQ-Hazard RCI (ours)

Figure 4: Performance comparison on HighwayEnv. The plot shows normalized return and vio-
lation rate, highlighting the safety–performance trade-off across methods. Higher return is better,
lower violation rate is better. Bars show mean over 3 seeds; error bars denote standard error.

To evaluate the robustness of our approach under realistic conditions, we conduct two additional
ablations on HighwayEnv by evaluating performance across different data compositions and im-
perfect supervision.

Dataset Composition. In Figure 5, we assess RCI’s robustness across different data collection
regimes, we evaluate performance on datasets generated by three distinct behavioral policies with
fundamentally different exploration and decision-making patterns: (i) PPO datasets generated by
task-optimized policies that exhibit goal-directed behavior with focused exploration around high-
reward regions; (ii) Random datasets collected via uniform random action sampling; and (iii) Mixed
datasets combining rollouts from both PPO and Random policies, with an equal number of episodes
drawn from each policy to create heterogeneous data distributions that reflect realistic scenarios
where multiple data sources contribute to offline datasets. This experiment examines whether cost
redistribution mechanism remains effective across varying behavioral policy characteristics.

PPO Random Mixed
0.0

0.2

0.4

0.6

0.8

1.0

BCQ-Sparse BCQ-Hazard RCI (ours)

(a) Return

PPO Random Mixed
0

10

20

30

40

50

BCQ-Sparse BCQ-Hazard RCI (ours)

(b) Violation Rate (%)

Figure 5: Effect of dataset composition on HighwayEnv. Bars show mean over three seeds, error
bars denote standard error. Each policy is evaluated for 1,000 episodes per seed using ground-truth
violations. We use the same safety budget and model-selection rule across methods.

Label Noise. We simulate imperfect annotations by randomly shifting the termination index up to 15
steps earlier or later than the true unsafe step t∗, while ensuring the perturbed index remains within
the trajectory length T . This bounded perturbation shifts the termination label earlier (false positive)
or later (false negative) relative to the actual unsafe transition, simulating realistic annotation errors
where a human or an automated labeler have limited precision in identifying the exact moment of
safety violation. Safe trajectories without violations remain unchanged. We fix the cost budget d
constant to isolates the causal effect of label noise on reported metrics.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

BCQ-Sparse BCQ-Hazard RCI (ours)
0.0

0.2

0.4

0.6

0.8

1.0
Clean Noisy

(a) Return

BCQ-Sparse BCQ-Hazard RCI (ours)
0

10

20

30

40

50
Clean Noisy

(b) Violation Rate (%)

Figure 6: Label-noise experiment on HighwayEnv with cost budget d fixed to the value selected
in the core results 4. Error bars show standard error across 3 seeds; evaluation uses 1000 episodes
and ground-truth safety events.

Noise in termination time alters the constraint signal but not the logged rewards, as a result, return
remains stable (6a) while violation rates on baselines respond more sharply to misaligned safety
supervision (6b).

To complement the quantitative results, Figure 7 illustrates RCI’s learned policies under different
safety budgets in HighwayEnv. With a restrictive budget, the policy interprets the trajectory-
level cost signal conservatively, exiting the highway entirely to avoid potential violations. Under
a balanced budget, the implicit cost specification instead permits progress along the road while
still maintaining safe distances from surrounding vehicles. These qualitative rollouts highlight how
trajectory-level supervision, when redistributed through RCI, shapes distinct safety–performance
trade-offs.

(a) d = P10 (b) d = P30

Figure 7: Trajectories from RCI’s learned policy in HighwayEnv under restrictive (7a) and bal-
anced (7b) safety budgets d, where P denotes the qth percentile of dataset’s episodic cost distribution

5.1.1 CONTINUOUS CONTROL TASK

To complement our extensive evaluation on HighwayEnv, we report core results on the
Safe-FetchReach domain under the same offline RL protocol (data generation, safety budgets,
and evaluation metrics) described in Section 5. This task involves a 7-DOF robotic arm that must
reach a sampled Cartesian target while avoiding entry into a predefined spherical hazard region (see
Appendix A.2 for full environment details). The purpose here is to test whether RCI extends to a
distinct continuous-control setting with geometric safety constraints.

We observe the same trend as in HighwayEnv: RCI produces policies that achieve competitive
task rewards while substantially reducing violation rates compared to baselines. The redistributed
per-step costs assign penalties not only at the moment of hazard entry but also to precursor actions
that increase risk, enabling the policy to anticipate and avoid unsafe regions rather than reacting only
at failure points.

The results in Figure 8 demonstrate that RCI generalizes beyond driving tasks and remains effective
in high-dimensional robotic control. By shaping policies according to redistributed costs, RCI adapts
flexibly to new safety specifications while preserving performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

0

10

20

30

40

50

60

Vi
ol

at
io

n 
Ra

te
 (%

)

BCQ-Vanilla BCQ-Sparse BCQ-Hazard RCI (ours)

Figure 8: Performance comparison on Safe-FetchReach. The plot shows normalized return
and violation rate, highlighting the safety–performance trade-off across methods. Higher return is
better, lower violation rate is better. Bars show mean over 3 seeds; error bars denote standard error.

To provide further intuition, Figure 9 shows vector fields of the learned policies in
Safe-FetchReach under different safety budgets. With a balanced budget, the implicit cost
specification allows the policy to pursue the target while steering away from the hazard region. Un-
der a restrictive budget, the inferred costs dominate, causing the policy to bias strongly away from
the hazard even if it prevents reaching the goal. This visualization highlights how trajectory-level
supervision, redistributed through RCI, induces distinct control strategies in high-dimensional con-
tinuous tasks.

1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550
x (m)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

y 
(m

)

Unsafe
Goal

1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550
x (m)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

y 
(m

)

Unsafe
Goal

1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550
x (m)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

y 
(m

)

Unsafe
Goal

Figure 9: Vector fields of RCI’s learned policies in Safe-FetchReach across three safety bud-
gets from the empirical percentile sweep. Arrows depict policy actions, and color encodes the
critic’s value estimates. From left to right, safety budgets decrease: higher budgets permit riskier
trajectories, intermediate budgets balance hazard avoidance with goal-reaching, and the lowest bud-
gets enforce strong avoidance of the hazard even at the expense of task success.

6 DISCUSSION AND FUTURE WORK

A central limitation is the reliance on the quality of trajectory-level labels. If the supervision is
noisy or biased, redistribution faithfully preserves this signal at the trajectory level but also spreads
the existing errors across steps. While the label noise ablation shows robustness to small amounts
of label noise, systematic or adversarial errors in feedback remain a challenge. In addition, we
assume datasets provide sufficient coverage of safe behaviors to guide policy constraints. When
unsafe trajectories dominate or safe coverage is sparse, redistribution may not capture actionable
safety signals.

Taken together, our findings highlight how return redistribution transforms sparse trajectory-level
stop signals into dense costs that make safe offline learning feasible. By preserving the supervi-
sion signal while shaping per-step behavior, RCI consistently achieves lower violation rates without
sacrificing task performance. This demonstrates that effective safety in offline RL does not require
dense labels, but rather careful credit assignment of sparse ones.

Looking ahead, the implications extend beyond the benchmarks studied here. As datasets in robotics,
driving, and healthcare increasingly contain incomplete or noisy safety information, methods like
RCI offer a path to leverage them without requiring costly dense annotation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization, May
2017.

Eitan Altman. Constrained Markov decision processes with total cost criteria: Lagrangian approach
and dual linear program. Mathematical Methods of Operations Research, 48(3):387–417, De-
cember 1998. ISSN 1432-5217. doi: 10.1007/s001860050035.

Jose A. Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. RUDDER: Return Decomposition for Delayed Rewards, September
2019.

Shashank Reddy Chirra, Pradeep Varakantham, and Praveen Paruchuri. Safety through feedback
in Constrained RL. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, November 2024.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement Learning,
December 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learning without
Exploration, August 2019.

Javier Garcı́a and Fernando Fernández. A Comprehensive Survey on Safe Reinforcement Learning.
Journal of Machine Learning Research, 16(42):1437–1480, 2015. ISSN 1533-7928.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theory and applications, 2024. URL https:
//arxiv.org/abs/2205.10330.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, NIPS ’20, pp. 1179–1191, Red Hook, NY, USA, December 2020.
Curran Associates Inc. ISBN 978-1-7138-2954-6.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems, 2020.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and Benchmarks for Offline Safe
Reinforcement Learning, June 2023.

Siow Meng Low and Akshat Kumar. TraCeS: Trajectory Based Credit Assignment From Sparse
Safety Feedback, April 2025.

Silvia Poletti. Learning Constraints From Human Stop-Feedback in Reinforcement Learning. 2023.

Nicholas Polosky, Bruno C. Da Silva, Madalina Fiterau, and Jithin Jagannath. Constrained Offline
Policy Optimization. In Proceedings of the 39th International Conference on Machine Learning,
pp. 17801–17810. PMLR, June 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

10

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2205.10330
https://arxiv.org/abs/2205.10330
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward Constrained Policy Optimization,
December 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement Learning,
November 2019.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints Penalized Q-learning for Safe Offline
Reinforcement Learning, April 2022.

Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun Wang, Meng Fang, and Mykola Pechenizkiy.
Interpretable Reward Redistribution in Reinforcement Learning: A Causal Approach, November
2023.

A APPENDIX

A.1 SIGNAL PRESERVATION

A key intuition behind our framework is that, in the offline setting, supervision must be preserved
since no additional feedback can be queried post hoc. For safety constraints, this means that dense
penalties must remain equivalent to the sparse labels so that the constraint budget reflects the same
information available in the dataset.

Following Arjona-Medina et al. (2019), we define redistributed per-step costs as

c̃t = Ĉ(s0:t)− Ĉ(s0:t−1) + δt, Ĉ(s0:−1) = 0, (3)

where Ĉ(s0:t) is the predicted cumulative cost from a trajectory prefix and δt is a compensation term
ensuring return equivalence.

Summing across the trajectory yields a telescoping series:
T∑

t=0

c̃t =

T∑
t=0

[
Ĉ(s0:t)− Ĉ(s0:t−1) + δt

]
(4)

= Ĉ(s0:T ) +

T∑
t=0

δt. (5)

Since Ĉ is trained to approximate the expert-provided label C(τ) ∈ {0, 1}, the compensation term
accounts for the prediction error, ensuring that

T∑
t=0

c̃t = C(τ). (6)

This telescoping property guarantees that redistribution preserves the sparse signal in aggregate
Arjona-Medina et al. (2019). If expert labels are noiseless, the redistributed costs equal the true
episodic cost. If there is label error, the redistribution inherits it but does not introduce further
distortion. In offline RL, where the dataset is fixed, this preservation property ensures that the agent
is no worse than the quality of the supervision itself.

A.2 ENVIRONMENT DETAILS

A.2.1 HIGHWAYENV

Task. The agent controls an ego vehicle on a multilane highway populated with traffic, aiming to
maintain forward progress while avoiding unsafe maneuvers.

State space. Each state is a fixed-size array of kinematic features for the ego and V − 1 nearby ve-
hicles, including presence, relative position (x, y), velocities (vx, vy), and orientation (cosh, sinh).
Features are normalized and expressed in ego-centric coordinates, with zero-padding to maintain
fixed dimensionality.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Action space. Actions are two-dimensional continuous controls a = [athrottle, δsteer]
⊤ ∈ [−1, 1]2,

mapped to acceleration v̇ ∈ [−5, 5] m/s2 and steering δ ∈ [−0.785, 0.785] rad.

Reward function. We modify the native reward to emphasize acceleration, simulating a safety-
unaware ego vehicle: R(s, a) = α · v−vmin

vmax−vmin
+ γ · v̇ − β · 1{collision}, with α, β, γ > 0. This

shaping encourages forward velocity and aggressive acceleration, sometimes leading to collisions in
the absence of explicit safety constraints.

Unsafe criterion. A transition is labeled unsafe when the ego vehicle comes within distance 0.2 of
another vehicle:

csparse(s, a) = 1
{

min
j∈{1,...,V−1}

∥pego − pj∥2 ≤ 0.2
}
.

Figure 10: HighwayEnv unsafe criterion: a transition is labeled unsafe when the ego vehicle comes
within distance 0.2 of another vehicle.

A.2.2 SAFE-FETCHREACH

Task. A 7-DOF Fetch robot must move its end-effector to a sampled Cartesian target. We introduce
a hazard region to assess safety.

State space. Observations are tuples (o, gach, gdes), where o ∈ R10 encodes end-effector position,
finger joint states, and velocities, and gach, gdes ∈ R3 denote achieved and desired goals.

Action space. Actions are a = [∆x,∆y,∆z, agrip]
⊤ ∈ [−1, 1]4, with the first three mapped to

Cartesian displacements and the fourth controlling the gripper (unused here).

Reward function. The dense shaping reward is R(s, a) = −∥gach − gdes∥2.

Unsafe criterion. We define a spherical hazard region H = {p ∈ R3 : ∥p − h∥2 ≤ r} with center
h and radius r. Unsafe labels are assigned at the first transition where gach ∈ H:

csparse(s, a) = 1{gach ∈ H}.

Figure 11: Safe-FetchReach unsafe criterion: a transition is labeled unsafe when the end-
effector enters the spherical hazard regionH.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 IMPLEMENTATION DETAILS

Table 1: Hyperparameters for BCQ-Lagrangian across benchmark environments

Hyperparameter HighwayEnv Safe-FetchReach

Network Architecture
Actor Hidden Sizes [256, 256] [256, 256]
Critic Hidden Sizes [256, 256] [256, 256]
VAE Hidden Sizes [750, 750] [750, 750]
Number of Q-networks 2 2
Number of Q-cost networks 2 2

Learning Rates
Actor Learning Rate 1e-4 1e-4
Critic Learning Rate 3e-4 3e-4
VAE Learning Rate 1e-3 1e-3

Algorithm Parameters
Discount Factor (γ) 0.99 0.99
Soft Update Rate (τ ) 0.005 0.005
Perturbation Scale (λ) 0.75 0.75
VAE Beta (β) 0.5 0.5
Threshold Parameter (ϕ) 0.05 0.05
Sample Action Number 10 10

Training Configuration
Batch Size 256 128
Update Steps 5e5 1e5
Evaluation Episodes 10 5
Evaluation Frequency 5,000 1,000

Table 2: Hyperparameters for PPO used for data generation

Hyperparameter HighwayEnv Safe-FetchReach

Network Architecture
Policy Hidden Sizes (pi) [256, 256] [256, 256]
Value Hidden Sizes (vf) [256, 256] [256, 256]

Learning Rates
Learning Rate 5e-4 3e-4

Algorithm Parameters
Discount Factor (γ) 0.80 0.98
GAE λ 0.95 0.95
Clip Range 0.20 0.20
Entropy Coefficient 0.0 0.0
Value Function Coef 0.5 0.5

Training Configuration
n steps 1,024 1,024
Batch Size 256 256
Epochs per Update 10 10
Total Timesteps 500,000 300,000
Evaluation Episodes 10 10
Evaluation Frequency 10,000 10,000
Early-Stop Success Threshold - 0.95

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Usage of Large Language Models. We used a large language model (LLM) to polish the writing
of this paper. No other parts of the research, including the design, implementation, experiments, or
analysis, involved the use of LLMs.

14


	Introduction
	Preliminaries
	Constrained Markov Decision Processes

	Related Work
	Methodology
	Policy Optimization

	Experiments
	Results
	Continuous Control Task


	Discussion and Future Work
	Appendix
	Signal Preservation
	Environment Details
	HighwayEnv
	Safe-FetchReach

	Implementation Details


