High Resolution UDF Meshing via Iterative Networks

Federico Stella!, Nicolas Talabot!, Hieu Le?, Pascal Fua!

!CVLab, EPFL 2UNC Charlotte
I{firstname. lastname}@epfl.ch, 2hle40@charlotte.edu

Abstract

Unsigned Distance Fields (UDFs) are a natural implicit representation for open
surfaces but, unlike Signed Distance Fields (SDFs), are challenging to triangulate
into explicit meshes. This is especially true at high resolutions where neural UDFs
exhibit higher noise levels, which makes it hard to capture fine details.

Most current techniques perform within single voxels without reference to their
neighborhood, resulting in missing surface and holes where the UDF is ambiguous
or noisy. We show that this can be remedied by performing several passes and by
reasoning on previously extracted surface elements to incorporate neighborhood
information. Our key contribution is an iterative neural network that does this and
progressively improves surface recovery within each voxel by spatially propagating
information from increasingly distant neighbors. Unlike single-pass methods,
our approach integrates newly detected surfaces, distance values, and gradients
across multiple iterations, effectively correcting errors and stabilizing extraction
in challenging regions. Experiments on diverse 3D models demonstrate that our
method produces significantly more accurate and complete meshes than existing
approaches, particularly for complex geometries, enabling UDF surface extraction
at higher resolutions where traditional methods fail.

1 Introduction

Implicit Neural Representations [35, 12, 26] have become powerful tools to accurately model objects
whose topology is a priori unknown and without being bound to a specific mesh resolution. Those
based on Occupancy Fields [23] or Signed Distance Functions (SDFs) [27] are best at handling
watertight surfaces. They can be used to represent open surfaces by wrapping a thin volume
around them, but this is less than ideal. Unsigned Distance Fields (UDFs) offer a more effective
alternative [6, 44, 46, 30, 45, 11, 40] and are used by many surface reconstruction methods [20, 21, 19].
In a typical scenario, a neural network is used to parametrize the field, which is then converted into
an explicit mesh for downstream tasks through a meshing process. There are many algorithms to do
this conversion well when the field features sign changes to signal surface locations [18, 15, 32, 29].
However, there are no such sign changes in the UDF case and the field is expected to be exactly zero
at the surface location.

Most current approaches to meshing UDFs [46, 41, 14, 36] rely on Marching Cubes or Dual
Contouring-like algorithms that operate on the vertices of individual voxels to recover the sur-
face that may or may not traverse them. However neural UDFs are notoriously noisy [13, 36, 14],
which makes it hard to retrieve the correct surface. Counterintuitively - and contrary to SDFs -
increasing the meshing resolution to retrieve finer surface details actually worsens the problem, as
shown in the results section (Fig. 5). This is because, at high resolutions, UDF values often become
noisier or ambiguous within a voxel, and these local, single-pass methods lack the necessary context
to infer the surface reliably, resulting in poorly recovered geometry. As shown in Fig. 1, when the
neural UDF fails to reach sufficiently low values, a hole appears in the reconstructed surface. This is

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

GT Mesh

MeshUDF [13] NSD-UDF [36] DMUDEF [41] | Ours -iter. 1 Ours -iter. 2 Ours - iter. 6

Figure 1: Avoiding holes in a plane cockpit. (Top) Compared to the ground-truth UDF of a plane,
an approximate neural UDF may fail to reach zero, shown in white, at the true surface location. This
is clear in the UDF detail shown in the upper right corner, where the two white areas are disconnected.
This yields disconnections and holes in the reconstructions, especially at high resolutions. (Bottom)
This causes holes in the surfaces reconstructed by current methods. By leveraging neighboring
surfaces, our iterative method properly recovers the cockpit nevertheless.

particularly apparent around the planes’s cockpit, as shown in the upper right corner of the figure
where existing methods do not reliably detect a surface, even though there is a local minimum region.
Thus, looking beyond single voxels is necessary, as attempted in [5, 13]. However, these attempts
rely on basic propagation heuristics or a simple increase of the receptive fields and still fail at high
resolutions, as also shown in the results section.

In this paper, we argue that, to recover the missing parts and to fill the holes, meshing models
should incorporate information from previously extracted surface elements, which requires several
consecutive extraction passes. To meet this challenge, we introduce an iterative refinement approach.
Given a voxel traversed by a surface, it progressively improves the accuracy of the surface recovery
by incorporating information previously obtained from increasingly distant voxels. Thus, instead of
extracting surfaces in a single pass, we improve the mesh over multiple iterations, where each step
integrates newly detected surfaces, distance values, and gradients from neighboring cells.

In extensive experiments on diverse datasets, we show that our spatial propagation helps correcting
errors, stabilizing surface extraction, and refining surface localization, particularly where the UDF is
ambiguous or noisy, that is, enabling high-resolution meshing where single-pass methods would fail.
Thus, our contribution is a novel recursive approach to meshing UDFs that gives much better results
than earlier ones at high resolutions.

2 Related Work

Signed and unsigned distance fields are now in widespread use to represent 3D surfaces, which are
typically parameterized by a latent vector that is decoded by a deep network [23, 27, 6]. Shapes
are not tied to a specific resolution, but only to the representational power of the deep network in
use. Neural signed distance fields (SDFs) are limited to watertight shapes but are relatively easy
to mesh, whereas unsigned distance fields (UDFs) can represent open surfaces. They are used in
volume rendering, shape reconstruction from multi-view and shape generation with a variety of
techniques [20, 21, 19, 7], but they are much harder to mesh.

Triangulating Signed Fields. Marching Cubes (MC) [22, 18] and Dual Contouring (DC) [15]
are widely used to mesh signed fields by detecting sign transitions within voxels of a 3D grid. MC
interpolates vertex positions along cell edges, while DC places them inside cells and optimizes
their locations. Deep-learning adaptations, such as Neural Marching Cubes (NMC) [4] and Neural
Dual Contouring (NDC) [5], improve on the classical methods by eliminating the need for manually
defined rules or accurate field gradients, respectively. FlexiCubes [32] yields impressive performance
on neural SDFs used for shape optimization while McGrids [29] improves the scalability of surface
extraction at high resolution. In all methods increasing the resolution, or the number of points used,
typically produces more detailed meshes at a higher computational cost. However, as they rely on
sign changes, none of these methods is directly applicable to UDFs.

2

Triangulating Unsigned Fields. Meshing neural unsigned distance fields (UDFs) is more difficult
than meshing signed ones because the surface is assumed to be where the field reaches zero, as
opposed to where it crosses from positive to negative values. In the latter case, small field value
errors may slightly shift the surface location whereas, in the former, it may result in the surface being
missed altogether and undesirable holes appearing in the reconstruction, as in Fig. 1.

NDF [6] uses a ball-pivoting algorithm to mitigate this problem. Unfortunately, its reliance on dense
point clouds and expensive processing takes hours per mesh and makes it impractical. Methods
such as MeshUDF [13] and CAP-UDF [44, 46] assign pseudo-signs to the field values by comparing
gradients so that MC can be used, but they are subject to artifacts, especially on complex geometries.
MeshUDF partially conditions its pseudo-signs on previously computed voxels by defining a specific
voxel-exploration order, but it does so in a single pass and with a heuristic that targets simple shapes
such as garments. DCUDF [14] extracts an e-level set using MC, refines it by minimizing a loss
function, and cuts it to a single thin surface using a min-cut algorithm [2]. It produces smooth surfaces
but requires much manual tuning, long processing times, while sometimes failing to properly cut the
inflated surface. While the method refines the vertex locations with an optimization procedure, the
mesh extraction is still carried out in a single pass. In NSD-UDF [36], a neural network predicts
pseudo-signs starting from local UDF values and gradients, which can be meshed using SDF-like
triangulation methods such as MC and DualMesh-UDF [41]. However, all these methods struggle
at high resolutions on neural UDFs, where gradients and field values can become very noisy. This
interferes with the proper generation of pseudo-signs, surface cuts, or dual vertices, depending on the
specific method being used. This can yield inconsistencies and holes in the reconstructed surfaces,
which our iterative approach is designed to prevent.

Since DC is a popular alternative to MC, it has also been adapted to work with UDFs. DualMesh-
UDF [41] prunes grid cells via a UDF-based threshold and refines vertices using a DC-like quadratic
equation. While preserving sharp features, it relies on hand-crafted filtering rules that can produce
holes and require manual tuning. This tuning can be partially avoided by using [36] for pre-processing.
However the approach still struggles at high resolutions when there is noise. Unsigned Neural Dual
Contouring (UNDC) [5] uses a 3D CNN to predict dual vertex locations and connectivity. Training
the network requires heavy data augmentation and ignores gradient information, limiting the method’s
accuracy on neural UDFs [41, 36].

Iterative Refinement. Recursive refinement techniques for network predictions have been demon-
strated across many domains [24, 28, 37, 33]. These approaches use the surrounding context to
improve predictions [31, 9], proving especially effective for tasks such as delineation [34, 10], human
pose estimation [25], semantic segmentation [42], and depth estimation [8]. These methods have
inspired us to develop the first-ever iterative approach to UDF meshing.

Mitigating noises in UDFs. Several approaches have been proposed to learn less noisy UDFs.
Zhou et al. [44, 46] enforced parallel level sets near surfaces to improve learning from sparse point
clouds. Fainstein et al. [11] use hyperbolic scaling and second-order differentiation to reduce the
noise in gradients and ensure the differentiability of the field. Zhao et al. [43] used anchor-based
3D position features to enhance UDF predictions, aiding single-view garment reconstruction. Wang
et al. [39] predicted pseudo-signs from surface gradients for meshing, while Venkatesh et al. [38]
leveraged surface orientation for better local geometry. However, precise UDF predictions remain
challenging, as existing methods struggle to eliminate holes and discontinuities in meshed surfaces.

3 Method

A neural UDF can typically be written as

Us :R3xR" - RT, 60
X,z — d,

where Ugs is implemented by a deep network. x is a point in 3D space, and d should be the distance
from x to the closest points on the surface S corresponding to the n-dimensional latent vector
z that controls the shape of S. The difficulty with this formulation is that if Us is not accurate,
Us(x, z) might not reach zero at places where it should, resulting in unwarranted holes in the surface
reconstruction. Since unsigned fields are not differentiable everywhere, they pose a parametrization
challenge, resulting in noisy representations [13, 14, 36]. Similarly, the gradients of Us, which are

Initial state Istiter 2nd iter Output

Input
none none none
L * .
none none none # none —_— _— e
L »

none none none .
current state | Iterative Network

t | | |

Figure 2: Iterative Network. Our model iteratively refines cell configurations. The input consists of
the UDF values and gradients at the vertices of the target cell, as well as the current estimated sign
configurations of the target and neighboring cells. The surface within a given cell, shown in green, is
progressively improved by enforcing consistency with its neighbors.

crucial for meshing [13, 44, 41, 36], can become very noisy when operating at high resolutions, also
resulting in reconstruction failures.

Yet, gradients remain accurate further from the surface and there are still reliable cues in parts of
the surfaces that are correctly modeled. This should be exploited to overcome the above-mentioned
difficulties. To this end, we propose an iterative approach that, at each pass, is conditioned on the
surface extracted at the previous pass. By looking beyond single voxels over multiple passes, our
method is trained to correct local inconsistencies while preserving the global scene structure. This
yields better and more complete surface reconstructions, especially at high resolutions.

3.1 From UDF to Triangulated Mesh

At the core of our approach is a per-cell neural network that incorporates neighboring information
and refines predictions iteratively. As new information is aggregated, the network progressively
improves decisions, reducing noise and enhancing surface extraction for more complete and reliable
reconstructions. We first describe its basic architecture and then the iterative refinement process.

Network Architecture. Given Us of Eq. 1, we query it for UDF values and gradients on a regular
grid. We then group the values in cubic cells and feed them to a neural network fy, parametrized by 6,
whose task is to output a pseudo-sign configuration for the 8 corners of the input cell. As in [36], we
use a fully connected feed forward network with 27 = 128 outputs, representing a one-hot encoding
of the possible pseudo-sign configurations, up to a complete sign symmetry in the cell.

As shown in Fig. 2, this network takes as input not only the UDF values and gradients at the vertices
of the target cell but it also incorporates the current estimated sign configurations of the target and
neighboring cells, allowing the model to make new predictions based on its earlier ones, which
provides a spatial context. We provide all the architectural details in the supplementary.

Iterative Refinement. To refine the predictions and enforce global consistency, the network is run
iteratively. This sets up a dynamic process that is trained to reinforce correct predictions, reducing
the impact of local noise. Conditioning the network on its previous iterations helps the model retrieve
the surface in regions where it previously failed due to noisiness or ambiguity.

More specifically, we set the sign configurations for the first iteration to be zero, which signals the
absence of prior information. Note, however, that an all-zero vector is different from the “empty cell”
configuration, which is a one-hot vector. This makes the network output predictions based only on
the local UDFs and gradient values. In subsequent iterations, we feed the current output back as input.
We train the network with a uniformly random number of iterations, with an empirically-determined
maximum of 5 additional iterations after the first pass. As a loss function, we use the cross-entropy
between the predicted pseudo-signs and the ground-truth signs for all the cells ar every iteration,
making the back-propagation process go through all the iterations.

Formally, the i-th iteration output for 1 < i < 6, surface S and cell c¢ is written as

v8). = o (Us(e), VUs(e), oy i)

vin = | ¥&, @)
c’€N,.
vy —10,0,..,0],

)

where o is the sigmoid function,

with ¢, including itself, y(so)C is the initial input to the network and Us(c) is a resolution-normalized

UDF, computed by dividing the input UDF by the cell size. For every shape S in the training dataset
and at every epoch, the loss function is taken to be

is the concatenation operator, IV, is the set of cells sharing a face

T

Ly=> > CE(so ftmaz(y$)), GTs(c)) 3)

i=1ceS

where C'F is the cross entropy, r is a random number between 1 and 6 and GT’s(c) is the ground-truth
sign configuration. We observed that, without the sigmoid activation and the randomized number of
iterations, the process converges poorly, or even not at all (see supplementary).

To increase robustness to noise, we augment the training values with Gaussian noise. We write

Us(c) <= Us(c) * (1 + N(0,0n)) , 4)
VUs(c) + VUs(c) * (14+N(0,0x)) ,

where c is a grid cell and o is typically set to 1.

Meshing. As in NSD-UDF [36], the final output of our pipeline is a pseudo-SDF, that is a UDF in
which the grid cell corners have been assigned pseudo-signs so they can be triangulated using existing
methods. We use Marching Cubes [18] for its ease of use or DualMesh-UDF [41] for its precision.

3.2 Speeding up the Process.

Algorithms such as MeshUDF [13] and NSD-UDF [36] use manually-defined resolution-dependent
thresholds that ignore cells that are too far from the surface and, thus, reduce the computational
complexity of the algorithm. While this works well at lower resolutions, the high level of noise at
higher resolutions makes this process error-prone, resulting in missing regions in the final mesh.
Instead, we filter out cells whose vertices have a UDF value equal or above the clamping threshold of
the neural UDF, set to be 0.1 in our experiments. In practice, this eliminates 85% of the cells at 256>
resolution, with no impact on the final result. For subsequent iterations, since the network outputs a
probability distribution over the sign configurations, we can interpret the highest probability as the
confidence of the network. We can then conservatively filter out additional cells whose confidence is
extremely high (> 0.999). As can be seen in Tab. 1a, this substantially reduces the computational
cost, making it comparable to that of the other baselines given in Tab. 1b, without accuracy loss
compared to meshing all cells.

Table 1: Filtering and meshing times. (a) Median L2 Chamfer Distance x 10~° with 2M sample
points (CD), Image Consistency (IC) and model inference times are reported at varying grid resolu-
tions on an auto-decoder [27] trained on ShapeNet [3] cars. The times were measured on an NVIDIA
A100 GPU. Notice that our filtering strategies put the proposed pipeline in the same range as existing
methods, without impacting its accuracy.

(a) Our filtering strategies speed up the method, maintaining the accuracy within run-to-run variance.

Res. Filtering | CD] IC1 | Inference time |
Without filtering 526 89.2 Tm
256 Low confidence 524 89.2 1.5m
UDF < 0.1 and low confidence | 5.24 89.2 30s
Without filtering 891 889 1h
512 Low confidence 8.87 889 7m
UDF < 0.1 and low confidence | 8.88 88.9 2.5m

(b) Approximate UDF query and total meshing times at resolution 256. DCUDF makes multiple UDF queries at
every iteration, making it difficult to measure the exact query time.
Time |CAP [46] MeshUDF [13] DCUDF [14] NSD [36] UNDC [5] DMUDF [41] Ours

Query| 90s 30s / 30s 228 19s 30s
Total | 3.5m 35s 25m 35s 30s 20s Im

4 Experiments

4.1 Datasets and baselines

We test our method on five different 3D categories, including garments from MGN [1]; cars, chairs,
and planes from ShapeNet [3]; and natural scenes from the 3DScene dataset [47], using four different
neural UDF architectures. For garments, cars, chairs, and planes, we train a traditional auto-decoder
following [27, 36]. To showcase the capabilities of our method on downstream tasks and more precise
single-shape neural architectures, we perform surface reconstruction from point clouds by training
CAP-L [46]" on 3D scenes and cars, and DiffUDF [11] on cars. In the supplementary material, we
provide additional results using a softplus-based auto-decoder and meshing results obtained from
ground-truth UDFs. We use 300 garments and the first 20 samples each for cars, chairs, and planes.
As the MGN garments are simpler and exhibit less variety than the other shapes, we use a lower
resolution for them. For 3D scenes, we use three scenes from the official CAP-UDF [46] repository”.

We divide the baselines into two groups, those that rely on Marching Cubes (CAP-UDF [46],
MeshUDF [13], DCUDF [14], NSD-UDF [36]) and those that use Dual Contouring (UNDC [5],
DualMesh-UDF [41], NSD-UDF [36]). Notably, DCUDF [14] and DualMesh-UDF [41] have been
shown to be sensitive to parameter choices. We report results obtained using both the default
parameters and those that we manually tuned, denoted as “-T”. Due to implementation constraints,
DualMesh-UDF and methods that depend on it use a resolution one pixel higher than the others,
which we still include in the same tables. UNDC [5] failed at high resolution due to the method’s
VRAM requirements. DCUDF [14] failed on certain shapes, yielding invalid metrics; these cases are
excluded, making its results not directly comparable. Following official recommendations, we also
evaluate DCUDF-T-nocut, a variant without the cutting step that produces double-layered meshes, on
cars. All meshing methods are run without post-processing to ensure fair comparison.

4.2 Metrics

To compare extracted meshes to ground-truth surfaces, we compute three metrics: the L2 Mesh
Chamfer Distance (CD) between the meshes, computed with 2M sample points as a two-way point-to-
mesh distance; the Image Consistency (IC) [13], which is the product of IoU and the cosine similarity
of normal maps rendered from eight viewpoints; and the F1 score [4, 5], also computed with 2M
sample points, which measures the portion of the surface within an error threshold of 0.003 from the
ground-truth surface. We report the median of these metrics. It has been found to be more robust to
outliers [36] than the mean, which we report in the supplementary for completeness along with the
standard deviation.

4.3 Comparing against other methods

In Tab. 2a, 2b and Fig. 3, we compare our method against state-of-the-art ones using four auto-
decoders on four datasets, spanning from low to high resolutions. Our method consistently out-
performs all baselines at high resolutions (2562 and 5123) on complex shapes such as cars, chairs,
and planes, which are the most prone to suffer from the UDF issues discussed at the beginning of
Section 3 and depicted by Fig. 1. This is particularly visible in the three bottom rows of Fig. 3, where
our method is the only one able to recover the front of the car, the legs of the chair and the cockpit
of the plane. DCUDF [14] yields the smoothest meshes overall, at the cost of losing details and
sometimes entire portions of the surface, as shown in Fig. 3, unless the cut operation is avoided,
resulting in double surfaces. While previous comparisons [14, 36] have shown CAP-UDF [46] to be
often be less accurate than other methods at low resolutions, we notice that the trend is reversed at
higher resolutions. There, it retrieves surface portions missing from other baselines. MeshUDF [13]
and NSD-UDF [36] can outperform it at high resolutions, but only when their filtering thresholds are
removed, as shown in Tab. 4.

At lower resolutions the missing surface problem is less pronounced, and thus iterative refinement
does not provide significant advantages. To illustrate this, we present examples of a 3D chair meshed

'We refer to the learning architecture of CAP-UDF as CAP-L, to distinguish it from the meshing method
introduced in the same paper, which we employ as a baseline.

*The repository contains five scenes, but "Copyroom" and "Lounge" produced bad metrics across all methods
due to incosistent normalization, so they have been excluded.

Table 2: Triangulating auto-decoder-based Neural Unsigned Distance Fields. Median L2 Mesh Chamfer
Distance x 10~° with 2M sample points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying
grid resolutions. The best results are in bold. MGN* denotes halved resolution for our MGN experiments due to
the lower complexity of the shapes. UNDC failed at resolution 512 due to its large GPU memory requirements.

(a) Marching Cubes-based methods.

MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]
Res. Method \ CDh] Fi11t ICt \ CDh] FI1 ICt \ CDh] Fi11 ICt \ CDh] FI1 ICt
CAP-UDF [46] 162 694 794 | 539 533 832]| 378 509 703]| 140 695 806
MeshUDF [13] 245 829 941 | 113 577 886 | 743 676 83.0| 682 746 81.0
128 DCUDF [14] 13500 2.50 2.76 | 6580 7.74 147 | 17000 159 139 | 1880 27.6 245
DCUDEF-T [14] 90.8 2.86 873 | 503 58.0 873 | 214 641 829 | 144 688 772
DCUDF-T-nocut [14] - - - 114 61.7 894 - - - - - -
NSD-UDF +MC [36] | 1.34 839 947 | 679 596 885 | 6.11 67.8 88.1 | 382 79.0 84.8
Ours + MC 204 819 941 | 5.64 592 889 | 3.68 667 884 | 3.00 785 84.8
CAP-UDF [46] 1.66 86.8 91.8 | 34.0 612 876 114 705 820 | 550 837 854
MeshUDF [13] 0958 89.7 950 | 136 623 886 | 278 729 873 | 347 858 852
256 DCUDF [14] 14400 476 3771 | 346 526 782 | 3530 499 543 | 279 847 820
DCUDEF-T [14] 463 868 954 | 347 526 782 | 3560 500 543 | 473 804 78.7
DCUDF-T-nocut [14] - - - 52.0 589 823 - - - - - -
NSD-UDF + MC [36] | 0.808 90.0 952 | 102 620 879 | 109 723 862 | 291 873 86.0
Ours + MC 0.878 889 949 | 523 65.0 892 | 514 729 888 | 1.84 88.7 87.0
CAP-UDF [46] 0.872 90.6 946 | 31.8 61.7 875]| 639 71.7 820 | 594 875 86.2
MeshUDF [13] 0.798 90.6 94.8 | 82.7 57.0 81.7 | 378 61.5 657 | 12.6 88.1 84.6
512 DCUDF [14] 437 883 91.1 | 223 565 842 | 2950 550 70.1 | 487 855 822
DCUDEF-T [14] 438 832 O91.1 | 223 565 842 | 2000 550 70.1 | 63.0 854 813
DCUDEF-T-nocut [14] - - - | 431 604 856 - - - - - -
NSD-UDF + MC [36] | 0.784 90.8 948 | 569 58.8 83.8 | 295 647 757 | 10.0 89.4 85.1
Ours + MC 0.722 906 948 | 884 65.6 889 | 876 745 87.2| 237 909 87.1
(b) Dual Contouring-based methods.
MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]
Res. Method | CDL FIt ICt|CDJ FIt ICt|CDJ FIt ICt|CD} Fit ICt
UNDC [5] 1.09 87.1 94.1 | 135 61.7 864 | 299 694 819 | 250 820 86.1
DualMesh-UDF [41] 216 68.1 684 | 952 344 455 | 7930 12.1 9.08 | 112 743 76.1
128 DualMesh-UDEF-T [41] 0806 899 954 | 556 635 895 | 534 751 89.1 | 196 843 875
NSD-UDF + DualMesh-UDF [36] | 0.760 90.4 95.0 | 6.34 657 89.1 | 550 72.8 89.2| 2.08 87.1 86.6
Ours + DualMesh-UDF 0.787 90.5 949 | 480 662 89.7 | 339 728 898 | 1.56 87.7 88.2
UNDC [5] 0.931 89.1 915 | 824 523 714| 293 542 578 | 11.6 836 80.7
DualMesh-UDF [41] 176 663 664 | 846 340 45.1 | 8280 124 9.26 105 779 76.0
256 DualMesh-UDF-T [41] 0.722 912 951 | 106 643 870 | 228 722 84.1 | 243 882 87.0
NSD-UDF + DualMesh-UDF [36] | 0.671 91.0 946 | 105 649 872 | 146 707 844 | 2778 889 85.6
Ours + DualMesh-UDF 0.662 912 947 | 548 657 888 | 497 719 864 | 1.87 90.0 87.5
UNDC [5] 239 848 828 - - - - - - - - -
DualMesh-UDF [41] 167 63.7 639 | 870 325 43.0 | 8190 11.8 9.07 111 776 742
512 DualMesh-UDF-T [41] 0.827 90.2 932 | 378 582 793 | 727 637 725 | 477 89.0 840
NSD-UDF + DualMesh-UDF [36] | 0.787 89.7 925 | 60.5 57.5 799 | 296 625 68.0 | 995 87.6 833
Ours + DualMesh-UDF 0.726 89.7 928 | 9.65 63.0 856 | 10.1 704 819 | 251 90.1 858

at resolutions of 1282, 2562, and 5123 in Fig. 5, comparing one of the most accurate methods,
NSD-UDF [36], with our approach. As shown, at lower resolutions NSD-UDF reconstructs good
surfaces, leaving less room for improvement, however it fails to recover many surface regions at 256>
and especially at 5122 resolution, whereas our method handles these cases more effectively. Similarly,
our method does not show significant advantages on the MGN dataset, where the shapes are less
complex and nearly all methods achieve high accuracy without missing large portions of the surface.

We also observe that, while the pseudo-signs of NSD-UDF partially mitigate the need for tuning
DualMesh-UDF when used in conjunction with it, our pseudo-signs are more robust and consistently
outperform both NSD-UDF and the tuned DualMesh-UDF, as shown in Tab. 2b.

Comparing primal and dual methods, we notice that dual ones tend to be more accurate at lower
resolutions, while primal ones have an edge at higher resolutions. Note that, while achieving
very good CD scores on MGN at high resolution, dual methods tend to create many holes in the
reconstructed meshes, as can be seen in the top row of Fig. 3. This does not impact the Chamfer
Distance much due to the small size of these holes, but it affects the F1 and IC scores that are better
in MC-based methods. Notice also that most primal methods show significant blockiness artifacts at
high resolution, including our pipeline paired with Marching Cubes, a common issue with currently

GT CAP-UDF MeshUDF DCUDF-T DCUDEF-T-nocut NSD-UDF Ours UNDC DMUDE-T NSD-UDF! Ours'

Sy <Y <¥ Sy

=7

=y

LaE e tar e e e Saz

\ . 1“ - (w . | .
\4-4 ﬁsr/‘ (SR .—*..;/‘ Ns/‘
=l \ i)

Figure 3: Qualitative comparison with existing methods (auto-decoders). Surface meshing results
of neural UDFs with all methods at resolution of 512 (and 256 for MGN). UNDC failed at resolution
512 due to high GPU memory requirements. T indicates that the method is combined with DMUDEF.

Table 3: Neural Unsigned Distance Fields from point clouds. L2 Mesh Chamfer Distance x 10> with 2M
sample points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying grid resolutions. Median
scores are reported for cars; mean for scenes due to the low number of samples. The best results are in bold.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method |cD) FIt ICt|CD| FIt ICt|CDJ Fl1t ICt
CAP-UDF [46] 427 680 838 | 107 445 858 | 671 58.0 86.3
MeshUDF [13] 440 682 845 | 983 454 857 | 9.02 597 86.7

128 DCUDE-T [14] 279 597 84.0 | 455 414 855 | 327 496 89.6

DCUDF-T-nocut [14] - - - 847 472 883 | 125 569 90.2
NSD-UDF + MC [36] | 3.34 69.8 86.7 | 8.14 47.1 864 | 418 657 877

Ours + MC 344 693 853 | 7.03 483 868 | 546 623 874
CAP-UDF [46] 3.65 70.1 86.1 | 7.51 480 86.6 | 372 679 86.7
MeshUDF [13] 342 69.6 863 | 865 475 86.1 | 518 659 872

DCUDF-T [14] 475 699 846 | 31.1 455 857 | 255 583 864

26 DCUDF-T-nocut[14] | - 071958 479 860 | 556 695 877
NSD-UDF+MC [36] | 330 703 863 | 876 479 863 | 363 700 869

Ours + MC 307 714 866 | 722 501 87.1| 345 689 883
CAP-UDF[46] | 357 705 861 | 8.11 48.1 864 | 460 67.1 844
MeshUDE [13] | 449 699 845 | 846 47.6 859 | 383 674 864

s;» DCUDET[14] 140 689 833 | 315 454 858 | 172 60.1 843

DCUDF-T-nocut [14] - - - 11.8 463 848 | 553 69.0 87.1
NSD-UDF +MC [36] | 3.72 70.0 84.0 | 985 473 859 | 563 660 82.0
Ours + MC 308 718 868 | 7.82 498 86.6 | 3.03 717 88.1

known architectures for neural UDFs. DCUDF and dual methods reduce this problem thanks to
their optimization procedures, but they show more missing surfaces compared to primal methods.
Smoothing and mesh-repair algorithms can be used nevertheless to mitigate this in all methods, but
they are not applied here to better evaluate the direct output of each method.

In Tab. 3 and Fig. 4, we show additional experiments using two single-shape neural UDF architectures
trained on point clouds: CAP-L [46] and DiffUDF [11]. For 3D scenes we used the 100 points/ m?
setting from the CAP-UDF [46] paper, using the provided data. For cars, we sample 10k noise-free
points per shape following the CAP-UDF protocol. Both architectures are trained using default
parameters from their respective repositories. The results follow similar trends as in the auto-decoder
experiments: our method achieves higher accuracy than the baselines, especially at high resolutions.
Additional DC-based results and experimental details are included in the supplementary material.

4.4 TImportance of Correct Thresholding

As described in Sec. 3.2, a correct filtering strategy is crucial to keeping the computational costs
under control when meshing neural UDFs at high resolution. MeshUDF [13] and NSD-UDF [36]
rely on filtering out high UDF values to speed up the computation, which can be far from lossless at
high resolutions. Removing such thresholds can help the algorithms to better retrieve surfaces at high

GT CAP-UDF MeshUDF DCUDF-T DCUDF-T-nocut NSD-UDF Ours DMUDF NSD-UDF! Ours’

Sas o5 SIS DS a2 RS 45

-—i.i;W- -A:""._;; , 2 R > ”*’iu .6

Figure 4: Qualitative comparison with existing methods (reconstruction from point clouds).
Surface meshing results of neural UDFs at resolution of 512. Top: CAP-L 3D scenes. Middle: CAP-L
car. Bottom: DiffUDF cars. T indicates that the method is combined with DMUDF.

512 GT

NSD-UDF [36]

Ours

Figure 5: Meshing at different resolutions. While NSD-UDF [36] retrieves most of the surface well
at a low resolution, it struggles at higher ones. In contrast, our method, recovers the surface well at
all resolutions. We use Marching Cubes with both methods.

Table 4: Removing thresholds on existing methods. Median L2 Chamfer Distance x 10> with 2M sample
points (CD |) at varying grid resolutions, best results in bold. {Thresholds removed. *Resolution is halved.

Res. Method ‘ MGN#* Cars Chairs Planes Res. Method ‘ MGN#* Cars Chairs Planes
MeshUDF | 0958 136 27.8 3.47 MeshUDF | 0.798 82.7 378 12.6
MeshUDF{ 1.97 8.01 6.41 3.73 MeshUDFf | 0919 9.66 20.1 2.73

256 NSD+MC 0.808 10.2 10.9 291 512 NSD+MC 0.784 56.9 295 10.0
NSD+MCt | 0.808 887 6.54 2.86 NSD+MC} | 0.766 233 289 4.49
Ours+MC 0.878 523 5.14 1.84 Ours+MC 0.722 8.84 8.76 2.37

resolution, but this is insufficient by itself. Tab. 4, computed on the auto-decoder experiments, shows
that there is a noticeable improvement at high resolutions, but the results are still not as good as
those of our iterative pipeline. MeshUDF can become less accurate at resolution 256 due to artifacts
introduced in regions of the space with high UDF values, which its heuristic is not designed to handle.
In contrast, our method is robust to all such perturbations.

Table 5: Mesh refinement over iterations. Median L2 Chamfer Distance x10~° with 2M sample points (CD
J) at varying grid resolutions, showing increasing precision over iterations in most cases. *Resolution is halved.
128 256 512

Dataset | It. 1 1t.2 It3 It4 It5 It6| Il 1.2 It3 Itd4 It5 It6 | Il 12 1It3 Itd4 IS5 16

MGN* | 1.46 1.53 1.73 1.88 198 2040814 0.811 0.834 0.857 0.869 0878 |0.748 0.730 0.716 0.720 0.719 0.720

Cars | 747 685 6.06 5.68 5.65 565| 669 628 569 544 531 524 | 11.2 102 963 9.18 898 8.88
Chairs | 491 443 388 378 377 366 | 556 548 532 519 515 515 | 109 104 955 943 897 887
Planes | 3.69 347 3.10 3.08 303 300 | 270 228 211 204 1.8 185 | 343 287 264 247 240 238

Iter. 1 2 3 5 6 GT ‘ Iter. 6 GT

Figure 6: Meshing iterations. Intermediate results over the iterations. Propagating information
across cells helps fill gaps and retrieve missing surfaces. See the car front and the chair leg. We show
the fully reconstructed shapes on the right.

4.5 Mesh Evolution over Successive iterations

In Tab. 5 and Fig. 6, we show the evolution of the meshes over several iterations of our scheme on
auto-decoder-based UDFs. The meshes are progressively refined and the missing regions filled, with
the Chamfer Distance decreasing in most cases, especially at higher resolutions and in complicated
shapes such as cars, chairs and planes. The only partial exception to this trend occurs in the MGN
dataset, where the mesh is already very accurate after the first iteration and remains so during the
following ones at high resolutions. At a lower resolution, such as 64, we see the opposite behavior,
especially for simple shapes like garments. The problems described in Fig. | do not arise, lessening
the usefulness of an iterative scheme. We also observe that our pipeline often produces more accurate
meshes than the baselines already during the first iteration, as shown in Fig. 1 and by comparing
results in Tab. 5 and 4. This is mainly due to the more robust training of our network compared to
NSD-UDF [36] and thanks to the asbsence of heavy thresholds during meshing.

5 Limitations

Due to its iterative nature, our pipeline is naturally slower than single-pass or heavily thresholded
approaches. However, the system’s speed can be improved by reducing the number of iterations,
which comes with a tradeoff in accuracy as shown in Tab. 5, or by filtering cells more aggressively.
Furthermore, as shown in Tab. 1b, querying input UDFs and gradients often constitutes a significant
portion of inference time, an operation performed only once in our iterative pipeline. As a result, the
additional iterations in our approach have a comparatively small impact on the overall computation
time, which remains in the ballpark as those of the fastest baselines.

For simpler shapes, such as garments, methods specifically designed to prioritize topology over
accuracy, such as MeshUDF, may sometimes be more suitable. Moreover, while allowing high
resolution surface extraction, our method can still produce artifacts in the form of irregular boundaries
and small holes, as visible in Figs. 3 and 6. Post-processing algorithms can help with this, but future
work should focus on improving in these aspects.

6 Conclusion

Our iterative approach to meshing neural UDFs achieves state-of-the-art accuracy and robustness,
enabling surface extraction for complex shapes at high resolutions. By refining surfaces over
multiple iterations, it addresses the challenges posed by noisy distance fields, which can create severe
problems for heuristic-based methods. We believe this represents a paradigm shift in using neural
surface localization to capture the complex interplay between neural distance fields and reconstructed
surfaces—far from a trivial task.

Looking ahead, to improve high-resolution surface extraction on UDFs key directions include
optimizing computational efficiency, exploring adaptive iteration strategies, and improving topology
preservation. End-to-end learning for unsigned distance fields and meshing remains a critical frontier,
bringing us closer to seamless, high-fidelity 3D reconstruction across diverse applications.

10

7 Acknowledgements

This work was funded in part by the Swiss National Science Foundation.

References

(1]

(2]

[3

[

[4

—

(5]

[6

—_

[7

—

(8

—_—

(91

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll. Multi-Garment Net: Learning to Dress 3D
People from Images. In International Conference on Computer Vision, pages 5420-5430, 2019. 6, 7, 16,
17

Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/max-Flow Algorithms for
Energy Minimization in Vision. /IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):
1124-1137, 2004. 3

A. Chang, T. Funkhouser, L. G., P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J.
Xiao, L. Yi, and E. Yu. Shapenet: An Information-Rich 3D Model Repository. In arXiv Preprint, 2015. 5,
6,7, 14,15, 16, 17,20, 22, 24

Z. Chen and H. Zhang. Neural Marching Cubes. In ACM Transactions on Graphics (Special Issue of
SIGGRAPH Asia), 2021. 2,6

Z. Chen, A. Tagliasacchi, T. Funkhouser, and H. Zhang. Neural Dual Contouring. In arXiv Preprint, 2022.
2,3,5,6,7,14,15,17,20

J. Chibane, A. Mir, and G. Pons-Moll. Neural Unsigned Distance Fields for Implicit Function Learning. In

2

Advances in Neural Information Processing Systems, 2020. 1, 2, 3

L. DeLuigi, R. Li, B. Guillard, M. Salzmann, and P. Fua. Drapenet: Generating Garments and Draping
Them with Self-Supervision. In Conference on Computer Vision and Pattern Recognition, pages 1451-1460,
2023. 2

N. Durasov, M. Romanov, V. Bubnova, P. Bogomolov, and A. Konushin. Double Refinement Network for
Efficient Monocular Depth Estimation. In International Conference on Intelligent Robots and Systems,
pages 5889-5894, 2019. 3

N. Durasov, N. Dorndorf, H. Le, and P. Fua. Zigzag: Universal Sampling-Free Uncertainty Estimation
through Two-Step Inference. Transactions on Machine Learning Research, 2024. 3

N. Durasov, D. Oner, H. Le, J. Donier, and P. Fua. Enabling Uncertainty Estimation in Iterative Neural
Networks. In International Conference on Machine Learning, 2024. 3

M. Fainstein, V. Siless, and E. larussi. DUDF: Differentiable Unsigned Distance Fields with Hyperbolic
Scaling. In Conference on Computer Vision and Pattern Recognition, 2024. 1, 3, 6, 8, 14, 15, 19, 20, 23

A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. Implicit Geometric Regularization for Learning
Shapes. In International Conference on Machine Learning, 2020. 1

B. Guillard, F. Stella, and P. Fua. Meshudf: Fast and Differentiable Meshing of Unsigned Distance Field
Networks. In European Conference on Computer Vision, pages 576-592, 2022. 1, 2, 3,4, 5, 6,7, 8, 16, 19,
20, 24

Fei Hou, Xuhui Chen, Wencheng Wang, Hong Qin, and Ying He. Robust Zero Level-Set Extraction from
Unsigned Distance Fields Based on Double Covering. ACM Transactions on Graphics, 2023. 1, 3,5, 6, 7,
8,14, 16, 19,22, 23, 24

T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual Contouring of Hermite Data. In ACM SIGGRAPH,
2002. 1,2

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimisation. In International Conference on
Learning Representations, 2015. 14, 15

S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa, D. Zorin, and D. Panozzo.
ABC: A Big CAD Model Dataset for Geometric Deep Learning. In Conference on Computer Vision and
Pattern Recognition, pages 9601-9611, 2019. 14

T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient Implementation of Marching Cubes’ Cases
with Topological Guarantees. In Journal of Graphics Tools, 2003. 1,2, 5

11

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

S. Li, Y.-S. Liu, and Z. Han. GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian
Splatting. In Conference on Computer Vision and Pattern Recognition, 2025. 1, 2

Y.-T. Liu, L. Wang, J. Yang, W. Chen, X. Meng, B. Yang, and L. Gao. NeUDF: Leaning Neural Unsigned
Distance Fields with Volume Rendering. In Conference on Computer Vision and Pattern Recognition,
2023. 1,2

X. Long, C. Lin, L. Liu, Y. Liu, P. Wang, C. Theobalt, T. Komura, and W. Wang. Neuraludf: Learning
Unsigned Distance Fields for Multi-View Reconstruction of Surfaces with Arbitrary Topologies. In
Conference on Computer Vision and Pattern Recognition, 2022. 1,2

W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
In ACM SIGGRAPH, pages 163-169, 1987. 2

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy Networks: Learning
3D Reconstruction in Function Space. In Conference on Computer Vision and Pattern Recognition, pages
4460-4470, 2019. 1, 2

V. Mnih and G.E. Hinton. Learning to Detect Roads in High-Resolution Aerial Images. In European
Conference on Computer Vision, pages 210-223, 2010. 3

A. Newell, K. Yang, and J. Deng. Stacked Hourglass Networks for Human Pose Estimation. In European
Conference on Computer Vision, 2016. 3

Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinicius da Silva, Hélio Lopes, and Luiz Velho.
Exploring differential geometry in neural implicits. Computers and Graphics, 108:49-60, 2022. 1

J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove. DeepSdf: Learning Continuous
Signed Distance Functions for Shape Representation. In Conference on Computer Vision and Pattern
Recognition, 2019. 1,2, 5,6, 15

P.O. Pinheiro and R. Collobert. Recurrent Neural Networks for Scene Labelling. In International
Conference on Machine Learning, 2014. 3

Daxuan Ren, Hezi Shi, Jianmin Zheng, and Jianfei Cai. McGrids: Monte Carlo-Driven Adaptive Grids
for Iso-Surface Extraction, page 127-144. Springer Nature Switzerland, 2024. 1, 2

Siyu Ren, Junhui Hou, Xiaodong Chen, Ying He, and Wenping Wang. Geoudf: Surface reconstruction
from 3d point clouds via geometry-guided distance representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 14214-14224, 2023. 1

M. Seyedhosseini, M. Sajjadi, and T. Tasdizen. Image Segmentation with Cascaded Hierarchical Models
and Logistic Disjunctive Normal Networks. In International Conference on Computer Vision, 2013. 3

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-based mesh
optimization. ACM Trans. Graph., 42(4), 2023. 1, 2

W. Shen, B. Wang, Y. Jiang, Y. Wang, and A.L. Yuille. Multi-Stage Multi-Recursive-Input Fully Convolu-
tional Networks for Neuronal Boundary Detection. In International Conference on Computer Vision, 2017.
3

A. Sironi, E. Turetken, V. Lepetit, and P. Fua. Multiscale Centerline Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(7):1327-1341, 2016. 3

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit Neural Representations with
Periodic Activation Functions. In Advances in Neural Information Processing Systems, 2020. 1

F. Stella, N. Talabot, H. Le, and P. Fua. Neural Surface Localization for Unsigned Distance Fields. In
European Conference on Computer Vision, 2024. 1,2,3,4,5,6,7, 8,9, 10, 14, 15, 16, 17, 18, 19, 20, 22,
24

Z. Tu and X. Bai. Auto-Context and Its Applications to High-Level Vision Tasks and 3D Brain Image
Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009. 3

R. Venkatesh, S. Sharma, A. Ghosh, L. A. Jeni, and M. K. Singh. DUDE: Deep Unsigned Distance
Embeddings for Hi-Fidelity Representation of Complex 3D Surfaces. In arXiv Preprint, 2020. 3

12

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

L. Wang, J. Yang, W. Chen, X. Meng, B. Yang, J. Li, and L. Gao. HSDF: Hybrid Sign and Distance Field
for Modeling Surfaces with Arbitrary Topologies. In Advances in Neural Information Processing Systems,
2022. 3

Cheng Xu, Fei Hou, Wencheng Wang, Hong Qin, Zhebin Zhang, and Ying He. Details enhancement
in unsigned distance field learning for high-fidelity 3d surface reconstruction. In Proceedings of the
Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative
Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial
Intelligence. AAAI Press, 2025. 1

C. Zhang, G. Lin, L. Yang, X. Li, T. Komura, S. Schaefer, J. Keyser, and W. Wang. Surface Extraction from
Neural Unsigned Distance Fields. In International Conference on Computer Vision, pages 0000-0000,
2023. 1,2,3,4,5,6,7,15, 17,20

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li, and Jian Yang. Joint task-recursive learning
for semantic segmentation and depth estimation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 235-251, 2018. 3

F. Zhao, W. Wang, S. Liao, and L. Shao. Learning Anchored Unsigned Distance Functions with Gradient
Direction Alignment for Single-View Garment Reconstruction. In International Conference on Computer
Vision, 2021. 3

J. Zhou, B. Ma, Y.-S. Liu, Y. Fang, and Z. Han. Learning Consistency-Aware Unsigned Distance Functions
Progressively from Raw Point Clouds. In Advances in Neural Information Processing Systems, 2022. 1, 3,

Junsheng Zhou, Baorui Ma, Shujuan Li, Yu-Shen Liu, and Zhizhong Han. Learning a more continuous
zero level set in unsigned distance fields through level set projection. In Proceedings of the IEEE/CVF
international conference on computer vision, 2023. 1

J. Zhou, B. Ma, S. Li, Y.-S. Liu, Y. Fang, and Z. Han. CAP-UDF: Learning Unsigned Distance Functions
Progressively From Raw Point Clouds With Consistency-Aware Field Optimization. /IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024. 1, 3,5, 6,7, 8, 14, 15, 16, 17, 19, 20, 22, 23, 24

Q.-Y. Zhou and V. Koltun. Dense Scene Reconstruction with Points of Interest. ACM Transactions on
Graphics (TOG), 2013. 6

13

A.1 Complete quantitative results

For the sake of completeness, we report in Tabs. A.3a, A.3b, A.4a, A.4b, A.5a, A.5b, A.6a and A.6b
the mean results on the datasets and methods used in the main paper, alongside their respective
standard deviations. We also report the results of DC-based methods on point cloud reconstruction
from CAP-L [46] and DiffUDF [11] in Tab. A.2. We observe that the trends are consistent with
the median results shown in the main paper, with our method outperforming all baselines at high
resolutions on complex shapes, and competing closely with existing methods at lower resolutions and
on simpler shapes. The standard deviations computed on our method are also consistently lower than
the baselines at high resolution, while remaining competitive at lower resolutions, showing that our
method is also more robust to shape variations compared to existing baselines. As in the main tables,
notice that UNDC [5] failed to reconstruct meshes at high resolution due to the method’s VRAM
requirements. DCUDF [14] failed to reconstruct some of the shapes in the experiments, producing
unbound metrics. We discard such shapes from the reported results of DCUDF, which means that its
numbers are not directly comparable to the other baselines.

A.2 Implementation details and other ablation studies

Table A.1: Number of additional training iterations. Median Image Consistency (IC 1) of the last iteration
at resolution 512. *Resolution is halved.
Max training iter. \ MGN#* Cars Chairs Planes

1 iter. 94.9 88.5 86.2 87.0
3 iter. 94.9 88.4 86.0 86.8
5 iter. 94.8 889 872 87.1
7 iter. 94.9 88.5 859 86.5

Our network architecture consists of 2 fully connected hidden layers, with 1024 nodes each, and an
output layer with 128 outputs. The input layer accepts UDF values and gradients at the 8 cell corners,
making up 32 inputs. Additionally, 128 inputs per cell are needed to enable multiple iterations. We
consider the current cell and the 6 cells that share a face with it, for a total of 7 * 128 additional
inputs, which brings the total number of input nodes to 928 and the total number of trainable weights
to around 2.1M. Each layer, except for the final one, is followed by a leaky ReLLU activation function
with a negative slope of 0.01. The output layer is followed by a sigmoid activation before being used
as input for the next iteration, and by a softmax function for the cross entropy loss. The network is
trained using the Adam optimizer [16] with a learning rate of 5 x 10~* for 50 epochs.

The learning rate is lower than in [36], with more epochs. We have found this helps our iterative
process converge better. For training, we use the first 80 watertight shapes from ABC [17] sampled at
resolution 1283, yielding around 5.5M training cells. As mentioned in the method section of the main
paper, we limit the number of additional training iterations to 5. In Tab. A.1, we provide an ablation
study showing that training the network with a single additional pass already achieves good results,
with 5 iterations achieving the best. Using even more iterations did not bring measurable benefits.
The training takes around 2 hours on an NVIDIA A100-40G GPU.

As an ablation, we also trained the network without the noise augmentation described in the method
section of the main paper. The method presented in this work achieved a median Mesh Chamfer
Distance x10~° of 5.64, 5.23 and 8.84 at resolutions 1283, 2563 and 5123 respectively, using the
UDF auto-decoder trained on ShapeNet [3] cars in Section 4.3 of the main paper. Without noise
augmentation, the same experiment achieved 8.01, 12.5 and 47.8 respectively, showing that the noise
augmentation is crucial to achieve good performance in practical scenarios.

A.3 Training convergence

In the method section of the main paper we state that our pipeline applies a sigmoid function to the
network outputs before using them as input for the next iteration. We have experimentally found that,
when using an identity activation (i.e. direct input) and training with only one iteration, the network
goes from an IC of 87.0 on ShapeNet [3] cars at resolution 512 to 88.6, however it starts diverging

14

Table A.2: Neural Unsigned Distance Fields from point clouds (DC-based methods). L2 Mesh Chamfer
Distance x 105 with 2M sample points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying
grid resolutions. Median scores are reported for cars; mean for scenes due to the low number of samples. The
best results are in bold. UNDC failed at resolution 512 due to its large GPU memory requirements.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method |cD) FIt ICt|CD| FIt ICt|CD| FIt ICt
UNDC [5] 334 697 844 | 785 494 855| 446 59.1 87.6
DualMesh-UDF [41] 535 634 695 | 944 504 856 | 603 623 84.9
128 NSD-UDF + DualMesh-UDF [36] | 33.6 69.8 84.5| 549 524 872 | 3.07 682 88.2
Ours + DualMesh-UDF 336 700 844 | 535 528 87.3| 368 653 88.1
UNDC [5] 785 69.1 769 | 777 485 842 | 684 561 809
DualMesh-UDF [41] 504 630 683 | 851 492 849 | 501 619 83.1
256 NSD-UDF + DualMesh-UDF [36] | 34.3 689 834 | 674 497 865 | 272 723 883
Ours + DualMesh-UDF 220 499 796 | 635 50.6 869 | 289 700 88.5

UNDC [5] - - - - - - - - -
DualMesh-UDF [41] 517 598 618 | 926 463 835 | 507 594 794
512 NSD-UDF + DualMesh-UDF [36] | 35.2 665 77.9 | 7.69 470 857 | 335 69.6 85.6
Ours + DualMesh-UDF 340 686 828 | 781 482 865| 2.6 733 884

after that. Using a softmax activation, which helps normalizing the otherwise unbound network
outputs, the training converges, but the network does not produce significant improvements over
iterations, going from an IC of 87.3 to 87.5 after two iterations. Using a sigmoid activation, instead,
showed a more steady improvement over iterations, going from 87.6 to 88.5 after one iteration, and
88.9 after an additional one. However, training it with more than one iteration did not show significant
improvements. Using a random number of training iterations, instead, helped the network to converge
until 5 iterations, achieving similar IC scores but better CD scores (9.90 x 107° vs 8.84 x 107?), as
shown in the main paper, signifying an overall similar accuracy but better surface retrieval capabilities
at high resolutions.

A.4 Auto-decoder training

For our auto-decoder experiments we used the traditional auto-decoder architecture proposed in
DeepSDF [27]. The input meshes are rescaled and centered within a [—1, 1]® volume, and during the
data preparation phase, training points are sampled. For each mesh, 20k points are uniformly sampled
within the volume, while 400k points are sampled near the surface. To obtain the surface points, 200k
points are first uniformly distributed on the surface, and then small amounts of Gaussian noise are
added. Gaussian noise with a mean of 0 and a standard deviation of 1/0.005 is applied to the first
200k surface points, and noise with a mean of 0 and a standard deviation of 1/0.0005 is added to the
remaining 200k points. The auto-decoder network consists of 12 layers, each with 1024 hidden nodes
and ReL.U activations, and latent codes of size 512. It is trained using L1 loss, without regularization
or Fourier encoding, for 10k epochs with a batch size of 16. To focus the network’s capacity on the
surface, the UDF is clamped to 0.1. The Adam optimizer [16] is used with learning rates of 0.0005
for the model and 0.001 for the latent codes, with learning rate decay applied at epochs 1600 and
3500 by a factor of 0.35.

A.5 Different auto-decoder UDF architecture

To test the robustness of our method to different UDF architectures, we trained an auto-decoder
with a different architecture: using a softplus activation function and Eikonal loss with a weight of
0.1, with the rest as in the section above. We show the results on ShapeNet [3] cars in Tab. A.7,
along with the highest-scoring baselines from the main experiment. While all methods achieved
slightly better performance compared to the ReLU-based architecture, the same conclusions apply.
Our method outperforms the tested baselines, particularly so at high resolutions, while also achieving
lower standard deviations across the dataset.

15

Table A.3: Triangulating auto-decoder-based Neural Unsigned Fields using Marching Cubes-based
method. L2 Mesh Chamfer Distance x 10~ with 2M sample points (CD), F1 score (F1) and Image Consistency
(IC) are reported at varying grid resolutions. The best results are in bold. DCUDF failed to mesh some of the
shapes, but its numbers are reported nonetheless. *Resolution is halved for experiments with MGN due to the
lower complexity of the shapes.

(a) Mean results.

MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]

Res. Method | cOy FIt ICt|CD) FIt ICt|CDJ FIt ICt|CD) FIf ICt

CAP-UDF [46] 19.7 682 786 | 71.7 495 81.8 518 513 689 | 195 68.1 79.0

MeshUDF [13] 2.79 82.0 933 | 119 579 887 | 218 68.0 887 | 194 735 81.0

128-MC DCUDF [14] 14100 3.40 3.84 | 8000 10.6 13.7 | 22700 144 16.8 | 2900 28.9 243

DCUDF-T [14] 116 3.04 866 | 665 554 86.8| 2720 652 782 | 902 69.4 78.8
DCUDF-T-nocut [14] - - - 144 609 89.2 - - - - - -

NSD-UDF + MC [36] 1.55 829 941 | 940 599 885 17.7 68.7 885 | 472 78.0 845

Ours + MC 226 808 934 | 679 595 889 | 727 678 895 | 349 776 848

CAP-UDF [46] 3.23 854 912 | 483 58.8 86.2 223 655 785 | 895 832 850

MeshUDF [13] 1.16 832 945 | 17.1 61.1 882 | 67.1 69.8 854 | 483 852 85.1

256-MC DCUDF [14] 18200 5.17 4.12 | 1090 50.6 75.1 | 7900 50.7 553 | 278 824 802

DCUDF-T [14] 103 86.1 94.8 | 1080 50.3 75.0 | 7840 50.7 553 | 797 80.1 779
DCUDF-T-nocut [14] - - - 684 564 80.7 - - - - - -

NSD-UDF +MC [36] | 0.973 88.7 948 | 147 612 876 | 53.7 69.8 854 | 381 869 852

Ours + MC 1.02 876 944 | 726 631 89.0| 106 706 893 | 2.64 882 86.6

CAP-UDF [46] 2.14 89.1 94.1 | 48,6 602 864 202 679 793 | 894 873 855

MeshUDF [13] 1.18 893 944 | 136 544 788 | 799 575 642 | 212 874 834

512-MC DCUDF [14] 494 858 88.8 | 478 529 80.2 | 7510 557 63.8| 199 84.1 81.0

DCUDF-T [14] 32.8 859 889 | 478 529 802 | 7380 559 642 | 284 832 799
DCUDF-T-nocut [14] - - - 614 585 847 - - - - - -

NSD-UDF + MC [36] 1.08 89.5 944 | 80.8 56.8 82.0 394 629 712 | 134 88.2 83.8

Ours + MC 0.880 893 944 | 123 634 882 | 366 71.6 865 | 331 90.1 86.5

(b) Standard deviation for each metric, computed across the dataset.

MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]
Res. Method ‘ CD F1 IC ‘ CD F1 1C ‘ CD F1 IC ‘ CD F1 IC

CAP-UDF [46] 12.1 783 346|519 122 569 | 649 154 147 | 213 563 345

MeshUDF [13] 1.28 79 234|521 121 222 303 139 558 | 274 554 256

128-MC DCUDF [14] 561 0.901 1.08 | 5560 4.81 5.74 | 18800 8.78 16.0 | 3010 7.84 7.45

DCUDF-T [14] 169 1.30 397 | 576 114 428 | 5020 14.0 17.6 | 1400 6.72 6.79
DCUDF-T-nocut [14] - - - 9.59 11.1 249 - - - - - -

NSD-UDF + MC [36] | 0.817 7.87 191 | 524 122 233 | 28.0 137 564 | 287 6.10 228

Ours + MC 0872 7.75 209 | 3.16 11.7 192 | 8.55 134 493 | 149 6.02 1.89

CAP-UDF [46] 4.83 7.23 237 | 408 12.6 4.46 220 159 127 | 744 532 3.03

MeshUDF [13] 0.733 6.78 1.56 | 11.7 11.6 2.64 | 749 143 851 | 418 551 241

256-MC DCUDF [14] 12700 2.22 1.86 | 3250 14.0 152 | 9500 17.7 199 | 664 845 6.52

DCUDF-T [14] 12.5 7.00 1.68 | 3250 14.0 15.1 | 9440 17.6 199 | 1440 8.70 7.70
DCUDF-T-nocut [14] - - - 519 123 7.02 - - - - - -

NSD-UDF + MC [36] | 0.636 6.78 145 | 103 11.8 2.79 | 68.9 144 836 | 3.04 580 3.13

Ours + MC 0.557 655 146 | 391 108 1.95 13.0 140 5.12 | 2.37 437 2.06

CAP-UDF [46] 3.97 6.78 1.80 | 40.6 124 4.19 217 13.8 122 | 7.65 4.03 3.20

MeshUDF [13] 1.30 6.63 142 | 115 129 834 964 163 17.8 | 200 530 4.67

512-MC DCUDF [14] 362 102 7.60 | 989 147 128 | 9890 19.0 22.0 | 537 835 499

DCUDEF-T [14] 219 998 733 | 989 147 128 | 9950 19.0 225 | 774 853 593
DCUDF-T-nocut [14] - - - 474 124 551 - - - - - -

NSD-UDF+MC [36] | 1.09 6.66 148 | 657 128 640 | 442 151 158 | 11.3 5.08 4.38

Ours + MC 0563 649 127 | 841 112 248 | 485 127 755 | 283 4.08 273

A.6 Additional figures

We show here additional qualitative results of our method compared to the baselines. In Fig. A.1 we
show an additional example at different resolutions compared to the NSD-UDF [36] baseline: the
shapes look similar at low resolutions, but at 256 and 512 the baseline cannot retrieve large portions
of the surface.

In Fig. A.2 & A.3 we show the same shapes as in Fig. 3 of the main paper, but with different
resolutions. In Fig. A.4, A.5 & A.6 we show additional shapes at all tested resolutions. As observed

16

Table A.4: Triangulating auto-decoder-based Neural Unsigned Fields using Dual Contouring-based
methods. L2 Mesh Chamfer Distance x 10~ with 2M sample points (CD), F1 score (F1) and Image Consistency
(IC) are reported at varying grid resolutions. The best results are in bold. UNDC failed at resolution 512 due to
high GPU memory requirements. *Resolution is halved for experiments with MGN due to the lower complexity
of the shapes.

(a) Mean results.

MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]
Res. Method |CD|l F1t ICt|CDJ| FIt ICt| CD| Fit ICt|CD| Fi1t ICt
UNDC [5] 126 86.1 938 | 17.1 608 86.0| 91.3 668 788 | 3.82 81.8 857
DualMesh-UDF [41] 1120 61.1 60.9 | 1600 33.0 42.8 | 12400 150 13.0 | 341 724 723
128-DC DualMesh-UDF-T [41] 0939 887 949 | 745 626 894 | 19.1 714 887 | 291 833 873
NSD-UDF + DualMesh-UDF [36] | 0.901 89.2 94.5| 860 639 89.1 | 173 702 883 | 3.12 859 86.5
Ours + DualMesh-UDF 0904 892 945 | 589 642 89.7| 728 70.1 89.8 | 2.21 86.7 88.0
UNDC [5] 132 879 912 | 122 492 690 | 598 509 559 | 214 819 787
DualMesh-UDF [41] 993 60.0 59.0 | 1440 333 42.6 | 11900 152 13.0 | 158 76.1 725
256-DC DualMesh-UDF-T [41] 0.899 89.7 947 | 143 618 86.6| 622 69.0 824 | 326 878 86.8
NSD-UDF + DualMesh-UDF [36] | 0.838 89.5 943 | 156 61.8 870 | 560 683 824 | 372 883 854
Ours + DualMesh-UDF 0806 895 944 | 757 635 885 | 125 69.2 86.7 | 2.66 893 87.3
UNDC [5] 6.86 83.0 812 - - - - - - - - -
DualMesh-UDF [41] 948 584 57.1 | 1560 322 41.1 | 12400 147 122 | 172 756 70.6
512-DC DualMesh-UDF-T [41] 125 888 927 | 51.7 554 779 | 211 60.6 672 | 7.68 87.7 83.7
NSD-UDF + DualMesh-UDF [36] | 1.13 88.2 919 | 863 543 77.8 | 412 584 639 | 138 86.7 82.1
Ours + DualMesh-UDF 0899 882 923 | 135 610 851 | 389 67.1 80.1 | 347 89.0 852

(b) Standard deviation for each metric, computed across the dataset.

MGN* [1] ShapeNet cars [3] ShapeNet chairs [3] ShapeNet planes [3]
Res. Method | CD Fl IC | CD Fl IC | CD Fl IC | CD FI IC
UNDC [5] 0.651 6.80 143 | 11.6 12.0 326 | 944 155 112333 577 2.69
DualMesh-UDF [41] 2470 25.6 2542090 120 13.2| 12800 12.0 113 | 995 10.8 122
128-DC DualMesh-UDF-T [41] 0.561 6.51 136 | 417 105 210 | 293 135 594|258 534 194
NSD-UDF + DualMesh-UDF [36] | 0.546 6.48 1.50 | 5.14 114 221 | 272 133 555|276 496 233
Ours + DualMesh-UDF 0517 647 143|292 11.0 187 | 904 132 448|140 488 195
UNDC [5] 1.25 6.80 241|977 119 959 | 716 17.6 16.1 | 21.1 6.89 5.63
DualMesh-UDF [41] 2280 259 2551390 11.6 12.8 | 12900 119 109 | 241 9.85 11.8
256-DC DualMesh-UDF-T [41] 0.673 649 131|994 107 3.12| 723 13.6 897|296 396 239
NSD-UDF + DualMesh-UDF [36] | 0.565 6.80 1.37 | 11.1 11.8 3.10 | 71.2 13.1 833 |3.07 444 3.16
Ours + DualMesh-UDF 0516 6.81 126 | 421 11.1 222 | 159 130 498 | 257 4.08 230
UNDC [5] 1.3 936 6.95 - - - - - - - - -
DualMesh-UDF [41] 2080 26.0 256 | 1960 114 12.5| 14500 11.6 103 | 267 9.88 11.7
512-DC DualMesh-UDF-T [41] 136 7.14 251 | 385 11.5 596 | 221 13.6 143 | 6.87 494 393
NSD-UDF + DualMesh-UDF [36] | 1.18 7.48 292 | 69.7 12,6 7.41 | 467 149 155|114 52 483
Ours + DualMesh-UDF 0.616 748 254|932 114 303 | 496 123 763|283 436 3.10

in the main paper, existing methods retrieve most of the surface at lower resolutions, leaving less
room for improvement, whereas at higher resolutions our method shows a significant advantage.

In Fig. A.7, we show the meshing on the CAP-L 3D scene [46] used in Fig. 4 of the main text in
greater size to better appreciate the details, e.g., the base of the statues.

17

NSD-UDF [36]

Ours

Figure A.1: Meshing at different resolutions, additional examples. While NSD-UDF [36] retrieves
most of the surface well at a low resolution, it struggles at higher ones. In contrast, our method,
recovers the surface well at all resolutions. We use Marching Cubes with both methods.

GT |CAP-UDF MeshUDF DCUDF-T DCUDF-nocut NSD-UDF ~ Ours | UNDC DMUDF-T NSD-UDF' Ours’

TE- 33
== ==

Figure A.2: Qualitative comparison at resolution 256. Surface meshing results of auto-decoder-
based neural UDFs with all methods at resolution of 256 (and 128 for MGN). T indicates that the
method is combined with DMUDF. The shapes are the same as in the main text.

Vo d <

GT |CAP-UDF MeshUDF DCUDF-T DCUDF-nocut NSD-UDF ~ Ours | UNDC DMUDF-T NSD-UDF' Ours’

IS OIF
mawm ==

Figure A.3: Qualitative comparison at resolution 128. Surface meshing results of auto-decoder-
based neural UDFs with all methods at resolution of 128 (and 64 for MGN). T indicates that the
method is combined with DMUDF. The shapes are the same as in the main text.

g our f o

18

Table A.5: Neural Unsigned Distance Fields from point clouds (MC-based methods). L2 Mesh Chamfer
Distance x 10> with 2M sample points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying
grid resolutions. The best results are in bold.

(a) Mean results.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method |CD, FIt ICt|CD| FIt ICt|CD| F1t IC?
CAP-UDF [46] 427 680 838 | 114 485 853 | 796 60.1 862

MeshUDF [13] 440 682 845 | 119 497 86.1 | 952 614 87.0

128-MC DCUDE-T [14] 279 597 840 | 131 450 837 | 994 532 87.0

DCUDF-T-nocut [14] - - - 10.7 513 87.6 | 153 58.6 90.2
NSD-UDF + MC [36] | 3.34 698 86.7 | 11.1 51.7 863 | 486 66.0 87.8

Ours + MC 344 693 853 | 976 51.8 868 | 6.65 63.6 87.5
CAP-UDF [46] 365 70.1 86.1 | 10.1 534 864 | 404 69.0 86.6

MeshUDF [13] 342 69.6 863 | 102 523 86.1 | 561 668 87.5
256-MC DCUDF-T [14] 475 699 846 | 42.1 50.7 847 | 106 63.8 84.6
DCUDF-T-nocut [14] - - - 120 53.1 857 | 637 68.8 87.1

NSD-UDF +MC [36] | 330 703 863 | 11.5 529 86.1 | 3.85 70.6 86.7
Ours + MC 307 714 866 | 993 54.0 868 | 423 69.2 88.0
CAP-UDF [46] 357 705 86.1 | 10.8 53.8 862 | 487 693 84.0
MeshUDF [13] 449 699 845 | 109 527 857 | 425 688 86.2

512-MC DCUDF-T [14] 140 689 833 | 370 509 850 | 727 61.8 78.3
DCUDF-T-nocut [14] - - - 13,5 515 844 | 664 682 864
NSD-UDF + MC [36] | 3.72 700 84.1 | 123 525 856 | 592 67.1 81.1
Ours + MC 308 718 868 | 10.5 54.1 864 | 348 719 87.8
(b) Standard deviation for each metric, computed across the dataset.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method | CD Fl IC | CD FI IC | CD FI IC
CAP-UDF [46] 198 199 243|471 122 3.07 | 388 11.2 253

MeshUDF [13] 1.38 20.1 142|577 139 3.13 | 523 134 297

128-MC DCUDF-T [14] 385 20.1 6.53 | 318 129 591 | 109 120 5.37
DCUDF-T-nocut [14] - - - 537 126 3.06 | 125 125 1.65
NSD-UDF + MC [36] | 1.67 20.8 220 | 691 142 331 | 3.54 126 2.69
Ours + MC 1.67 200 1.8 [626 133 275 | 529 121 2.30

CAP-UDF [46] 191 21.1 194 | 6.65 144 346 | 235 12.6 341

MeshUDF [13] 1.79 213 2.03 | 565 149 348 | 3.06 133 2.78
256-MC DCUDEF-T [14] 371 21.8 299 | 4677 155 438 | 202 143 7.80
DCUDF-T-nocut [14] - - - 6.85 152 4.13 | 3.66 134 340
NSD-UDF + MC [36] | 1.76 21.5 2.63 | 7.27 15.1 3.69 | 247 13.0 3.56
Ours + MC 1.60 203 2.04 | 6.63 144 3.11 | 331 119 224
CAP-UDF [46] 1.98 213 244 | 7.26 15 364 | 3.14 142 529
MeshUDF [13] 338 21.5 345|635 153 394 | 246 133 3.30
512-MC DCUDF-T [14] 191 21.3 4.07 | 282 153 4.21 | 1310 158 12.2
DCUDF-T-nocut [14] - - - 745 153 5.10 | 3.78 13,5 3.57

NSD-UDF + MC [36] | 2.07 21.1 321 |7.66 154 4.07 | 395 156 7.05

Ours + MC 1.63 204 254|699 150 348 | 215 124 2.73

19

Table A.6: Neural Unsigned Distance Fields from point clouds (DC-based methods). L2 Mesh Chamfer
Distance x 105 with 2M sample points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying
grid resolutions. The best results are in bold. UNDC failed at resolution 512 due to its large GPU memory
requirements.

(a) Mean results.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method |cD| F14 ICt|CD| FIt ICt|CD| FIt IC?
UNDC [5] 334 697 844 | 127 523 848 | 476 609 87.6
DualMesh-UDF [41] 535 634 695 | 113 540 850 | 577 625 843
128-DC NSD-UDF + DualMesh-UDF [36] | 33.6 69.8 84.5| 7.0 560 87.0| 351 683 883
Ours + DualMesh-UDF 336 700 844 | 673 562 87.2| 437 667 882
UNDC [5] 785 691 769 | 9.89 529 839 | 175 583 812
DualMesh-UDF [41] 504 630 683 | 108 532 843 | 543 611 825
256-DC NSD-UDF + DualMesh-UDF [36] | 343 68.9 834 | 842 540 862 | 3.08 715 87.7
Ours + DualMesh-UDF 220 499 79.6 | 7.95 54.6 867 | 336 704 883

UNDC [5]]]) - - - - -]
DualMesh-UDF [41] 517 598 61.8| 114 506 83.1| 5.69 582 79.0
512-DC NSD-UDF + DualMesh-UDF [36] | 352 66.5 77.9 | 10.1 517 854 | 399 688 85.1
Ours + DualMesh-UDF 340 686 828 | 915 525 862 | 3.05 723 879

(b) Standard deviation for each metric, computed across the dataset.

CAP-L scenes [46] CAP-L cars [46] DiffUDF cars [11]

Res. Method | CD F1 IC |[CD Fl IC |CD FlI IC
UNDC [5] 255 202 397 | 134 130 327|222 131 214
DualMesh-UDF [41] 357 189 7.07 | 658 138 427|277 137 342
128-DC NSD-UDF + DualMesh-UDF [36] | 42.8 17.6 0.739 | 3.98 13.1 288|204 11.7 214
Ours + DualMesh-UDF 430 173 0803 |3.70 128 2.60|3.02 118 2.00
UNDC [5] 826 21.8 961 |538 144 388|305 103 1.65
DualMesh-UDF [41] 357 195 701 | 634 147 460|266 139 3.16
256-DC NSD-UDF + DualMesh-UDF [36] | 43.3 18.6 0403 | 482 143 351 | 196 12.5 2.82
Ours + DualMesh-UDF 243 281 658 | 443 140 3.11|234 120 217

UNDC [5] - - - - - - - - -
DualMesh-UDF [41] 350 199 832 | 645 146 486|268 135 3.03
512-DC NSD-UDF + DualMesh-UDF [36] | 42.3 18.6 204 | 574 147 4.04 | 250 140 3.80
Ours + DualMesh-UDF 432 182 0.0709 | 505 146 353|189 124 286

Table A.7: Triangulating a Softplus-based auto-decoder. L2 Chamfer Distance x10~° with 2M sam-
ple points (CD), F1 score (F1) and Image Consistency (IC) are reported at varying grid resolutions on the
ShapeNet [3] cars dataset. The best results are in bold.

Median Mean Std

Res. Method \ Ch| Fi11 ICt \ CD| Fi11 ICt \ CD F1 1C
CAP-UDF [46] 609 525 80.7 | 692 499 80.1 | 566 10.5 4.51

MeshUDF [13] 8.06 614 882 | 100 613 886|640 11.6 2.17

128-MC NSD-UDF +MC [36] | 595 649 886 | 7.69 63.5 88.7 513 119 2.26
Ours + MC 480 640 89.0 | 585 63.1 89.1 | 353 113 194

CAP-UDF [46] 237 652 868 | 300 639 860|239 123 396

MeshUDF [13] 134 679 884 | 151 663 883|104 11.7 256

256-MC NSD-UDF+MC [36] | 863 693 883 | 104 667 880|894 119 257
Ours + MC 495 704 89.6 | 628 682 893|469 113 1.89

CAP-UDF [46] 238 673 872] 303 658 864|246 126 397

MeshUDF [13] 583 623 779 | 695 596 774|452 132 17.15

512-MC NSD-UDF+MC [36] | 21.2 68.0 858 | 246 650 848 | 199 128 444
Ours + MC 883 714 889 | 10.7 687 88.7|925 116 237

20

GT |CAP»UDF MeshUDF DCUDEF-T DCUDF-nocut NSD-UDF Ours | UNDC DMUDF-T NSD-UDE Ours®

WWW WWWWWW

T
e
R’E"i? ‘iiﬂ LAl

Figure A.4: Additional qualitative comparison at resolution 512. Surface meshing results of
auto-decoder-based neural UDFs with all methods at resolution of 512 (and 256 for MGN). UNDC
failed at resolution 512 due to high GPU memory requirements. ' indicates that the method is
combined with DMUDEF.

GT | CAP-UDF MeshUDF DCUDF-T DCUDF-nocut NSD-UDF ~ Ours | UNDC DMUDF-T NSD-UDF' Ours’

L B R AR A |

XIS

Figure A.5: Additional qualitative comparison at resolution 256. Surface meshing results of
auto-decoder-based neural UDFs with all methods at resolution of 256 (and 128 for MGN). T indicates
that the method is combined with DMUDE.

I

GT |CAP-UDF MeshUDF DCUDF-T DCUDF-nocut NSD-UDF ~ Ours | UNDC DMUDF-T NSD-UDF' Ours’

?WW L A |

#4]'0%

L VIE. VI N

Figure A.6: Additional qualitative comparison at resolution 128. Surface meshing results of
auto-decoder-based neural UDFs with all methods at resolution of 128 (and 64 for MGN). T indicates
that the method is combined with DMUDF.

21

GT CAP-UDF MeshUDF DCUDEF-T NSD-UDF

fes ;B
P

Ours DMUDF' NSD-UDF'

Figure A.7: Meshing of a 3D scene from CAP-L [46]. Surface meshing results of the "Burghers"
scene with all methods at resolution of 512. UNDC failed at resolution 512 due to high GPU memory
requirements. ' indicates that the method is Dual Contouring-based, otherwise it is Marching Cubes-
based.

A.7 DoubleCoverUDF [14] tuning and min-cut

To achieve the better results with DCUDF [14] compared to its default parameters, we have run
the algorithm 3 times per experiment and per resolution, with different parameters, and we have
selected the best run in each scenario. Additionally, in Fig. A.8, we present the meshing results of
DCUDF [14] on UDFs from different models on cars, both with and without the final min-cut step,
at resolutions of 128 and 512. Without the min-cut, more surfaces are retained, though they are
double-layered. Moreover, the overall meshing quality deteriorates at higher resolutions, following
the trend observed for the other baselines.

A.8 Meshing ground-truth UDF

Although our method is designed to handle imperfect UDFs, we also evaluate it on true UDFs
computed directly from ground-truth meshes to verify that it does not introduce unwanted artifacts.
We report results on the ShapeNet [3] cars dataset in Tab. A.8 (top), and visualize several triangulations
at a resolution of 512 in Fig. A.9. As observed, our method does not introduce significant artifacts;
however, as expected, multiple iterations provide no benefit in this setting.

In the same table, we also compute the number of holes as surface boundaries, similarly to the
description provided by DCUDF [14], at resolution 512. We report the average. We notice that
the original meshes have a large number of boundaries because they contain multiple detailed
components and inner structures. None of the methods faithfully recovers the correct mesh topology.
Methods that rely directly on MC triangulation, such as CAP-UDF [46], NSD-UDF+MC [36] and
Ours+MC, tend to suffer from micro-holes and gaps between some of the faces. MeshUDF uses a
heuristic specifically designed to reduce this behavior and connect as many portions of the surface
as possible, explaining the lower number of holes. DCUDEF-T [14] starts from an inflated mesh, so
it generally tends to have fewer holes. Simple postprocessing steps can be applied to all methods
to improve the final mesh quality. We take as an example the first of the ShapeNet Cars (object
100715345ee54d7ae38b52bdee9d36a3), and we apply Trimesh-based postprocessing (fill small holes,
merge close vertices, remove spurious faces), showing that all methods improve.

22

Auto-decoder cars CAP-L cars [46] DiffUDF cars [11]

GT

with min-cut

128

without min-cut

with min-cut

512

without min-cut

Figure A.8: DoubleCoverUDF min-cut. Comparing reconstructions of DCUDF [14] with and
without the min-cut step at resolution 128 (middle) and 512 (bottom).

23

NSD-UDF [36] GT

Ours

Figure A.9: Triangulating ground-truth UDF. Surface meshing results on the ground-truth UDF in
comparison to NSD-UDF [36]. Our method does not introduce significant unwanted artifacts.

Table A.8: Triangulating ground-truth UDFs. Results are reported on the ShapeNet [3] cars dataset,
using the true UDF computed from the mesh. We compare against NSD-UDF + MC [36] at multiple
resolution with the Median L2 Chamfer Distance x 10~° with 2M sample points (Chamfer-Distance),
and against all MC-based methods with the average number of holes, as surface boundaries at
resolution 512(Number of holes). For the latter, we also report results on the first car of the dataset,

before and after post-processing the mesh.

Method

(a) Chamfer-Distance

Res.
128 256 512

NSD-UDF + MC [36]
Ours + MC at iter. 1
Ours + MC at iter. 6

1.34 0.230 0.0300
.36 0.244 0.0294
1.40 0.231 0.0300

(b) Number of holes at resolution 512

| ShapeNet cars [3] | Car 1 (before post-process.)

Car 1 (post-processed)

GT
CAP-UDF [46]
MeshUDF [13]
DCUDF-T [14]

DCUDF-T-nocut [14]
NSD-UDF+MC [36]
Ours+MC

783
10024
428
7
2.65
8280
9284

1552
13265
997
6
2
8885
9808

2125
240
6
2
1387
1604

24

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We tried our best to clearly state the claims.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we include a limitations section and we discuss artifacts in the results
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not include theoretical results in the paper.

25

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details to reproduce the experiments.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

26

Justification: The code used in the paper will be made publicly available in case of accep-
tance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specified all the details in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The algorithms used in the paper are deterministic, however we provide
standard deviation and mean values in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We run all experiments on a single GPU and we provide training time and
per-shape meshing time in the main paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not discuss societal impacts in the paper, as we believe that our work
does not have any direct broader impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe our model does not pose a risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the datasets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

30

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	From UDF to Triangulated Mesh
	Speeding up the Process.

	Experiments
	Datasets and baselines
	Metrics
	Comparing against other methods
	Importance of Correct Thresholding
	Mesh Evolution over Successive iterations

	Limitations
	Conclusion
	Acknowledgements
	Complete quantitative results
	Implementation details and other ablation studies
	Training convergence
	Auto-decoder training
	Different auto-decoder UDF architecture
	Additional figures
	DoubleCoverUDF Hou23a tuning and min-cut
	Meshing ground-truth UDF

