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EEG-MACS: Manifold Attention and Confidence Stratification
for EEG-based Cross-Center Brain Disease Diagnosis

under Unreliable Annotations
Anonymous Authors

Figure 1: The proposed MACS framework tackles data heterogeneity and annotation unreliability in EEG-based brain disease
diagnosis, aiming for superior performance across centers and validation in both neurocognitive and movement disorders.

ABSTRACT
Cross-center data heterogeneity and annotation unreliability signif-
icantly challenge the intelligent diagnosis of diseases using brain
signals. A notable example is the EEG-based diagnosis of neurode-
generative diseases, which features subtler abnormal neural dynam-
ics typically observed in small-group settings. To advance this area,
in this work, we introduce a transferable framework employing
Manifold Attention and Confidence Stratification (MACS) to di-
agnose neurodegenerative disorders based on EEG signals sourced
from four centers with unreliable annotations. The MACS frame-
work’s effectiveness stems from these features: 1) The Augmentor
generates various EEG-represented brain variants to enrich the
data space; 2) The Switcher enhances the feature space for trusted
samples and reduces overfitting on incorrectly labeled samples; 3)
The Encoder uses the Riemannian manifold and Euclidean metrics
to capture spatiotemporal variations and dynamic synchroniza-
tion in EEG; 4) The Projector, equipped with dual heads, monitors
consistency across multiple brain variants and ensures diagnostic
accuracy; 5) The Stratifier adaptively stratifies learned samples by
confidence levels throughout the training process; 6) Forward and
backpropagation inMACS are constrained by confidence stratifica-
tion to stabilize the learning system amid unreliable annotations.
Our subject-independent experiments, conducted on both neurocog-
nitive and movement disorders using cross-center corpora, have
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demonstrated superior performance compared to existing related
algorithms. This work not only improves EEG-based diagnostics for
cross-center and small-setting brain diseases but also offers insights
into extending MACS techniques to other data analyses, tackling
data heterogeneity and annotation unreliability in multimedia and
multimodal content understanding. We have released our code here:
https://anonymous.4open.science/r/EEG-Disease-MACS-0B4A.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Applied computing→Health care information systems; •Human-
centered computing;

KEYWORDS
EEG Signals, Cross-center Learning, Unreliable Annotation,Weakly-
supervised Learning, Neurodegenerative Disease

1 INTRODUCTION
Addressing the challenges posed by data heterogeneity and annota-
tion unreliability is essential for the analysis and interpretation of
multimedia and multimodal data [1, 2]. These issues are particularly
prevalent in human-centered computing, where they encounter
even greater difficulties in small-group settings. A prime example is
the analysis of neural dynamics, such as the automated diagnosis of
cognitive and movement brain disorders through electroencephalo-
gram (EEG) signals [3, 4]. While EEG-based diagnosis models have
undergone extensive research, they are often disease-specific, rely
on single-center studies, and depend on fully supervised learn-
ing with annotated data [5]. Developing effective and transferable
models capable of handling cross-center data and low-quality anno-
tations is crucial for enhancing adaptability across different diseases
and advancing EEG modeling techniques.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://anonymous.4open.science/r/EEG-Disease-MACS-0B4A
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Current EEG analyzing methods range from traditional feature
engineering to deep learning approaches. Various features extracted
from domains like time (e.g., Hjorth parameters), frequency (e.g.,
Fourier Transform), dynamics (e.g., entropy), and functional net-
works (e.g., synchronization and phase coupling) have demon-
strated efficacy due to EEG’s intrinsic characteristics [6–9]. The
sparsity of handcrafted features has led to the adoption of deep
learning models, such as convolutional neural networks, graph neu-
ral networks, and hybrid approaches, to capture spatial-temporal
patterns, structured characteristics, and other high-level representa-
tions [10–13]. However, these existing methods often struggle with
noisy data and lack cross-center applicability. This may primarily
be due to: 1) the ineffective mapping that cannot project EEG signals
into a high-level feature space invariant across diverse data distribu-
tions from multiple centers; 2) the absence of integrating advanced
learning strategies to tackle complex learning issues under unreliable
annotations effectively.

From this perspective, our work presents a novel framework
aimed at developing a transferable model adept at managing un-
reliable annotations, as illustrated in Figure 1. This model specifi-
cally targets the recognition of neurodegenerative disorders. These
include neurocognitive disorders, represented by mild cognitive
impairment(MCI) and Alzheimer’s Disease(AD), and movement
disorders, exemplified by Parkinson’s Disease(PD). We selected
these three diseases due to the potential progression relationship
between AD and MCI [14] as well as the observed comorbidity be-
tween PD and cognitive impairment [15, 16]. The proposed frame-
work is characterized by its innovative use of Manifold Attention
and Confidence Stratification (MACS), which optimally synergizes
modules including the Augmentor, Switcher, Encoder, Projector, and
Stratifier. MACS’s success in achieving transferability across cen-
ters and diseases under unreliable annotations can be attributed to
three key factors: 1) The establishment of an optimized mapping that
leverages the strengths of both Euclidean and Riemannian manifold
spaces enables the model to extract more effective EEG representations.
2) The integration of supervised and self-supervised learning strate-
gies through confidence stratification to address the issue of learning
from unreliable annotations. 3) An effective encoder enhances the rep-
resentation space, which improves confidence stratification accuracy,
thereby enabling the encoder to develop more robust and inductive
representations in a mutually reinforcing cycle. Our primary contri-
butions are outlined below:

• Introducing a novel EEG-based framework, MACS, designed
for learning from unreliable annotated EEG signals with
cross-center transferability.
Augmentor: Enriches the data space via augmentation.
Switcher: Mitigates overfitting on incorrect labels.
Encoder: Integrates Manifold and Euclidean spaces to im-

prove EEG representation learning.
Projector: Features dual heads to assess both data consis-

tency and diagnostic accuracy.
Stratifier: Stratifies data based on confidence levels.

• Establishing confidence stratification-based constraints for
MACS’s forward and back-propagation that create a self-
organizing system to enhance representation learning and
confidence assessment, thereby fostering a virtuous cycle.

• Demonstrating MACS’s superior performance in learning
from unreliable annotations compared to state-of-the-art
(SOTA) methods, validated across two types of diseases and
through cross-center testing and fine-tuning.

• Making the code public to contribute multimedia community.

2 RELATEDWORK
2.1 Learning with Unreliable Annotations
Noisy label learning contains model-free and model-based strate-
gies aimed at reducing the influence of incorrect labels. These
strategies involve estimating noise patterns and conducting su-
pervised learning with clean samples [17], as well as handling
noisy labels and refining the model by addressing internal con-
flicts [18, 19]. Such methods depend on the analysis of the rela-
tionships within noisy data. Recent research in time-series [20]
and image domains [21, 22] applies unique principles to delineate
relationships. In the image domain, Promix [21] adopts small-loss
criteria and prediction consistency to filter high-confidence ex-
amples, followed by learning through Debiased Semi-Supervised
Training. Sel-CL [22] employs nearest neighbors to select confident
pairs for supervised contrastive learning. In the time-series domain,
CTW [20] selects confident examples based on small-loss criteria
and applies time-warping to these instances to learn more robust
representations. We use these to benchmark MACS and, following
[23, 24], incorporate mix-up techniques [25, 26] to enhance learning
from noisy labels.

2.2 Contrastive Learning for Time Series
Contrastive learning has demonstrated effectiveness in both unsu-
pervised (e.g., SimCLR [27]) and supervised (e.g., SupCon [28]) con-
texts. It provides valuable self-learning strategies for pre-training
in time series data, such as enhancing time-frequency [29] and
cross-sample temporal consistency [3]. However, the impact of con-
sistency pre-training on handling unreliable annotated data is less
pronounced. Augmentation-based contrast [30] shows promise for
semi-supervised learning with missing labels but is less effective
without true label priors. To overcome these limitations, MACS
introduces multi-view contrastive learning, guided by estimated
confidence levels.

2.3 Manifold Learning for EEG Signals
Manifold-based modeling excels in EEG signal analysis for brain-
computer interfaces (BCI) [31, 32], leveraging Riemannian geometry
for high-dimensional neural data representation through affine-
invariant geometric distances [33, 34]. Using EEG’s Riemannian
structure for BCI domain-adaptation [10, 35, 36] and multi-task
application [11] indicates the potential of Manifold geometry learn-
ing in identifying robust latent spaces. Such evidence bolsters the
Encoder’s design in MACS. Our work advances current geometry
learning by integrating dynamic functional networks with cross-
attention mechanisms. Additionally, findings from our pilot study
suggest that when integratedwith contrastive learning, Riemannian
geometry learning offers a promising alternative to GNNs [37].
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Figure 2: Overview of the MACS framework and subject-independent experiments across diseases and centers. The Projector has
a dual-head structure for latent space representation and classification. The Stratifier categorizes samples by label confidence,
constraining brain variants for contrastive learning and discriminative loss for distrusted samples. Refer to Figures 3 and 4 for
Switcher and Encoder, respectively.

3 MACS
In this section, we elucidate the methodology for learning from
brain signals annotated with unreliable labels using the Manifold
Attention and Confidence Stratification (MACS) framework. As
depicted in Figure 2, MACS handles unreliable labels and enhances
cross-center transferability through its modules (in Section 3.1),
adaptive constraints (in Section 3.2), and training objective(in Section
3.3).

Assuming that brain activity is monitored using 𝑑 sensors at a
sampling frequency of 𝑓𝑠 for a duration of 𝑡 seconds, we obtain the
following set of observations as the input for the MACS framework:

𝑨(𝑛)
𝑑,𝑇

=

©«
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑇
𝑎2,1 𝑎2,2 · · · 𝑎2,𝑇
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑑,1 𝑎𝑑,2 · · · 𝑎𝑑,𝑇

ª®®®®¬
, (1)

where 𝑇 = 𝑓𝑠 · 𝑡 denotes the total number of sampling points, and
𝑛 ∈ {1, 2, . . . , 𝑁 } represents a specific individual from a total of 𝑁
subjects under observation.

TheMACS framework identifies brain states as𝑌 (𝑛) = 𝐹Θ (𝑨(𝑛)
𝑑,𝑇

)
in scenarios with unreliable annotations 𝑌 (𝑛) , utilizing five key
components: 1) Augmentor, 2) Switcher, 3) Encoder, 4) Projector, and

5) Stratifier. The initial four modules are integral to the framework’s
forward propagation, while the Stratifier systematically regulates
the learning mechanism.

3.1 MACS Modules
Augmentor: Producing Brain Variants through Dual Random Trans-

form. In this module, data augmentation is applied to the prepro-
cessed brain data as described in [29], following the equation:

𝑓𝐴𝑔 (𝐴𝑑,𝑇𝑠 , 𝜎) = 𝐴𝑑,𝑇𝑠 + 𝝐, (2)

where 𝝐𝑖 𝑗 ∼ N(0, 𝜎2) is independently and identically distributed,
with 𝜎 representing the standard deviation. Additionally, 𝐴𝑑,𝑇𝑠 is a
segmented, non-overlapping fragment of 𝑨𝑑,𝑇 , utilized to reduce
computational load and increase the system’s robustness. Two ran-
dom transformations are concurrently executed, resulting in dual
brain variants. Differing from the method of specific weak and
strong augmentations for two views [38], our approach operates a
random configuration, leading to improved performance.

Switcher: Blending-based Variant Generation Conditional on Con-
fidence Levels. In the Switcher module, dual brain variants undergo
selective processing. As in Figure 3, distrusted inputs are directly
forwarded to subsequent modules, while trusted ones are routed to
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a blender for generating interpolated samples. Inspired by the ben-
efits of sample and network mixing, as discussed in [25] and [23],
and aiming to enhance representation learning with partial labels
and reduce confirmation bias in noisy data, we distort each trusted
sample𝐴∗

𝑑,𝑇𝑠
and its corresponding label 𝑦∗ by interpolating it with

another randomly selected sample (𝐴+
𝑑,𝑇𝑠

, 𝑦+), to produce blended
variants, as described in Eq.(3). 𝜆 is sampled from a uniform Beta(1,
1) distribution and adjusted to ensure it is always at least 0.5 by
setting it to the greater value between 𝜆 and 1 − 𝜆.

𝑓𝑆𝑤 ((𝐴∗
𝑑,𝑇𝑠

, 𝑦∗), 𝜆) = 𝜆(𝐴∗
𝑑,𝑇𝑠

, 𝑦∗) + (1 − 𝜆) (𝐴+
𝑑,𝑇𝑠

, 𝑦+) (3)

This choice is implemented to balance the retention of the pri-
mary input’s information and the introduction of diversity from
the randomly indexed input throughout the mixing process.

Differing from the referenced studies [23, 25], ourmethod presents
two distinctions: 1) We produce dual-blended brain variants while
employing shared network modules, thus effectively decreasing
model complexity. 2) We initiate data blending exclusively on sam-
ples exhibiting higher confidence levels, aiming to mitigate con-
cerns related to unreliable labels. The confidence level associated
with each sample in the mini-batch is evaluated using the Stratifier
module in the MACS framework.

Figure 3: The Switcher employs conditional interpolated
blending for trusted samples and bypasses distrusted ones to
mitigate overfitting on incorrectly labeled samples.

Encoder: Mapping EEG Dynamics onto Riemannian Manifold for
Attention-Based Analysis. The Encoder module 𝑓𝐸𝑛 , grounded in
our feature engineering findings (Section 4.3), initiates with a con-
volution starter 𝑔𝑠𝑡𝑟 . This component reduces noise/artifacts and
captures specific wave patterns (e.g., theta, alpha rhythms) and
time-domain features of brain activity using convolutions and nor-
malization, effectively decoding brain signals at a lower level[39].
This process yields 𝑋𝑑,𝑇𝑠 = 𝑔str (𝐴𝑑,𝑇𝑠 ) . Subsequently, a temporal
clipper 𝑔clp is applied to these low-level features 𝑋𝑑,𝑇𝑠 across the
sampling dimension. This operation enhances their representation
by leveraging the high temporal resolution of EEG signals.A series
of feature clips { 𝑋𝑑𝑖𝑚1,𝑡𝑖 } 𝐼𝑖=1 are then processed by a synchroniza-
tion analyzer 𝑔𝑠𝑦𝑛 , which measures the coupling between pairs
of 𝑑 sensors, ultimately producing a dynamic functional network
represented as Φ =

[
𝜙𝑡1 , . . . , 𝜙𝑡𝑖 , . . . , 𝜙𝑡𝐼

]
.

With evidence from learning Riemannian geometry for struc-
tured brain data as shown in [11, 36], a manifold converter 𝑔𝑚𝑓 𝑑

transforms dynamic network Φ into a set of symmetric positive def-
inite (SPD) matrices, 𝑆++

𝑑
(R), thus defining a Riemannian manifold

M. This transformation involves eigenvalue decomposition and
transpose manipulation of each adjacency matrix, represented as
D = 𝑔𝑚𝑓 𝑑 (Φ). To measure those 𝑆++

𝑑
, we utilized the Log-Euclidean

Riemannianmetric [33], as it serves as the first-order approximation
of the Affine-Invariant metric. At each point D𝑡𝑖 on the manifold
M, a tangent space is defined by log : M → TM , where the in-
verse is operated by exponential mapping, as illustrated in Figure 4.
The distance between any two points on the manifoldM is then
calculated using the following equation:

𝑑 (D𝑡𝑖 ,D𝑡 𝑗 ) =
log(D𝑡𝑖 ) − log(D𝑡 𝑗 )

2
𝐹
. (4)

Utilizing this metric to reflect the correlation between points
D𝑡𝑖 ∈ 𝑆++

𝑑
, we constructed a manifold-based dynamic attention

block 𝑔𝑑𝑎𝑡𝑡 , following the approach in [11], but with modifications
to incorporate a cross-temporal attention mechanism. This inte-
gration of dynamic relationships is mathematically represented
as:

F𝑖 =
𝐼∑︁

𝑗=1, 𝑗≠𝑖
𝛿

(
𝑑 (𝑓𝑊𝑘

(D𝑡𝑖 ), 𝑓𝑊𝑞
(D𝑡 𝑗 ))

)
· log(𝑓𝑊𝑣

(D𝑡𝑖 )), (5)

where 𝛿 scales the values to a range of 0 to 1. 𝑓𝑊𝑘
represents the

operation of𝑊𝑘 multiplied by a matrix and then by𝑊 ⊤
𝑘
. This can

be expressed as 𝑓𝑊𝑘
(𝑋 ) =𝑊𝑘𝑋𝑊 ⊤

𝑘
. Similarly, 𝑓𝑊𝑞

and 𝑓𝑊𝑣
operate

in the same manner, where𝑊𝑞 ,𝑊𝑘 , and𝑊𝑣 ∈ R𝑑×𝑑1 are learned
weight matrices used for the bilinear mapping. Subsequently, the
fused feature matrices F = {F𝑖 } are subjected to a nonlinear activa-
tion process, involving the rectification of eigenvalues, as detailed
in [33]. To enable the measurement of these features F in Euclidean
space for further processing, the embeddings F̂ are obtained by
mapping F onto the tangent space, followed by flattening and
concatenating them together.

Figure 4: The Encoder combines Riemannian and Euclidean
metrics for feature extraction, leading to a manifold-based
attentionmechanism that effectively captures characteristics
of spatiotemporal complexity and dynamic synchronization.

Projector: Dual-Branch Mapping for Latent Distribution and Dis-
criminative Classification. The high-level features encoded by 𝑓𝐸𝑛
are fed into a dual-branch projector. In this setup, one branch, 𝑓𝑃𝑙 ,
is dedicated to reducing the feature dimension for confidence es-
timation and contrastive learning, obtaining Z = 𝑓𝑃𝑙 (F̂ ), while
the other branch, 𝑓𝑃𝑐 , functions as a classifier for discrimination
purposes, obtaining E = 𝑓𝑃𝑐 (F̂ ).
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Stratifier: Measuring Latent Similarity for Confidence Stratification.
This module 𝑓𝑆𝑡 plays a crucial role in assessing the reliability of
the learned representations, which in turn influences the learning
mechanism of the MACS framework. It categorizes the confidence
levels of samples based on Z through the following steps:

• Measuring the cosine similarity between samples inZ.

𝑐
(
𝑧𝑖 , 𝑧 𝑗

)
=

𝑧𝑖𝑧
⊤
𝑗

∥𝑧𝑖 ∥
𝑧 𝑗  (6)

• Locating the K closet neighbors of each sample 𝑧𝑖 inZ using
the k-Nearest Neighbors method.

• Obtaining a neighbor-determined label 𝑦 for each sample 𝑧𝑖
by averaging the original labels of its neighbors.

𝑝𝑐 (𝑧𝑖 ) =
1
𝐾

𝐾∑︁
𝑘=1
𝑧𝑘 ∈N𝑖

1𝑦𝑘=𝑐 , 𝑐 ∈ {0, 1},

𝑦 = arg max
𝑐
𝑝𝑐 (𝑧𝑖 ),

(7)

whereN𝑖 denotes the neighbourhood of K samples to 𝑧𝑖 . The
indicator function, denoted as 1𝐵 , is a function that returns
1 when the condition 𝐵 is satisfied and 0 otherwise.

• Considering a sample trusted if its neighbor-determined label
matches its original label. Following [40], we also adopted a
dynamic thresholding approach to ensure class balance.

• Identifying trusted pairs Ψ from trusted samples Zcrd based
on label identity.

For the distrusted samples Zdst = Z \ Zcrd, corresponding
auxiliary labels are generated through the forward-propagation

process 𝑨
𝑓𝐸𝑛−−−→ F̂

𝑓𝑃𝑐−−−→ 𝑌 .

3.2 MACS Constraints
MACS constraints are dependent on the confidence stratification
adaptively assessed by the Stratifier module during training, which
is pivotal in stabilizing representation learning in the context of
unreliably annotated data. Intuitively, they regulate the behavior of
the modules, influencing the forward propagation of features and
the computation of backward losses, as depicted in Figure 2. Four
types of constraints are implemented within the framework: they
are applied to both the Augmentor and Switcher modules, and also
influence the multi-view contrastive loss and discriminative loss.
Those constraints work as follows:

1) The first constraint specifically controls the gradients of Switcher
module ∇𝑓𝑆𝑤 . It effectively utilizes linearly interpolated samples
to enrich data associated with trusted labels while simultaneously
mitigating the risk of being misled by unreliable data.

2) The second constraint type facilitates a ’divide and conquer’
approach within the multi-view contrastive loss. Specifically, con-
trastive learning is initiated within three groupings: among trusted
pairs Ψ, among blended variants of trusted samples Zcrd, and
among dual random brain variants Z.

3) The third constraint directs the Augmentor module 𝑓𝐴𝑔 to by-
pass distrusted samples and put them into the Encoder and Projector

Algorithm 1 MACS
Input: 𝑨𝑑,𝑇 with unreliable annotation 𝑌 , maximum epochs 𝑇max
Output: Learned Model Θ
1: 𝑨𝑑,𝑇 is segmented into non-overlapping fragments 𝐴𝑑,𝑇𝑠
2: for 𝑡 = 1, 2, . . . ,𝑇max do
3: Stratifier: Identify trusted examples 𝐴tru and distrusted

examples 𝐴dst based on the consistency between Z =

𝑓𝑃𝑙 (𝑓𝐸𝑛 (𝐴𝑑,𝑇𝑠 )) and provided unreliable labels 𝑌
4: Augmentor: 𝑓𝐴𝑔 (𝐴𝑑,𝑇𝑠 , 𝜎) = 𝐴𝑑,𝑇𝑠 + 𝝐 , generate two brain

variants
5: if samples ∈ 𝐴dst then
6: Encoder: F̂ = 𝑓𝐸𝑛 (𝐴𝑑,𝑇𝑠 )
7: Projector: Z = 𝑓𝑃𝑙 (F̂ ), E = 𝑓𝑃𝑐 (F̂ )
8: Loss: Compute self-supervised contrastive loss L𝐴𝑔

and use softmax prediction 𝑌 without data augmentation to
compute discriminative loss L𝐷𝐿

9: else
10: Switcher: 𝑓𝑆𝑤 ((𝐴∗

𝑑,𝑇𝑠
, 𝑦∗), 𝜆) = 𝜆(𝐴∗

𝑑,𝑇𝑠
, 𝑦∗) + (1 −

𝜆) (𝐴+
𝑑,𝑇𝑠

, 𝑦+)
11: Encoder: F̂ = 𝑓𝐸𝑛 (𝐴𝑑,𝑇𝑠 )
12: Projector: Z = 𝑓𝑃𝑙 (F̂ ), E = 𝑓𝑃𝑐 (F̂ )
13: Loss: Compute mixed self-supervised loss L𝑆𝑤 , super-

vised contrastive loss L𝑆𝑡 , and use original label 𝑌 without
data augmentation to compute discriminative loss L𝐷𝐿

14: end if
15: end for

to generate auxiliary labels, providing alternatives to unreliable
labels for backpropagation.

4) The fourth constraint conditionally influences the discrimi-
native loss. It evaluates the errors of trusted samples using their
original labels, while the gradients for distrusted samples are com-
puted based on auxiliary labels.

3.3 MACS Training Objective
The overall training objective, as formulated in Eq.(8), is an equal
sum of contrastive and discriminative losses.

L =L𝐶𝐿 + L𝐷𝐿 (8)

3.3.1 Multi-viewContrastive Loss. In our framework, the contrastive
loss L𝐶𝐿 consists of three components: L𝐴𝑔 , L𝑆𝑤 , and L𝑆𝑡 , each
addressing different aspects of the data. All components adhere
to the core formulas defined in Eq.(9). The computation involves
aggregating 𝐶𝑖, 𝑗 for all pairs of samples 𝑥 𝑗 within the same mini-
batch that share the same label as 𝑥𝑖 (i.e., 𝑦𝑖 = 𝑦 𝑗 ), across all 𝑁𝑦𝑖
such samples. Each minibatch contains 𝑁𝑚 samples, excluding self-
contrast cases where 𝑖 = 𝑗 . A temperature parameter 𝜏 modulates
the scale of the dot products in the softmax denominator.

LO
𝑖 (𝑧𝑖 , 𝑦𝑖 ) = − 1

2𝑁𝑦𝑖 − 1

2𝑁𝑚∑︁
𝑗=1

1𝑖≠𝑗1𝑦𝑖=𝑦 𝑗 C𝑖 𝑗 ,

C𝑖 𝑗 = log
( exp(𝑧𝑖 · 𝑧 𝑗/𝜏)∑

𝑟 ∈{1,...,2𝑁𝑚 }\{𝑖 } exp(𝑧𝑖 · 𝑧𝑟 /𝜏)

)
.

(9)
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1) L𝐴𝑔: It aims to minimize the distance between dual aug-
mentations for distrusted examples Zdst , which constitutes a self-
supervised learning approach.

2)L𝑆𝑤 : This targets the enhancement of similarity among blend-
ing variants, but exclusively for trusted samples Zcrd, which con-
stitutes a mixed self-supervised learning approach.

3) L𝑆𝑡 : This component incorporates interpolation supervised
contrastive learning techniques, as exploited in [22, 40], and shares
the same hyperparameter 𝜆 with Eq.(3). It effectively combines
L𝑆𝑡
𝑖∈Ψ∗ and L𝑆𝑡

𝑖∈Ψ+ from trusted pairs Ψ = Ψ∗ ∪ Ψ+. It can be ex-
pressed as L𝑆𝑡

𝑖
= 𝜆L𝑖 (𝑧𝑖 , 𝑦∗) + (1 − 𝜆)L𝑖

(
𝑧𝑖 , 𝑦

+) .
3.3.2 Discriminative Loss. This loss function plays a direct role
in quantifying the recognition of abnormalities. It is conditionally
structured as detailed in Eq.(10). In this equation, 𝑌 (𝑛) represents
the original label, 𝑌 (𝑛) denotes the generated auxiliary label. Algo-
rithm 1 presents the pseudocode for MACS.

L𝐷𝐿𝑖 = − 𝜆�̃� (∗)𝑇 log(E (𝑖 ) )

− (1 − 𝜆)�̃� (+)𝑇 log(𝑓𝑃𝑐 (E (𝑖 ) ),

�̃� (𝑛) =

{
𝑌 (𝑛) , if 𝐴(𝑛)

𝑑,𝑇𝑠
∈ 𝐴𝑐𝑟𝑑 ,

𝑌 (𝑛) , if 𝐴(𝑛)
𝑑,𝑇𝑠

∈ 𝐴𝑑𝑠𝑡 .

(10)

4 EXPERIMENTS
We conduct four subject-independent experiments (presented in
Figure 2) to validate MACS’s performance in learning from unreli-
able annotations and transferability: 1) Three-fold cross-validation
using public PD data from Center A (Model Θ𝑃𝐷 ); 2) Four-fold
cross-validation with MCI (MCI due to AD) data collected from
Center C (Model Θ𝑀𝐶𝐼 ); 3) Direct testing Θ𝑃𝐷 on a cross-center
PD corpus (Center B) for transferability evaluation; 4) Fine-tuning
Θ𝑀𝐶𝐼 on a cross-center AD corpus (Center D) for transferability
assessment. Please refer to Appendix for implementation details.

4.1 Experimental Datasets
PDDatasets. The PD data includes two sets. The first set, from the

University of New Mexico(NMU), comprises data from 27 patients
and 27 controls [7]. The second set, from the University of Iowa(IU),
includes data from 14 patients and 14 controls [42]. Both datasets
were acquired using 64-channel Ag/AgCl electrodes with the Brain
Vision system at a sampling rate of 500 Hz.

MCI Dataset. The MCI dataset, from a local hospital in City C,
includes data from 46 MCI patients and 43 age-matched normal
controls (NC), recorded in an eye-closed state. Data was captured
using a 64-channel Ag/AgCl electrodes Brain Product system at a
sampling rate of 5000 Hz.

AD Dataset. The AD dataset, from a local hospital in City D,
comprises data from 20 AD patients and 20 age-matched NC volun-
teers. Each participant provided two EEG samples (eye-closed and
eye-open states), recorded using a 16-channel Ag/AgCl electrodes
Symtop system at 1024 Hz.

4.2 Training Configuration
For each dataset, we created a set of unreliable labels, assigning
incorrect labels to a percentage of the samples defined by 𝛼 . Perfor-
mance was evaluated using true labels, verified, and corrected by
experts. Results for 𝛼 = 0.3 are presented as main findings, while
those for 𝛼 = 0.5 are detailed in the Appendix. The MACS model
was trained over 30 epochs using Stochastic Gradient Descent with
a momentum of 0.9 and a weight decay of 10−4. A step-learning
rate scheduler improved training efficiency by starting at 0.1 and
reducing it by a factor of 0.1 every 10 epochs. Similarly, a three-fold
cross-validation was executed on the PD dataset from the NMU cen-
ter, with a batch size of 60 We conducted four-fold cross-validation
on the MCI dataset with a batch size of 128, and three-fold cross-
validation on the PD dataset from the NMU center with a batch
size of 60. The MACS framework was developed on a Linux-based
system using PyTorch (version 2.0.0), with hardware including a
GeForce RTX 3090 GPU and an Intel i9-12900K CPU.

4.3 Feature Engineering Study
Feature engineering insights have led to the development of the
MACS Encoder. EEG frequency markers [7]are inductive for PD
but found less effective for MCI. EEG complexity measured by the
entropy[8] and Hjorth parameter[6] enhanced MCI detection but
was less effective than frequency domain features in PD cases. We
compared the functional connectivity characterized by Pearson
correlation (Corr) in Euclidean space [41] and SPD in manifold
space [36] and found the advantage of manifold representations.
This evidence has informed the integration of a specialized block
in the Encoder to process underlying temporal-spectral-spatial fea-
tures and analyze synchronization characteristics through manifold
geometry.

4.4 Comparison Study
We benchmarked MACS against SOTA methods, evaluating its
performance in scenarios with unreliable annotations and indepen-
dently assessing the Encoder in scenarios with clean annotations
(see Table 2). For the clean data learning comparison, we employed
advanced EEG encoders that target manifold geometry[10], inte-
grate attention mechanisms[11], and utilize contrastive learning[3].
Given the absence of a dedicated SOTAmodel for EEG data with un-
reliable annotations, we compared MACS against leading methods
in the time series[20] and natural image domain[21, 22]. Specifically,
we replaced their encoders with our Encoder in MACS to validate
the efficacy of our combined manifold-Euclidean representation
learning strategy for EEG signals. Overall, MACS’s weakly super-
vised learning mechanism, combined with an effective Encoder,
enables superior comprehensive performance across two disease
types. We unveil MACS’s learning process through t-SNE mapping
in Figure 5(see Appendix for the PD case). Observations indicate
that MACS gradually selects the correct trust samples, enhancing
representation learning and forming class-specific clusters.

4.5 Hyperparameter Tuning Study
Memory Length. The multi-view contrastive loss is crucial for

the MACS framework. Effective contrastive learning heavily de-
pends on the adequacy of positive and negative pairs; therefore,
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Table 1: Feature engineering assesses the effectiveness of various EEG domains in neurodegeneration recognition.

[MCI] 4-Fold Cross-Validation [PD] 3-Fold Cross-Validation Comprehensive Average
Feature Domains Accuracy F1 Accuracy F1 Accuracy F1
Frequency[7] 58.64(2.06) 66.03(1.47) 74.07(0.07) 71.90(0.02) 66.36 71.51
Entropy[8] 63.07(1.46) 69.89(1.50) 61.11(0.21) 57.68(2.29) 62.09 72.37
Hjorth[6] 67.05(0.80) 68.37(0.75) 64.81(0.27) 63.78(0.49) 65.93 64.65
Functional Connectivity-Corr[41] 65.34(1.64) 67.56(2.58) 66.67(0.21) 61.39(0.78) 66.01 63.99
Functional Connectivity-SPD [36] 64.43(0.77) 68.18(0.99) 79.63(0.27) 79.46(0.17) 72.03 74.80

Table 2: Comparative study compares the SOTA methods for learning from both well-annotated and unreliable data.

[MCI] 4-Fold [PD] 3-fold
Scenarios Methods Accuracy F1 Accuracy F1 Overall Accuracy

[10] [Ju et al., TNNLS, 2022] Tensor-CSPNet 80.78(7.93) 77.70(11.63) 75.92(6.41) 73.20(8.16) 78.35(3.44)
[11] [Pan et al., NeurIPS, 2022] MAtt 81.97(3.96) 79.56(8.29) 79.63(11.56) 83.07(7.56) 80.80(1.65)
[3] [Wang et al., NeurIPS, 2023] COMET 73.25(26.02) 70.09(24.82) 75.47(9.75) 74.92(14.17) 74.36(1.57)

Clean
Annotation

Encoder inMACS Final Epoch 87.65(4.31) 86.47(7.73) 85.18(8.48) 83.46(11.67) 86.42(1.75)
[20][Ma et al., IJCAI, 2023] CTW 75.40(10.28) 76.75(9.80) 75.93(3.21) 78.73(2.20) 75.67(0.37)
[21][Xiao et al., IJCAI, 2023] Promix 55.14(18.94) 56.17(11.49) 79.63(8.49) 77.34(10.97) 67.39(17.32)
[20] [Ma et al., IJCAI, 2023]
[21] [Xiao et al., IJCAI, 2023] CTW Encoder + Promix 79.75(4.69) 80.83(7.21) 81.48(6.41) 80.25(8.15) 80.62(1.22)
[22] [Li et al., CVPR, 2022] Sel-CL 63.29(22.32) 54.82(19.42) 66.67(5.56) 65.42(4.49) 64.98(2.39)
[22] [Li et al., CVPR, 2022] Sel-CL+ 74.16(7.73) 73.41(11.98) 57.41(21.03) 43.06(37.35) 65.79(11.84)
[21][Xiao et al., IJCAI, 2023] Encoder for Promix 85.38(4.41) 85.56(4.90) 83.33(5.56) 81.05(8.49) 84.36(1.45)
[22] [Li et al., CVPR, 2022] Encoder for Sel-CL 72.08(12.76) 70.05(9.37) 83.33(5.56) 81.51(9.04) 77.71(7.95)
[22] [Li et al., CVPR, 2022] Encoder for Sel-CL+ 85.43(4.16) 84.18(7.01) 83.33(5.56) 81.05(8.49) 84.38(1.48)

Unreliable
Annotation

MACS Final Epoch 88.74(4.61) 88.18(7.23) 87.04(3.21) 86.40(1.90) 87.89(1.20)

inspired by [40], we proposed maintaining a memory of previous
steps to circumvent the constraints imposed by batch size, enabling
more extensive use of available small-scale data. For example, we
summarize the research findings for MCI in Table 3, suggesting
that memory length contributes to learning efficiency, but its rela-
tionship is not monotonic. Please note that the methods involving
contrastive learning are discussed in Table 2, where we also de-
termined their optimal performance to ensure a fair comparison.

Temporal Scale Temporal scale refers to the time interval for con-
structing dynamic functional networks in the Encoder. The findings
indicate that a second-level temporal scale is crucial for capturing
patterns. For example, results from the MCI dataset are included in
Table 3. More effective EEG markers that appear at larger temporal
scales may be attributed to the ’slowing’ phenomenon in brain

Table 3: Investigation of hyper-parameters in MACS.

Parameters Configurations Accuracy F1
0 83.10(6.93) 83.64(9.09)
200 87.60(4.46) 86.39(7.58)
300 88.74(4.61) 88.18(7.23)
400 86.31(5.55) 84.71(9.69)

Memory Length

500 85.33(4.52) 84.07(7.77)
2s 88.74(4.61) 88.18(7.23)
1s 87.65(4.31) 86.75(7.87)Temporal Scale

500ms 74.06(6.09) 77.60(8.15)

activity, which is more prominently manifested in patients with
neurodegenerative disorders [43, 44].

4.6 Ablation Study
Table 4 outlines the impacts of MACS’s components, where ’w/o
Memory’ denotes omitting large-scale storage in contrastive learn-
ing. The findings on Augmentor highlight the importance of com-
paring dual brain variants. The variants enhanced by interpolation
in Switcher significantly benefit small-scale clinical data. The Strat-
ifier’s necessity was confirmed by evaluating classification loss
using all data in mini-batch without considering confidence lev-
els (denoted as ’w/o Confidence’), and by giving discriminative
feedback only for trusted samples, omitting auxiliary input for
distrusted samples (denoted as’w/o Auxiliary’). Furthermore, we
implemented cross-entropy loss in the model devoid of confidence
stratification, marked as ’w/o CS’, to validate our hypothesis about
this mechanism’s effectiveness.

Table 4: Ablation study of the components in MACS.

[MCI] 4-Fold [PD] 3-Fold
Configuration Accuracy F1 Accuracy F1
MACS 88.74(4.61) 88.18(7.23) 87.04(3.21) 86.40(1.90)
w/o Memory 83.10(6.93) 83.64(9.09) 85.18(3.21) 85.15(3.37)
w/o Augmentor 84.24(5.95) 82.17(11.57) 85.18(3.21) 85.32(1.89)
w/o Switcher 87.55(6.89) 86.05(9.79) 83.33(5.56) 81.05(8.49)
w/o Confidence 84.19(9.62) 84.68(12.24) 79.63(6.41) 79.46(5.01)
w/o Auxiliary 81.92(7.58) 82.23(9.72) 83.33(0.0) 82.20(2.10)
w/o MA 84.39(7.31) 83.99(5.98) 79.63(3.20) 76.88(6.59)
w/o CS 70.95(10.53) 68.13(9.39) 77.78(9.62) 75.08(13.02)
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Figure 5: Qualitative comparison of MACS with SOTA frameworks using t-SNE visualization based on latent distribution.

4.7 Transferability Evaluation

Figure 6: Evaluation of MACS’s Cross-center Transferability:
(a) Direct testing results of MACS, trained on Center A’s PD
data applied to Center B’s PD data; (b) Fine-tuning testing
results of MACS, trained on Center C’s MCI data applied to
Center D’s AD data, using only a limited percentage of labels.

From cross-validation tests on PD(NMU) and MCI datasets, we
derived N-fold MACS models for PD (Θ𝑃𝐷 ) and MCI (Θ𝑀𝐶𝐼 ). We
assessed MACS’s transferability by testing {𝜃𝑖

𝑃𝐷
}2
𝑖=0 on a cross-

center PD corpus (from IU), and fine-tuning {𝜃𝑖
𝑀𝐶𝐼

}3
𝑖=0 on a cross-

center AD corpus. To address the spatial resolution gap between
MCI and AD data, we employed EEG’s interpolation technique
[45]. The averaged evaluation results from Θ𝑃𝐷 , halted at both
optimal and final epochs (Figure 6(a)), and successful fine-tuning
on AD with few labels (Figure 6(b)), underscore MACS’s notable
transferability in recognizing neurodegenerative disorders via EEG.

5 CONCLUSION
This work introduces MACS, a framework that leverages Manifold
Attention and Confidence Stratification to address data hetero-
geneity and annotation unreliability in EEG modeling. Specifically,
MACS fuses Euclidean space with manifold geometry to enhance
representations and tailors forward and back-propagation based on
stratified confidence levels. We have demonstrated superior perfor-
mance in recognizing two types of diseases and further validated
MACS’s transferability through cross-center testing and fine-tuning.
The techniques used in MACS, effective in signal modeling under
unreliable labels, could inspire advances in EEG-based cognitive
and emotional computing, as well as in other areas of multimedia
representation learning involving low-quality annotations.
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