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ABSTRACT

LoRA has emerged as one of the de facto methods for fine-tuning foundation mod-
els with low computational cost and memory footprint. The idea is to only train
a low-rank perturbation to the weights of a pre-trained model, given supervised
data for a downstream task. Despite its empirical sucess, from a mathematical
perspective it remains poorly understood what learning mechanisms ensure that
gradient descent converges to useful low-rank perturbations.

In this work we initiate the study of low-rank fine-tuning in a student-teacher
setting. We are given the weights of a two-layer base model f, as well as i.i.d.
samples (x, f*(x)) where x is Gaussian and f* is the teacher model given by
perturbing the weights of f by a rank-1 matrix. This generalizes the setting of
generalized linear model (GLM) regression where the weights of f are zero.
When the rank-1 perturbation is comparable in norm to the weight matrix of f,
the training dynamics are nonlinear. Nevertheless, in this regime we prove under
mild assumptions that a student model which is initialized at the base model and
trained with online gradient descent will converge to the teacher in dk®) iter-
ations, where k is the number of neurons in f. Importantly, unlike in the GLM
setting, the complexity does not depend on fine-grained properties of the activa-
tion’s Hermite expansion. We also prove that in our setting, learning the teacher
model “from scratch” can require significantly more iterations.

1 INTRODUCTION

Modern deep learning at scale involves two phases: pre-training a foundation model with self-
supervised learning, and fine-tuning the model towards various downstream tasks. Given the signif-
icant computational cost of the former, effective fine-tuning has been essential to the deployment of
these models under hardware constraints and the development of powerful open-source models.

In this space, Low-Rank Adaptation (LoRA) has emerged as one of the most successful and widely
adopted methods (Hu et al.l [2021)). The idea is to freeze the weights of the pre-trained model and
only train low-rank perturbations to the weight matrices. Remarkably, this works well even with
rank 1 perturbations, reducing number of trainable parameters by up to four orders of magnitude.

Despite the surprising effectiveness of LoRA in practice, it is poorly understood from a theoretical
perspective why this method works so well. While it is known that for sufficiently deep and wide
pre-trained networks, any sufficiently simple target model can be approximated by a low-rank pertur-
bation of the larger model (Zeng & Leel 2024), it is largely unknown what mechanisms ensure that
gradient-based training converges to these perturbations. Recent works have made initial progress
towards understanding this question from the perspective of kernel approximations of neural net-
works in the lazy training regime (Jang et al.| 2024} Malladi et al., 2023). These works consider a
setting where the perturbation is small enough relative to the weights of the pre-trained model that
the fine-tuned model is well-approximated by its linearization around the pre-trained model.

While the kernel picture provides useful first-order intuition for the dynamics of fine-tuning, it only
partially explains its success. For one, the kernel approximation is mainly relevant in the few-shot
setting where the network is only fine-tuned on a small number of examples (e.g. a few dozen), but
the gap between what is possible with few- vs. many-shot fine-tuning is significant. Even within the
few-shot setting, (Malladi et al., [2023) found that fine-tuning for certain language tasks is not well-



explained by kernel behavior, and neither is prompt-based fine-tuning if the prompt is insufficiently
aligned with the pre-training task. The gap is even more stark for fine-tuning without prompts.

In this work we ask:

Why does gradient descent for low-rank fine-tuning converge to a good solution even when the
kernel approximation breaks down?

To answer this question, we initiate the study of fine-tuning in a natural student-teacher setting where
the training dynamics are inherently non-linear.

1.1 PROBLEM FORMULATION

We consider some family 7 = {fy}oco of neural networks, each parametrized by a collection 6
of weight matrices. Suppose we are given §y € O, corresponding to a pre-trained base model and
then get access to training data {(z;, y;)} Y, for fine-tuning. In this work, we focus on the setting of
realizable Gaussian data in which the x;’s are i.i.d. Gaussian and there exists a perturbation of the
base model, 0 = 0y + A where A is low-rank, for which fy perfectly fits the training data. That is,

foralli =1,..., N. We call fy the teacher modelﬂ

The goal is to find 6 = 6y + A, where A is also low-rank, such that the objective L(é) is small.
Here the objective is given by

L(0) & Ea[0(f3(), fo(x))],
where £ : R? — R is some loss function; in this work we specialize to squared loss.

Algorithms for fine-tuning in practice are based on training the student model, which is initialized
to the base model, with gradient descent on L. That is, the parameter Ais repeatedly updated via
stochastic gradient descent on the function A — L(6 +A). To ensure that A is low-rank throughout
the course of training, it is typically parametrized by a low-rank factorization, and the matrices in
this factorization are the ones with respect to which one performs gradient descent.

Unfortunately, rigorously analyzing the gradient dynamics at this level of generality is well outside
the reach of current theory. Instead, in this work we will focus on a specific instantiation of the
above setting, namely two-layer networks and rank-1 perturbations. Despite the apparent simplicity
of this setting, the dynamics here already exhibit rich behavior beyond the kernel regime, and as we
will see, this model strictly generalizes the problem of generalized linear model (GLM) regressionE]
a widely studied toy model in the theoretical foundations of deep learning (see Section [I.3).

Concretely, given k € N, take F to be the set of all two-layer networks of width k. The base model
then takes the form
foo () = ATo (W), ©)

where 0y = (A, W) € R¥ x R**? and ¢ is a known scalar activation applied entrywise.
The low-rank perturbation defining the teacher model will be given by § £ (\, W*) where
W* =W+ A for A=~EcuT 3)

for € > 0 a known scale parameter and for unit vectors ¢ € S¥~1, u € S¥~!. Given a target level
of error &, our goal is to find unit vectors ¢, @ for which L(6) < & for § = (\, W + £¢aT) with high
probability over the training data {(z;, v;)} ;.

Connection to GLMs, feature learning, and lazy training. Note that the special case where
the base model is trivial, i.e. when W = 04, recovers the well-studied question of GLM re-

gression. Indeed, consider the case of ¢ = (1/VE,...,1/VE), A = +(1,...,1), and & = VE.

'In fact our analysis directly extends to the setting where there is unbiased, moment-bounded label noise,
but we focus on the noiseless setting as it is slightly cleaner while exhibiting all the relevant phenomena.

*This is sometimes referred to as single-index model regression. While closely related, the latter technically
refers to the setting where the activation o is unknown.



In this case, if the teacher models’ parameters are given by 0 = (A, W*) where W* is defined
in Eq. (3), then the teacher model is given by fy = o({u,z)). Learning a direction @ for which
E.[¢(o({,)),o((u,z)))] is small, given samples {(x;, o ((u, z;))},, is precisely the question of
GLM regression. The behavior of gradient descent for this question is by now very well-understood,
shedding light on the training dynamics of neural networks in the feature learning regime (some-
times also called the “rich” or “uP” regime) in a stylized but rich model (Bietti et al.| [2022).

Equivalently, instead of keeping the scale ¢ fixed and sending W to zero, we can consider keeping
W fixed but nonzero, sending & — oo, and considering ¢ scaling with £. This equivalent view is the
one we will take in this work as it is more natural for us to regard W as fixed and £ as a parameter to
be varied. Under this view, note that at the other extreme where & — 0, the teacher model becomes
well-approximated by its linearization around the base model, in which case the training dynamics
degenerate to the lazy training regime (also called the “NTK regime”). For this reason, the scale
parameter £ gives a natural way to interpolate between feature learning and lazy training dynamics.

1.2  OUR CONTRIBUTIONS
1.2.1 ASSUMPTIONS

Our guarantees will apply to a very wide family of activations o including all standard ones, e.g.
ReLU, sigmoid, polynomial, etc. As the conditions are rather technical, we defer them to Assump-
tion [5]in the supplement and henceforth refer to such activations as nice.

More importantly, we make the following assumptions on the base model and teacher model. Denote
the rows of W, i.e. the pre-trained features, by wy, ..., wg € R<. Then we have:

Assumption 1 (Normalization). ||w;|l2 = 1foralli=1,... k.

Assumption 2 (Orthogonality of perturbation). The vector u for the teacher model (see Eq. (3)) is
orthogonal to the span of w1, . .., Wg.

Assumption 3 (Random quantized c). c is sampled uniformly from {41/v/k}*.

Assumption |I]is without loss of generality when o is positive homogeneous like in the case of ReLU
activation. For general activations, note that one can also handle the case of ||w;||2 = R for all 7 for
arbitrary constant R > 0 by redefining o. This assumption is not essential to our analysis and we
assume the scales of the pre-trained features are the same to keep the analysis transparent.

Assumption[2)is crucial to our analysis. To motivate this, in Appendix[D.1] we give a simple example
where it fails to hold and the low-rank fine-tuning problem ends up having multiple global optima,
suggesting that the dynamics in the absence of Assumption[2]may be significantly more challenging
to characterize. We leave this regime as an interesting area for future study.

The third assumption consists of two parts: 1) the entries of ¢ are constrained to lie within {+1/v/k},
and 2) they are random. The former is for technical reasons. First note that the connection to GLMs
still holds under this assumption. Our main reason to make this is that our proof uses Hermite
analysis, and while it is in principle possible to handle neurons with different norms, assuming the
¢;’s are quantized renders our analysis more transparent without sacrificing descriptive power. As
our simulations suggest, the phenomena we elucidate persist without this assumption (see Figure I)).

As for the randomness of ¢, while we conjecture that fine-tuning should be tractable even in the
worst case over ¢ (see Remark [3)) albeit with more complicated dynamics, in this work we only show
guarantees that hold with high probability over c. We primarily use the randomness to ensure that
certain quantities that are generically non-vanishing indeed do not vanish, in the spirit of smoothed
analysis (Spielman & Teng| |2004). One could equivalently formulate our guarantees as holding
under a certain set of deterministic nondegeneracy conditions on the rank-1 perturbation.

1.2.2 TRAINING ALGORITHM

In this work, we will focus on learning the factor u in the rank-1 perturbation A = £cuT from Eq.
using gradient descent. As the weight vectors in the teacher model are given by w; +£c;u, the vector
u corresponds to the direction in which each of the pre-trained features gets perturbed. Learning
this direction turns out to be the most challenging part of fine-tuning: once one has converged



to a sufficiently good estimate of wu, it is straightforward to learn c¢ even using a linear method -
— see Appendix for details. As such, in the student model, we will keep ¢ frozen at random
initialization and only train . Remarkably, as we will see, the misspecification between ¢ and
the true c does not significantly affect the learning dynamics. This robustness to misspecification
suggests it may be possible to prove convergence even if ¢ and u were jointly trained, as is done in
practice, and we leave this as another important future direction.

We now specify the instantiation of online SGD that we will analyze. Let f* denote the teacher
model and (u;) the iterates of online SGD with learning rate > 0. Let ¢ € {#1/v/k}* be sampled
uniformly at random at initialization. The algorithm is initialized with

to ~ Sn;au(w) ’

i.e. uniformly over the set of unit vectors which are orthogonal to the span of the pre-trained features
wi, . .., wg. Given training example (z, f*(z)), define the loss attained by 4 on this example by

L(a;x) & (f*(z) — ATo(Wo + &éaT)x))? .

Denote its spherical gradient by V L(ii; z) = (I — 44T)VL(4; ). Note we are working with the

gradients restricted to the subspace of training, i.e. VL(#;z) £ ijan(W)VL(ﬁ; x) to keep 4 in this

subspace. The update rule is then given by the following: at each step ¢, defining proj(v) = v/ ||v|],
g1 = proj(uy — nVIL(ug; 1)), xy ~ N(0,1). 4)

Understanding the gradient dynamics of low-rank fine-tuning in our setting therefore amounts to
quantifying the convergence of u; to the ground truth vector w.

1.2.3 STATEMENT OF RESULTS

In this work, we consider two regimes: (1) when {w;} are orthogonal, and (2) when {w; } have very
mild angular separation but are otherwise arbitrary.

Orthonormal features. For this case, we will consider the regime where the scale £ of the rank-
1 perturbation defining the teacher model is large, namely & = G)(\/E) Because the norm of
the perturbation is comparable to the Frobenius norm of the weight matrix of the base model, the
teacher model is not well-approximated by its linearization around the base model. This is therefore
a minimal, exactly solvable setting for low-rank fine-tuning where kernel approximation fails and
the dynamics fall squarely outside of the lazy training regime.

Our first result is to show that online SGD efficiently converges to the correct rank-1 perturbation.

Theorem 1 (Informal, see Theorem @) Let0 < & < 1, and let & < \/k for sufficiently small absolute
constant factor. Suppose the rows of W are orthogonal. Then under Assumptions and for any
nice activation o (see Assumption[d), the following holds with high probability over the randomness
of ¢, ¢ and the examples encountered over the course of training, and with constant probability over
the random initialization u: online SGD (see Eq. @) run with step size n = ©(e®/dk7/?) and
T = O(dk*/e*) iterations results in up for which (up,u)? > 1 — e.

Interestingly, the iteration complexity does not depend on fine-grained properties of the activation
o. In contrast, as we discuss in Section [2] the iteration complexity of noisy gradient descent for
learning GLMs depends heavily on the decomposition of o in the Hermite basis. Given that the
GLM setting can be recovered from the fine-tuning setting in the { — oo limit, Theorem [T]implies
that the gradient dynamics for fine-tuning exhibit a transition in behavior at some scale & = Q(\/E)

Separated features. While the orthonormal features setting illustrates an important difference
between low-rank fine-tuning and GLM regression, the assumption that the features are orthonormal
is constraining. We next turn to a more general setting where we only assume that no two pre-trained
features are too correlated. Specifically, we make the following assumption:

Assumption 4 (Angular separation). For all i # j, we have |(w;, w;)| < 1 —logk/Vk.



Theorem 2 (Informal, see Theorem [7). Under the same assumptions as Theorem [I} except with
& = 1 and assuming the rows of W satisfy Assumption || instead, the following holds with high
probability over c, ¢ and the examples, and with constant probability over ug: online SGD run with
step size ) = ©(e%/dk5/?) and T = O(dk?® /e*) iterations results in ur for which (ur,u)? > 1—«.

Given the generality of Assumption 4} we are unable to show a guarantee for learning a rank-1
perturbation at the same scale £ as Theorem |1} Nevertheless, note that in the regime of £ = (1),
the linearization of the teacher model around the base model is bottlenecked at some fixed level
of error. In particular, this means that the kernel approximation to fine-tuning is insufficient to
explain why gradient descent converges to the ground truth. One can thus interpret our Theorem 2]
as shedding light on the later stages of many-shot fine-tuning whereby the result of the linearized
dynamics gets refined to arbitrarily high accuracy.

Finally, we show a rigorous separation between what can be done in the fine-tuning setting and what
can be done learning a two-layer network from scratch (see Appendix [D.2]for details):

Theorem 3 (Informal, see Theorem [O). For any p > 2, there exists a base network and a pertur-
bation for which learning the teacher model from scratch using any correlational statistical query
algorithm requires either n = dP/? queries or T = d—P/* tolerance. However, fine-tuning the base
network using Gaussian examples labeled by the teacher only requires O(d) online SGD iterations.

The proof involves a base model with Hermite activation of degree p whose perturbation has or-
thonormal weight vectors (see Claim[I0)) with a carefully chosen ¢, u. Even though ¢ is not random,

we prove online SGD still converges to the ground truth perturbation in O(d) iterations.

1.3 RELATED WORK

Parameter-efficient fine-tuning. Following the popularization of LoRA (Hu et al [2021), there
have been a large number of proposed refinements thereof (Fu et al., 2023} [Dettmers et al., 2024;
Lialin et al., [2023); a thorough review of the empirical literature is beyond the scope of this work.

Within the mathematical literature on fine-tuning, the works directly related to ours are the afore-
mentioned results of Malladi et al.| (2023); Jang et al.| (2024). Malladi et al.| (2023) primarily
presented empirical evidence of kernel behavior for prompt-based fine-tuning methods, including
LoRA, in the few-shot regime. Their main theoretical result regarding LoRA roughly states that if
standard (full-rank) fine-tuning exhibits kernel behavior, then low-rank fine-tuning exhibits kernel
behavior, provided the rank of the perturbation is at least £2(1/¢2). Jang et al. (2024)) build upon this
as follows. In the kernel regime where the student model is well-approximated by its linearization
around the base model throughout training, they consider the resulting linearized empirical loss for
an arbitrary dataset. This is still non-convex if one tries jointly training the factors of the low-rank
perturbation, but they nevertheless show that this loss has a rank-O(+/N) global minimizer, where
N is the number of training examples. They then show that all local minimizers of this loss are
global minimizers, using tools from prior work on low-rank matrix factorization.

These works are incomparable to ours in several regards. Firstly, they operate in the few-shot regime
so that the number of training examples N is relatively small, and the perturbation is small enough
that one can work with a linear approximation. In contrast, we consider “full” low-rank fine-tuning,
for which N must scale at least with the ambient dimension, and we are trying to learn much larger
perturbations; as we show in Figure |2} this puts us well outside the regime where the kernel ap-
proximation does well. In addition, the aforementioned works do not handle the regime where the
rank is extremely small, even though LoRA still works quite well in this case. That said, there is no
free lunch: our work derives insights in the challenging rank-one, non-linear setting at the cost of
working with a specific set of assumptions on the data-generating process.

GLMs and single/multi-index model regression. Generalized linear models have received sig-
nificant attention in learning theory as a stylized model for feature learning, see Dudeja & Hsu
(2018)) for an overview of older works on this. Most relevant to our work is |Arous et al.| (2021)
which studied the gradient dynamics of learning GLMs models o ({w, -)) over Gaussian examples
with online SGD. Their main finding was that online SGD achieves high correlation with the ground
truth direction in é(dl\”*‘l) iterations/samples, where [* is the information exponent, defined to



be the lowest degree at which ¢ has a nonzero Hermite coefficient. We draw upon tools from |Arous
et al|(2021) to analyze online SGD in our setting, one important distinction being that the popula-
tion gradient dynamics in our setting are very different and furthermore our finite-sample analysis
makes quantitative various bounds that were only proved asymptotically in|Arous et al.|(2021).

By a result of Szorényi (2009), the information exponent also dictates the worst-case complexity
of learning generalized linear models: for noisy gradient descent (and more generally, correlational
statistical query algorithms), d'V!"/2 samples are necessary. Various works have focused on de-
riving algorithms that saturate this lower bound and related lower bounds for learning multi-index
models, i.e. functions that depend on a bounded-dimension projection of the input, over Gaussian
examples (Bietti et al., [2022; [Damian et al., [2022; [2024} |/Abbe et al., 2023). A key finding of our
work is that quantities like information exponent do not dictate the complexity of fine-tuning.

PAC learning neural networks. Within the theoretical computer science literature on learning
neural networks, there has been numerous works giving algorithms, many of them based on spectral
or tensor methods, for learning two-layer networks from scratch over Gaussian examples. The
literature is vast, and we refer to|Chen & Narayanan| (2024); |Chen et al.| (2023)) for an overview.

On the hardness side, |Diakonikolas et al.| (2020) (see also |Goel et al.| (2020)) proved that for corre-
lational statistical query algorithms, the computational cost of learning such networks from scratch
in the worst case must scale with d**(*), which [Diakonikolas & Kane| (2024) recently showed is
tight for this class of algorithms. Additionally, central to these lower bounds for learning two-layer
networks is the existence of networks >, \;o({w;, z)) for which the tensor Y, \;w®® vanishes for
all small s. As we discuss at the end of Section [2] even if the base model or teacher model satisfy
this in the setting that we consider, it does not appear to pose a barrier for low-rank fine-tuning in
the same way that it does for learning from scratch.

1.4 TECHNICAL PRELIMINARIES

Notation. Let S~! = {v € R? : |[v|| = 1}. For w € R% let w®® denote the s-th or-
der tensor power of w, and for two tensors 77,75 we use (T7,7T») to denote their elementwise
dot product and |73, = +/(I1,T1) for the corresponding Frobenius norm. Note the identity
Zf,j:l Aivj(wi, 00 = (0 Mw®®, 8 10®*) which arises in our analysis as the interac-
tions between different neurons in the population loss.

Bounds: Our results hold uniformly over the choice of w;, u, A under their constraints. We make
dependencies on Api, = min; |A;| and Apax = max; |A;| explicit, but in our O(-) notation, we
ignore constants that only depend on the activation o. We write O(-) to omit logarithmic factors.

Hermite analysis. We will use Hermite analysis to analytically evaluate expectations of products
of functions under the Gaussian measure. We let h,, denote the p-th normalized probabilist’s Hermite
polynomial, and p,(o) the p-th Hermite coefficient of . In particular, Hermite coefficients form
an orthonormal basis for functions that are square integrable w.r.t the Gaussian measure. That is,

functions o for which [[o]]3 £ E,x0.1)[0(9)?] < oo and we denote o € Lo(N(0,1)). These
functions admit a Hermite expansion o(a) = Z;io tp(0)hp(a), and for two functions f,g €

La(N(0,1)), we have (f, g) £ Eqon0,1)[f(a)g(a)] = >y Hp(f)ip(g). Furthermore, for u,v €
S4=1, Hermite polynomials satisfy E, a0, r,) [y ((w, )y ({v, 2))] = 1{l = p}{u, v)P.

2 EXPRESSION FOR THE POPULATION GRADIENT

To give intuition for our analysis of online SGD, we first consider the dynamics of gradient descent
on the population loss, defined as

(1) £ Eupro,n[(f* () = XTo(Wo + §2aT)x))?] 5
recalling that f* is the teacher, and ¢ is frozen at its random initialization in {£1/v/k}*.

In this section we derive a closed-form expression for the gradient of this loss and provide high-level
discussion on how a key scaling factor term in this expression influences the gradient dynamics.



We begin by calculating the population gradient (see Appendix [A.T]for the proof):
Proposition 1. Given I, s € Zx, define

®s||2
T s) = 3 122 2w [ I odd
- {k (O Miciw®, 30, Nsw®)  otherwise

Define h : R — R by

hm) = 2% (f)lﬂ <i (") s+ Do (ng/,g)ﬁ T(z,s>> .

s=0
Then at any i € SY=1, the population spherical gradient is given by
Vo(a) 2 (I — aa")\Ve(a) = —h((u, a))(u — ald, u)) .

This admits a natural interpretation: fﬁé(ﬂ) is a scaling of the ground truth direction u after it
has been projected to the orthogonal complement of the current SGD iterate @.. The scaling factor
h({u,@)) thus dictates the rate at which gradient descent moves towards the ground truth, but h
depends on the unknown level of correlation (u, %) in a complicated, highly nonlinear fashion.

Nevertheless, it suffices to prove that this scaling h({u, @)) is lower bounded throughout the trajec-
tory of gradient descent. To see this, let u; denote the iterates of population gradient descent and
define 7; £ (%, u). Under one step of population gradient descent, we get the following update:

M1 ~ My + nh(my) (1 —m;),

where the approximation is because we are ignoring the projection step in this informal overview, for
simplicity. Rearranging, we find that in one step, 1 —77; contracts by a factor of 1 —nh(m;)(14+m).
In particular, assuming 772; > 0, this contraction is non-negligible as long as h(77; ) is non-negligible.

Lower bounding 5 will thus be the main focus of our analysis.

Recovering generalized linear model dynamics. Consider taking & — oo. In the definition of A
in Eq. (D), for each [ we see that all of the summands s > 0 are of lower order, so that

h(m) =23 1 (0)*T(1,0)m' . (6)
=0

Note that T'(1,0) only depends on the parity of I: we have T'(1,0) = (}_, A;)? if [ is odd and
T(1,0) = (3o, Aici, >; Aiy) if [ is even, and we can assume these terms are non-negligible. The
reason is that they capture the first-order behavior of the degree-I component of the target model
after its inputs have been scaled down by a factor of £. In particular, if the 7'(/, 0) vanish, then the
rank-1 perturbation is information-theoretically not learnable.

In the £ — oo limit, Eq. (6) informally recovers the well-known fact that the complexity of online
SGD for generalized linear model regression depends on the information exponent of o: the behavior
of h is dictated by the degree of the smallest non-negligible term in its series expansion, i.e. the
smallest p for which |, ()| > 0. In particular, the larger this is, the longer it takes for the dynamics

to escape from the value of m at initialization, namely gy = (T, u) ~ 1//d.

In this work, we focus on low-rank fine-tuning rather than generalized linear models and thus con-
sider the finite ¢ scaling instead. As we will see, the dynamics under this scaling exhibit very
different behavior and are far less sensitive to the particulars of the activation function o.

3 LOWER BOUNDING THE POPULATION GRADIENT THROUGHOUT TRAINING

In this section we state our main results on lower bounding the scaling factor h(m) from Proposi-
tion [I]and provide key intuitions for the proofs, the full details of which are in the supplement. Note
that the population gradient can be potentially quite non-linear, and it is not apriori clear whether it
would vanish for m # +1. However, h(m) being non-vanishing across training is crucial, since it
is the main term guiding the dynamics. In this section, we argue that under our assumptions, when
the sign of m is aligned with h(0), the function h(m) admits a lower bound.



3.1 ORTHONORMAL FEATURES

Here we assume wq, . . ., wy, are orthonormal, so that the form of T'(l, s) in Proposition 1| reduces
to:

k Zi’ij:l )‘i2)\jciéj [ even
(qu )\i) I odd

which greatly simplifies our analysis since all the terms where s > 1 scale with the same expression.
Then, notice that we can decompose h into the odd powers of | and even powers of [ as

k o é.2 I+1 k +1
h(m) =2 |k Z )\i)\jciéj Z </€> (l + 1)#[-&-1(0')2 (W) m!

k Zz 1 Ac;¢; leven

T(1,0) =
.0) A2 L odd

and T(l,s>1)= {

R b
k 00 I+1 I+s+1 00
) ¢ I+s K
kz /\fcici] Z (k ! (I 45+ Dprsri(o)? Pre m'+ 3 bm!,
= ven oud
s>1

for some coefficients b; > 0. Informally, the typical magnitude of k Z Aidjcié; is ©(k), and

the typical magnitude of &k Zi:l ;¢ is O(Vk), with high probability over the randomness of
¢, ¢. Then, notice that if p1(c) # 0, the first term with even [ should dominate the second term.
In particular, 4(0) will dominate the even terms in the second term, and the typical magnitude of h
will be ©(£2). If p3 (o) = 0, notice that this is not immediately true since ~(0) now could be of a
smaller magnitude, but we show that with high probability, the even [, s = 0 terms are dominated by
the odd [, s = 1 terms. Since the odd terms have the same sign as m, as long as the sign of m agrees
with that of 4(0) we should see relatively monotonic behavior and % should not vanish. In this case,

from anti concentration (Proposition , we expect a typical magnitude for h to be ©(£2/VE).

7,7=1

3.2 SEPARATED FEATURES

We now drop the orthonormality assumption and only assume angular separation of the w;’s (As-
sumption[d). In this case, the population loss does not simplify. However, when £ = 1, we can show
that the higher order even terms in the expansion of h(m) are negligible relative to the constant term.
First, note that the sums

00 l—|—8 ) k I+s+1
Z( I >(l+3+1)ﬂl+s+1(0) (k+1)

s=0

scale with ©(k'), so their contribution could potentially be large. However, we initially show that if
we take only the first s* = O(v/k) terms, all the low order even terms are small

i > (é:)lﬂ (l Jlr 8) (4 5+ Dpgapr(0)? = O(k™279)

1>2 s>0

even
so that the maximum contribution after adding the factors is k~2<, for some £ > 0 that depends
on the activation. Hence, we separate the factor of the even terms into its diagonal and off-diagonal
components:

k
Z Aidjciéj(wi, wj)® Z)\ CzCz‘FZ)\ _16iCj(w;, w;)®
3,5=1 i#]

Notice that the diagonal components are ©(\2, /v/k) with high probability. For these terms
and large s, we use the decay of the Hermite coefficients of o to bound their total contribu-

tion by O(k*%*’s). For the off-diagonals, we use the angular separation of the weights: Note

(|<wi,wj>|)7‘/E < (1- %)Vﬂ < e~ 7lesk < k=7 Then, we establish a separation between

the magnitudes of h(0) and the higher order even terms by showing h(0) has typical magnitude
O()\2,,,/Vk). Then, we argue that the dynamics must be governed by 4(0) and the odd terms.



4  FINITE-SAMPLE ANALYSIS AND PUTTING EVERYTHING TOGETHER

Once we know the population gradient is leading m; in the right direction, we need to show the
noise from the stochastic gradients is negligible in training over a long time horizon. Notice that this
does not mean SGD noise is entirely negligible: In fact, over short time horizons, it could potentially
dominate the dynamics (see Figure[T). Note that we have the stochastic dynamics

M1 = my — nh(my)(1 — th) - 77<Et7u> + Q¢

where E; is the random error induced due to the sampling of the gradients and @; is the distortion
error due to projection onto the unit sphere. Then, unrolling the recursion, we have

t—1 t—1 t—1
me =mo—nS_ hm)(1—m?) =0 S (Eju)+ 3.0
j=0 3=0 =0

Now, note the population gradient term guides the dynamics in the right direction, whose effect
should scale with n7'. Furthermore, the second term forms a margingale, whose effect should scale
with 7v/T by Doob’s maximal inequality. Over long horizons, we can choose 7, T appropriately to
make the noise negligible relative to the progress. We use a similar analysis to |Arous et al.| (2021),
but unlike in that work, here we need to explicitly track dependencies on k and €. In particular, on
the finite sample analysis side, we show the following, which we then apply to various settings in
fine-tuning:

Theorem 4 (Informal, see Theorem [B). If h(m) is nice, and lower bounded by Sy throughout
training, and the variance of the noise is bounded above by Vi, online SGD with appropriate step

size, initialization, and time horizon T = O(%) satisfies |m¢| > 1 — € with high probability.
k

5 NUMERICAL SIMULATIONS

In this section we illustrate (i) the robustness of our theory to small changes in the assumptions (ii)
the distinction between our work and kernel methods. In particular, for (i) relax the assumption that
c; are quantized, and we also compare the cases when ¢ is frozen and jointly trained with 4. For
(ii), we show that linearized networks (kernel approximation) fails at £ = @(\/E) and also illustrate
some interesting behavior in the joint training of @ and ¢. We use the ReLU activation throughout

our simulations. We let f(z) = % Zle Aio((v;, x)) where v; = ﬁlﬂsg(wZ + &c;u) where the 1/¢
is to keep the magnitude of gradients consistent. Throughout our simulations, we set d = 2000,
k = 50, and sample the w; € S% ! and ¢ € S¥~! uniformly at random.

First, in the £ = ©(1) scaling, we plot 10 training curves for random problem instances (see below)
for joint training Figure|[I](a) and when ¢ is frozen Figure[I}(b). Notably, we see that while freezing
¢ leads to longer time scales in training, the qualitative behavior of (us, u) is similar across the two

settings. Next, we test the ¢ = G)(\/E) scaling, but we keep the problem setup same otherwise. We
plot low-rank fine-tuning in orange (% and ¢ are jointly trained) and linearized training in blue. For
the linearization, we Taylor expand around the base model. In Figure [2](a), We demonstrate that
linearized dynamics do not explain fine tuning in this regime. Furthermore, when jointly training
and ¢, we observe there is an initial phase where the loss is high and (u;, u) is increasing but {c;, ¢)
stays at a low level (see Figure [2(b)). This suggest that the initial phase of joint training might be
similar to the training with frozen ¢.

6 OUTLOOK

In this work we took the first steps towards understanding the gradient dynamics low-rank fine-
tuning beyond NTK. We identified a rich student-teacher framework, specialized to two-layer net-
works, and proved in various settings that online SGD efficiently finds the ground truth low-rank
perturbation. This student-teacher framework is also appealing because it offers a natural way of in-
terpolating between fine-tuning in the lazy training regime and generalized linear model regression
in the feature learning regime. The parameter regime we consider occupies an intriguing middle
ground between these extremes where the dynamics are nonlinear yet tractable and not overly sen-
sitive to fine-grained properties like the Hermite coefficients of the activation function.
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Figure 1: Evolution of (u;, u) during online SGD for 10 random instances with joint and frozen-¢é
training. Though time scales differ between (a) and (b), trajectories exhibit similar behavior.
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Figure 2: Linearized Networks fail in low-rank fine-tuning, and cannot achieve small loss. When
jointly training @ and ¢, we observe incremental behavior in learning, where learning ¢ becomes
easier when u is learned to a certain level.

Our results open up a number of future directions. Firstly, it is important to try to lift our as-
sumptions, in particular the orthogonality of the perturbation relative to the pre-trained features, the
assumption that c is quantized to have equal-magnitude entries, and the assumption that c is random.

For these questions, a fruitful starting point could be to target a specific, analytically tractable acti-
vation function like quadratic activation, especially given that based on our findings, the dynamics
of low-rank fine-tuning do not depend heavily on particulars of o. For this special case, we could
hope to go beyond Hermite analysis and potentially even obtain an exact characterization of the
dynamics.

Other important directions include analyzing the dynamics when ¢ and @ are jointly trained — Fig-
ure[T]suggests that this is roughly twice as efficient as freezing ¢ and training 4 in isolation — as well
as going beyond two layers and rank-1 perturbations. Finally, it would be interesting to understand
the worst-case complexity of fine-tuning: are there computational-statistical gaps in this setting?
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A INTUITION AND STATEMENT OF RESULTS

A.1 ASSUMPTION ON THE ACTIVATION FUNCTION

We first state the technical assumptions on the activation function o

Assumption 5 (Activation function). The activation o satisfies all of the following:

1. o is almost surely differentiable (with respect to the standard gaussian measure), with
derivative o' having at most polynomial growth: There exists some b,c,q > 0 such that
|o’(a)] < b+ clal? for all a.

2. The Hermite coefficients of o have faster than linear decay: There exists Cy,p > 0 such
that |j1y()| < Cop™ 1.

3. o satisfies the following moment condition: For 1,92 ~ N(0,1) gaussians (potentially
correlated), for some C,, , > 0 that only depends the activation and p, we have

1/(2
(Elo(gr) — o(g2)") /7 < Cpo (Elgs — go[27) "/

Remark 1. These conditions are satisfied for any reasonable activation used in practice. For the last
condition in assumption ] note that any lipschitz activation (e.g. ReLU, Absolute value, Sigmoid).
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Furthermore it is satisfied for any polynomial activation (e.g. finite hermite expansion). To see why,
for a degree s polynomial p(x) = Zi:o anx"™, note that

S S S
1> ang? =Y angs| < smax{lg1|* ", |g1]*lgal, -, 92"} <Z an|> 91 — g5
n=1 n=1

n=1

Then, applying Cauchy-Schwarz, we have

VElp(g1) — plo2)lP < s <Z Ian|> (Emax{g: ", .., o]~ 32) @ (B|gy — gof?) "/
n=1

notice that the first expectation can be bounded by a constant that only depends on s concludes the
result.

Recall that for A € R¥ w; € R? with ||Jw;|| = 1, ¢ € {:l:ﬁ}k, and u € S%~! we have the target
model

k
Fr@) =" Nio ((vi, ) (7)
i=1
where v; = 2FESY Fyrthermore, since u | w;, we have v; = 2itsciu Initially, we derive the
Twi +éecul e

k
population loss and gradient without imposing additional assumptions.

A.2 COMPUTING THE POPULATION GRADIENT IN A GENERAL SETTING

Because o admits a hermite expansion, for v,% € S?~! we can evaluate expectations of the form
Exlo((v,2))o((0,2))] = 307, pp(c)?(v,9)P. Then, we can compute the population loss and
gradient as follows

Proposition 2 (Population Loss and gradient). We have the population loss

Z)\)\]Zup 2(04,0,)P | + Z)\)\Jz,up % (v, v;)P

i,7=1 i,j=1

—22)\)\ Z,up vq,vj

7,7=1

®(a) £ E[(f"(z) — f(2))?]

and the population spherical gradient
V(i) £ (I - aaT)Ve(a) = ~h({u, @) (u — @(d, u))
where we define h : R — R to be
00 1+1 0o l+s+1
£2 l+s 1
QZZ< N G L e I
= s=

with

k(Y hicw?®, S0, Nicw?®)  otherwise

3

<112
T(l,s) = {||Zi Aiw* ||, L odd

Proof. Note that E[(f*(z) — f(2))?] = 30,20 A f (@) ff (@) + X0, M fule) f () —
2 Eij:l i\ I (av)f7 (x). Then,

fz7fj Z,U*p Uza'Uj

14



Working similarly for (f;", f7) and ( i, fj>, we have

B (@) - F) = [ 3 Mo Zup iy | + [ 3 Zup

3,j=1 4,j=1
—22)\)\ Z,up (v, 0;)P
4,j=1
Then, under the constraints u, @ L w; and |jul| = ||4|| = 1, notice that (v, v;) = Swiwy)+Eeic

1+5)
M’E‘;ﬁ# Since we are restricting training and gradients to this con-
strained space, the gradients of the first two terms with respect to @ vanish. Then,

and similarly (v;,0;) =

VaE[(f*(x) - =2 Z AT 52 ciC Zp,up *(vi, 05)" " (u — @(u, @)
i,j=1
=-2 Z NidjE%¢ic; Zpup ( +1£2> (wi, wy) + E2¢;ej(u, 0))P~ (u — @lu, )

Then, notice that since Z;O:l pip(0)? < oo, the expression above converges absolutely (and uni-
formly) for any |(u, @)| < 1. Let m = (u, ) and define.

p
=23 g cchZpup (1) () + Eacmp

1,9=1

Because this expression converges absolutely and uniformly for |m| < 1, we can write its power
series expansion around m = 0, to get

0o I+s+1
l+s 1 )
=2 3 0,3 E ey z<z+s+l>ul+sﬂ<a)2( Nite)

52
i,j=1 s=0 1+ &

Then, notice that for odd [, we have (ciéj)l+1 =
we can write

- QZ <£2>l+1 i (l 41_ s) (4 s+ Vs (o)? (ngkz> o T(l,s) | m'

s=0

o (c;ej)*t = ckfj . Then,

where

I )\w®SH2  odd
Tt.s) _{ k(3 diciw g 3 Adiw?®)  otherwise

as claimed. O

Remark 2 (Generalizing single index models). If we fix I* and let £ = £k, and sent € — oo the

term
=~ (l+s 9 1 )
E ( ! )(1 + 8+ 1D pits+1(0) <1+§2> T(,s)

s=1 &

will vanish for all l. Then, h(m) around 0 reduces to

o]
~ Z lul+1(0)2ml
=0

Then, notice that this is the setting of single index models, where the dynamics at initialization is
governed by the information exponent, i.e. the degree of the first non-vanishing hermite coefficient
wp(0). In this sense, our fine tuning model is a generalization of single index models.
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Remark 3 (Role of moment tensors). The T'(1, s) terms in the expression for h(m) involve moment
tensors like ), )\zwl@S andy_, )\iciw?‘g. As mentioned in Section there exist networks for which
these tensors vanish and for which noisy gradient descent takes a long time to learn them from
scratch (Diakonikolas et al.| 2020, |Goel et al.|l |2020). As such, their appearance in Proposition
might seem to suggest that in the worst case over ¢ and (\;, w; ), the complexity of fine-tuning could
be as bad as the complexity of learning from scratch. While we do not formally address this worst
case setting in this work, we expect that the complexity of the former should be dictated by the
smallest | for which the sum over s in the definition of h(m) is nonzero. Even if the moment tensors
above vanish for many choices of s so that T(l,s) = 0 unless s is large, note that such s will still
contribute non-negligibly to the aforementioned sum. For this reason, we expect that the worst-case
complexity landscape of fine-tuning should be very different (and in general far more benign) than
that of learning from scratch.

A.3 INTUITION FOR SGD DYNAMICS AND SAMPLE COMPLEXITIES

We will initally provide some intuition regarding the gradient dynamics, in terms of the function
h(m). Notably, in this setting, the behavior of the function & will determine the behavior of the
dynamics. Now, recall the iteration for wu;:

Ut — nﬁL(Uﬁ 9Ut)
Uy — n@L(ut; )

Ut41 = ‘

We formally analyze the SGD dynamics in Appendix [C] so for the sake of intuition, suppose we
write the spherical projection error as Q¢

Up41 = Up — U?L(Ut;xt) + Qt

Furthermore, decompose V L(us; z;) = V®(u;) + VE(us; 2;) where E; is a stochastic error term
with mean 0. Then, Let m; = (u¢, u), and we get

M1 = My —+ T)h(mt)(l — mf) —+ 7)<@Et(ut, l't), U> + Qt

where (), error due to ignoring the spherical projection. Then, unrolling the recursive expression
and defining E; = V E(uy; x¢), we obtain

t—1 t—1 t—1
me=mo+n Y h(m)(1—m)+nY (Ej,u)+ Y Q
j=0 j=0 j=0

Then, notice that the term M; = 7 Z;;%)(Ej, u) forms a martingale, and Z;;é Q; is a stochastic
error term. In short time scales, these two error terms could potentitally dominate the dynamics.
However, in long time scales, the contribution of these terms scale with 7]\/T, whereas the con-
tribution of the population gradient term 7 Z;;é h(m;)(1 — m3) scales with 5T, given the popu-
lation gradient is non-vanishing. Then, notice that we can always keep nT° = ©(1) while letting
T = o(1). The exact choice of 1, T' depends crucially on the signal to noise ratio of the problem.
In particular, if we have a lower bound Sj, on the population gradient (signal), and an upper bound
dV}, on the variance E,, [Ef] (noise), then we show the sample complexity scales with the inverse of
the signal to noise ratio, which is % We analyze this precisely in Appendix

Nevertheless, even after ignoring the noise and assuming we have a population dynamics, it is not
immediately clear from the form of A that the dynamics should converge to the ground truth (or
its negation, due to the inherent symmetry in the problem). For the sake of intuition, consider the
population dynamics, ignoring the spherical projection

M1 = Mg + nh(m) (1 — ;)
If we rearrange, we can write |1 — ;41| = |1 — m||1 — nh(m;)(1 + ™). Then, if h(7;) is non-
vanishing throughout the dynamics, the population dynamics should quickly converge to 0 even if
h can potentially be non-linear and exhibit complicated behavior. In particular, suppose h(m;) > s
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throughout training, then we have |1 — ;11| < |1 — 7¢||1 — ns|, in which case the population
dynamics is greatly simplified. Furthermore, notice that 7; would converge to 1 only if h(7;)
is non-vanishing across the trajectory since this would lead to converging to a different stationary
point. Hence, the main goal of the subsequent analysis is to prove that h indeed satisfies this lower
bound property, and quantitatively determine what the lower bound is.

A.4 RESULTS FOR FINE TUNING WITH ONLINE SGD IN DIFFERENT REGIMES

Note that we consider two kinds of randomness in our probabilistic bounds. There is the random-
ness due to the ¢, ¢, and also due to the randomness of the training trajectory due to the data. Fur-
thermore, we consider initializations that satisfy mg > %sign(h(o)). Note that the magnitude
condition |mg| > % will be satisfied with probability 1 — O(3) since random unit vectors in d di-
mensions have correlation of order 1/ V. Hence, we think of 3 as a small constant. The magnitude
assumption is standard in this type of analysis. For the sign condition, empirically, the results are
not sensitive: However, handling both sign initializations requires knowing more about the structure
of h(m) and we defer it to future work. However, note that the sign condition holds with probability
1/2, and if not, flipping the sign of uq will ensure that the sign condition holds.

A.4.1 ORTHOGONAL SETTING

In this section, we assume (w;, w;) = 0 whenever ¢ # j. Then, notice that h reduces in form to the
following:

m) = 2k (Z )\Z-ci) (Z/\ cl) > am! + Y am! +k (Z )\20101> > bm!

L even L odd l even

where the a;, a;, b; are all positive coefficients. Then, we are interested in the magnitudes of the
random quantities in the above sum to characterize the behavior of . We do this in the next ap-
pendix. Essentially, if the first hermite coefficient is non-zero, the term (3, A;c;) (D", Xi¢;) governs
the lower bound for A. In the other case, we show the term Zi )\fciéi governs the lower bound.

Theorem 5 (Orthogonal setting, £ = 1). Let Assumptionhold, and 0 < e < 1.

1. For activations with py (o) # 0, for a sufficiently small Cs = ©(1), let 6 = 10?/\74)‘7“1&)2

max

% Then, with probability 1 — o (’;d:) — O(y?) ran-

domness of c, ¢, for initializations satisfying (ug,u) - sign(h(0)) > \/3, online SGD run
dk?] satisfies (ur,u)? > 1 — e with high

Furthermore, let o« =

with step size 1 = 2 and time T = [k,

probability over the randomness of the data.

2. For activations with u1(oc) = 0, for a sufficiently small Cs = ©(1), let §

Csry)\ﬂll!l log(A’VYLCL.Edk )\/7
Tog N kD) TR Furthermore, let o = YT S Then, with probability 1

2

0 (’;‘5&) —O(y"/?) randomness of c, ¢, for initializations satisfying (ug,u)-sign(h(0)) >
min 4

%, online SGD run with step size n = ’\3‘25 and time T = [a)\}  dk?)| satisfies

{(ur,u)? > 1 — e with high probability over the randomness of the data.

Proof. For the first point, notice that Lemma 1| and Lemma |2 imply that Assumption [/}, Assump-
tion [§] hold with
S, — fyAIQHinl’Ll(O’)Q
CTTE
1+ 5
Vi = Cp oA k2

max

for some small y with probability 1 — o (%) — O(y'/?). Then, applying theoremwith the set

min

Sk, Vi and €, we get the desired result. The second case follows similarly. [

17



Remark 4. In the orthogonal setting with £ = 1, when (o) # 0, we need T = O( "”; dkd)

54
dk )

iterations. Similarly, when j11(c) = 0, we need p1(0) # 0, we need T' = O( "‘“2 iterations.

Theorem 6 (Orthogonal setting, & = EVE). Let Assumpttonlhold, and () < e < 1.

1. For activations with uy(c) # 0, for a sufficiently small Cs = ©(1), let § =
. Cs€ kyA\2, &3 log(\}, . dk?
mm{(l(fggxﬁi‘;‘,:z)z,l}. Furthermore, let @ = %.

max

Then, with probability

min

2
1-o0 (i?‘*") - exp{—%} — O(y"?) randomness of c, ¢, for initializations satisfying

min
)

GV

max

(ug,u) - sign(h(0)) > f’ online SGD run with step size 1 = and time

T = fa)\fnaxﬁ dk*] satisfies (ur,u)? > 1 — & with high probability over the random-

ness of the data.
2. For activations with (o) = 0, for a sufficiently small C5 = O(1), let § =

2
min{%ﬂ,l}. Furthermore, let o = %. Then, with probability

2
1—-o0 (%) — exp{fe% — O(y'/?) randomness of c, ¢, for initializations satisfying

min

(ug,w) - sign(h(0)) > %, online SGD run with step size 11 = W and time
T = fa)\fmxf dk*) satisfies (ur,u)?> > 1 — & with high probability over the random-

ness of the data..

Proof. For £ < 1, the results in Lemma |l and Lemma [2| imply that Assumption [7, Assumption
hold with

rykA?nin/’[‘l (0)2

Sk = T

Vi = Cpoe

Ll K

for some small y with probability 1 —o(1) —exp{— ?} — O(~'/?). Then, applying theoremwith
the set Si, Vi and €, we get the desired result. The second case follows similarly. O
Remark 5. In the orthogonal setting with € = €\/k, when iy (o) # 0, we need T' = O()\‘L““if‘252 .
dk?) iterations. Similarly, when (o) = 0, we need 1 (o) # 0, we need T = O(% dk*)

4 oag? 2
>\nnn

iterations.

A.4.2 ANGULARLY SEPARATED, SPECTRAL SCALING SETTING

Now, we do not necessarily assume the weights are angularly separated. However, we assume the
features are not too correlated, so that weight vectors have angular separation 1 — %. Then, we
have the following result for £ = 1.

Theorem 7 (Separated setting, § = 1). Let Assumption 2| hold, and 0 < ¢ < 1. For a sufficiently

small Cs = ©(1), let 6 = %. Furthermore, let o = M. Then, with

(log A%, .. dk?)2Vk A2, yed

probability 1 —o(1)—O(y/?) randomness of ¢, ¢, for initializations satisfying (ug, u)-sign(h(0)) >
4

%, online SGD run with step size n = % and time T = [aX}, dk?] satisfies (up,u)? > 1—e.

Proof. Note that Lemma|I]and Lemma [2]imply that Assumption[7] Assumption [§|hold with
YA in

Vi
Vie = CpoAn

max

Sk =
k2
for some small y with probability 1 — o (% — O(y'/?). Then, applying theoremwith the set

min

Sk, Vi and €, we get the desired result. The second case follows similarly. [
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Remark 6. In the angularly separated and & = 1 case, online SGD strongly recovers the true

4 3 . .
parameter up to a sign with'T' = [)\7 . ‘%ﬂ iterations.

min Y

B BOUNDING RELEVANT QUANTITIES TO THE SGD DYNAMICS

The goal of this appendix is to prove the following statements:

Lemma 1 (General Case Upper Bounds). Under Assumptions ???, we have the following:

IN

) 2p . 1/P
" L),

. ) VL(asz)
1. Variance  Upper  Bound.: max{” i

4 K¢ min{k,4£%}
CpoAmax—hgez

2. Population Gradient Upper Bound: H@‘b(a) H <O A2 1f§22/k

Lemma 2 (Population gradient lower bounds). Under Assumptions[I|to[5|we have the following:

1. Orthonormal case, pi (o) # 0: With probability 1 — exp {f%} —~0('?) —o (%)

min

form > 0, we have

h(sign(h(0))m)sign(h(0)) > |h(0)] > 752/11((;)2
2 1+ %

2. Orthonormal case, 1 (o) = 0: With probability 1 — eXp{ 2; } O(vY?) —o (%)

min

form > 0 we have

BO)] _ _ 2Cse
2 (1 + %)é vk

h(sign(h(0))m)sign(h(0)) >

where s* is the smallest s for which ps(o) # 0.

3. Angularly Separated case, ¢ = 1: With probability 1 — O(y'/?) — o (’)\\‘2“‘“"> form >0

min

we have

' - |h(0) _ v
h(sign(h(0))m)sign(h(0)) > == > N

Remark 7. Our analysis naturally extends to the case when & # 1 but £ = O(1), but for notational
simplicity, we set £ = 1.

B.1 UPPER BOUNDS ON THE VARIANCES OF GRADIENTS AND THE MAGNITUDE OF
POPULATION GRADIENT

We state the following assumption we will use while bounding the variance of the gradients. The
following assumption holds for many classes of activations including Lipschitz activations (e.g.
ReLU, absolute value, sigmoid, tanh) and finite degree polynomial activations.

Proposition 3 (Moments of squared error). Let p be given, and Assumption |5 hold. Then, there
exists some constant C, , that only depends on p and o such that

Eo[(f*(x) — f(2))*P]/P < Cp o A2y min {k?, 4k€}
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Proof. Let C), , be a constant that only depends on p and o, that will change throughout the proof.
Note that

k
Eo[(f*(@) = f(2))] S kP71 Y NPEo(o((vi,2) — (83, 2)))F

=1

< CP U)‘makaP ! Z \/IE Ulv vla >|4p]

< Cpa AdekQP ||U1 - viHQI)
v; — U;|| < 2. Otherwise,

lvi = 0il] < |[|€ciu — eiall + 2 ( W)

555008

However, notice that if ¢ < v/, this is bounded by 2 f Otherwise, we use the bound ||v; — 0;| < 2.

Then,
Jos = 1) < win {2, 22 |
V; — Uil S Mmin , T
VE

Combining with the above and taking p’th root, we have
16¢2
B [(7°(0) = S < Gy ki {1, 25}

< Cp oAl oy min { k7, 4kE%}
as desired. O

Now, we bound the other quantity of interest, which is the moments of squares of the gradient
V. f(x). We have the following:

Proposition 4 (Bound on the expected magnitude of f ). Let p be given. Then, we have
A 1/p
Vaf(z )

R 9 k’2€2
\/g <v f() >p <C;p)‘maxk+§2

max | E,

Proof. Let C,, ;, be a constant whose value can change throughout the proof. Initially, note that
k

> p ~ géz /
Vaf(x) = —aa")x ANi———0 (v, x
fla) = (1 - aa") [Z T >>]

Then, since the spherical projection always leads to a smaller gradient

[vai@] < |vasio]
k

4p
N 2
S @7 < VE el > ng <<vi,x>>]
< Oy pdPk*P AP a (fr éf/)k max E, Ao (03,

However, since ¢’ has at most polynomial growth, so does (o )41’ and since ?; is unit norm, the last
quantity is finite and only depends on ¢ and p. Then,
£ P 1/p 2 k2§2
[El vﬁf('r)H < CU I)Amaxdk ¥ 62

For the other case, note that the only step that changes is the bound on E, (x, u)*? does not depend
on the dimension, but only on p. So, we lose the dimension dependence. O

And furthermore,
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Proposition 5 (Population Gradient Bounds). We have

st < Co

Proof. Initially, note the non-expanded form of the population gradient:

. » -
Vo 1+£2 A Z Ai ) Czc]Zp/ip )2 (i, 057w — a(u, 4))

Then, note Zf =1

)\i)\jcicj <

2 x> and Z;O 1 pip(0)? < C,. Furthermore, ||u — @ (u, @)|| <

1 and |(v;, 9;)| < 1. Then, < Cp N2, ng/k as desired. O

B.2 ORTHONORMAL CASE: POPULATION GRADIENT LOWER BOUNDS
Recall the function h.
2 I+1 [ee] l I+s+1
+ s 1
=2 Z & (s + Dmsan(0)? (g | T05) | m!
s=0 ! 1 + %

with T'(I, s) being defined as

n ||Z A w®8|}i  odd
k(Y hicwd®, 3, Miéw®)  otherwise

However, in the orthogonal case, for s > 1, T'(, s) reduces to
k 2
T(ls>1)= 2N 1odd
kY iy Afci¢;  otherwise

And for s = 0, these reduce to

(=t )\i)2 I odd
k (Zf:l )\z’ci) (Zle )x,éz) otherwise

Notice that for all odd [, the power series coefficients are always non-negative. And for all even [,
all the power series coefficients have the same sign.

T(1,0) =

We initially bound the maximum possible contribution coming from the even [ terms with s = 0.
Claim 1 (Even [, s = 0 contribution). With probability 1 — exp{f%}, the following holds.

é.2 I+1 l+ 1 I+s+1
sign(m) | 2) < 2 ) ( ! )(l + 5+ Vs (o) <1+§2/k> T(,s)
l odd

s=1

12y (52>l+1 <”l‘9> (L+ s+ Dprrsri (o) (Hzg/lﬂ)lﬂﬂms) >0

>0
even
s=0

Proof. Note first that E. ; (Zle )\ici) (Zf 1 A6 ) = 0 and moreover,

Eoc (Z )\> (Z v > g
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so the standard deviation is ||/\||§ /k. Hence, T'(1,0) has standard deviation ||)\||§ in ¢, ¢. Then, note
that

¢ I+1 1 I+1 k
2% (k> (1+ 1) pr41(0)? (1 N 5) k> Nidjed; | m!
>0 k i,j=1

even

+1
2mé? . A ¢ : 2 1 -1
= i k Z )\i)\jcicj Z (kj) (l+ 1)/Ll+1(0') @ m

i,j=1 1>0
even

9me? k ¢ I4+1 1 42
= k Aidjcic; = I+2 2 — !
k Z 5 CiCy Z <k> (I +2)p42(0) <1+5’5> m

ij=1 { odd
1+2
2me? b 1 /1+1\ /" [ 1 l
- EST e - S 142 S
& Ez:l 7 l% l+1( ! > (k (4 Dprralo) 1+% "

2mé¢? . 1 (1+5s) [\ 1o\
_ N > 2 l
ain el COIREELN BDY l+s< l ><k) s+ Dutrara(0) (1+f,f> "

ij=1 lodd,s=1

However, notice that the sum precisely corresponds to all odd [ with s = 1. Then, bounding [ > 1

so that H%l < %, we can elementwise compare the odd [ terms with s = 1 and even [ terms with

s = 0. The odd terms are

e\t 1\
233 () (1) Dnnator? <5> m!
l odd 1+?

Then, note that it suffices to show that, with high probability, we have

mé? k
~ 2
7]{7 k Z )\iAjCiCj S 2 H>‘H2

ij=1

Then, note that using the standard deviation bound, using (O’Donnell, 2014, Theorem 9.23), we
have

k
me? R 2 2k 2k
Pr L k E : Aidjeity | < 2[All; Sexp{—W} SeXP{—egg}

ij=1

Hence, with probability 1 — exp {—% } the even s = 0 terms will not effect the sign of the odd

terms. In particular, we have, with probability at least 1 — exp{—%}, we have

sign(m) (2 3" (”;)+ (") s D0 (H;ﬂf)lﬂﬂz“(z,s)ml

lodd ,s=1
+1 l+s+1
5 () (rvem) |
+2 > l+s+1 s —_— T(l, >0
levg;‘szo ( ]f l ( $ )/‘Ll+ +1(J) 1 + 52/](: ( S)m
as desired. O

Proposition 6. Let 1 (c) # 0, then with probability 1 — exp{—%} —0(1) — O(3maxy1/2), we

have h(sign(h(0))m)sign(h(0)) > @ > %ﬁ)rm > 0.
*
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Proof: WLOG assume (>, Aic;)(>_; A\i¢;) > 0. In this case, using Claim 1} with probability
1- exp{—%} we have

k k
sign(m)h(m) > sign(m)&? (Z )\ici> (Z )\iéi> M1(0>2%

9 N 5 I+s
+sign(m)1_~_22/k<c,\,ém > (i) <Hl— )(l+3+1),uz+s+1(0)2 <1£2> jm|’

T+ 5
+ > byfm]
l odd
Now, we investigate the second term. Note that the sum in the second term is bounded by

> (S (1)@ s Do ( jgk)m
- iZ (5) (M) o+ tpator (1 ;)
- ,,Zzo(p D (0)? (kfg) (1+ 'fk)

<Y P+ Dppi1(0)* < Co

p=0

2
Then, notice the the second term is bounded in magnitude by % |{ex, éx)|. Then, notice that

o ’Y/\2 _a
Pr |:|<C)\,C)\> > P Jogk| <k =
vk

logk CoXl . &2
vk 1+€/k

concentration of the constant term (Proposition Ii we have that the constant term is

Set v = 10. So, with high probability this term is O( ) However, by anti-

A axti ()62
=y
with probability 1 — o(1) — O(3=22~'/2). Then, the constant term is O(v/k(log k) ~*) larger than

the even terms, and it’s sign is dictated by (>, Aic;)(>_; Ai¢;) > 0. Then, we can bound the even
terms by half of the constant term, and get the desired result. O

Claim 2. Let pi(0) = 0, then with probability 1 — o(1) — exp{—%} — O(WY/?), form > 0

we have h(sign(h(0))m)sign(h(0)) > |h(0)] > (1_:5;7)52\/% where s* is the smallest s for which
*
ps(o) # 0.

Proof. Again, WLOG assume sign(h(0)) > 0 so that (cx,éx) > 0. In this case, with probability

e Uit ) I+s+1
sien(mi(m) > sign(m)c(er,on) - () (1F7) 0 s D (07 (Hg> m!

k
+ Z bl|m|l

[ odd

L even
s>1

where the b; are non-negative coefficients. Then, note that £2(cy, &\) = |m||{cx, éx)|€2. Then, by
anti-concentration (Proposition , note that with probability 1 — o(1) — O(y'/2), |{cx, é&)| > %

Hence, we have h(sign(h(0)m)sign(h(0)) > |h(0)| for all m > 0, and |h(0)] > —2Cu&

- (%)

D%

where s* is the smallest s for which ps # 0.
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B.3 ANGULARLY SEPARATED CASE: POPULATION GRADIENT LOWER BOUNDS
B.3.1 COMPUTATION OF THE POPULATION GRADIENT
Note that specializing £ = 1, we get
00 I+1 oo I+s+1
1 I+s 2 k .
h = — l 1 s —_— T(l,
m=3(5) T (3 )arsr menor (55)  Tom

B.3.2 BOUNDING THE HIGHER ORDER EVEN TERMS

Initially, we aim to bound the even terms in the power series (i.e. [ > 1).

Lemma 3. Suppose Assumptions I to I hold. Then, with probability at least 1 — 3 over the

randomization of c, ¢, for ¢ = min{§,1 — 1+2p} we have
oo 2n+2 oo 2n+s+3
1 2n+2+s 9 k
3 (1) S (s e omnatof () (S haet Snen)

O()\2 k2e)

max

Proof. Let s* = 10v/k. This proof will involve bounding contributions from the following three
types of terms:

(i) The contribution from the terms where s < s*. These can be bounded naively since there

are at most O(v/k) of them, and the (1/k)2"*+2 will dominate the growth in & in these
terms.

(i) The contribution for s > s* from diagonal terms: These terms scale with Zle )\?ciéi,
so it suffices to show the coefficient is O(k~¢) for some small € > 0. This is due to the
fact that the Hermite coefficients decay at rate (s*)~1 7", so the contribution of the large s
coefficients have to decay in k at some small rate.

(iii) The contribution for s > s* from non-diagonal terms: Due to the assumption of angular
separation between the w;’s, when s is sufficiently large, the decay of the terms (w;, w;)*
means these terms will be small.

(i) Contribution from terms with s < s* = O(\/E): Initially, we bound the magnitudes of
the randomized terms. Since there are at most vk of them and they concentrate exponentially
around their means, we can bound their magnitude by O(log k) with exponentially high probability.
Specifically,

k k
Z )\i)\jciéj<wi,wj>s = Z /\i)\j<wi,w]—>sE[ciéj] =0
i,j=1 ] i,j=1
9
k k k
E Z )\i/\jciéj<wi,wj>s = Z Z )\i)\i’/\j)\j’<wiawj>s<wi’awj’>s]E[ciCi’éjéj']

i,j=1 i,1'=1j,j'=1

= 37 3T NN A (wi,wy) (wir, wyr ) Eleics [ ¢

i,i'=1 j,j/—l
=12 5 E )\2/\2 (w;, wj) 2s
=1 5=1

IM o

k2 max *

\ /\
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Then, define f, : {—1,1}%* — Ras f,(b,0) = £ 35 ;_; \iAjbibi(wi,w;)* which is a quadratic
polynomial in b;, b;. We have just proved that || fs||, < AZ .. Then, by (O’Donnell, 2014, Theorem
9.23) we have
. v _a
Pr [|£.(0,)| > ylog k7] < exp{~logk} = k=7

where v > 0 is to be chosen later. Then, using the union bound, we have
k
Pr | max Z Nidjeitj(wi, w;)e| > N2 Joghk| < s*k™%
s<s* | & 1
)=

As s* = O(\/E), then with probability at least 1 — k:_%JF%, we have

n=0

0 2n+2 s* ontst3
Z 1 2n+ 2+ s k
2 2
< 7 Amax log k — <k> Zs:o < 2n + 2 > (2n + s+ 3)p2nts+3(0) (k—i—l)
()

Now, it suffices to give a O(k‘é_cs) bound for the infinite sum for ¢ > 1. We will separate it into
cases s < (s*)17¢ and (s*)'~¢ < s < s*. The reason for this is that we have to use the decay of the

Hermite coefficients as s approaches vk, so the two cases need to be handled separately. Hence, for

I £ 2n + 2 using the binomial coefficient bound () < (%)k we have

(s*)l—s (S*)l—s

I+s o[ kT I+s\'
Z ( I )(l+5+1)m+s+1(0) <k+1> < ; Co e

s=0
(Sx)l—s
<ot Y (L)

s=0
S Cgel(s*)l_a(l + (s*)l—s)l
S Co’ (S*)l—s(Qe(S*)l—s)l
Then, notice that for k larger than some absolute constant, we have

n=0
since (s*)30-9)k=2 = O(k~33°).

Now, we look at the remaining terms. For (s*)lf": < s < s*, we have

(}C)l > (ZJZ‘S)(HSH)MHSH(U)?<I€_’i1)l+s+1<ca(8*)—<1—a><1+2p> 3 (

(s¥)17=<s<s* (s¥)17=<s<s*
e1—(1—e)(14+2p) [ 2es” :
< Cy(s") (k)
Taking the sum over all [ £ 9 + 2, we have
O, (57)1-(1-9)1+20) i <263*)2n+2 < O, (s7)1-a-2)a+20) (263>2 o
—\ k k 1+o0(1)

Choosing ¢ = 1 — T12p > 0 for simplicityﬂ we have that the sum is bounded by
Cy (%) 1++(1) = O(%) Hence, combining with previous steps, we can upper bound the in-

finite sum in Equation (8) by O(\2,, k=2 3¢) where e = 1 — T3

3There are more optimal choices of ¢ that lead to better bounds
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Z (k) 82:% < 9 4 9 )(2n+s+3)u2n+s+3(a) (k—‘,—]_) <§ Azczwi 7;Azczwi 5>‘
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(ii) The contribution of s > s* for diagonal terms: We first note that

E \* o > E \* X _
Zpup <k+1> (wi + ciu, w; + &) 1:&%(0)2 <k+1> ((wi,w;) + ciéym)P~!

Then, notice that the RHS is maximized in absolute value when w; = w;, ¢; = ¢; and m = 1. In
this case, we get

o) k p R ~
Zpﬂp(0)2 <kz+1> (wi + ciu, wi + &4) < Zpup 220,
=1

In particular, we have absolute convergence of the LHS for all |m| < 1, so we can freely interchange
order of sums. However, notice all steps in this argument works if we replace 11, (0)? with something
else that has sufficiently fast decay. In particular, writing p = [ + s + 1 we have

2 (i)l 2 (Z +l S) (4 s+ Dpirsia(0)? (lwlil)m“ :pi—o: (k i l)ppup(a)zjz:é Gﬂ)l (p
5 () (143) s
< ipup(U)Q =, ®

p=1

However, since all the terms in the sum are non-negative, using the same steps, we have

S S () s vmaer ()

=0 s=s*
N [l +s Eo\ et
< = ! T —
<3 () 2 (1) e ()
©° I o l+s+1
*\ — 1 l+5 _a k
=) pZ(’f) Z( l )UHH) 1 p<k+1>
=0 s=s*
)—P Zp—l—p — C«U(S*)—p
p=1
where C’azzgollerpﬂThen
00 1 2n+2 oo Mm+24+s k 2n+s+3
- ) X 2 2.6,
;( ) SX;( o+ 92 )( n+ s+ 3)u2n+s+3(0) <k+1> zl:/\lczcz

=0
SC’ "|Z)\ ciéil .

Then, notice that since \/E[(}", A2¢;¢;)%] = \/ 7= SF A <22 /VE, we have

log k
max f

by another application of (O’Donnell,|2014, Theorem 9.23). Then, with probability at least 1 —
we have

J<k

Z)\ citi| > N2

1
kv/e>

log k
p|Z)‘clcl|<C ( ) 12nax \/E

*Cy depends on o through the definition of p in Assumption

=0\, k%)

max
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as claimed.

(iii) Bounding the non-diagonal terms for s > s*: Notice that

k
Z)\Z—/\jciéj<wi,wj>5 kQZ)\?)\JQ C; J ’LUi,’LUj>25
i#] i#]

logk>s 2
<(1- A5 .
< ( E5) 1A
Then, let s > s* = 'y\/E. Then,

Ing —vlogk ||)‘||2
(1-25) g < v = Lol

so setting v > % will suffice. I.e, we have

00 1 2n+2 oo Mm+2+s k 2n+s+3 A .
Z <k’) Z < 2n + 2 >(2n + 5+ 3)Hizn+st3(0)” (k T 1) ZAi)‘jciCj<wi7wj>

n=0 s=s i#j
il 2 S A
Z i é; om 1o ) E0T s+ 3hemsas(0) 1
_Co e |
S
where in the last step we used Equation (9). Combining all the bounds, for ¢ = min{%,1 — ﬁ}’
with probability at least 1 — ’yk/%, we have
v/e—35
) 2n+2 oo 2n+s+3
1 M+2+s o k
; (k) ;O( . )<2n+s+3)u2n+5+3<a> (M) <Z)\ eu® N >
= 0Nk ™2 7°)
Specifically, setting v = 10, the result holds with probability at least 1 — k%, O

B.4 ANTI-CONCENTRATION INEQUALITIES FOR QUADRATIC POLYNOMIALS WITH LOW
INFLUENCES

In this section, we prove some results related to the anti-concentration of certain quadratic functions
on the hypercube. These functions capture the random behavior of the function i by determining
the magnitudes of the constant term. We will control the magnitudes of functions of boolean vari-
ables by relating them to functions of gaussians, and then applying anti-concentration for gaussian
polynomial. To that end, we first state some known bounds from literature.

Lemma 4 (Carbery-Wright inequality (Carbery & Wright, 2001)). Let Q) be a normalized multilin-
ear polynomial with degree d as in Deﬁnition There exists a constant B such that for g ~ N (0, I,,)
we have

Pr(|Q(g1, 92, - -, gn)| < €] < Be'/?

Definition 1 (Multilinear polynomial). We define a normalized degree d multilinear polynomial as

Q(z1,22,. .., Tpn) = Z GSH%

SCnl|S|<d €S

with Var(Q) = > s (n],51>0 a% =1
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Now, notice that the random quantities that depend on ¢, ¢ in the function h are all of this form. They
are not normalized, but we can always normalize them by factoring out the /> norm. Now, consider
the following CLT-like result that we will use :

Lemma 5 (Invariance principle, (Mossel et al., 2005, Theorem 2.1)). Let P be as in Definition
Furthermore, define the maximum influence as T = max;e |y Y95 azs. Then, for  ~ Unif {+1}
and g ~ N (0, I,), we have

sup | Pr[P(&1, ..., &) < 1] — Pr[P(g1,. .., gn) < 1] < O(dr'/3%)
t

To be able to leverage these results, we need to quantify the influence of functions xTQy with @
being p.s.d. Intuitively, the only way the influence of a term can be non-vanishing is if one of
the rows is too large relative to the frobenius norm. For a normalized psd matrix (i.e. Q; = 1),
factorizing Q;; = (¢;,¢;) we want to state that one g; cannot be correlated to too many ¢; (the row
sum is large) if the g; are not correlated within each other (the other row sums are small). Formally,
we have the following:

Claim 3. Let § > 0 and M £ [Z]. Furthermore, let w; € R? be unit vectors for i € [M), for
arbitrary d. Furthermore, let v € R be a unit vector such that | (10, w;)| > § for all i € [M). Then,

fore = % we have |(w;, w;)| > ¢ for some i # j € [M]

Proof. We will prove by contradiction. Suppose for unit vectors w; with |(w;, w;)| < e we have
|{(,w;)| > 0. Construct the matrix W whose columns are the w;. Then,

k
M <Y (i @) = (W) < W2 < Anax(WTW)
=1

However, WTW is the gram matrix with all non-diagonals absolute value less than . By Gersh-

gorin, the eigenvalues (and therefore the operator norm) is bounded by 1 4+ (M — 1)e. Sete = ﬁ

so that the RHS is strictly bounded by 2. Then, let M = [6%] Hence, we get a contradiction
2<§°M < 2. O

This is essentially saying that if w has non-vanishing correlation with a set of vectors wy;, this set
either cannot be too orthogonal or cannot be too large. Specifically, we fix the size of the set and
lower bound the correlations. Then, consider the following claim that relates the max ¢ norm of a
row of a psd matrix to its frobenius norm.

Claim 4 (Influence of row of PSD matrix). Let § > 0 and k > K(8) = O(1/8°) be sufficiently
large. Then, for any Q € R*** PSD matrix with Q;; = 1. We have

max; Zje[k] Q%
T—F = 20
Zi,j:l QU
In particular, this implies that

maxi 3 e @

T QeRrF Xk, Zz’,j:l Qz‘j
Q psd ,
Qii=1

at a rate of g%/g

Proof. Fix some § > 0. Then, notice that because (@ is psd, we can factor it as Q;; = (g;, ¢;) where

the ¢; are unit norm since ||¢;||> = Qs = 1. First, note that the denominator is at least k. Take the
maximizing ¢ in the numerator and let it be ¢ = ¢;, and define S;, = {j € [k] : |(g;,q)| > 6}. If
we have |Si| < dk, then the contribution from the terms in Sy, is at most §k. The contribution from
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the others is at most 62k since these terms are less than §2. Hence, Zje[k] ij < 6(1+6)k < 20k.
Then,

Zje[k] ng
k
Zi,j:l szj

Now, suppose |S;| > 0k. Then, let M £ [Z + 1] as defined in Claimand let ¢ 2 &5 be the
constant from the claim. Then, notice that any subset of S}, with size more than M must contain
two distinct vectors with correlation at least €.

<26 = 0(6)

Then, consider the following process. For all the remaining vectors, we create a maximal set of
vectors that are almost orthogonal (i.e. with correlation at most €). By definition of maximality, all
the remaining vectors should have correlation at least € with some vector in this subset.

Formally, for ¢ > 1, initialize a set Sy ; (we set Sy o = () by taking a maximal set of vectors
from Si\ U, ., Sk,; such that for all distinct pairs j # j € S, ; we have [(g;,q)| < e. That is,
we construct a set such that vectors in the set are almost orthogonal, and we cannot add any more
vectors to this subset. Once we cannot add any more vectors, remove these vectors from the set and
move to ¢ + 1.

Continue this process until termination (which must happen since we can add at least 1 element every
round) and by Claim we must have | S ;| < M. This means, there will be at least 8% = Q(k)
of these subsets. Now, consider ¢ < j and some v; € Sy ;. By construction, v; was not added to
Sk, s0 it must be the case that |(v;,v;)| > ¢ for some v; € S;. Furthermore, notice that each set is
disjoint. So, if we take all the pairs (¢, j) with ¢ < j and pairs of vectors |(v;, v;)| > €, we have

52k
2 2
Sl 2 20

1<J

where all pairs (7, j) are disjoint. Then, we have
2
Zje[}c] q o k < 64
k 2 T g202k2 = §8[
Zi,j:l Qi < or

for k > g—; we have that the above is less than 2§. The limit statement follows immediately by the
definition of limit and the uniformity of all the bounds. O

Corollary 1. Let 0 < g2, < g2 . be absolute constants such that for all k, we have ¢2,;, < Qi; <

2
Qax- Then, we have

2
. max; Zje[k} Q7
lim sup ——F
k=00 o cphkxk Zi,j:l Qij

Qpsd,
Qii=1

Proof. In the proof of the previous claim, we have ¢min < ||¢i|| < Gmax- Define normalized vectors
¢ = 7. Notice that this means we can upper bound Q7; < ¢7.(Gi, ¢;)* and similarly Q7; >

2 llql‘,lv 2 1] —
Ginin (G, G;)°. Hence,
max e Zje[k] Q?j < qfﬂax max;e|k) Zje[k] QZZJ_

k =2 E ~
Zi,j:l szj Tmin Zi,j:l szj
where now Q;; = 1isa psd matrix. Applying the result of Claim we get the desired result. O

Now, we will use the above results to prove the following fact:

Lemma 6 (Anti-Concentration of Normalized P.S.D. Quadratics on the Hypercube). Let Q € R¥**
be positive semi-definite and normalized such that Q;; = 1. Then,

5 P TQy| < < o(1) + O(e/?
bgpr’yNUnig{il}kHﬂ? Qyl <ellQlg] <o(1) +O(e7)

where the o(1) is in k.

29



Proof. First, note that we have the uniform bound on the influence of a row of ) from Claim[] so
that 7 = o(1). Hence, by the invariance principle (Lemma' for any @), we have

N Pr  leTQy<t— Pt <{|<o
tpl%y,\,Unif{i}k[ Qy < ] g17g2NN(071k)[91Qg2 S ]| < ( )

However, applying Carbery-Wright inequality for the anti-concentration of gaussian polynomials
(Lemma El]), we get the desired result. O

Corollary 2 (Anti-Concentration of Balanced P.S.D. Quadratics on the Hypercube). The result
above holds when Q;; are not-necessarily equal, but there exists qmin, Gmax Such that qfnin <Qu <

and we replace o(1) with 0(%),

Amax> K
min

Proof. Proof follows exactly the same, except by using the influence of a row for balanced psd
matrices. 0

B.4.1 RELATING TO QUANTITIES THAT ARISE IN h

Claim 5 (Constant term variance, spectral setting). Let f : {—1,1}?* — R be such that
k [e%e) k s+1
7 2 s
= sz: bibj ZO S+ 1 Ms+1 ) (k“rl) <U)i, wj>

k
£ Z bil;jQij (10)

ij=1

Then we have Q()\2 ) < ||f||2 < O( max)

min

Proof. Notice that since each term in the sum is a different basis element of {+1}2*, we have

k
IFlz =" @%

ij=1

For the first part of the Claim, it suffices to show ) ij = Q(%) for any choice of A, w;. Notice
that, for k > 2,

k i > k s+1 2 g )\4
Z Qi = ZQ%z = (Z(s + 1)psq1(0)? <k;+1> ) 2 k—;

i,j=1 i=1 s=0
s+ 1 9 )\4
> mm
as  desired. The  other  follows  directly  from Zf =1 ij <

O

2
Z’L] 1 k12 AQ)\Q (ZjiO(S + 1)/“1’5"1‘1( ) ) < Afnax (Z:io(s + 1)”8-"—1(0’)2) .
Lemma 7. Let f be of the form in Equation (I0). Then,

7 /\12113)(
sup Prl£0.0)] < 1] = (33 ) + O

where 7 = o(1) and b, b are independent uniform draws from {—1,1}*

Proof. Note that entrywise powers of psd matrices are psd, so (W7 W )®* is psd. Notice that Qij =
s+1

(NiX)) (E?’io(s + 1) pst1(0)? (kiﬂ) {(w;, wj)s> which is a psd matrix since it is the sum of

psd matrices (for s). This is due to the fact

Q=M"%Q
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- s+1
where Q;; = Y oe (s + D psy1(0)? (ﬁl) (w;, w;)® since it is the non-negative sum of psd

matrices Furthermore, ¢max/Gmin = 3\\‘“?" The proof follows immediately once we normalize as

K fH and apply the above results. O

Proposition 7 (Anti-concentration of (Y, A\jc;)(>°, \i¢;) and Y, A?¢;é;). We have

l Z)\cl Z)\cl <’y)\mm] < (fm>+0( 12)

min

A A2
< max 9] 1/2
! ﬂ} <Afn) o
Proof. For the first one let ) = i)\)\T and for the second one let Q = + I (A®X). Both are balanced
psd matrices, and the anti concentration result lemma 6| holds. Then, the results follow. O

and

iCi

C FINITE SAMPLE DYNAMICS ANALYSIS

We start with starting the generic assumptions we will work with in this section that are satisfied
with the various models we consider.

C.1 ASSUMPTIONS THAT CAPTURE VARIOUS REGIMES IN ONLINE SGD

We analyze the finite sample gradient dynamics under the following assumptions:

Assumption 6 (Unbiased Gradient Estimates). For all 4, the sample gradient is an unbiased esti-
mate of the population gradient. l.e. we have

Va®(d) £ VB, [L(a; x)] = Eo[VaL(a; x)]

This assumption is standard in the literature. Note that this assumption holds when o is almost
everywhere differentiable (w.r.t. gaussian measure), and ¢’ has almost linear polynomial growth.
This is because V; L(%; ) has at most linear polynomial growth, so can be bounded by a function
gk ({1, )) which has finite expectation under . Then, the interchange of derivative and expectation
follows from dominated convergence theorem.

Assumption 7 (Magnitudes of variances). For each k, and p, there exists some constant Vi, > 1
that has at most polynomial growth in k such that

B || Vu L (a52) 37
a0

1/p
1. Variance bound: For all u, i, max { E.(VaL(1;), u)zp} < upVi,

2
2. Population gradient bound: For all 4, (Q)H < Vi.

where the i, may depend on p and the activation, but on nothing else.

We will consider this assumption only for a few p that will be tuned during the proofs, so the moment
bounds only have to hold up to a certain p.

Assumption 8 (Population Gradient Lower Bound). The population gradient is of the form
Va®(a) = —h({@,u))(u — @{u,q)). Furthermore, there exists a constant max{Sy, Sz} < Vj
that has at most polynomial decay, such that h satisfies the following:

h(sign(h(0))m)sign(h(0)) > ‘h(Q ) > Sk, Ym >0
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Theorem 8. Let Assumptions@to hold. Let 0 < € < 1. Let my = (uy,u) and set the learning
rate n = divk with scaling 6 = min

m, 1},f0r total time T = [adVy,| with time scaling
a = 4(1%;:@) and initialization at |mg| > % with moh(0) > 0. Under Assumptions 1-4, with

probability at least 1 — o(1) the following holds for T = [adV}]| and Tyear, = f%‘;’“] = o(T).

* (Weak recovery): sup,<r, . |m¢| >r

weak

* (Strong recovery): |mp| >1—¢

The proof of this theorem is constructed throughout this section, and concluded at the end of the
section.

C.2 ANALYSIS OF DYNAMICS UNDER THE GENERIC ASSUMPTIONS
Recall the online SGD dynamics

Up — n@utL(ut; Zt)

Ut41 = -
‘ wg — NV, L(ug; )

where z; ~ N(0, I) is a fresh Gaussian sample at each time iteration ¢. Then, define the correlation

with ground truth m; = (u;, u) and the projection magnitude II; = ’ Up — n@utL(ut; x¢)||. Then,
notice

—my — (Ve L(ug; 24), u)

mi+1 =
I,
~ A 1 N
=my — NV, P(ur) — p(Vay, E(ug; xp), u) — (1 — H) (mt — (Vi L(ug; xt),u>)
t

Hence, initially, we bound the effect of the spherical projection term.

C.2.1 BOUNDING SPHERICAL PROJECTION ERROR

First, notice that because w; is perpendicular to the spherical gradient @utfl)(ut), we have

2

- 2 -
1 S Ht S \/1 +'I72 HVUtL(ut,xt) ) S 1+'I72 HVU,LL(Ut,xt) )

Then, due to ‘1 — H%‘ < g for x > 0, we have

‘(1 - S) (e — (Vo L), )| < o | Lall? (el + nl{Ze, u)])

Then, notice that the total contribution of these terms up to time ¢ can be written as
t—1 t—1
2 2
7Y L (e w)| + 07 (L]
§=0 §=0

First, notice that 1® gives a % scaling, but || Ly||* |(L, u)| scales only in dV}2, and there are
k

T = adV, of these. Then, we can use a simple Markov bound to bound these terms when ad? < ¢.

Claim 6 (Bounding cubic terms). Let o, § be such that ad? < € and § < 1. Then, we have

t
1
Pr | su 35 Lil* (L, u >i < —
ogthU jZOH JH |< J >| 10\/& ﬂ\/g
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Similarly, we have

ISHEE

Pr SuanHL 1% |>18

Proof. Notice that in both cases the maximum is achieved at ¢ = 7" due to the non-negativity of the
terms in the sum. Then, by Markov

t T
2 2
Pr[supn® Y LI (L) > | = Prjo* 1L (L, w)l >y
> j:o j:O

T sup; E[||Ly[|* [(L, )]
v

Now, using Cauchy-Schwarz to bound the expectation, we have
ElVE I KEs, wl] < (|12 07| /I3, ) 21,

Hence, using the moment bounds (Assumption on ||L¢||* and |(Ly, u)|2, for p = 2, 1 respectively,

we have

E[|IL1I* Ly, )] S dViE

Hence, using n = di, T = adVj, and ad? < g, § < 1, we have

Vi
t 21/3,,3
9 ad*VPn
Pr [supn® > " [|IL;||* (L, u)| > 7| $ ——2—
t<T 5 v
ad’ 1
= < —
dy ~ dy

Setting v = 10’% gives us the first result. For the second, we can use ad? < € and 6 < 1 to bound
the probability by <. O

Now, we turn to the quadratic term. Notice that with the quadratic term, we are not necessarily
getting the extra scaling in 1/d from 1 we need, so we need to be more careful while bounding this
term. For these terms, we will show that their cumulative effect at any given iteration is smaller than
the drift contribution. To do this we need to uniformly bound the cumulative effect up to iteration .
Recall Freedman’s inequality (Freedman, |1975) for submartingales with almost sure bounds:

Lemma 8 (Freedman’s inequality). Let M, be a submartingale with E[( M1 — M;)?|F,] <V and
|Mi 1 — M| < K almost surely. Then,

2
Pr[S; < -\ < _—
e < ]_eXp{tV—l—g‘K}

Hence, we will introduce an appropriate clipping of ||| and separate into cases when it is large
and small. When it is large, we will use the fast decay of its tails due to bounded moments the bound
the probability of being large. When it is small, we will use the almost sure bound and Freedman’s
inequality to control the total contribution.

Claim 7 (Bounding the quadratic terms). Suppose « has at most polynomial growth in d, k. Fur-
thermore suppose, ad® < 1, and that Vj, has polynomial growth in k. Then, for some constant C,
we have

t 8 c
Z a _"7||LtH ) < —— —|—a(de) (longk)-‘rl
0<t<T —~ ( “5vd ﬁ\f
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Jj=0
Then, it suffices to show

Proof. Initially, define Y; = “5‘3” and notice that || Y]],

< pp forall ¢ > 0 where 1, do not grow
in d or k as stated in Assumption [7| Then, notice that i || L;||” = §Y;. We write Y;
T} + Y, 1{Y; < T"}. Then, we can decompose the term as

= Y,1{¥; >

nz ( T ) *nz ( SRy > T ) +n2 < SV Y < T"})

t t /g
2 v k 2 v
> -n Yol L 2 T Y (- s ey <)
J=0 J=
where we used = 2 > 0 for the last inequality. Then, it suffices to show that the second line is at least
—3 f Hence, we will bound the probability of each term being less than — L
bound.

T0vd and use the union
Then, notice that for fixed choice of v, D > 0 we have

. E YD/V
PiY; > T¥] = Pr[Y,P/" > TP < Bl ]

TD
Then, letting D /v = p and using the p’th moment bound Assumptionl there exists a constant C, p
such that

v CI/,D
PrlY, > 7] < =5
where we used Vi, > 1. Then, notice that, using Cauchy-Schwarz, we have

v CL/,D
EYil{Y: > T"}] < |Yill, vPrlY; = 7] < 2573
where we absorbed the po constant into the C. Then, we have

T-1 V 17TC’1,7D
Pr|n Y YiI{Y,>T"} >y < 7D
j=0

Then, we can choose D = 1 (and get rid of the D dependence on the constants), and v = T
that

of such
T s W0Va|~ B T Vavs o Bvd

Then, notice that we are left with the term Y;1{Y; < T"} where v can be chosen arbitrarily small
Consider setting 6 <

Sk
< 15 Tor(@vi) such that

v

Uzt: ( -0V 1{Y; < TV}) UEIRN

YiI{Y; < T}
=0 4 Z( C(;log(de) )

NSk :

< v

> Z 1— Yt]l{Yt <T }
4log(dVy) = Cs

However, since EY; is bounded by 1, for Cs > 11, the following forms an F; submartingale

t
1Sk Y, 1{Y, < T}
7 = 1—

' 2bﬂd%)§:<

Cs

: B |
Pr |:0§Htl£TZt < vl T o(1)
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Then, note E[Y;1{Y; < T"}] < E[Y;] = O(1), and we have the almost sure bound
1Sk v nSy T
Tiii —Ze| < =k (14 )< PR 2
121 = 2 < 5y0 v < * a;) = Tog(dVy) Cs
and the conditional variances
252 077252

E[(Z F; —— (1 < —
(Ziy1 — Z1)*|F) < 1(log dVi)? (1+43) (log dV;,)?
where C'is a constant that can only depend on 5.

Then, using Freedman’s inequality for submartingales, for any 0 < ¢ < T we have
2

—100d

——=| <exp 3
10 d] - CTn?sj; BnSk ___T¥
vd (log dVi)? + 30v/dlog(dVy) Cs

Pr |:Zt S —

Let’s inspect the expression in the exponent. Note, using ad? < 1 and equivalently da” < 1, for

some updated constant C' = C(uz) we have
2

_B 32
100d _
CTWQSlg 8BNSk TV Ca52s2 + 10850 Sy,
(logdV)? T 10Vdlog(dVi) Cs Villog dVe)? T VITVa1/a log(avi)
2 yl-vgl/2-v)
< 2 mmin { VeUlos Vi)® Vi TM I log(dVi)
CS; 1055k
82
< 2 (log dV3,) 2V,
<-G 7 (log Vi 2V,
for sufficiently large d greater than some O(1), where we have V" >1 and Z 1whenv =1/4.

):
Hence, taking the exponent, we have exp{— %(log dVi) Vkl/ 2} = (de)*ﬁ (log Vi) Then, doing
a union bound over all t < T', we have

2 2
Pr| int < - L] < v E s o Eemn

which is o(1) when « has at most polynomial growth and V}, has polynomial growth in k. [

Claim 8. Let ad? < 15

1
logd

Pr | sup 7 Zann e

Proof. Note that the maximum is achieved at 7" since all the summands are non-negative. In that
case,

T 2 2 2 721/2 2
TE[|L||"] _ prd=d*V 10l 1
Pr(n? S L > | 5™ < b <
K — 1Ll 18|~ g2 - d?VPe? €2~ logd

=o(1)

C.3 CONTROLLING THE ERROR MARTINGALE

Claim 9. Let aé? < e%(logd) 1. Furthermore, let My = N> o0<j<t—1(Ej w). Then, My forms a
Fi martingale and o

2
€
Pr| sup |M,
[ogé’T' = 10[} S Frlogd
Furthermore, we have
€ 1
Pr| su M > —| <
L><t<pT1| = 18] ~ dlogd
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Proof. The fact that M, is a martingale follows directly from Assumption [6]and the fact that each
x; is a fresh sample. By Doob’s maximal inequality for martingales, we have

EM?2

Pr[ sup |M;| > 7] < EM7
0<t<T v

< 2TV _ 2pmad?

2 dry?

. oy . 2
setting v = %, we get the probablhty is at most Wiiogd up to constants. For the second result,
set 7 = 13 so that the probability is O( Thog ) O

C.4 WEAK RECOVERY & STRONG RECOVERY

Before we prove weak and strong recovery, we would like to define events .4 and B that capture the
probabilistic bounds on population gradient magnitude and the various error terms in the dynamics.

C.4.1 DEFINING AN EVENT FOR THE ERROR BOUNDS AND INITIAL CORRELATION

First, define the event A as
3 - sign(h(0))
Vd

Furthermore, define the event B = B(e,d, 8,k,T) that corresponds to the error bounds as the
following

. B8 e B ¢
B {oiltlgT'M” < mm{lo\/a,%}} N suf) n® E I|L; 12| uw)| < mm{lO\/;i’ 18}
(12)

A={mo = } (1)

t
€

N su 2 LQS— N su (— |IL )>—

ogthn ;:oH tll 18 P TIE (Ll Jd

Proposition 8. Let § ﬁg&m where Cs > max{l,u1}. Furthermore suppose
that a = 4(1%;:/’6). Then, for T = [adV}], we have Pr(B(e,d,B8,k,T)) = 1 —

2
0) (max {ﬁyo[(d‘/'k)_[%(logdvk)-i-l7 W%j)gd’ @}) -1— 0(1)

Proof. Notice that the given §,  satisfy ad? < Wide)' Hence, all of claims@tehold. Then,
combining the results of the claims with a union bound gives the result. O

C.4.2 DEFINING STOPPING TIMES FOR THE DYNAMICS

Initially, for a real number g > 0, define the stopping times
T;:inf{tEO:mtEq}
7, =inf{t >0:m; <q}

which correspond to the first time m; is above/below a certain threshold value ¢q. In particular, we
will define the following stopping times

mh=inf{t >0:m; >}
7o = inf{t > 0:m; < 0}

e =inf{t=0:m =12}
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7.} is defined to analyze the initial stage of training, when m; is small. This allows us to lower

bound the effect of the spherical projection of the gradients 1 — m?. We will use 7, to be able to
lower bound the population gradient, but we will get rid of the requirement with an argument that
my has to always be non-negative when B holds. Finally, 7'1+_E /6 is used to analyze the stage before
we achieve the initial strong correlation, we will show m; will stay above 1 — ¢ after ¢t > 7'1+_E /6"
L.e. the progress made for strong recovery is not eliminated by the noisy gradients.

C.4.3 ANALYZING THE DYNAMICS CONDITIONING ON B

Now, notice that we can WLOG assume sign(h(0)) = 1, since all the proofs will be symmetric as
long as the event A holds. Furthermore, let r < %

Lemma 9 (Characterizing dynamics before weak recovery). Conditioning on A, B, fort < T A
.7 A1y, we have

B tnSk
- + -
2\/ 2

Furthermore, we have 1o > T A Tt

Proof. Condition on A, B. Then, as explained before, WLOG assume sign(h(0)) = 1. Then, for all
t <75, we must have m; > Sj. Furthermore, for all ¢ < Tj ,we have 1 — mt2 > % Then, applying
the inequalities in B, for ¢t < Tﬁ ATy AT, we have

t—1 t—1 t—1 t—1
2 2
my > mo+n Y h(my)(1—m3) —n> (Eju)=n° Y |Li[1* =0 Y 1L (L, )]
j=0 j=0 j=0 j=0

ok Tt ¢ Z( ) - 572

Now, using the uniform lower bound on the summation term and mg > f’ we have

LB S
“ovaa
which concludes the first part. For the second part, suppose for j < 7,7 AT, we have j < 7. Then,
foralll € [0,1,...,j — 1] we have m; > 0, meaning h(m;) > Si. Hence, the above inequality
holds for j, meaning m; > 0. Hence, this implies j < 7, . Then, we conclude that it must be the
case that 7, > 7,7 A T O

Lemma 10 (Dynamics after weak recovery is well approximated by drift term). Conditioning on
A, B, 7.}, the following holds: Fort > 7,7 witht < T A 7, we have

| ™

—ml —n h (m;)(1— ) <
Jj= T7
Furthermore, 7y > T.

Proof. Notice that under the event 3, due to non-negativity of each of the summands, we have the
following upper bounds

. 3
i Z 12 gl < sup o 371l <
j=rt J=0
t—1 c
2
"’ IIL I < sup p, 2 LI < 55
7'1

Jj=
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For the martingale term, since the terms are not necessarily non-negative we decompose it as

t—1 t—1 -1
n Z<Ej7u> = 772<Ejvu>_77 (Ej,u)
j=mt j=0 3=0
t—1 -1
<D (Eju)|+n Y (Bju)
§=0 §=0
t—1 .
< 20;1% njg)(EmW <13
Then, notice that the following holds exactly
t—1 t—1 -1 1
mp=m_+n > hm)(1—m)+n Y (B,u)+ > (1 - Tj) (mj —n(Lj,u))
j=r j=mt j=ri

which after rearranging, using ’1 - %‘ <P |IL; 11 Ly, u)| 4+ n? ||L;]17 gives us

t—1 t—1 t—1
1
me—m s =1 Y h(m)(1—m)| = |n Y (Eu)+ Y (1 - r) (mj —n{Lj, u))
j=rt j=rt j=ri !

t—1 t—1 t—1

2 2

<|n Y (Bow|+0° Y LI Ly w)| +n0* Y (1L
+ + +

j=r j=r j=7}

using the €/18 bound for each of the terms, we get a total bound of /6. Then, to get rid of the
requirement ¢ < 7, notice that

t—1
5
my—m_+ > —3 + 4Z+ h(m;)(1 — m?)
j=r

Then, notice that if ¢ < 7", we have m; > 0 for all 7 <t — 1, so the sum is non-negative, which
givesus my > m_+ — % >r— % However, notice that choosing r = %, we always have /3 < r
somy > 0 as well. Hence, 7, > ¢, so we must have 7, > T. O

Now, we are in a position to prove Theorem 8]

Proof of Theorem[8] First, notice that due to assumption [§] and the initalization requirement in the
theorem, A holds. Then, per Proposition 8] 5 holds with probability 1 — o(1). Then, conditioning
in B, per Lemma@] and Lemma , we can drop the requirement that ¢ < 7,°. So, lett < T A TT+ .
Conditioning on B, per Lemma |9} we have

tnS,
my > ﬁ+77k

2vVd 2
Then, notice that at time Tieax = [n%k] the RHS is larger than 1. Then, it must be the case

that 7,7 A T < Tyeax. Then, it suffices to show Tyeax < 7. Notice that Tyeqr = [26%‘/:} and

T = [adV}] = [4(1%;:/’“)] > Tweak When e < 1,V > 1 and d > 3. Then, we conclude
7-7—-"_ < Tweak < T

Now, conditioning on Tj ,forall t > Tj , with ¢t < T per Lemma we have

t—1

my > m_+ + Z h(m;)(1 —m3)

j=r+

_c
6
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Now, consider ¢t < Tltg/ﬁ AT, so that h(m;)(1 —m3) > S% forall j < Tlts/(s. Hence,

_ +t _ ++
thTJrn(t gr )Sks_%>n(t g )Ske

Hence, notice that the RHS of the inequality is greater than 1 at time ¢ = 7,7 + [n gks] < Tweak +

[-5_7]. Hence, it must be the case that Tlts /6 T < Tyeak + f&] However, notice that

nSke
_ rdVi(logdVy) 6
T = |V nSke c/6 < T

6Sk€
Finally, we need to show that m; stays above 1 — ¢ after it crosses 1 — £/6. However, notice that for
t' >t >}, we have

| which is larger than Tyeax + | 1 so it must be the case that 7'1+_

t—1 t'—1 t'—1
my —mg > |my —m_+ — nZh(mj)(l —m3)|+ |my — m+ =1 Z h(m;)(1 —m3)| + Z h(m;)(1 —m3)
=0 =0 =t
€
> _Z
-3

sothat m; > 1 — % fort > Tlts /6" Hence, we conclude that mp > 1 — % Since this result holds
for any 7,7, we can conclude the proof. O

D EXAMPLE CONSTRUCTIONS MENTIONED IN THE MAIN TEXT

D.1 MULTIPLE GLOBAL OPTIMA WHEN ASSUMPTION 2] DOES NOT HOLD

The following example shows that if the direction u of the perturbation lies in the span of the base
model weight vectors, then there exist multiple global optima.

Example 1. Let A\, A = 1, let wy = (1,0), wy = (0,1), and consider the activation o(z) = 2°. If

the base model f : R? — R is given by f(z) = 2?21 Xio({(w;, x)), then observe that the following
two rank-1 perturbations of equal scale are equal.

First, take u = (1/v/2,1/v/2) andu’ = (1/v/3,\/6/3). Then define c = (—(1++/2)(2++/3), (1+
V2)(vV24+/3)) and ¢ = —c. Then one can verify that the teacher models Z?Zl Xio((w; +ciu, x))

and Z?:l Aio({w; + cu', x)) are functionally equivalent, even though {w1 + ciu, we + cou} #
{wy + ', wy + chu'}, regarded as unordered pairs of vectors in R%. Furthermore, ||c|| = ||c||.

D.2 EXAMPLE OF A BASE NETWORK WHOSE PERTURBATION REQUIRES MANY SAMPLES TO
LEARN FROM SCRATCH

We are looking for an example where the target model is hard to learn from scratch but fine tuning
is easy. Since the activations are hermite, it suffices to give an example of a target function that has
orthonomal weights. Then, we aim to construct w; 4+ c;u L w; + c;ju for ¢ # j. Notice that when
u L wj, this is equivalent to (w;, wj> = —c;c;. Hence, if we can control the pairwise correlations
of the w; as we want, we can construct this example. Then, consider the following, where each row
is a w;, with ¢; = (—1)".

RSN NEEEEN
W—Eolo?ﬁ?oi?oo
0 -3 04 0 300 31 00
0 0 3 0 —3 3 000 5 0

We aim to generalize this example to general k in the following proposition.
Claim 10. Whend > 1+ k(kT'H),for \; = 1, there exists unit norm weights {w; }%_,, a perturbation

) . ) 1 (witciv,witcju) ¢
u L span(w;), weights ¢; € {:t \/E}’ such that Twoi e alllfw; Fe;ul] — ;.

—c;cj. We will construct & vectors that pairwise

Proof. We are looking for a setup where (w;, w;) =
1<k, let(w); = ﬁ Then, for a given coordinate

only share one non-zero coordinate. For [ € [d],
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l € [d],l > k, we want exactly two w;, w; to have non-zero [’th coordinate. Since d — k > 1+ (’;),
we can assign every pair (4, j) with ¢ # j a coordinate, and we will have at least 1 coordinate left.
Then, notice that the inner product (w;, w;) for ¢ # j only depends on 1 coordinate, which is unique

k
for every (i, 7). We choose the magnitude of this entry to be f Then, for any ¢ € {:I:ﬁ} we

can simply choose the signs of these coordinates accordingly to ensure (w;, w;) = —c;c;. Notice
that each w; has unit norm, and there is a coordinate, which we can WLOG assume to be the
pE @’th coordinate, that is zero for all w;. We let u = ¢,,.

. (wi+ciu,wjtcy) (wi,wj)+cicy o . . .
Then, notice that Twitcrallloytorall = Twiterallfw, +eall = 0 for 7 # 7, as desired. O

Proposition 9. Let £ = 1, and consider the example in Claim Suppose o = h,, is the p’th
P~
hermite coefficient for some p > 2. Then, h(m) = 2p (Tf—l) h(m) where

A2
)\212 max
E c;C +O< 3 )

i=1

g . . . . |1 (0)]
Moreover, with high probability over the choice of ¢, we have h(m)sign(h(0)) > =5+

Proof. Initially, note
E o .
h(m) = 2p (M) D Aijeit; ((wiywy) + ciégm)P™
ij=1
In this case, notice that because |(w;,w;)| < %, we have

k k k 22

A N A —_ A A A —_ A 2 max
,Zl/\i/\jcicj(%’wﬁ+CiCj<u7“>)p 1_2)‘?Cicz‘(1+cz‘@<u’“>)p E ;A“\J’CMW < o
ij= i= ]

- P
Hence, defining h(m) = 2p (ki-‘,-l) to factor out the constant, we have

h(m) = Z )\?Clél(l + Ciéim)p_l + 0 (Amax>

kp—2
i=1
Then, expanding the diagonal term, note

2

p—1
A
G 1 G 2 zAz s+1 2zz max
Ecc + ¢iéi{u,a)) ( )E)\cc (u, 1)® E)\cc+0<k)

s=0 i=1

Then, for p > 3, we have

A2
2 max
E /\clc,—&—O( ’ )

=1

Then, over the randomization of ¢, with high probability, we have h(0) = Q ( y‘) due to anti

concentration (Lemma@). Then, with high probability h(m)signh(0) > ( ) yniformly. O

Hence, in the construction given in Claim ['Ilj], even though the ¢;’s are non-random, we still have
with high probability over the randomization of ¢ that h satisfies Assumption[8] Then, we have the
following

Theorem 9. Fine tuning on Clalm. learns the teacher network perturbation u in O( ) samples

whereas training from scratch using any CSQ algorithm requires at least O(dp/ %) queries or T =
O(d=*) tolerance.
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Proof. The first part follows directly from the fact that h satisfies the gradient lower bound in As-
2

sumption (8| with a Q(’\L\/E“) lower bound, and Theorem For training from scratch, notice that the

target model is of the form

k
HOEDIPVM(TR)

where the v; are orthonormal. Fix k. Then, we can embed f into a random & dimensional subspace
M by rotating the v; (since the vectors w; +c;u can all be rotated without effecting the construction).
The CSQ lower bound in (Abbe et al., 2023| Proposition 6) states that any CSQ algorithm using n
queries with tolerance 7 cannot achieve less than some small ¢ > 0 error with probability 1 —
%d*%. Hence, to achieve constant probability of succes, one either needs n = ©(dP/?) queries or

tolerance 7 = O(d~P/%). O

D.3 SECOND LAYER TRAINING
In this section, we show that learning u is sufficient to learning the teacher model by adding addi-
tional features to the model and training the second layer.

Definition 2 (Linear Model Family From Learned Features). Let @ be given. Then, define the model
family

k w; + S w; — <=1
Ly = Ai VR npy S/ AeRFxRFY (13
= (e () o (i) ex o) o

Then, we will show that once we learn 4 to a sufficient accuracy, there exist a choice of A that allows
the linear model to closely approximate the teacher model.

Theorem 10 (Learning w is sufficient to learn f*). Suppose 4 is such that 1 — |[(u,a)| < ¢ -
2055\,;:% which is ©(e/k) for ¢ = O(1) and O(c/k?) for ¢ = O(Vk) Then, there exists a

ax

model h € L as defined in Equation such that E,(f*(z) — h(z))? < e. In particular, second
layer training on the family of neural networks defined as Ly, we

Proof. WLOG suppose (u, @) > 0, otherwise we flip all the signs of the ¢; in the later part of the
proof. Consider the candidate model h € Ly (given in eq. (I3)) given by

=g (e

We aim to show E, (f*(z) — f(z))? < e. Notice

k
E.(f*(2) = f(x))* < kz NE, (a((vi, 7)) = o (B, 2)))”

where v; is as before and v; = %?;/“k Then, it suffices to show that the expectation is less than
@. Note

E.(0({vi,x)) = o((vi,2)))* < Co v — 8

Furthermore, we have

oo VBl =
7 i 1t 52/]6
So that
k
26%(1 — (u, @)
2 2 2 )
k;)\iEx(U(<%$>) —o((vi,x)))” < CU/\maka
. ~ k+§2 .
Then, it suffices to get 1 — (u, @) < ¢ - TOaz g7z as desired. O
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Remark 8. The above result can be extended to the case when the c; are not necessarily quantized,
by quantizing the interval [—1,1] into a sufficiently granular discrete set of elements. Then, the
algorithm follows similarly by adding these features into the model and training the second layer
(e.g. via linear regression or SGD).
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