
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GRADIENT DYNAMICS OF LOW-RANK FINE-TUNING
BEYOND KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

LoRA has emerged as one of the de facto methods for fine-tuning foundation mod-
els with low computational cost and memory footprint. The idea is to only train
a low-rank perturbation to the weights of a pre-trained model, given supervised
data for a downstream task. Despite its empirical sucess, from a mathematical
perspective it remains poorly understood what learning mechanisms ensure that
gradient descent converges to useful low-rank perturbations.
In this work we initiate the study of low-rank fine-tuning in a student-teacher
setting. We are given the weights of a two-layer base model f , as well as i.i.d.
samples (x, f∗(x)) where x is Gaussian and f∗ is the teacher model given by
perturbing the weights of f by a rank-1 matrix. This generalizes the setting of
generalized linear model (GLM) regression where the weights of f are zero.
When the rank-1 perturbation is comparable in norm to the weight matrix of f ,
the training dynamics are nonlinear. Nevertheless, in this regime we prove under
mild assumptions that a student model which is initialized at the base model and
trained with online gradient descent will converge to the teacher in dkO(1) iter-
ations, where k is the number of neurons in f . Importantly, unlike in the GLM
setting, the complexity does not depend on fine-grained properties of the activa-
tion’s Hermite expansion. We also prove that in our setting, learning the teacher
model “from scratch” can require significantly more iterations.

1 INTRODUCTION

Modern deep learning at scale involves two phases: pre-training a foundation model with self-
supervised learning, and fine-tuning the model towards various downstream tasks. Given the signif-
icant computational cost of the former, effective fine-tuning has been essential to the deployment of
these models under hardware constraints and the development of powerful open-source models.

In this space, Low-Rank Adaptation (LoRA) has emerged as one of the most successful and widely
adopted methods (Hu et al., 2021). The idea is to freeze the weights of the pre-trained model and
only train low-rank perturbations to the weight matrices. Remarkably, this works well even with
rank 1 perturbations, reducing number of trainable parameters by up to four orders of magnitude.

Despite the surprising effectiveness of LoRA in practice, it is poorly understood from a theoretical
perspective why this method works so well. While it is known that for sufficiently deep and wide
pre-trained networks, any sufficiently simple target model can be approximated by a low-rank pertur-
bation of the larger model (Zeng & Lee, 2024), it is largely unknown what mechanisms ensure that
gradient-based training converges to these perturbations. Recent works have made initial progress
towards understanding this question from the perspective of kernel approximations of neural net-
works in the lazy training regime (Jang et al., 2024; Malladi et al., 2023). These works consider a
setting where the perturbation is small enough relative to the weights of the pre-trained model that
the fine-tuned model is well-approximated by its linearization around the pre-trained model.

While the kernel picture provides useful first-order intuition for the dynamics of fine-tuning, it only
partially explains its success. For one, the kernel approximation is mainly relevant in the few-shot
setting where the network is only fine-tuned on a small number of examples (e.g. a few dozen), but
the gap between what is possible with few- vs. many-shot fine-tuning is significant. Even within the
few-shot setting, (Malladi et al., 2023) found that fine-tuning for certain language tasks is not well-
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explained by kernel behavior, and neither is prompt-based fine-tuning if the prompt is insufficiently
aligned with the pre-training task. The gap is even more stark for fine-tuning without prompts.

In this work we ask:

Why does gradient descent for low-rank fine-tuning converge to a good solution even when the
kernel approximation breaks down?

To answer this question, we initiate the study of fine-tuning in a natural student-teacher setting where
the training dynamics are inherently non-linear.

1.1 PROBLEM FORMULATION

We consider some family F = {fθ}θ∈Θ of neural networks, each parametrized by a collection θ
of weight matrices. Suppose we are given θ0 ∈ Θ, corresponding to a pre-trained base model and
then get access to training data {(xi, yi)}Ni=1 for fine-tuning. In this work, we focus on the setting of
realizable Gaussian data in which the xi’s are i.i.d. Gaussian and there exists a perturbation of the
base model, θ = θ0 +∆ where ∆ is low-rank, for which fθ perfectly fits the training data. That is,

xi ∼ N (0, In), fθ(xi) = yi (1)

for all i = 1, . . . , N . We call fθ the teacher model.1

The goal is to find θ̂ = θ0 + ∆̂, where ∆̂ is also low-rank, such that the objective L(θ̂) is small.
Here the objective is given by

L(θ̂) ≜ Ex[ℓ(fθ̂(x), fθ(x))] ,

where ℓ : R2 → R≥0 is some loss function; in this work we specialize to squared loss.

Algorithms for fine-tuning in practice are based on training the student model, which is initialized
to the base model, with gradient descent on L. That is, the parameter ∆̂ is repeatedly updated via
stochastic gradient descent on the function ∆̂ 7→ L(θ0+∆̂). To ensure that ∆̂ is low-rank throughout
the course of training, it is typically parametrized by a low-rank factorization, and the matrices in
this factorization are the ones with respect to which one performs gradient descent.

Unfortunately, rigorously analyzing the gradient dynamics at this level of generality is well outside
the reach of current theory. Instead, in this work we will focus on a specific instantiation of the
above setting, namely two-layer networks and rank-1 perturbations. Despite the apparent simplicity
of this setting, the dynamics here already exhibit rich behavior beyond the kernel regime, and as we
will see, this model strictly generalizes the problem of generalized linear model (GLM) regression,2
a widely studied toy model in the theoretical foundations of deep learning (see Section 1.3).

Concretely, given k ∈ N, take F to be the set of all two-layer networks of width k. The base model
then takes the form

fθ0(x) ≜ λ⊺σ(Wx) , (2)
where θ0 = (λ,W ) ∈ Rk × Rk×d and σ is a known scalar activation applied entrywise.

The low-rank perturbation defining the teacher model will be given by θ ≜ (λ,W ∗) where

W ∗ = W +∆ for ∆ = ξcu⊺ (3)

for ξ > 0 a known scale parameter and for unit vectors c ∈ Sk−1, u ∈ Sd−1. Given a target level
of error ε, our goal is to find unit vectors ĉ, û for which L(θ̂) ≤ ε for θ̂ ≜ (λ,W + ξĉû⊺) with high
probability over the training data {(xi, yi)}Ni=1.

Connection to GLMs, feature learning, and lazy training. Note that the special case where
the base model is trivial, i.e. when W = 0k×d, recovers the well-studied question of GLM re-
gression. Indeed, consider the case of c = (1/

√
k, . . . , 1/

√
k), λ = 1

k (1, . . . , 1), and ξ =
√
k.

1In fact our analysis directly extends to the setting where there is unbiased, moment-bounded label noise,
but we focus on the noiseless setting as it is slightly cleaner while exhibiting all the relevant phenomena.

2This is sometimes referred to as single-index model regression. While closely related, the latter technically
refers to the setting where the activation σ is unknown.
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In this case, if the teacher models’ parameters are given by θ = (λ,W ∗) where W ∗ is defined
in Eq. (3), then the teacher model is given by fθ = σ(⟨u, x⟩). Learning a direction û for which
Ex[ℓ(σ(⟨û, x⟩), σ(⟨u, x⟩))] is small, given samples {(xi, σ(⟨u, xi⟩)}Ni=1, is precisely the question of
GLM regression. The behavior of gradient descent for this question is by now very well-understood,
shedding light on the training dynamics of neural networks in the feature learning regime (some-
times also called the “rich” or “µP” regime) in a stylized but rich model (Bietti et al., 2022).

Equivalently, instead of keeping the scale ξ fixed and sending W to zero, we can consider keeping
W fixed but nonzero, sending ξ → ∞, and considering ε scaling with ξ. This equivalent view is the
one we will take in this work as it is more natural for us to regard W as fixed and ξ as a parameter to
be varied. Under this view, note that at the other extreme where ξ → 0, the teacher model becomes
well-approximated by its linearization around the base model, in which case the training dynamics
degenerate to the lazy training regime (also called the “NTK regime”). For this reason, the scale
parameter ξ gives a natural way to interpolate between feature learning and lazy training dynamics.

1.2 OUR CONTRIBUTIONS

1.2.1 ASSUMPTIONS

Our guarantees will apply to a very wide family of activations σ including all standard ones, e.g.
ReLU, sigmoid, polynomial, etc. As the conditions are rather technical, we defer them to Assump-
tion 5 in the supplement and henceforth refer to such activations as nice.

More importantly, we make the following assumptions on the base model and teacher model. Denote
the rows of W , i.e. the pre-trained features, by w1, . . . , wk ∈ Rd. Then we have:

Assumption 1 (Normalization). ∥wi∥2 = 1 for all i = 1, . . . , k.

Assumption 2 (Orthogonality of perturbation). The vector u for the teacher model (see Eq. (3)) is
orthogonal to the span of w1, . . . , wk.

Assumption 3 (Random quantized c). c is sampled uniformly from {±1/
√
k}k.

Assumption 1 is without loss of generality when σ is positive homogeneous like in the case of ReLU
activation. For general activations, note that one can also handle the case of ∥wi∥2 = R for all i for
arbitrary constant R > 0 by redefining σ. This assumption is not essential to our analysis and we
assume the scales of the pre-trained features are the same to keep the analysis transparent.

Assumption 2 is crucial to our analysis. To motivate this, in Appendix D.1, we give a simple example
where it fails to hold and the low-rank fine-tuning problem ends up having multiple global optima,
suggesting that the dynamics in the absence of Assumption 2 may be significantly more challenging
to characterize. We leave this regime as an interesting area for future study.

The third assumption consists of two parts: 1) the entries of c are constrained to lie within {±1/
√
k},

and 2) they are random. The former is for technical reasons. First note that the connection to GLMs
still holds under this assumption. Our main reason to make this is that our proof uses Hermite
analysis, and while it is in principle possible to handle neurons with different norms, assuming the
ci’s are quantized renders our analysis more transparent without sacrificing descriptive power. As
our simulations suggest, the phenomena we elucidate persist without this assumption (see Figure 1).

As for the randomness of c, while we conjecture that fine-tuning should be tractable even in the
worst case over c (see Remark 3) albeit with more complicated dynamics, in this work we only show
guarantees that hold with high probability over c. We primarily use the randomness to ensure that
certain quantities that are generically non-vanishing indeed do not vanish, in the spirit of smoothed
analysis (Spielman & Teng, 2004). One could equivalently formulate our guarantees as holding
under a certain set of deterministic nondegeneracy conditions on the rank-1 perturbation.

1.2.2 TRAINING ALGORITHM

In this work, we will focus on learning the factor u in the rank-1 perturbation ∆ = ξcu⊺ from Eq. (3)
using gradient descent. As the weight vectors in the teacher model are given by wi+ξciu, the vector
u corresponds to the direction in which each of the pre-trained features gets perturbed. Learning
this direction turns out to be the most challenging part of fine-tuning: once one has converged
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to a sufficiently good estimate of u, it is straightforward to learn c even using a linear method -
– see Appendix D.3 for details. As such, in the student model, we will keep ĉ frozen at random
initialization and only train û. Remarkably, as we will see, the misspecification between ĉ and
the true c does not significantly affect the learning dynamics. This robustness to misspecification
suggests it may be possible to prove convergence even if c and u were jointly trained, as is done in
practice, and we leave this as another important future direction.

We now specify the instantiation of online SGD that we will analyze. Let f∗ denote the teacher
model and (ut) the iterates of online SGD with learning rate η > 0. Let ĉ ∈ {±1/

√
k}k be sampled

uniformly at random at initialization. The algorithm is initialized with

u0 ∼ SΠ⊥
span(W )

,

i.e. uniformly over the set of unit vectors which are orthogonal to the span of the pre-trained features
w1, . . . , wk. Given training example (x, f∗(x)), define the loss attained by û on this example by

L(û;x) ≜ (f∗(x)− λ⊺σ((W0 + ξĉû⊺)x))2 .

Denote its spherical gradient by ∇̂L(û;x) = (I − ûû⊺)∇L(û;x). Note we are working with the
gradients restricted to the subspace of training, i.e. ∇L(û;x) ≜ Π⊥

span(W )∇L(û;x) to keep û in this

subspace. The update rule is then given by the following: at each step t, defining proj(v) ≜ v/ ∥v∥,

ut+1 = proj(ut − η∇̂L(ut;xt)) , xt ∼ N (0, I) . (4)

Understanding the gradient dynamics of low-rank fine-tuning in our setting therefore amounts to
quantifying the convergence of ut to the ground truth vector u.

1.2.3 STATEMENT OF RESULTS

In this work, we consider two regimes: (1) when {wi} are orthogonal, and (2) when {wi} have very
mild angular separation but are otherwise arbitrary.

Orthonormal features. For this case, we will consider the regime where the scale ξ of the rank-
1 perturbation defining the teacher model is large, namely ξ = Θ(

√
k). Because the norm of

the perturbation is comparable to the Frobenius norm of the weight matrix of the base model, the
teacher model is not well-approximated by its linearization around the base model. This is therefore
a minimal, exactly solvable setting for low-rank fine-tuning where kernel approximation fails and
the dynamics fall squarely outside of the lazy training regime.

Our first result is to show that online SGD efficiently converges to the correct rank-1 perturbation.

Theorem 1 (Informal, see Theorem 6). Let 0 < ε < 1, and let ξ ≍
√
k for sufficiently small absolute

constant factor. Suppose the rows of W are orthogonal. Then under Assumptions 1-3 and for any
nice activation σ (see Assumption 5), the following holds with high probability over the randomness
of c, ĉ and the examples encountered over the course of training, and with constant probability over
the random initialization u0: online SGD (see Eq. (4)) run with step size η = Θ̃(ε3/dk7/2) and
T = Θ̃(dk4/ε4) iterations results in uT for which ⟨uT , u⟩2 ≥ 1− ε.

Interestingly, the iteration complexity does not depend on fine-grained properties of the activation
σ. In contrast, as we discuss in Section 2, the iteration complexity of noisy gradient descent for
learning GLMs depends heavily on the decomposition of σ in the Hermite basis. Given that the
GLM setting can be recovered from the fine-tuning setting in the ξ → ∞ limit, Theorem 1 implies
that the gradient dynamics for fine-tuning exhibit a transition in behavior at some scale ξ = Ω(

√
k).

Separated features. While the orthonormal features setting illustrates an important difference
between low-rank fine-tuning and GLM regression, the assumption that the features are orthonormal
is constraining. We next turn to a more general setting where we only assume that no two pre-trained
features are too correlated. Specifically, we make the following assumption:

Assumption 4 (Angular separation). For all i ̸= j, we have |⟨wi, wj⟩| ≤ 1− log k/
√
k.

4
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Theorem 2 (Informal, see Theorem 7). Under the same assumptions as Theorem 1, except with
ξ = 1 and assuming the rows of W satisfy Assumption 4 instead, the following holds with high
probability over c, ĉ and the examples, and with constant probability over u0: online SGD run with
step size η = Θ̃(ε3/dk5/2) and T = Θ̃(dk3/ε4) iterations results in uT for which ⟨uT , u⟩2 ≥ 1−ε.

Given the generality of Assumption 4, we are unable to show a guarantee for learning a rank-1
perturbation at the same scale ξ as Theorem 1. Nevertheless, note that in the regime of ξ = Θ(1),
the linearization of the teacher model around the base model is bottlenecked at some fixed level
of error. In particular, this means that the kernel approximation to fine-tuning is insufficient to
explain why gradient descent converges to the ground truth. One can thus interpret our Theorem 2
as shedding light on the later stages of many-shot fine-tuning whereby the result of the linearized
dynamics gets refined to arbitrarily high accuracy.

Finally, we show a rigorous separation between what can be done in the fine-tuning setting and what
can be done learning a two-layer network from scratch (see Appendix D.2 for details):
Theorem 3 (Informal, see Theorem 9). For any p > 2, there exists a base network and a pertur-
bation for which learning the teacher model from scratch using any correlational statistical query
algorithm requires either n = dp/2 queries or τ = d−p/4 tolerance. However, fine-tuning the base
network using Gaussian examples labeled by the teacher only requires Õ(d) online SGD iterations.

The proof involves a base model with Hermite activation of degree p whose perturbation has or-
thonormal weight vectors (see Claim 10) with a carefully chosen c, u. Even though c is not random,
we prove online SGD still converges to the ground truth perturbation in Õ(d) iterations.

1.3 RELATED WORK

Parameter-efficient fine-tuning. Following the popularization of LoRA (Hu et al., 2021), there
have been a large number of proposed refinements thereof (Fu et al., 2023; Dettmers et al., 2024;
Lialin et al., 2023); a thorough review of the empirical literature is beyond the scope of this work.

Within the mathematical literature on fine-tuning, the works directly related to ours are the afore-
mentioned results of Malladi et al. (2023); Jang et al. (2024). Malladi et al. (2023) primarily
presented empirical evidence of kernel behavior for prompt-based fine-tuning methods, including
LoRA, in the few-shot regime. Their main theoretical result regarding LoRA roughly states that if
standard (full-rank) fine-tuning exhibits kernel behavior, then low-rank fine-tuning exhibits kernel
behavior, provided the rank of the perturbation is at least Ω(1/ε2). Jang et al. (2024) build upon this
as follows. In the kernel regime where the student model is well-approximated by its linearization
around the base model throughout training, they consider the resulting linearized empirical loss for
an arbitrary dataset. This is still non-convex if one tries jointly training the factors of the low-rank
perturbation, but they nevertheless show that this loss has a rank-O(

√
N) global minimizer, where

N is the number of training examples. They then show that all local minimizers of this loss are
global minimizers, using tools from prior work on low-rank matrix factorization.

These works are incomparable to ours in several regards. Firstly, they operate in the few-shot regime
so that the number of training examples N is relatively small, and the perturbation is small enough
that one can work with a linear approximation. In contrast, we consider “full” low-rank fine-tuning,
for which N must scale at least with the ambient dimension, and we are trying to learn much larger
perturbations; as we show in Figure 2, this puts us well outside the regime where the kernel ap-
proximation does well. In addition, the aforementioned works do not handle the regime where the
rank is extremely small, even though LoRA still works quite well in this case. That said, there is no
free lunch: our work derives insights in the challenging rank-one, non-linear setting at the cost of
working with a specific set of assumptions on the data-generating process.

GLMs and single/multi-index model regression. Generalized linear models have received sig-
nificant attention in learning theory as a stylized model for feature learning, see Dudeja & Hsu
(2018) for an overview of older works on this. Most relevant to our work is Arous et al. (2021)
which studied the gradient dynamics of learning GLMs models σ(⟨w, ·⟩) over Gaussian examples
with online SGD. Their main finding was that online SGD achieves high correlation with the ground
truth direction in Θ̃(d1∨l∗−1) iterations/samples, where l∗ is the information exponent, defined to
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be the lowest degree at which σ has a nonzero Hermite coefficient. We draw upon tools from Arous
et al. (2021) to analyze online SGD in our setting, one important distinction being that the popula-
tion gradient dynamics in our setting are very different and furthermore our finite-sample analysis
makes quantitative various bounds that were only proved asymptotically in Arous et al. (2021).

By a result of Szörényi (2009), the information exponent also dictates the worst-case complexity
of learning generalized linear models: for noisy gradient descent (and more generally, correlational
statistical query algorithms), d1∨l∗/2 samples are necessary. Various works have focused on de-
riving algorithms that saturate this lower bound and related lower bounds for learning multi-index
models, i.e. functions that depend on a bounded-dimension projection of the input, over Gaussian
examples (Bietti et al., 2022; Damian et al., 2022; 2024; Abbe et al., 2023). A key finding of our
work is that quantities like information exponent do not dictate the complexity of fine-tuning.

PAC learning neural networks. Within the theoretical computer science literature on learning
neural networks, there has been numerous works giving algorithms, many of them based on spectral
or tensor methods, for learning two-layer networks from scratch over Gaussian examples. The
literature is vast, and we refer to Chen & Narayanan (2024); Chen et al. (2023) for an overview.

On the hardness side, Diakonikolas et al. (2020) (see also Goel et al. (2020)) proved that for corre-
lational statistical query algorithms, the computational cost of learning such networks from scratch
in the worst case must scale with dΩ(k), which Diakonikolas & Kane (2024) recently showed is
tight for this class of algorithms. Additionally, central to these lower bounds for learning two-layer
networks is the existence of networks

∑
i λiσ(⟨wi, x⟩) for which the tensor

∑
i λiw

⊗s
i vanishes for

all small s. As we discuss at the end of Section 2, even if the base model or teacher model satisfy
this in the setting that we consider, it does not appear to pose a barrier for low-rank fine-tuning in
the same way that it does for learning from scratch.

1.4 TECHNICAL PRELIMINARIES

Notation. Let Sd−1 = {v ∈ Rd : ∥v∥ = 1}. For w ∈ Rd, let w⊗s denote the s-th or-
der tensor power of w, and for two tensors T1, T2 we use ⟨T1, T2⟩ to denote their elementwise
dot product and ∥T1∥F ≜

√
⟨T1, T1⟩ for the corresponding Frobenius norm. Note the identity∑k

i,j=1 λiνj⟨wi, vj⟩s = ⟨
∑k

i=1 λiw
⊗s
i ,
∑k

i=1 νiv
⊗s
i ⟩ which arises in our analysis as the interac-

tions between different neurons in the population loss.

Bounds: Our results hold uniformly over the choice of wi, u, λ under their constraints. We make
dependencies on λmin ≜ mini |λi| and λmax ≜ maxi |λi| explicit, but in our O(·) notation, we
ignore constants that only depend on the activation σ. We write Õ(·) to omit logarithmic factors.

Hermite analysis. We will use Hermite analysis to analytically evaluate expectations of products
of functions under the Gaussian measure. We let hp denote the p-th normalized probabilist’s Hermite
polynomial, and µp(σ) the p-th Hermite coefficient of σ. In particular, Hermite coefficients form
an orthonormal basis for functions that are square integrable w.r.t the Gaussian measure. That is,
functions σ for which ∥σ∥22 ≜ Eg∼N (0,1)[σ(g)

2] < ∞ and we denote σ ∈ L2(N (0, 1)). These
functions admit a Hermite expansion σ(a) =

∑∞
p=0 µp(σ)hp(a), and for two functions f, g ∈

L2(N (0, 1)), we have ⟨f, g⟩ ≜ Ea∼N (0,1)[f(a)g(a)] =
∑

p µp(f)µp(g). Furthermore, for u, v ∈
Sd−1, Hermite polynomials satisfy Ex∼N (0,Id)[hp(⟨u, x⟩)hl(⟨v, x⟩)] = 1{l = p}⟨u, v⟩p.

2 EXPRESSION FOR THE POPULATION GRADIENT

To give intuition for our analysis of online SGD, we first consider the dynamics of gradient descent
on the population loss, defined as

Φ(û) ≜ Ex∼N (0,I)[(f
∗(x)− λ⊺σ((W0 + ξĉû⊺)x))2] , (5)

recalling that f∗ is the teacher, and ĉ is frozen at its random initialization in {±1/
√
k}k.

In this section we derive a closed-form expression for the gradient of this loss and provide high-level
discussion on how a key scaling factor term in this expression influences the gradient dynamics.
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We begin by calculating the population gradient (see Appendix A.1 for the proof):
Proposition 1. Given l, s ∈ Z≥0, define

T (l, s) =

{∥∥∑
i λiw

⊗s
i

∥∥2
F

l odd
k
〈∑

i λiciw
⊗s
i ,
∑

i λiĉiw
⊗s
i

〉
otherwise

Define h : R → R by

h(m) = 2

∞∑
l=0

(
ξ2

k

)l+1
( ∞∑

s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2/k

)l+s+1

T (l, s)

)
ml .

Then at any û ∈ Sd−1, the population spherical gradient is given by

∇̂Φ(û) ≜ (I − ûû⊺)∇Φ(û) = −h(⟨u, û⟩)(u− û⟨û, u⟩) .

This admits a natural interpretation: −∇̂Φ(û) is a scaling of the ground truth direction u after it
has been projected to the orthogonal complement of the current SGD iterate û. The scaling factor
h(⟨u, û⟩) thus dictates the rate at which gradient descent moves towards the ground truth, but h
depends on the unknown level of correlation ⟨u, û⟩ in a complicated, highly nonlinear fashion.

Nevertheless, it suffices to prove that this scaling h(⟨u, û⟩) is lower bounded throughout the trajec-
tory of gradient descent. To see this, let ut denote the iterates of population gradient descent and
define mt ≜ ⟨ut, u⟩. Under one step of population gradient descent, we get the following update:

mt+1 ≈ mt + ηh(mt)(1−m2
t ) ,

where the approximation is because we are ignoring the projection step in this informal overview, for
simplicity. Rearranging, we find that in one step, 1−mt contracts by a factor of 1−ηh(mt)(1+mt).
In particular, assuming mt > 0, this contraction is non-negligible as long as h(mt) is non-negligible.

Lower bounding h will thus be the main focus of our analysis.

Recovering generalized linear model dynamics. Consider taking ξ → ∞. In the definition of h
in Eq. (1), for each l we see that all of the summands s > 0 are of lower order, so that

h(m) → 2

∞∑
l=0

µl+1(σ)
2T (l, 0)ml . (6)

Note that T (l, 0) only depends on the parity of l: we have T (l, 0) = (
∑

i λi)
2 if l is odd and

T (l, 0) = ⟨
∑

i λici,
∑

i λiĉi⟩ if l is even, and we can assume these terms are non-negligible. The
reason is that they capture the first-order behavior of the degree-l component of the target model
after its inputs have been scaled down by a factor of ξ. In particular, if the T (l, 0) vanish, then the
rank-1 perturbation is information-theoretically not learnable.

In the ξ → ∞ limit, Eq. (6) informally recovers the well-known fact that the complexity of online
SGD for generalized linear model regression depends on the information exponent of σ: the behavior
of h is dictated by the degree of the smallest non-negligible term in its series expansion, i.e. the
smallest p for which |µp(σ)| ≫ 0. In particular, the larger this is, the longer it takes for the dynamics
to escape from the value of m at initialization, namely m0 = ⟨u0, u⟩ ≈ 1/

√
d.

In this work, we focus on low-rank fine-tuning rather than generalized linear models and thus con-
sider the finite ξ scaling instead. As we will see, the dynamics under this scaling exhibit very
different behavior and are far less sensitive to the particulars of the activation function σ.

3 LOWER BOUNDING THE POPULATION GRADIENT THROUGHOUT TRAINING

In this section we state our main results on lower bounding the scaling factor h(m) from Proposi-
tion 1 and provide key intuitions for the proofs, the full details of which are in the supplement. Note
that the population gradient can be potentially quite non-linear, and it is not apriori clear whether it
would vanish for m ̸= ±1. However, h(m) being non-vanishing across training is crucial, since it
is the main term guiding the dynamics. In this section, we argue that under our assumptions, when
the sign of m is aligned with h(0), the function h(m) admits a lower bound.
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3.1 ORTHONORMAL FEATURES

Here we assume w1, . . . , wk are orthonormal, so that the form of T (l, s) in Proposition 1 reduces
to:

T (l, 0) =

k
∑k

i,j=1 λiλjciĉj l even(∑k
i=1 λi

)2
l odd

and T (l, s ≥ 1) =

{
k
∑k

i=1 λ
2
i ciĉi l even

∥λ∥22 l odd

which greatly simplifies our analysis since all the terms where s ≥ 1 scale with the same expression.
Then, notice that we can decompose h into the odd powers of l and even powers of l as

h(m) = 2

k k∑
i,j=1

λiλjciĉj

 ∞∑
l=0
even

(
ξ2

k

)l+1

(l + 1)µl+1(σ)
2

(
k

k + ξ2

)l+1

ml

+ 2

[
k

k∑
i=1

λ2
i ciĉi

] ∞∑
l=0
even
s≥1

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + ξ2

)l+s+1

ml +

∞∑
l=1
odd

blm
l,

for some coefficients bl ≥ 0. Informally, the typical magnitude of k
∑k

i,j=1 λiλjciĉj is Θ(k), and

the typical magnitude of k
∑k

i=1 λ
2
i ciĉi is Θ(

√
k), with high probability over the randomness of

c, ĉ. Then, notice that if µ1(σ) ̸= 0, the first term with even l should dominate the second term.
In particular, h(0) will dominate the even terms in the second term, and the typical magnitude of h
will be Θ(ξ2). If µ1(σ) = 0, notice that this is not immediately true since h(0) now could be of a
smaller magnitude, but we show that with high probability, the even l, s = 0 terms are dominated by
the odd l, s = 1 terms. Since the odd terms have the same sign as m, as long as the sign of m agrees
with that of h(0) we should see relatively monotonic behavior and h should not vanish. In this case,
from anti concentration (Proposition 7), we expect a typical magnitude for h to be Θ(ξ2/

√
k).

3.2 SEPARATED FEATURES

We now drop the orthonormality assumption and only assume angular separation of the wi’s (As-
sumption 4). In this case, the population loss does not simplify. However, when ξ = 1, we can show
that the higher order even terms in the expansion of h(m) are negligible relative to the constant term.
First, note that the sums

∞∑
s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

scale with Θ(kl), so their contribution could potentially be large. However, we initially show that if
we take only the first s∗ = O(

√
k) terms, all the low order even terms are small

∞∑
l≥2
even

∑
s≥0

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2 = O(k−
3
2−ε)

so that the maximum contribution after adding the factors is k−
1
2−ε, for some ε > 0 that depends

on the activation. Hence, we separate the factor of the even terms into its diagonal and off-diagonal
components:

k∑
i,j=1

λiλjciĉj⟨wi, wj⟩s =
k∑

i=1

λ2
i ciĉi +

∑
i ̸=j

λ2
i=1ciĉj⟨wi, wj⟩s

Notice that the diagonal components are Θ(λ2
min/

√
k) with high probability. For these terms

and large s, we use the decay of the Hermite coefficients of σ to bound their total contribu-
tion by O(k−

1
2−ε). For the off-diagonals, we use the angular separation of the weights: Note

(|⟨wi, wj⟩|)γ
√
k ≤ (1 − log k√

k
)γ

√
k ≤ e−γ log k ≤ k−γ . Then, we establish a separation between

the magnitudes of h(0) and the higher order even terms by showing h(0) has typical magnitude
Θ(λ2

min/
√
k). Then, we argue that the dynamics must be governed by h(0) and the odd terms.
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4 FINITE-SAMPLE ANALYSIS AND PUTTING EVERYTHING TOGETHER

Once we know the population gradient is leading mt in the right direction, we need to show the
noise from the stochastic gradients is negligible in training over a long time horizon. Notice that this
does not mean SGD noise is entirely negligible: In fact, over short time horizons, it could potentially
dominate the dynamics (see Figure 1). Note that we have the stochastic dynamics

mt+1 = mt − ηh(mt)(1−m2
t )− η⟨Et, u⟩+Qt

where Et is the random error induced due to the sampling of the gradients and Qt is the distortion
error due to projection onto the unit sphere. Then, unrolling the recursion, we have

mt = m0 − η

t−1∑
j=0

h(mj)(1−m2
j )− η

t−1∑
j=0

⟨Ej , u⟩+
t−1∑
j=0

Qj

Now, note the population gradient term guides the dynamics in the right direction, whose effect
should scale with ηT . Furthermore, the second term forms a margingale, whose effect should scale
with η

√
T by Doob’s maximal inequality. Over long horizons, we can choose η, T appropriately to

make the noise negligible relative to the progress. We use a similar analysis to Arous et al. (2021),
but unlike in that work, here we need to explicitly track dependencies on k and ε. In particular, on
the finite sample analysis side, we show the following, which we then apply to various settings in
fine-tuning:
Theorem 4 (Informal, see Theorem 8). If h(m) is nice, and lower bounded by Sk throughout
training, and the variance of the noise is bounded above by Vk, online SGD with appropriate step
size, initialization, and time horizon T = Õ( dVk

S2
kε

4 ) satisfies |mt| ≥ 1− ε with high probability.

5 NUMERICAL SIMULATIONS

In this section we illustrate (i) the robustness of our theory to small changes in the assumptions (ii)
the distinction between our work and kernel methods. In particular, for (i) relax the assumption that
ci are quantized, and we also compare the cases when ĉ is frozen and jointly trained with û. For
(ii), we show that linearized networks (kernel approximation) fails at ξ = Θ(

√
k), and also illustrate

some interesting behavior in the joint training of û and ĉ. We use the ReLU activation throughout
our simulations. We let f(x) = 1

ξ

∑k
i=1 λiσ(⟨vi, x⟩) where vi =

k
k+ξ2 (wi + ξciu) where the 1/ξ

is to keep the magnitude of gradients consistent. Throughout our simulations, we set d = 2000,
k = 50, and sample the wi ∈ Sd−1 and c ∈ Sk−1 uniformly at random.

First, in the ξ = Θ(1) scaling, we plot 10 training curves for random problem instances (see below)
for joint training Figure 1.(a) and when ĉ is frozen Figure 1.(b). Notably, we see that while freezing
ĉ leads to longer time scales in training, the qualitative behavior of ⟨ut, u⟩ is similar across the two
settings. Next, we test the ξ = Θ(

√
k) scaling, but we keep the problem setup same otherwise. We

plot low-rank fine-tuning in orange (û and ĉ are jointly trained) and linearized training in blue. For
the linearization, we Taylor expand around the base model. In Figure 2.(a), We demonstrate that
linearized dynamics do not explain fine tuning in this regime. Furthermore, when jointly training û
and ĉ, we observe there is an initial phase where the loss is high and ⟨ut, u⟩ is increasing but ⟨ct, c⟩
stays at a low level (see Figure 2.(b)). This suggest that the initial phase of joint training might be
similar to the training with frozen ĉ.

6 OUTLOOK

In this work we took the first steps towards understanding the gradient dynamics low-rank fine-
tuning beyond NTK. We identified a rich student-teacher framework, specialized to two-layer net-
works, and proved in various settings that online SGD efficiently finds the ground truth low-rank
perturbation. This student-teacher framework is also appealing because it offers a natural way of in-
terpolating between fine-tuning in the lazy training regime and generalized linear model regression
in the feature learning regime. The parameter regime we consider occupies an intriguing middle
ground between these extremes where the dynamics are nonlinear yet tractable and not overly sen-
sitive to fine-grained properties like the Hermite coefficients of the activation function.
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(a) Joint training of ĉ and û, ξ = Θ(1) (b) Freezing ĉ and training û, ξ = Θ(1)

Figure 1: Evolution of ⟨ut, u⟩ during online SGD for 10 random instances with joint and frozen-ĉ
training. Though time scales differ between (a) and (b), trajectories exhibit similar behavior.

(a) Loss curves for linearized vs. original network (b) Trajectories of ⟨ut, u⟩ and ⟨ct, c⟩ when ξ = Θ(
√
k)

Figure 2: Linearized Networks fail in low-rank fine-tuning, and cannot achieve small loss. When
jointly training û and ĉ, we observe incremental behavior in learning, where learning c becomes
easier when u is learned to a certain level.

Our results open up a number of future directions. Firstly, it is important to try to lift our as-
sumptions, in particular the orthogonality of the perturbation relative to the pre-trained features, the
assumption that c is quantized to have equal-magnitude entries, and the assumption that c is random.

For these questions, a fruitful starting point could be to target a specific, analytically tractable acti-
vation function like quadratic activation, especially given that based on our findings, the dynamics
of low-rank fine-tuning do not depend heavily on particulars of σ. For this special case, we could
hope to go beyond Hermite analysis and potentially even obtain an exact characterization of the
dynamics.

Other important directions include analyzing the dynamics when ĉ and û are jointly trained – Fig-
ure 1 suggests that this is roughly twice as efficient as freezing ĉ and training û in isolation – as well
as going beyond two layers and rank-1 perturbations. Finally, it would be interesting to understand
the worst-case complexity of fine-tuning: are there computational-statistical gaps in this setting?
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A INTUITION AND STATEMENT OF RESULTS

A.1 ASSUMPTION ON THE ACTIVATION FUNCTION

We first state the technical assumptions on the activation function σ:

Assumption 5 (Activation function). The activation σ satisfies all of the following:

1. σ is almost surely differentiable (with respect to the standard gaussian measure), with
derivative σ′ having at most polynomial growth: There exists some b, c, q > 0 such that
|σ′(a)| ≤ b+ c|a|q for all a.

2. The Hermite coefficients of σ have faster than linear decay: There exists Cσ, ρ > 0 such
that |µp(σ)| ≤ Cσp

−1−ρ.

3. σ satisfies the following moment condition: For g1, g2 ∼ N (0, 1) gaussians (potentially
correlated), for some Cp,σ > 0 that only depends the activation and p, we have

(E|σ(g1)− σ(g2)|p)1/p ≤ Cp,σ

(
E|g1 − g2|2p

)1/(2p)
Remark 1. These conditions are satisfied for any reasonable activation used in practice. For the last
condition in assumption 5, note that any lipschitz activation (e.g. ReLU, Absolute value, Sigmoid).
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Furthermore it is satisfied for any polynomial activation (e.g. finite hermite expansion). To see why,
for a degree s polynomial p(x) =

∑d
n=0 anx

n, note that

|
s∑

n=1

ang
n
1 −

s∑
n=1

ang
n
2 | ≤ smax{|g1|s−1, |g1|s−2|g2|, . . . , |g2|s−1}

(
s∑

n=1

|an|

)
|g1 − g2|

Then, applying Cauchy-Schwarz, we have

p
√
E|p(g1)− p(g2)|p ≤ s

(
s∑

n=1

|an|

)(
Emax{|g1|s−1, . . . , |g2|s−1}2p

)1/(2p) (E|g1 − g2|2p
)1/(2p)

notice that the first expectation can be bounded by a constant that only depends on s concludes the
result.

Recall that for λ ∈ Rk, wi ∈ Rd with ∥wi∥ = 1, c ∈ {± 1√
k
}k, and u ∈ Sd−1 we have the target

model

f∗(x) =

k∑
i=1

λiσ (⟨vi, x⟩) (7)

where vi =
wi+ξciu

∥wi+ξciu∥ . Furthermore, since u ⊥ wi, we have vi =
wi+ξciu√

1+ ξ2

k

. Initially, we derive the

population loss and gradient without imposing additional assumptions.

A.2 COMPUTING THE POPULATION GRADIENT IN A GENERAL SETTING

Because σ admits a hermite expansion, for v, v̂ ∈ Sd−1 we can evaluate expectations of the form
Ex[σ(⟨v, x⟩)σ(⟨v̂, x⟩)] =

∑∞
p=0 µp(σ)

2⟨v, v̂⟩p. Then, we can compute the population loss and
gradient as follows

Proposition 2 (Population Loss and gradient). We have the population loss

Φ(û) ≜ E[(f∗(x)− f̂(x))2] =

 k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨v̂i, v̂j⟩p

+

 k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨vi, vj⟩p


− 2

k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨vi, v̂j⟩p

and the population spherical gradient

∇̂Φ(û) ≜ (I − ûû⊺)∇Φ(û) = −h(⟨u, û⟩)(u− û⟨û, u⟩)

where we define h : R → R to be

h(m) = 2

∞∑
l=0

(
ξ2

k

)l+1
 ∞∑

s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s+1

T (l, s)

ml

with

T (l, s) =

{∥∥∑
i λiw

⊗s
i

∥∥2
F

l odd
k
〈∑

i λiciw
⊗s
i ,
∑

i λiĉiw
⊗s
i

〉
otherwise

Proof. Note that E[(f∗(x) − f̂(x))2] =
∑k

i,j=1 λiλjf
∗
i (x)f

∗
j (x) +

∑k
i,j=1 λiλj f̂i(x)f̂j(x) −

2
∑k

i,j=1 λiλjf
∗
i (x)f̂j(x). Then,

⟨f∗
i , f̂j⟩ =

∞∑
p=0

µp(σ)
2⟨vi, v̂j⟩p
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Working similarly for ⟨f∗
i , f

∗
j ⟩ and ⟨f̂i, f̂j⟩, we have

E[(f∗(x)− f̂(x))2] =

 k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨v̂i, v̂j⟩p

+

 k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨vi, vj⟩p


− 2

k∑
i,j=1

λiλj

∞∑
p=0

µp(σ)
2⟨vi, v̂j⟩p

Then, under the constraints u, û ⊥ wi and ∥u∥ = ∥û∥ = 1, notice that ⟨vi, vj⟩ =
⟨wi,wj⟩+ξ2cicj

(1+ ξ2

k )

and similarly ⟨v̂i, v̂j⟩ = ⟨wi,wj⟩+ξ2ĉiĉj

(1+ ξ2

k )
. Since we are restricting training and gradients to this con-

strained space, the gradients of the first two terms with respect to û vanish. Then,

∇̂ûE[(f∗(x)− f̂(x))2] = −2

k∑
i,j=1

λiλj
ξ2

1 + ξ2

k

ciĉj

∞∑
p=1

pµp(σ)
2⟨vi, v̂j⟩p−1(u− û⟨u, û⟩)

= −2

k∑
i,j=1

λiλjξ
2ciĉj

∞∑
p=1

pµp(σ)
2

(
1

1 + ξ2

k

)p

(⟨wi, wj⟩+ ξ2ciĉj⟨u, û⟩)p−1(u− û⟨u, û⟩)

Then, notice that since
∑∞

p=1 pµp(σ)
2 < ∞, the expression above converges absolutely (and uni-

formly) for any |⟨u, û⟩| ≤ 1. Let m = ⟨u, û⟩ and define.

h(m) = 2

k∑
i,j=1

λiλjξ
2ciĉj

∞∑
p=1

pµp(σ)
2

(
1

1 + ξ2

)p

(⟨wi, wj⟩+ ξ2ciĉjm)p−1

Because this expression converges absolutely and uniformly for |m| ≤ 1, we can write its power
series expansion around m = 0, to get

h(m) = 2

k∑
i,j=1

λiλj

∞∑
l=0

(ξ2)l+1(ciĉj)
l+1ml

∞∑
s=0

(l+s+1)µl+s+1(σ)
2

(
l + s

l

)(
1

1 + ξ2

k

)l+s+1

⟨wi, wj⟩s

Then, notice that for odd l, we have (ciĉj)
l+1 = 1

kl+1 . For even l, we have (ciĉj)
l+1 =

ciĉj
kl . Then,

we can write

h(m) = 2

∞∑
l=0

(
ξ2

k

)l+1
 ∞∑

s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s+1

T (l, s)

ml

where

T (l, s) =

{∥∥∑
i λiw

⊗s
i

∥∥2
F

l odd
k
〈∑

i λiciw
⊗s
i ,
∑

i λiĉiw
⊗s
i

〉
otherwise

as claimed.

Remark 2 (Generalizing single index models). If we fix l∗ and let ξ = ξ̄
√
k, and sent ξ̄ → ∞ the

term
∞∑
s=1

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)s

T (l, s)

will vanish for all l. Then, h(m) around 0 reduces to

h(m) ≈
∞∑
l=0

lµl+1(σ)
2ml

Then, notice that this is the setting of single index models, where the dynamics at initialization is
governed by the information exponent, i.e. the degree of the first non-vanishing hermite coefficient
µp(σ). In this sense, our fine tuning model is a generalization of single index models.
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Remark 3 (Role of moment tensors). The T (l, s) terms in the expression for h(m) involve moment
tensors like

∑
i λiw

⊗s
i and

∑
i λiciw

⊗s
i . As mentioned in Section 1.3, there exist networks for which

these tensors vanish and for which noisy gradient descent takes a long time to learn them from
scratch (Diakonikolas et al., 2020; Goel et al., 2020). As such, their appearance in Proposition 1
might seem to suggest that in the worst case over c and (λi, wi), the complexity of fine-tuning could
be as bad as the complexity of learning from scratch. While we do not formally address this worst
case setting in this work, we expect that the complexity of the former should be dictated by the
smallest l for which the sum over s in the definition of h(m) is nonzero. Even if the moment tensors
above vanish for many choices of s so that T (l, s) = 0 unless s is large, note that such s will still
contribute non-negligibly to the aforementioned sum. For this reason, we expect that the worst-case
complexity landscape of fine-tuning should be very different (and in general far more benign) than
that of learning from scratch.

A.3 INTUITION FOR SGD DYNAMICS AND SAMPLE COMPLEXITIES

We will initally provide some intuition regarding the gradient dynamics, in terms of the function
h(m). Notably, in this setting, the behavior of the function h will determine the behavior of the
dynamics. Now, recall the iteration for ut:

ut+1 =
ut − η∇̂L(ut;xt)∥∥∥ut − η∇̂L(ut;xt)

∥∥∥
We formally analyze the SGD dynamics in Appendix C, so for the sake of intuition, suppose we
write the spherical projection error as Q̂t

ut+1 = ut − η∇̂L(ut;xt) + Q̂t

Furthermore, decompose ∇̂L(ut;xt) = ∇̂Φ(ut) + ∇̂E(ut;xt) where Et is a stochastic error term
with mean 0. Then, Let mt = ⟨ut, u⟩, and we get

mt+1 = mt + ηh(mt)(1−m2
t ) + η⟨∇̂Et(ut;xt), u⟩+Qt

where Qt error due to ignoring the spherical projection. Then, unrolling the recursive expression
and defining Et = ∇̂E(ut;xt), we obtain

mt = m0 + η

t−1∑
j=0

h(mj)(1−m2
j ) + η

t−1∑
j=0

⟨Ej , u⟩+
t−1∑
j=0

Qj

Then, notice that the term Mt = η
∑t−1

j=0⟨Ej , u⟩ forms a martingale, and
∑t−1

j=0 Qj is a stochastic
error term. In short time scales, these two error terms could potentitally dominate the dynamics.
However, in long time scales, the contribution of these terms scale with η

√
T , whereas the con-

tribution of the population gradient term η
∑t−1

j=0 h(mj)(1 − m2
j ) scales with ηT , given the popu-

lation gradient is non-vanishing. Then, notice that we can always keep ηT = Θ(1) while letting
η
√
T = o(1). The exact choice of η, T depends crucially on the signal to noise ratio of the problem.

In particular, if we have a lower bound Sk on the population gradient (signal), and an upper bound
dVk on the variance Ex[E

2
t ] (noise), then we show the sample complexity scales with the inverse of

the signal to noise ratio, which is dVk

S2
k

. We analyze this precisely in Appendix C.

Nevertheless, even after ignoring the noise and assuming we have a population dynamics, it is not
immediately clear from the form of h that the dynamics should converge to the ground truth (or
its negation, due to the inherent symmetry in the problem). For the sake of intuition, consider the
population dynamics, ignoring the spherical projection

mt+1 = mt + ηh(mt)(1−m2
t )

If we rearrange, we can write |1−mt+1| = |1−mt||1− ηh(mt)(1 +mt)|. Then, if h(mt) is non-
vanishing throughout the dynamics, the population dynamics should quickly converge to 0 even if
h can potentially be non-linear and exhibit complicated behavior. In particular, suppose h(mt) ≥ s
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throughout training, then we have |1 − mt+1| ≤ |1 − mt||1 − ηs|, in which case the population
dynamics is greatly simplified. Furthermore, notice that mt would converge to 1 only if h(mt)
is non-vanishing across the trajectory since this would lead to converging to a different stationary
point. Hence, the main goal of the subsequent analysis is to prove that h indeed satisfies this lower
bound property, and quantitatively determine what the lower bound is.

A.4 RESULTS FOR FINE TUNING WITH ONLINE SGD IN DIFFERENT REGIMES

Note that we consider two kinds of randomness in our probabilistic bounds. There is the random-
ness due to the c, ĉ, and also due to the randomness of the training trajectory due to the data. Fur-
thermore, we consider initializations that satisfy m0 ≥ β√

d
sign(h(0)). Note that the magnitude

condition |m0| ≥ β√
d

will be satisfied with probability 1−O(β) since random unit vectors in d di-

mensions have correlation of order 1/
√
d. Hence, we think of β as a small constant. The magnitude

assumption is standard in this type of analysis. For the sign condition, empirically, the results are
not sensitive: However, handling both sign initializations requires knowing more about the structure
of h(m) and we defer it to future work. However, note that the sign condition holds with probability
1/2, and if not, flipping the sign of u0 will ensure that the sign condition holds.

A.4.1 ORTHOGONAL SETTING

In this section, we assume ⟨wi, wj⟩ = 0 whenever i ̸= j. Then, notice that h reduces in form to the
following:

h(m) = 2k

(∑
i

λici

)(∑
i

λiĉi

) ∞∑
l even

alm
l +

∑
l odd

âlm
l + k

(∑
i

λ2
i ciĉi

) ∑
l even

blm
l

where the al, âl, bl are all positive coefficients. Then, we are interested in the magnitudes of the
random quantities in the above sum to characterize the behavior of h. We do this in the next ap-
pendix. Essentially, if the first hermite coefficient is non-zero, the term (

∑
i λici)(

∑
i λiĉi) governs

the lower bound for h. In the other case, we show the term
∑

i λ
2
i ciĉi governs the lower bound.

Theorem 5 (Orthogonal setting, ξ = 1). Let Assumption 2 hold, and 0 < ε < 1.

1. For activations with µ1(σ) ̸= 0, for a sufficiently small Cδ = Θ(1), let δ =
Cδγλ

2
minε

3

(log λ4
maxdk

2)2 .

Furthermore, let α =
log(λ4

maxdk
2)

λ2
minγεδ

. Then, with probability 1 − o
(

λ2
max

λ2
min

)
− O(γ1/2) ran-

domness of c, ĉ, for initializations satisfying ⟨u0, u⟩ · sign(h(0)) ≥ β√
d

, online SGD run

with step size η = δ
λ4
maxdk

2 and time T = ⌈αλ4
maxdk

2⌉ satisfies ⟨uT , u⟩2 ≥ 1−ε with high
probability over the randomness of the data.

2. For activations with µ1(σ) = 0, for a sufficiently small Cδ = Θ(1), let δ =
Cδγλ

2
minε

3

(log λ4
maxdk

2)2
√
k

. Furthermore, let α =
log(λ4

maxdk
2)

√
k

λ2
minγεδ

. Then, with probability 1 −

o
(

λ2
max

λ2
min

)
−O(γ1/2) randomness of c, ĉ, for initializations satisfying ⟨u0, u⟩ ·sign(h(0)) ≥

β√
d

, online SGD run with step size η =
λ4
maxδ
dk2 and time T = ⌈αλ4

maxdk
2⌉ satisfies

⟨uT , u⟩2 ≥ 1− ε with high probability over the randomness of the data.

Proof. For the first point, notice that Lemma 1 and Lemma 2 imply that Assumption 7, Assump-
tion 8 hold with

Sk =
γλ2

minµ1(σ)
2

1 + ξ2

k

Vk = Cp,σλ
4
maxk

2

for some small γ with probability 1− o
(

λ2
max

λ2
min

)
−O(γ1/2). Then, applying theorem 8 with the set

Sk, Vk and ε, we get the desired result. The second case follows similarly.
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Remark 4. In the orthogonal setting with ξ = 1, when µ1(σ) ̸= 0, we need T = O(
λ4
max

λ4
minγ

2 · dk3

ε4 )

iterations. Similarly, when µ1(σ) = 0, we need µ1(σ) ̸= 0, we need T = O(
λ4
max

λ4
minγ

2 · dk
3

ε4 ) iterations.

Theorem 6 (Orthogonal setting, ξ = ξ
√
k). Let Assumption 2 hold, and 0 < ε < 1.

1. For activations with µ1(σ) ̸= 0, for a sufficiently small Cδ = Θ(1), let δ =

min
{

Cδξ
2
kγλ2

minε
3

(log λ4
maxdk

2)2 , 1
}

. Furthermore, let α =
log(λ4

maxdk
2)

ξ
2
λ2
minkγεδ

. Then, with probability

1 − o
(

λ2
max

λ2
min

)
− exp{− 2

eξ
} − O(γ1/2) randomness of c, ĉ, for initializations satisfying

⟨u0, u⟩ · sign(h(0)) ≥ β√
d

, online SGD run with step size η = δ

ξ
2
λ4
maxdk

4
and time

T = ⌈αλ4
maxξ

2
dk4⌉ satisfies ⟨uT , u⟩2 ≥ 1 − ε with high probability over the random-

ness of the data.

2. For activations with µ1(σ) = 0, for a sufficiently small Cδ = Θ(1), let δ =

min
{

Cδξ
2
γλ2

minε
3
√
k

(log λ4
maxdk

2)2 , 1
}

. Furthermore, let α =
log(λ4

maxdk
2)

ξ
2
λ2
minγεδ

√
k

. Then, with probability

1 − o
(

λ2
max

λ2
min

)
− exp{− 2

eξ
} − O(γ1/2) randomness of c, ĉ, for initializations satisfying

⟨u0, u⟩ · sign(h(0)) ≥ β√
d

, online SGD run with step size η = δ

λ4
maxξ

2
dk4

and time

T = ⌈αλ4
maxξ

2
dk4⌉ satisfies ⟨uT , u⟩2 ≥ 1 − ε with high probability over the random-

ness of the data..

Proof. For ξ ≤ 1, the results in Lemma 1 and Lemma 2 imply that Assumption 7, Assumption 8
hold with

Sk =
γkλ2

minµ1(σ)
2

2

Vk = Cp,σλ
4
maxξ

2
k4

for some small γ with probability 1−o(1)−exp{− 2k

eξ
2 }−O(γ1/2). Then, applying theorem 8 with

the set Sk, Vk and ε, we get the desired result. The second case follows similarly.

Remark 5. In the orthogonal setting with ξ = ξ
√
k, when µ1(σ) ̸= 0, we need T = O(

λ4
max

λ4
minε

4γ2ξ
2 ·

dk3) iterations. Similarly, when µ1(σ) = 0, we need µ1(σ) ̸= 0, we need T = O(
λ4
max

λ4
minε

4ξ
2
γ2

· dk4)
iterations.

A.4.2 ANGULARLY SEPARATED, SPECTRAL SCALING SETTING

Now, we do not necessarily assume the weights are angularly separated. However, we assume the
features are not too correlated, so that weight vectors have angular separation 1 − log k√

k
. Then, we

have the following result for ξ = 1.
Theorem 7 (Separated setting, ξ = 1). Let Assumption 2 hold, and 0 < ε < 1. For a sufficiently
small Cδ = Θ(1), let δ =

Cδγλ
2
minε

3

(log λ4
maxdk

2)2
√
k

. Furthermore, let α =
log(λ4

maxdk
2)

√
k

λ2
minγεδ

. Then, with

probability 1−o(1)−O(γ1/2) randomness of c, ĉ, for initializations satisfying ⟨u0, u⟩·sign(h(0)) ≥
β√
d

, online SGD run with step size η =
λ4
maxδ
dk2 and time T = ⌈αλ4

maxdk
2⌉ satisfies ⟨uT , u⟩2 ≥ 1−ε.

Proof. Note that Lemma 1 and Lemma 2 imply that Assumption 7, Assumption 8 hold with

Sk =
γλ2

min√
k

Vk = Cp,σλ
4
maxk

2

for some small γ with probability 1− o
(

λ2
max

λ2
min

)
−O(γ1/2). Then, applying theorem 8 with the set

Sk, Vk and ε, we get the desired result. The second case follows similarly.
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Remark 6. In the angularly separated and ξ = 1 case, online SGD strongly recovers the true
parameter up to a sign with T = ⌈ λ4

max

λ4
minγ

4 · dk3

ε4 ⌉ iterations.

B BOUNDING RELEVANT QUANTITIES TO THE SGD DYNAMICS

The goal of this appendix is to prove the following statements:

Lemma 1 (General Case Upper Bounds). Under Assumptions ???, we have the following:

1. Variance Upper Bound: max

{∥∥∥ ∇̂L(û;x)√
d

∥∥∥2p , |⟨∇̂L(û;x), u⟩|2p
}1/p

≤

Cp,σλ
4
max

k3ξ2 min{k,4ξ2}
k+ξ2

2. Population Gradient Upper Bound:
∥∥∥∇̂Φ(û)

∥∥∥ ≤ Cσλ
2
max

kξ2

1+ξ2/k

Lemma 2 (Population gradient lower bounds). Under Assumptions 1 to 5 we have the following:

1. Orthonormal case, µ1(σ) ̸= 0: With probability 1− exp
{
− 2k

eξ2

}
−O(γ1/2)− o

(
λ2
max

λ2
min

)
,

for m ≥ 0, we have

h(sign(h(0))m)sign(h(0)) ≥ |h(0)|
2

≥ γξ2µ1(σ)
2

1 + ξ2

k

2. Orthonormal case, µ1(σ) = 0: With probability 1− exp
{
− 2k

eξ2

}
−O(γ1/2)− o

(
λ2
max

λ2
min

)
,

for m ≥ 0 we have

h(sign(h(0))m)sign(h(0)) ≥ |h(0)|
2

≥ γCs∗ξ
2(

1 + ξ2

k

)s∗ √
k

where s∗ is the smallest s for which µs(σ) ̸= 0.

3. Angularly Separated case, ξ = 1: With probability 1 − O(γ1/2) − o
(

λ2
max

λ2
min

)
, for m ≥ 0

we have

h(sign(h(0))m)sign(h(0)) ≥ |h(0)|
2

≥ γ√
k

Remark 7. Our analysis naturally extends to the case when ξ ̸= 1 but ξ = Θ(1), but for notational
simplicity, we set ξ = 1.

B.1 UPPER BOUNDS ON THE VARIANCES OF GRADIENTS AND THE MAGNITUDE OF
POPULATION GRADIENT

We state the following assumption we will use while bounding the variance of the gradients. The
following assumption holds for many classes of activations including Lipschitz activations (e.g.
ReLU, absolute value, sigmoid, tanh) and finite degree polynomial activations.

Proposition 3 (Moments of squared error). Let p be given, and Assumption 5 hold. Then, there
exists some constant Cp,σ that only depends on p and σ such that

Ex[(f
∗(x)− f̂(x))2p]1/p ≤ Cp,σλ

2
max min

{
k2, 4kξ2

}
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Proof. Let Cp,σ be a constant that only depends on p and σ, that will change throughout the proof.
Note that

Ex[(f
∗(x)− f̂(x))2p] ≤ k2p−1

k∑
i=1

λ2p
i Ex(σ(⟨vi, x⟩)− σ(⟨v̂i, x⟩))2p

≤ Cp,σλ
2p
maxk

2p−1
k∑

i=1

√
Ex[|⟨vi, x⟩ − ⟨v̂i, x⟩|4p]

≤ Cp,σλ
2p
maxk

2p ∥vi − v̂i∥2p

Then, note that apriori, ∥vi − v̂i∥ ≤ 2. Otherwise,

∥vi − v̂i∥ ≤ ∥ξciu− ξĉiû∥+ 2

(
1− 1√

1 + ξ2c2i

)

≤ 2ξ√
k
+

2ξ2

k
=

2ξ√
k

(
1 +

ξ√
k

)
However, notice that if ξ ≤

√
k, this is bounded by 4ξ√

k
. Otherwise, we use the bound ∥vi − v̂i∥ ≤ 2.

Then,

∥vi − v̂i∥ ≤ min

{
2,

4ξ√
k

}
Combining with the above and taking p’th root, we have

Ex[(f
∗(x)− f̂(x))2p]1/p ≤ Cp,σλ

2
maxk

2 min

{
4,

16ξ2

k

}
≤ Cp,σλ

2
max min

{
k2, 4kξ2

}
as desired.

Now, we bound the other quantity of interest, which is the moments of squares of the gradient
∇̂ûf̂(x). We have the following:

Proposition 4 (Bound on the expected magnitude of f̂ ). Let p be given. Then, we have

max

Ex

∣∣∣∣∣∇̂ûf̂(x)√
d

∣∣∣∣∣
2p

,Ex⟨∇̂ûf̂(x), u⟩2p


1/p

≤ Cσ,pλ
2
max

k2ξ2

k + ξ2

Proof. Let Cσ,p be a constant whose value can change throughout the proof. Initially, note that

∇̂ûf̂(x) = (I − ûû⊺)x

[
k∑

i=1

λi
ξĉi√

1 + ξ2ĉ2i
σ′(⟨vi, x⟩)

]
Then, since the spherical projection always leads to a smaller gradient∥∥∥∇̂ûf̂(x)

∥∥∥2 ≤
∥∥∥∇ûf̂(x)

∥∥∥2
And furthermore,

Ex

∥∥∥∇ûf̂(x)
∥∥∥2p ≤

√
Ex ∥x∥4p

√√√√Ex

[
k∑

i=1

λi
ξĉi√

1 + ξ2ĉ2i
σ′(⟨vi, x⟩)

]4p

≤ Cσ,pd
pk2pλ2p

max

(ξ2/k)p

(1 + ξ2/k)p
max

i
Ex

√
σ′(⟨v̂i, x⟩)4p

However, since σ′ has at most polynomial growth, so does (σ′)4p and since v̂i is unit norm, the last
quantity is finite and only depends on σ and p. Then,

[Ex

∥∥∥∇ûf̂(x)
∥∥∥2p]1/p ≤ Cσ,pλ

2
maxd

k2ξ2

k + ξ2

For the other case, note that the only step that changes is the bound on Ex⟨x, u⟩4p does not depend
on the dimension, but only on p. So, we lose the dimension dependence.
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Proposition 5 (Population Gradient Bounds). We have∥∥∥∇̂ûΦ(û)
∥∥∥ ≤ Cσλ

2
max

kξ2

1 + ξ2/k

Proof. Initially, note the non-expanded form of the population gradient:

∇̂Φ =
ξ2

1 + ξ2/k

k∑
i,j=1

λiλjciĉj

∞∑
p=1

pµp(σ)
2⟨vi, v̂j⟩p−1(u− û⟨u, û⟩)

Then, note
∣∣∣∑k

i,j=1 λiλjciĉj

∣∣∣ ≤ kλ2
max, and

∑∞
p=1 pµp(σ)

2 ≤ Cσ . Furthermore, ∥u− û⟨u, û⟩∥ ≤

1 and |⟨vi, v̂j⟩| ≤ 1. Then,
∥∥∥∇̂Φ

∥∥∥ ≤ Cσλ
2
max

kξ2

1+ξ2/k as desired.

B.2 ORTHONORMAL CASE: POPULATION GRADIENT LOWER BOUNDS

Recall the function h.

h(m) = 2

∞∑
l=0

(
ξ2

k

)l+1
 ∞∑

s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s+1

T (l, s)

ml

with T (l, s) being defined as

T (l, s) ≜

{∥∥∑
i λiw

⊗s
i

∥∥2
F

l odd
k
〈∑

i λiciw
⊗s
i ,
∑

i λiĉiw
⊗s
i

〉
otherwise

However, in the orthogonal case, for s ≥ 1, T (l, s) reduces to

T (l, s ≥ 1) =

{∑k
i=1 λ

2
i l odd

k
∑k

i=1 λ
2
i ciĉi otherwise

And for s = 0, these reduce to

T (l, 0) =


(∑k

i=1 λi

)2
l odd

k
(∑k

i=1 λici

)(∑k
i=1 λiĉi

)
otherwise

Notice that for all odd l, the power series coefficients are always non-negative. And for all even l,
all the power series coefficients have the same sign.

We initially bound the maximum possible contribution coming from the even l terms with s = 0.
Claim 1 (Even l, s = 0 contribution). With probability 1− exp{− 2k

eξ2 }, the following holds.

sign(m)

2
∑
l odd
s=1

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2/k

)l+s+1

T (l, s)

+2
∑
l>0
even
s=0

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2/k

)l+s+1

T (l, s)

 ≥ 0

Proof. Note first that Ec,ĉ

(∑k
i=1 λici

)(∑k
i=1 λiĉi

)
= 0 and moreover,

Ec,ĉ

(
k∑

i=1

λici

)2( k∑
i=1

λiĉi

)2

=
∥λ∥42
k2
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so the standard deviation is ∥λ∥22 /k. Hence, T (l, 0) has standard deviation ∥λ∥22 in c, ĉ. Then, note
that

2
∑
l>0
even

(
ξ2

k

)l+1

(l + 1)µl+1(σ)
2

(
1

1 + ξ2

k

)l+1
k

k∑
i,j=1

λiλjciĉj

ml

=
2mξ2

k

k

k∑
i,j=1

λiλjciĉj

∑
l>0
even

(
ξ2

k

)l

(l + 1)µl+1(σ)
2

(
1

1 + ξ2

k

)l+1

ml−1

=
2mξ2

k

k

k∑
i,j=1

λiλjciĉj

∑
l odd

(
ξ2

k

)l+1

(l + 2)µl+2(σ)
2

(
1

1 + ξ2

k

)l+2

ml

=
2mξ2

k

k

k∑
i,j=1

λiλjciĉj

∑
l odd

1

l + 1

(
l + 1

l

)(
ξ2

k

)l+1

(l + 2)µl+2(σ)
2

(
1

1 + ξ2

k

)l+2

ml

=
2mξ2

k

k

k∑
i,j=1

λiλjciĉj

 ∑
l odd ,s=1

1

l + s

(
l + s

l

)(
ξ2

k

)l+1

(l + s+ 1)µl+s+1(σ)
2

(
1

1 + ξ2

k

)l+s+1

ml

However, notice that the sum precisely corresponds to all odd l with s = 1. Then, bounding l ≥ 1
so that 1

l+1 ≤ 1
2 , we can elementwise compare the odd l terms with s = 1 and even l terms with

s = 0. The odd terms are

2 ∥λ∥22
∑
l odd

(
ξ2

k

)l+1(
l + 1

l

)
(l + 2)µl+2(σ)

2

(
1

1 + ξ2

k

)l+2

ml

Then, note that it suffices to show that, with high probability, we have

mξ2

k

k

k∑
i,j=1

λiλjciĉj

 ≤ 2 ∥λ∥22

Then, note that using the standard deviation bound, using (O’Donnell, 2014, Theorem 9.23), we
have

Pr

mξ2

k

k

k∑
i,j=1

λiλjciĉj

 ≤ 2 ∥λ∥22

 ≤ exp

{
− 2k

emξ2

}
≤ exp

{
− 2k

eξ2

}

Hence, with probability 1 − exp
{
− 2k

eξ2

}
, the even s = 0 terms will not effect the sign of the odd

terms. In particular, we have, with probability at least 1− exp{− 2k
eξ2 }, we have

sign(m)

2
∑

l odd ,s=1

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2/k

)l+s+1

T (l, s)ml

+2
∑

l even ,s=0

(
ξ2

k

)l+1(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2/k

)l+s+1

T (l, s)ml

 ≥ 0

as desired.

Proposition 6. Let µ1(σ) ̸= 0, then with probability 1 − exp{− 2k
eξ2 } − o(1) − O(λmax

λmin
γ1/2), we

have h(sign(h(0))m)sign(h(0)) ≥ |h(0)|
2 ≥ γξ2µ1(σ)

2

1+ ξ2

k

for m ≥ 0.
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Proof. WLOG assume (
∑

i λici)(
∑

i λiĉi) > 0. In this case, using Claim 1, with probability
1− exp{− 2k

eξ2 } we have

sign(m)h(m) ≥ sign(m)ξ2

(
k∑

i=1

λici

)(
k∑

i=1

λiĉi

)
µ1(σ)

2 1

1 + ξ2

k

+ sign(m)
ξ2

1 + ξ2/k
⟨cλ, ĉλ⟩

∑
l even ,s≥1

(
ξ2

k

)l(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s

|m|l

+
∑
l odd

bl|m|l

Now, we investigate the second term. Note that the sum in the second term is bounded by∑
l,s≥0

(
ξ2

k

)l(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s

=

∞∑
p=0

p∑
s=0

(
ξ2

k

)p−s(
p

s

)
(p+ 1)µp+1(σ)

2

(
1

1 + ξ2

k

)p

=

∞∑
p=0

(p+ 1)µp+1(σ)
2

(
k

k + ξ2

)p(
1 +

ξ2

k

)p

≤
∞∑
p=0

(p+ 1)µp+1(σ)
2 ≤ Cσ

Then, notice the the second term is bounded in magnitude by Cσξ
2

1+ξ2/k |⟨cλ, ĉλ⟩|. Then, notice that

Pr

[
|⟨cλ, ĉλ⟩| ≥

γλ2
max√
k

log k

]
≤ k−

γ
e

Set γ = 10. So, with high probability this term is O
(

log k√
k

Cσλ
2
maxξ

2

1+ξ2/k

)
However, by anti-

concentration of the constant term (Proposition 7), we have that the constant term is γλ2
maxµ1(σ)

2ξ2

1+ξ2/k

with probability 1 − o(1) − O(λmax

λmin
γ1/2). Then, the constant term is O(

√
k(log k)−1) larger than

the even terms, and it’s sign is dictated by (
∑

i λici)(
∑

i λiĉi) > 0. Then, we can bound the even
terms by half of the constant term, and get the desired result.

Claim 2. Let µ1(σ) = 0, then with probability 1 − o(1) − exp{− 2k
eξ2 } − O(γ1/2), for m ≥ 0

we have h(sign(h(0))m)sign(h(0)) ≥ |h(0)| ≥ γCs∗ξ
2(

1+ ξ2

k

)s∗√
k

where s∗ is the smallest s for which

µs(σ) ̸= 0.

Proof. Again, WLOG assume sign(h(0)) > 0 so that ⟨cλ, ĉλ⟩ > 0. In this case, with probability
1− exp{− 2k

eξ2 } note that

sign(m)h(m) ≥ sign(m)ξ2⟨cλ, ĉλ⟩
∑
l even
s≥1

(
ξ2

k

)l(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
1

1 + ξ2

k

)l+s+1

|m|l

+
∑
l odd

bl|m|l

where the bl are non-negative coefficients. Then, note that ξ2⟨cλ, ĉλ⟩ = |m||⟨cλ, ĉλ⟩|ξ2. Then, by
anti-concentration (Proposition 7), note that with probability 1− o(1)−O(γ1/2), |⟨cλ, ĉλ⟩| ≥ γξ2√

k
.

Hence, we have h(sign(h(0)m)sign(h(0)) ≥ |h(0)| for all m ≥ 0, and |h(0)| ≥ γCs∗ξ
2(

1+ ξ2

k

)s∗√
k

where s∗ is the smallest s for which µs ̸= 0.
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B.3 ANGULARLY SEPARATED CASE: POPULATION GRADIENT LOWER BOUNDS

B.3.1 COMPUTATION OF THE POPULATION GRADIENT

Note that specializing ξ = 1, we get

h(m) =

∞∑
l=0

(
1

k

)l+1 ∞∑
s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

T (l, s)ml

B.3.2 BOUNDING THE HIGHER ORDER EVEN TERMS

Initially, we aim to bound the even terms in the power series (i.e. l > 1).

Lemma 3. Suppose Assumptions 1 to 4 hold. Then, with probability at least 1 − 1
k3 over the

randomization of c, ĉ, for ε = min{ρ
4 , 1−

1
1+2ρ} we have

∞∑
n=0

(
1

k

)2n+2 ∞∑
s=0

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3
〈

k∑
i=1

λiciw
⊗s
i ,

k∑
i=1

λiĉiw
⊗s
i

〉
= O(λ2

maxk
− 1

2−ε)

Proof. Let s∗ = 10
√
k. This proof will involve bounding contributions from the following three

types of terms:

(i) The contribution from the terms where s ≤ s∗. These can be bounded naively since there
are at most O(

√
k) of them, and the (1/k)2n+2 will dominate the growth in k in these

terms.

(ii) The contribution for s ≥ s∗ from diagonal terms: These terms scale with
∑k

i=1 λ
2
i ciĉi,

so it suffices to show the coefficient is O(k−ε) for some small ε > 0. This is due to the
fact that the Hermite coefficients decay at rate (s∗)−1−ρ, so the contribution of the large s
coefficients have to decay in k at some small rate.

(iii) The contribution for s ≥ s∗ from non-diagonal terms: Due to the assumption of angular
separation between the wi’s, when s is sufficiently large, the decay of the terms ⟨wi, wj⟩s
means these terms will be small.

(i) Contribution from terms with s ≤ s∗ = O(
√
k): Initially, we bound the magnitudes of

the randomized terms. Since there are at most
√
k of them and they concentrate exponentially

around their means, we can bound their magnitude by O(log k) with exponentially high probability.
Specifically,

E

 k∑
i,j=1

λiλjciĉj⟨wi, wj⟩s
 =

k∑
i,j=1

λiλj⟨wi, wj⟩sE[ciĉj ] = 0

E


 k∑

i,j=1

λiλjciĉj⟨wi, wj⟩s
2
 =

k∑
i,i′=1

k∑
j,j′=1

λiλi′λjλj′⟨wi, wj⟩s⟨wi′ , wj′⟩sE[cici′ ĉj ĉj′ ]

=

k∑
i,i′=1

k∑
j,j′=1

λiλi′λjλj′⟨wi, wj⟩s⟨wi′ , wj′⟩sE[cici′ ]E[ĉj ĉj′ ]

=
1

k2

k∑
i=1

k∑
j=1

λ2
iλ

2
j ⟨wi, wj⟩2s

≤
∥λ∥42
k2

≤ λ4
max .
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Then, define fs : {−1, 1}2k → R as fs(b, b̂) = 1
k

∑k
i,j=1 λiλjbib̂i⟨wi, wj⟩s which is a quadratic

polynomial in bi, b̂i. We have just proved that ∥fs∥2 ≤ λ2
max. Then, by (O’Donnell, 2014, Theorem

9.23) we have

Pr
b,b̂

[
|fs(b, b̂)| ≥ γ log k ∥f∥2

]
≤ exp{−γ

e
log k} = k−

γ
e

where γ > 0 is to be chosen later. Then, using the union bound, we have

Pr

max
s≤s∗

∣∣∣∣∣∣
k∑

i,j=1

λiλjciĉj⟨wi, wj⟩s
∣∣∣∣∣∣ ≥ γλ2

max log k

 ≤ s∗k−
γ
e

As s∗ = O(
√
k), then with probability at least 1− k−

γ
e +

1
2 , we have∣∣∣∣∣

∞∑
n=0

(
1

k

)2n+2 s∗∑
s=0

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3
〈

k∑
i=1

λiciw
⊗s
i ,

k∑
i=1

λiĉiw
⊗s
i

〉∣∣∣∣∣
≤ γλ2

max log k

∞∑
n=0

(
1

k

)2n+2 s∗∑
s=0

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3

(8)

Now, it suffices to give a O(k−
1
2−cε) bound for the infinite sum for c > 1. We will separate it into

cases s ≤ (s∗)1−ε and (s∗)1−ε ≤ s ≤ s∗. The reason for this is that we have to use the decay of the
Hermite coefficients as s approaches

√
k, so the two cases need to be handled separately. Hence, for

l ≜ 2n+ 2 using the binomial coefficient bound
(
n
k

)
≤
(
en
k

)k
we have

(s∗)1−ε∑
s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

≤
(s∗)1−ε∑
s=0

Cσ

(
e
l + s

l

)l

≤ Cσe
l

(s∗)1−ε∑
s=0

(1 + s)l

≤ Cσe
l(s∗)1−ε(1 + (s∗)1−ε)l

≤ Cσ(s
∗)1−ε(2e(s∗)1−ε)l

Then, notice that for k larger than some absolute constant, we have

Cσ(s
∗)1−ε

∞∑
n=0

(
1

k

)2n+2 (
2e(s∗)1−ε

)2n+2 ≤ Cσ(s
∗)1−ε

(
2e(s∗)1−ε

k

)2
1

1 + o(1)
= O(k−

1
2−

3
2 ε)

since (s∗)3(1−ε)k−2 = O(k−
1
2−

3
2 ε).

Now, we look at the remaining terms. For (s∗)1−ε ≤ s ≤ s∗, we have(
1

k

)l ∑
(s∗)1−ε≤s≤s∗

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

≤ Cσ(s
∗)−(1−ε)(1+2ρ)

∑
(s∗)1−ε≤s≤s∗

(
2es∗

k

)l

≤ Cσ(s
∗)1−(1−ε)(1+2ρ)

(
2es∗

k

)l

Taking the sum over all l ≜ 2n+ 2, we have

Cσ(s
∗)1−(1−ε)(1+2ρ)

∞∑
n=0

(
2es∗

k

)2n+2

≤ Cσ(s
∗)1−(1−ε)(1+2ρ)

(
2es∗

k

)2
1

1 + o(1)
.

Choosing ε = 1 − 1
1+2ρ > 0 for simplicity3, we have that the sum is bounded by

Cσ

(
2s∗

k

)2
1

1+o(1) = O( 1k ). Hence, combining with previous steps, we can upper bound the in-

finite sum in Equation (8) by O(λ2
maxk

− 1
2−3ε) where ε = 1− 1

1+2ρ .

3There are more optimal choices of ε that lead to better bounds

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

(ii) The contribution of s ≥ s∗ for diagonal terms: We first note that
∞∑
p=1

pµp(σ)
2

(
k

k + 1

)p

⟨wi + ciu,wi + ĉiû⟩p−1 =

∞∑
p=1

pµp(σ)
2

(
k

k + 1

)p

(⟨wi, wj⟩+ ciĉjm)p−1

Then, notice that the RHS is maximized in absolute value when wi = wj , ci = ĉj and m = 1. In
this case, we get∣∣∣∣∣

∞∑
p=1

pµp(σ)
2

(
k

k + 1

)p

⟨wi + ciu,wi + ĉiû⟩p−1

∣∣∣∣∣ ≤
∞∑
p=1

pµp(σ)
2 ≜ C̃σ

In particular, we have absolute convergence of the LHS for all |m| ≤ 1, so we can freely interchange
order of sums. However, notice all steps in this argument works if we replace µp(σ)

2 with something
else that has sufficiently fast decay. In particular, writing p = l + s+ 1 we have

∞∑
l=0

(
1

k

)l ∞∑
s=0

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

=

∞∑
p=1

(
k

k + 1

)p

pµp(σ)
2

p−1∑
l=0

(
1

k

)l(
p− 1

l

)

=

∞∑
p=1

(
k

k + 1

)p(
1 +

1

k

)p−1

pµp(σ)
2

≤
∞∑
p=1

pµp(σ)
2 = C̃σ (9)

However, since all the terms in the sum are non-negative, using the same steps, we have
∞∑
l=0

(
1

k

)l ∞∑
s=s∗

(
l + s

l

)
(l + s+ 1)µl+s+1(σ)

2

(
k

k + 1

)l+s+1

≤
∞∑
l=0

(
1

k

)l ∞∑
s=s∗

(
l + s

l

)
(l + s+ 1)−1−2ρ

(
k

k + 1

)l+s+1

≤ (s∗)−ρ
∞∑
l=0

(
1

k

)l ∞∑
s=s∗

(
l + s

l

)
(l + s+ 1)−1−ρ

(
k

k + 1

)l+s+1

≤ (s∗)−ρ
∞∑
p=1

p−1−ρ = Ĉσ(s
∗)−ρ

where Ĉσ =
∑∞

p=1
1

p1+ρ .4 Then,∣∣∣∣∣
∞∑

n=0

(
1

k

)2n+2 ∞∑
s=s∗

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3∑
i

λ2
i ciĉi

∣∣∣∣∣
≤ Ĉσ(s

∗)−ρ|
∑
i

λ2
i ciĉi| .

Then, notice that since
√
E[(
∑

i λ
2
i ciĉi)

2] =
√

1
k2

∑k
i=1 λ

4
i ≤ λ2

max/
√
k, we have

Pr[|
∑
i

λ2
i ciĉi| ≥ γλ2

max

log k√
k
] ≤ k−

γ
e

by another application of (O’Donnell, 2014, Theorem 9.23). Then, with probability at least 1− 1
kγ/e ,

we have

Ĉσ(s
∗)−ρ|

∑
i

λ2
i ciĉi| ≤ Ĉσ(s

∗)−ργλ2
max

log k√
k

= O(λ2
maxk

− 1
2−

ρ
4 )

4Ĉσ depends on σ through the definition of ρ in Assumption 5.
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as claimed.

(iii) Bounding the non-diagonal terms for s ≥ s∗: Notice that∣∣∣∣∣∣
k∑

i ̸=j

λiλjciĉj⟨wi, wj⟩s
∣∣∣∣∣∣ ≤

√
k2
∑
i ̸=j

λ2
iλ

2
jc

2
i ĉ

2
j ⟨wi, wj⟩2s

≤
(
1− log k√

k

)s

∥λ∥22 .

Then, let s ≥ s∗ = γ
√
k. Then,(

1− log k√
k

)s

∥λ∥22 ≤ e−γ log k ∥λ∥22 =
∥λ∥22
kγ

,

so setting γ > 3
2 will suffice. I.e, we have∣∣∣∣∣∣

∞∑
n=0

(
1

k

)2n+2 ∞∑
s=s∗

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3
∑

i ̸=j

λiλjciĉj⟨wi, wj⟩s
∣∣∣∣∣∣

≤
∥λ∥22
kγ

∞∑
n=0

(
1

k

)2n+2 ∞∑
s=s∗

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3

≤
C̃σ ∥λ∥22

kγ
,

where in the last step we used Equation (9). Combining all the bounds, for ε = min{ρ
4 , 1−

1
1+2ρ},

with probability at least 1− γ 1

kγ/e− 1
2

, we have

∞∑
n=0

(
1

k

)2n+2 ∞∑
s=0

(
2n+ 2 + s

2n+ 2

)
(2n+ s+ 3)µ2n+s+3(σ)

2

(
k

k + 1

)2n+s+3
〈

k∑
i=1

λiciw
⊗s
i , λiĉiw

⊗s
i

〉
= O(λ2

maxγk
− 1

2−ε)

Specifically, setting γ = 10, the result holds with probability at least 1− 1
k3 .

B.4 ANTI-CONCENTRATION INEQUALITIES FOR QUADRATIC POLYNOMIALS WITH LOW
INFLUENCES

In this section, we prove some results related to the anti-concentration of certain quadratic functions
on the hypercube. These functions capture the random behavior of the function h by determining
the magnitudes of the constant term. We will control the magnitudes of functions of boolean vari-
ables by relating them to functions of gaussians, and then applying anti-concentration for gaussian
polynomial. To that end, we first state some known bounds from literature.

Lemma 4 (Carbery-Wright inequality (Carbery & Wright, 2001)). Let Q be a normalized multilin-
ear polynomial with degree d as in Definition 1. There exists a constant B such that for g ∼ N (0, In)
we have

Pr[|Q(g1, g2, . . . , gn)| ≤ ε] ≤ Bε1/d

Definition 1 (Multilinear polynomial). We define a normalized degree d multilinear polynomial as

Q(x1, x2, . . . , xn) =
∑

S⊂[n],|S|≤d

aS
∏
i∈S

xi

with Var(Q) =
∑

S⊂[n],|S|>0 a
2
S = 1.
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Now, notice that the random quantities that depend on c, ĉ in the function h are all of this form. They
are not normalized, but we can always normalize them by factoring out the ℓ2 norm. Now, consider
the following CLT-like result that we will use :

Lemma 5 (Invariance principle, (Mossel et al., 2005, Theorem 2.1)). Let P be as in Definition 1.
Furthermore, define the maximum influence as τ = maxi∈[n]

∑
S∋i a

2
S . Then, for ξ ∼ Unif {±1}n

and g ∼ N (0, In), we have

sup
t

|Pr[P (ξ1, . . . , ξn) ≤ t]− Pr[P (g1, . . . , gn) ≤ t]| ≤ O(dτ1/8d)

To be able to leverage these results, we need to quantify the influence of functions x⊺Qy with Q
being p.s.d. Intuitively, the only way the influence of a term can be non-vanishing is if one of
the rows is too large relative to the frobenius norm. For a normalized psd matrix (i.e. Qii = 1),
factorizing Qij = ⟨qi, qj⟩ we want to state that one qi cannot be correlated to too many qj (the row
sum is large) if the qj are not correlated within each other (the other row sums are small). Formally,
we have the following:

Claim 3. Let δ > 0 and M ≜ ⌈ 2
δ2 ⌉. Furthermore, let wi ∈ Rd be unit vectors for i ∈ [M ], for

arbitrary d. Furthermore, let w̃ ∈ Rd be a unit vector such that |⟨w̃, wi⟩| ≥ δ for all i ∈ [M ]. Then,
for ε = δ2

2 we have |⟨wi, wj⟩| ≥ ε for some i ̸= j ∈ [M ]

Proof. We will prove by contradiction. Suppose for unit vectors wi with |⟨wi, wj⟩| ≤ ε we have
|⟨w̃, wi⟩| ≥ δ. Construct the matrix W whose columns are the wi. Then,

δ2M ≤
k∑

i=1

⟨wi, w̃⟩2 = ∥W ⊺w̃∥2 ≤
∥∥WT

∥∥2
op

≤ λmax(W
TW )

However, WTW is the gram matrix with all non-diagonals absolute value less than ε. By Gersh-
gorin, the eigenvalues (and therefore the operator norm) is bounded by 1 + (M − 1)ε. Set ε = 1

M

so that the RHS is strictly bounded by 2. Then, let M = ⌈ 2
δ2 ⌉. Hence, we get a contradiction

2 ≤ δ2M < 2.

This is essentially saying that if w̃ has non-vanishing correlation with a set of vectors wi, this set
either cannot be too orthogonal or cannot be too large. Specifically, we fix the size of the set and
lower bound the correlations. Then, consider the following claim that relates the max ℓ2 norm of a
row of a psd matrix to its frobenius norm.

Claim 4 (Influence of row of PSD matrix). Let δ > 0 and k > K(δ) = O(1/δ9) be sufficiently
large. Then, for any Q ∈ Rk×k PSD matrix with Qii = 1. We have

maxi
∑

j∈[k] Q
2
ij∑k

i,j=1 Q
2
ij

≤ 2δ

In particular, this implies that

lim
k→∞

sup
Q∈Rk×k,
Q psd ,
Qii=1

maxi
∑

j∈[k] Q
2
ij∑k

i,j=1 Q
2
ij

= 0

at a rate of 1
9√
k

Proof. Fix some δ > 0. Then, notice that because Q is psd, we can factor it as Qij = ⟨qi, qj⟩ where
the qi are unit norm since ∥qi∥2 = Qii = 1. First, note that the denominator is at least k. Take the
maximizing i in the numerator and let it be q̃ = qi, and define Sk = {j ∈ [k] : |⟨qj , q̃⟩| ≥ δ}. If
we have |Sk| ≤ δk, then the contribution from the terms in Sk is at most δk. The contribution from
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the others is at most δ2k since these terms are less than δ2. Hence,
∑

j∈[k] Q
2
ij ≤ δ(1 + δ)k ≤ 2δk.

Then, ∑
j∈[k] Q

2
ij∑k

i,j=1 Q
2
ij

≤ 2δ = O(δ)

Now, suppose |Sk| > δk. Then, let M ≜ ⌈ 2
δ2 + 1⌉ as defined in Claim 3 and let ε ≜ εδ be the

constant from the claim. Then, notice that any subset of Sk with size more than M must contain
two distinct vectors with correlation at least ε.

Then, consider the following process. For all the remaining vectors, we create a maximal set of
vectors that are almost orthogonal (i.e. with correlation at most ε). By definition of maximality, all
the remaining vectors should have correlation at least ε with some vector in this subset.

Formally, for i ≥ 1, initialize a set Sk,i (we set Sk,0 = ∅) by taking a maximal set of vectors
from Sk\

⋃
j<i Sk,j such that for all distinct pairs j ̸= j ∈ Sk,j we have |⟨qj , ql⟩| < ε. That is,

we construct a set such that vectors in the set are almost orthogonal, and we cannot add any more
vectors to this subset. Once we cannot add any more vectors, remove these vectors from the set and
move to i+ 1.

Continue this process until termination (which must happen since we can add at least 1 element every
round) and by Claim 3, we must have |Sk,j | ≤ M . This means, there will be at least δk

M = Ω(k)
of these subsets. Now, consider i < j and some vj ∈ Sk,j . By construction, vj was not added to
Sk,i so it must be the case that |⟨vi, vj⟩| ≥ ε for some vi ∈ Si. Furthermore, notice that each set is
disjoint. So, if we take all the pairs (i, j) with i < j and pairs of vectors |⟨vi, vj⟩| ≥ ε, we have∑

i<j

|⟨vi, vj⟩|2 ≥ ε2
δ2k2

4M2

where all pairs (i, j) are disjoint. Then, we have∑
j∈[k] Q

2
ij∑k

i,j=1 Q
2
ij

≤ k

ε2 δ2k2

4M2

≤ 64

δ8k

for k ≥ δ9

32 we have that the above is less than 2δ. The limit statement follows immediately by the
definition of limit and the uniformity of all the bounds.

Corollary 1. Let 0 < q2min ≤ q2max be absolute constants such that for all k, we have q2min ≤ Qii ≤
q2max. Then, we have

lim
k→∞

sup
Q∈Rk×k,
Q psd ,
Qii=1

maxi
∑

j∈[k] Q
2
ij∑k

i,j=1 Q
2
ij

= 0

Proof. In the proof of the previous claim, we have qmin ≤ ∥qi∥ ≤ qmax. Define normalized vectors
q̃i = qi

∥qi∥ . Notice that this means we can upper bound Q2
ij ≤ q2max⟨q̃i, q̃j⟩2 and similarly Q2

ij ≥
q2min⟨q̃j , q̃j⟩2. Hence,

maxi∈[k]

∑
j∈[k] Q

2
ij∑k

i,j=1 Q
2
ij

≤ q2max

q2min

maxi∈[k]

∑
j∈[k] Q̃

2
ij∑k

i,j=1 Q̃
2
ij

where now Q̃ii = 1 is a psd matrix. Applying the result of Claim 4, we get the desired result.

Now, we will use the above results to prove the following fact:
Lemma 6 (Anti-Concentration of Normalized P.S.D. Quadratics on the Hypercube). Let Q ∈ Rk×k

be positive semi-definite and normalized such that Qii = 1. Then,

sup
Q

Pr
x,y∼Unif{±1}k

[|x⊺Qy| ≤ ε ∥Q∥F ] ≤ o(1) +O(ε1/2)

where the o(1) is in k.
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Proof. First, note that we have the uniform bound on the influence of a row of Q from Claim 4, so
that τ = o(1). Hence, by the invariance principle (Lemma 5), for any Q, we have

sup
t

| Pr
x,y∼Unif{±}k

[x⊺Qy ≤ t]− Pr
g1,g2∼N (0,Ik)

[g⊺1Qg2 ≤ t]| ≤ o(1)

However, applying Carbery-Wright inequality for the anti-concentration of gaussian polynomials
(Lemma 4), we get the desired result.

Corollary 2 (Anti-Concentration of Balanced P.S.D. Quadratics on the Hypercube). The result
above holds when Qii are not-necessarily equal, but there exists qmin, qmax such that q2min ≤ Qii ≤
q2max, and we replace o(1) with o(

q2max

q2min
).

Proof. Proof follows exactly the same, except by using the influence of a row for balanced psd
matrices.

B.4.1 RELATING TO QUANTITIES THAT ARISE IN h

Claim 5 (Constant term variance, spectral setting). Let f : {−1, 1}2k → R be such that

f(b, b̂) =

k∑
i,j

bib̂j

(
λiλj

k

∞∑
s=0

(s+ 1)µs+1(σ)
2

(
k

k + 1

)s+1

⟨wi, wj⟩s
)

≜
k∑

i,j=1

bib̂jQij (10)

Then, we have Ω(λ2
min) ≤ ∥f∥2 ≤ O(λ2

max)

Proof. Notice that since each term in the sum is a different basis element of {±1}2k, we have

∥f∥22 =

k∑
i,j=1

Q2
ij

For the first part of the Claim, it suffices to show
∑

Q2
ij = Ω( 1k ) for any choice of λ,wi. Notice

that, for k ≥ 2,

k∑
i,j=1

Q2
ij ≥

k∑
i=1

Q2
ii =

( ∞∑
s=0

(s+ 1)µs+1(σ)
2

(
k

k + 1

)s+1
)2 k∑

i=1

λ4
i

k2

≥

( ∞∑
s=0

s+ 1

2s
µs+1(σ)

2

)2
λ4
min

k

as desired. The other follows directly from
∑k

i,j=1 Q
2
ij ≤∑k

i,j=1
1
k2λ

2
iλ

2
j

(∑∞
s=0(s+ 1)µs+1(σ)

2
)2 ≤ λ4

max

(∑∞
s=0(s+ 1)µs+1(σ)

2
)2

.

Lemma 7. Let f be of the form in Equation (10). Then,

sup
wi,λi

Pr
b,b̂

[|f(b, b̂)| < ε ∥f∥2] = o

(
λ2
max

λ2
min

)
+O(ε1/2)

where τ = o(1) and b, b̂ are independent uniform draws from {−1, 1}k.

Proof. Note that entrywise powers of psd matrices are psd, so (WTW )⊙s is psd. Notice that Qij =

(λiλj)

(∑∞
s=0(s+ 1)µs+1(σ)

2
(

k
k+1

)s+1

⟨wi, wj⟩s
)

which is a psd matrix since it is the sum of

psd matrices (for s). This is due to the fact

Q = λλ⊺ ∗ Q̃
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where Q̃ij =
∑∞

s=0(s + 1)µs+1(σ)
2
(

k
k+1

)s+1

⟨wi, wj⟩s since it is the non-negative sum of psd

matrices. Furthermore, qmax/qmin = λmax

λmin
The proof follows immediately once we normalize as

f
∥f∥2

and apply the above results.

Proposition 7 (Anti-concentration of (
∑

i λici)(
∑

i λiĉi) and
∑

i λ
2
i ciĉi). We have

Pr

[∣∣∣∣∣(∑
i

λici)(
∑
i

λiĉi)

∣∣∣∣∣ ≤ γλ2
min

]
≤ o

(
λ2
max

λ2
min

)
+O(γ1/2)

and

Pr

[∣∣∣∣∣∑
i

λ2
i ciĉi

∣∣∣∣∣ ≤ γ
λ2
min√
k

]
≤ o

(
λ2
max

λ2
min

)
+O(γ1/2)

Proof. For the first one let Q = 1
kλλ

⊺. and for the second one let Q = 1
k I(λ⊙λ). Both are balanced

psd matrices, and the anti concentration result lemma 6 holds. Then, the results follow.

C FINITE SAMPLE DYNAMICS ANALYSIS

We start with starting the generic assumptions we will work with in this section that are satisfied
with the various models we consider.

C.1 ASSUMPTIONS THAT CAPTURE VARIOUS REGIMES IN ONLINE SGD

We analyze the finite sample gradient dynamics under the following assumptions:
Assumption 6 (Unbiased Gradient Estimates). For all û, the sample gradient is an unbiased esti-
mate of the population gradient. I.e. we have

∇̂ûΦ(û) ≜ ∇̂ûEx[L(û;x)] = Ex[∇̂ûL(û;x)]

This assumption is standard in the literature. Note that this assumption holds when σ is almost
everywhere differentiable (w.r.t. gaussian measure), and σ′ has almost linear polynomial growth.
This is because ∇ûL(û;x) has at most linear polynomial growth, so can be bounded by a function
gk(⟨û, x⟩) which has finite expectation under x. Then, the interchange of derivative and expectation
follows from dominated convergence theorem.
Assumption 7 (Magnitudes of variances). For each k, and p, there exists some constant Vk ≥ 1
that has at most polynomial growth in k such that

1. Variance bound: For all u, û, max

{
Ex∥∇̂uL(û;x)∥2p

2

dp ,Ex⟨∇̂ûL(û;x), u⟩2p
}1/p

≤ µpVk

2. Population gradient bound: For all û,
∥∥∥∇̂ûΦ(û)

∥∥∥2 ≤ Vk.

where the µp may depend on p and the activation, but on nothing else.

We will consider this assumption only for a few p that will be tuned during the proofs, so the moment
bounds only have to hold up to a certain p.
Assumption 8 (Population Gradient Lower Bound). The population gradient is of the form
∇̂ûΦ(û) = −h(⟨û, u⟩)(u − û⟨u, û⟩). Furthermore, there exists a constant max{Sk, S

2
k} ≤ Vk

that has at most polynomial decay, such that h satisfies the following:

h(sign(h(0))m)sign(h(0)) ≥ |h(0)|
2

≥ Sk, ∀m ≥ 0
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Theorem 8. Let Assumptions 6 to 8 hold. Let 0 < ε < 1. Let mt = ⟨ut, u⟩ and set the learning

rate η = δ
dVk

with scaling δ = min
{

Skε
3

4µ1(log dVk)2
, 1
}

, for total time T = ⌈αdVk⌉ with time scaling

α = 4(log dVk)
εδSk

and initialization at |m0| ≥ β√
d

with m0h(0) > 0. Under Assumptions 1-4, with

probability at least 1− o(1) the following holds for T = ⌈αdVk⌉ and Tweak = ⌈ 4dVk

δSk
⌉ = o(T ).

• (Weak recovery): supt≤Tweak
|mt| ≥ r

• (Strong recovery): |mT | ≥ 1− ε

The proof of this theorem is constructed throughout this section, and concluded at the end of the
section.

C.2 ANALYSIS OF DYNAMICS UNDER THE GENERIC ASSUMPTIONS

Recall the online SGD dynamics

ut+1 =
ut − η∇̂utL(ut;xt)∥∥∥ut − η∇̂utL(ut;xt)

∥∥∥
where xt ∼ N (0, Id) is a fresh Gaussian sample at each time iteration t. Then, define the correlation
with ground truth mt = ⟨ut, u⟩ and the projection magnitude Πt =

∥∥∥ut − η∇̂ut
L(ut;xt)

∥∥∥. Then,
notice

mt+1 =
mt − η⟨∇̂ut

L(ut;xt), u⟩
Πt

= mt − η∇̂ut
Φ(ut)− η⟨∇̂ut

E(ut;xt), u⟩ −
(
1− 1

Πt

)(
mt − η⟨∇̂ut

L(ut;xt), u⟩
)

Hence, initially, we bound the effect of the spherical projection term.

C.2.1 BOUNDING SPHERICAL PROJECTION ERROR

First, notice that because ut is perpendicular to the spherical gradient ∇̂ut
Φ(ut), we have

1 ≤ Πt ≤
√

1 + η2
∥∥∥∇̂ut

L(ut;xt)
∥∥∥2
2
≤ 1 + η2

∥∥∥∇̂ut
L(ut;xt)

∥∥∥2
2

Then, due to
∣∣∣1− 1

1+x

∣∣∣ ≤ x for x ≥ 0, we have

∣∣∣∣(1− 1

Πt

)
(mt − η⟨∇̂ut

L(ut;xt), u⟩)
∣∣∣∣ ≤ η2 ∥Lt∥2 (|mt|+ η|⟨Lt, u⟩|)

Then, notice that the total contribution of these terms up to time t can be written as

η3
t−1∑
j=0

∥Lt∥2 |⟨Lt, u⟩|+ η2
t−1∑
j=0

∥Lt∥2

First, notice that η3 gives a δ3

d3V 3
k

scaling, but ∥Lt∥2 |⟨Lt, u⟩| scales only in dV 2
k , and there are

T = αdVk of these. Then, we can use a simple Markov bound to bound these terms when αδ2 ≤ ε.

Claim 6 (Bounding cubic terms). Let α, δ be such that αδ2 ≤ ε and δ ≤ 1. Then, we have

Pr

 sup
0≤t≤T

η3
t∑

j=0

∥Lj∥2 |⟨Lj , u⟩| >
β

10
√
d

 ≲
1

β
√
d
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Similarly, we have

Pr

 sup
0≤t≤T

η3
t∑

j=0

∥Lj∥2 |⟨Lj , u⟩| >
ε

18

 ≲
1

d

Proof. Notice that in both cases the maximum is achieved at t = T due to the non-negativity of the
terms in the sum. Then, by Markov

Pr

sup
t≤T

η3
t∑

j=0

∥Lj∥2 |⟨Lj , u⟩| > γ

 = Pr

η3 T∑
j=0

∥Lj∥2 |⟨Lj , u⟩| > γ


≤

η3T supj E[∥Lj∥2 |⟨Lj , u⟩|]
γ

Now, using Cauchy-Schwarz to bound the expectation, we have

E[∥Lj∥2 |⟨Lj , u⟩|] ≤
∥∥∥∥Lj∥2

∥∥∥
2

√
∥|⟨Lj , u⟩|2∥1

Hence, using the moment bounds (Assumption 7) on ∥Lt∥2 and |⟨Lt, u⟩|2, for p = 2, 1 respectively,
we have

E[∥Lj∥2 |⟨Lj , u⟩|] ≲ dV 2
k

Hence, using η = δ
dVk

, T = αdVk and αδ2 ≤ ε, δ ≤ 1, we have

Pr

sup
t≤T

η3
t∑

j=0

∥Lj∥2 |⟨Lj , u⟩| > γ

 ≲
αd2V 3

k η
3

γ

=
αδ3

dγ
≤ 1

dγ

Setting γ = β

10
√
d

gives us the first result. For the second, we can use αδ2 ≤ ε and δ ≤ 1 to bound
the probability by 1

d .

Now, we turn to the quadratic term. Notice that with the quadratic term, we are not necessarily
getting the extra scaling in 1/d from η we need, so we need to be more careful while bounding this
term. For these terms, we will show that their cumulative effect at any given iteration is smaller than
the drift contribution. To do this we need to uniformly bound the cumulative effect up to iteration t.
Recall Freedman’s inequality (Freedman, 1975) for submartingales with almost sure bounds:
Lemma 8 (Freedman’s inequality). Let Mt be a submartingale with E[(Mt+1−Mt)

2|Ft] ≤ V and
|Mt+1 −Mt| ≤ K almost surely. Then,

Pr[St ≤ −λ] ≤ exp

{
−λ2

tV + λ
3K

}

Hence, we will introduce an appropriate clipping of ∥Lt∥ and separate into cases when it is large
and small. When it is large, we will use the fast decay of its tails due to bounded moments the bound
the probability of being large. When it is small, we will use the almost sure bound and Freedman’s
inequality to control the total contribution.
Claim 7 (Bounding the quadratic terms). Suppose α has at most polynomial growth in d, k. Fur-
thermore suppose, αδ2 ≤ 1, and that Vk has polynomial growth in k. Then, for some constant C,
we have

Pr

 inf
0≤t≤T

η

t∑
j=0

(
Sk

4
− η ∥Lt∥2

)
<

β

−5
√
d

 ≤ C

β
√
d
+ α(dVk)

− β2

C (log dVk)+1
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Proof. Initially, define Yt =
∥Lt∥2

dVk
and notice that ∥Yt∥p ≤ µp for all t ≥ 0 where µp do not grow

in d or k as stated in Assumption 7. Then, notice that η ∥Lt∥2 = δYt. We write Yt = Yt1{Yt ≥
T ν}+ Yt1{Yt < T ν}. Then, we can decompose the term as

η

t∑
j=0

(
Sk

2
− η ∥Lt∥2

)
= η

t∑
j=0

(
Sk

2
− δ ∥Yt∥2 1{Yt ≥ T ν}

)
+ η

t∑
j=0

(
Sk

2
− δ ∥Yt∥2 1{Yt < T ν}

)

≥ −η

t∑
j=0

δ ∥Yt∥2 1{Yt ≥ T ν}+ η

t∑
j=0

(
Sk

2
− δ ∥Yt∥2 1{Yt < T ν}

)
where we used Sk

2 > 0 for the last inequality. Then, it suffices to show that the second line is at least
− β

5
√
d

. Hence, we will bound the probability of each term being less than − β

10
√
d

and use the union
bound.

Then, notice that for fixed choice of ν,D > 0 we have

Pr[Yt ≥ T ν ] = Pr[Y
D/ν
t ≥ TD] ≤ E[Y D/ν

t ]

TD

Then, letting D/ν = p and using the p’th moment bound Assumption 7, there exists a constant Cν,D

such that

Pr[Yt ≥ T ν ] ≤ Cν,D

TD

where we used Vk ≥ 1. Then, notice that, using Cauchy-Schwarz, we have

E[Yt1{Yt ≥ T ν}] ≤ ∥Yt∥2
√

Pr[Yt ≥ T ν ] ≤ Cν,D

TD/2

where we absorbed the µ2 constant into the C. Then, we have

Pr

η T−1∑
j=0

Yt1{Yt ≥ T ν} > γ

 ≤ ηTCν,D

γTD/2

Then, we can choose D = 1 (and get rid of the D dependence on the constants), and γ = β

10
√
d

such
that

Pr

η T−1∑
j=0

Yt1{Yt ≥ T ν} >
β

10
√
d

 ≲

√
dηCν

β
≤ δCν√

dVkβ
≤ δCν

β
√
d

Then, notice that we are left with the term Yt1{Yt ≤ T ν} where ν can be chosen arbitrarily small.
Consider setting δ ≤ Sk

4Cδ log(dVk)
such that

η

t∑
j=0

(
Sk

2
− δYt1{Yt ≤ T ν}

)
≥ ηSk

4

t∑
j=0

(
1− Yt1{Yt ≤ T ν}

Cδ log(dVk)

)

≥ ηSk

4 log(dVk)

t∑
j=0

(
1− Yt1{Yt ≤ T ν}

Cδ

)
However, since EYt is bounded by 1, for Cδ > µ1, the following forms an Ft submartingale:

Zt =
ηSk

2 log(dVk)

t∑
j=0

(
1− Yt1{Yt ≤ T ν}

Cδ

)
Then, it suffices to show

Pr

[
inf

0≤t≤T
Zt < − β

10
√
d

]
= o(1)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Then, note E[Yt1{Yt ≤ T ν}] ≤ E[Yt] = O(1), and we have the almost sure bound

|Zt+1 − Zt| ≤
ηSk

2 log(dVk)

(
1 +

T ν

Cδ

)
≤ ηSk

log(dVk)

T ν

Cδ

and the conditional variances

E[(Zt+1 − Zt)
2|Ft] ≤

η2S2
k

4(log dVk)2
(
1 + µ2

2

)
≤ Cη2S2

k

(log dVk)2

where C is a constant that can only depend on µ2.

Then, using Freedman’s inequality for submartingales, for any 0 ≤ t ≤ T we have

Pr

[
Zt ≤ − β

10
√
d

]
≤ exp

 − β2

100d
CTη2S2

k

(log dVk)2
+ βηSk

30
√
d log(dVk)

T ν

Cδ


Let’s inspect the expression in the exponent. Note, using αδ2 ≤ 1 and equivalently δαν ≤ 1, for
some updated constant C = C(µ2) we have

− β2

100d
CTη2S2

k

(log dVk)2
+ βηSk

10
√
d log(dVk)

T ν

Cδ

= − β2

Cαδ2S2
k

Vk(log dVk)2
+ 10βδανSk

V 1−ν
k d1/2−ν log(dVk)

≤ −β2 min

{
Vk(log dVk)

2

CS2
k

,
V 1−ν
k d1/2−ν log(dVk)

10βSk

}
≤ −β2

C
(log dVk)

2V
1/2
k

for sufficiently large d greater than some O(1), where we have Vk

Sk
≥ 1 and Vk

S2
k
≥ 1 when ν = 1/4.

Hence, taking the exponent, we have exp{−β2

C (log dVk)
2V

1/2
k } = (dVk)

− β2

C (log dVk) Then, doing
a union bound over all t ≤ T , we have

Pr

[
inf

0≤t≤T−1
Zt ≤ − β

10
√
d

]
≤ T (dVk)

− β2

C (log dVk) = α(dVk)
− β2

C (log dVk)+1

which is o(1) when α has at most polynomial growth and Vk has polynomial growth in k.

Claim 8. Let αδ2 ≤ ε2

log d . Then

Pr

 sup
0≤t≤T

η2
t∑

j=0

∥Lt∥2 >
ε

18

 ≲
1

log d

Proof. Note that the maximum is achieved at T since all the summands are non-negative. In that
case,

Pr

η2 T∑
j=0

∥Lt∥2 >
ε

18

 ≲
η2TE[∥Lt∥2]

ε2
≤ µ1αδ

2d2V 2
k

d2V 2
k ε

2
=

µ1αδ
2

ε2
≤ 1

log d
= o(1)

C.3 CONTROLLING THE ERROR MARTINGALE

Claim 9. Let αδ2 ≤ ε2(log d)−1. Furthermore, let Mt = η
∑

0≤j≤t−1⟨Ej , u⟩. Then, Mt forms a
Ft martingale and

Pr

[
sup

0≤t≤T
|Mt| ≥

β

10
√
d

]
≲

ε2

β2 log d

Furthermore, we have

Pr

[
sup

0≤t≤T1

|Mt| ≥
ε

18

]
≲

1

d log d
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Proof. The fact that Mt is a martingale follows directly from Assumption 6 and the fact that each
xt is a fresh sample. By Doob’s maximal inequality for martingales, we have

Pr

[
sup

0≤t≤T
|Mt| > γ

]
≤ EM2

T

γ2

≤ 2µ1η
2TVk

γ2
=

2µ1αδ
2

dγ2

setting γ = β

10
√
d

, we get the probability is at most ε2

β2 log d up to constants. For the second result,
set γ = ε

18 so that the probability is O( 1
d log d )

C.4 WEAK RECOVERY & STRONG RECOVERY

Before we prove weak and strong recovery, we would like to define events A and B that capture the
probabilistic bounds on population gradient magnitude and the various error terms in the dynamics.

C.4.1 DEFINING AN EVENT FOR THE ERROR BOUNDS AND INITIAL CORRELATION

First, define the event A as

A = {m0 ≥ β · sign(h(0))√
d

} (11)

Furthermore, define the event B = B(ε, d, β, k, T ) that corresponds to the error bounds as the
following

B =

{
sup

0≤t≤T
|Mt| ≤ min

{
β

10
√
d
,
ε

36

}}
∩

 sup
0≤t≤T

η3
t−1∑
j=0

∥Lj∥2 |⟨Lj , u⟩| ≤ min

{
β

10
√
d
,
ε

18

}
(12)

∩

 sup
0≤t≤T

η2
t∑

j=0

∥Lt∥2 ≤ ε

18

 ∩

 sup
0≤t≤T

η

t∑
j=0

(
Sk

4
− η ∥Lt∥2

)
≥ − β

5
√
d


Proposition 8. Let δ = ε3Sk

4Cδ log(dVk)
where Cδ > max{1, µ1}. Furthermore suppose

that α = 4(log dVk)
εδSk

. Then, for T = ⌈αdVk⌉, we have Pr(B(ε, d, β, k, T )) = 1 −

O
(
max

{
1

β
√
d
, α(dVk)

− β2

C (log dVk)+1, ε2

β2 log d ,
1

d log d

})
= 1− o(1).

Proof. Notice that the given δ, α satisfy αδ2 ≤ ε2

Cδ log(dVk)
. Hence, all of claims 6 to 8 hold. Then,

combining the results of the claims with a union bound gives the result.

C.4.2 DEFINING STOPPING TIMES FOR THE DYNAMICS

Initially, for a real number q > 0, define the stopping times

τ+q = inf{t ≥ 0 : mt ≥ q}
τ−q = inf{t ≥ 0 : mt ≤ q}

which correspond to the first time mt is above/below a certain threshold value q. In particular, we
will define the following stopping times

τ+r = inf{t ≥ 0 : mt > r}
τ−0 = inf{t ≥ 0 : mt < 0}

τ+1−ε/6 = inf{t ≥ 0 : mt ≥ 1− ε

6
}
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τ+r is defined to analyze the initial stage of training, when mt is small. This allows us to lower
bound the effect of the spherical projection of the gradients 1 − m2

t . We will use τ−0 to be able to
lower bound the population gradient, but we will get rid of the requirement with an argument that
mt has to always be non-negative when B holds. Finally, τ+1−ε/6 is used to analyze the stage before
we achieve the initial strong correlation, we will show mt will stay above 1 − ε after t > τ+1−ε/6.
I.e. the progress made for strong recovery is not eliminated by the noisy gradients.

C.4.3 ANALYZING THE DYNAMICS CONDITIONING ON B

Now, notice that we can WLOG assume sign(h(0)) = 1, since all the proofs will be symmetric as
long as the event A holds. Furthermore, let r < 1√

2

Lemma 9 (Characterizing dynamics before weak recovery). Conditioning on A,B, for t ≤ T ∧
τ+r ∧ τ−0 , we have

mt ≥
β

2
√
d
+

tηSk

2

Furthermore, we have τ0 > T ∧ τ+r .

Proof. Condition on A,B. Then, as explained before, WLOG assume sign(h(0)) = 1. Then, for all
t ≤ τ−0 , we must have mt ≥ Sk. Furthermore, for all t ≤ τ+r , we have 1−m2

t > 1
2 . Then, applying

the inequalities in B, for t ≤ τ+r ∧ τ−0 ∧ T , we have

mt ≥ m0 + η

t−1∑
j=0

h(mj)(1−m2
j )− η

t−1∑
j=0

⟨Ej , u⟩ − η2
t−1∑
j=0

∥Lj∥2 − η3
t−1∑
j=0

∥Lj∥2 |⟨Lj , u⟩|

≥ m0 +
ηtSk

4
+ η

t−1∑
j=0

(
Sk

4
− η ∥Lj∥

)
− β

5
√
d

Now, using the uniform lower bound on the summation term and m0 ≥ β√
d

, we have

mt ≥
β

2
√
d
+

ηtSk

4

which concludes the first part. For the second part, suppose for j ≤ τ+r ∧T , we have j ≤ τ−0 . Then,
for all l ∈ [0, 1, . . . , j − 1] we have ml ≥ 0, meaning h(ml) ≥ Sk. Hence, the above inequality
holds for j, meaning mj > 0. Hence, this implies j < τ−0 . Then, we conclude that it must be the
case that τ−0 > τ+r ∧ T .

Lemma 10 (Dynamics after weak recovery is well approximated by drift term). Conditioning on
A,B, τ+r , the following holds: For t ≥ τ+r with t ≤ T ∧ τ−0 , we have∣∣∣∣∣∣mt −m+

τr − η

t−1∑
j=τ+

r

h(mj)(1−m2
j )

∣∣∣∣∣∣ < ε

6

Furthermore, τ−0 > T .

Proof. Notice that under the event B, due to non-negativity of each of the summands, we have the
following upper bounds

η3
t−1∑
j=τ+

r

∥Lj∥2 |⟨Lj , u⟩| ≤ sup
0≤t≤T

η3
t−1∑
j=0

|⟨Lj , u⟩| <
ε

18

η2
t−1∑
j=τ+

r

∥Lj∥2 ≤ sup
0≤t≤T

η2
t−1∑
j=0

∥Lj∥2 <
ε

18
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For the martingale term, since the terms are not necessarily non-negative we decompose it as∣∣∣∣∣∣η
t−1∑
j=τ+

r

⟨Ej , u⟩

∣∣∣∣∣∣ =
∣∣∣∣∣∣η

t−1∑
j=0

⟨Ej , u⟩ − η

τ+
r −1∑
j=0

⟨Ej , u⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣η
t−1∑
j=0

⟨Ej , u⟩

∣∣∣∣∣∣+
∣∣∣∣∣∣η

τ+
r −1∑
j=0

⟨Ej , u⟩

∣∣∣∣∣∣
≤ 2 sup

0≤t≤T

∣∣∣∣∣∣η
t−1∑
j=0

⟨Ej , u⟩

∣∣∣∣∣∣ < ε

18

Then, notice that the following holds exactly

mt = mτ+
r
+ η

t−1∑
j=τ+

r

h(mj)(1−m2
j ) + η

t−1∑
j=τ+

r

⟨Et, u⟩+
t−1∑
j=τ+

r

(
1− 1

rj

)
(mj − η⟨Lj , u⟩)

which after rearranging, using
∣∣∣1− 1

rj

∣∣∣ ≤ η3 ∥Lj∥2 |⟨Lj , u⟩|+ η2 ∥Lj∥2 gives us∣∣∣∣∣∣mt −mτ+
r
− η

t−1∑
j=τ+

r

h(mj)(1−m2
j )

∣∣∣∣∣∣ =
∣∣∣∣∣∣η

t−1∑
j=τ+

r

⟨Et, u⟩+
t−1∑
j=τ+

r

(
1− 1

rj

)
(mj − η⟨Lj , u⟩)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣η
t−1∑
j=τ+

r

⟨Et, u⟩

∣∣∣∣∣∣+ η3
t−1∑
j=τ+

r

∥Lj∥2 |⟨Lj , u⟩|+ η2
t−1∑
j=τ+

r

∥Lj∥2

using the ε/18 bound for each of the terms, we get a total bound of ε/6. Then, to get rid of the
requirement t ≤ τ−0 , notice that

mt −mτ+
r
≥ −ε

3
+

t−1∑
j=τ+

r

h(mj)(1−m2
j )

Then, notice that if t ≤ τ−0 , we have mj ≥ 0 for all j ≤ t − 1, so the sum is non-negative, which
gives us mt ≥ mτ+

r
− ε

3 ≥ r − ε
3 . However, notice that choosing r = 1

2 , we always have ε/3 < r

so mt ≥ 0 as well. Hence, τ−0 > t, so we must have τ−0 > T .

Now, we are in a position to prove Theorem 8.

Proof of Theorem 8. First, notice that due to assumption 8 and the initalization requirement in the
theorem, A holds. Then, per Proposition 8, B holds with probability 1 − o(1). Then, conditioning
in B, per Lemma 9 and Lemma 10, we can drop the requirement that t ≤ τ−0 . So, let t ≤ T ∧ τ+r .
Conditioning on B, per Lemma 9, we have

mt ≥
β

2
√
d
+

tηSk

2

Then, notice that at time Tweak = ⌈ 2
ηSk

⌉, the RHS is larger than 1. Then, it must be the case
that τ+r ∧ T ≤ Tweak. Then, it suffices to show Tweak ≤ T . Notice that Tweak = ⌈ 2dVk

δSk
⌉ and

T = ⌈αdVk⌉ = ⌈ 4(log dVk)
εδSk

⌉ > Tweak when ε < 1, Vk > 1 and d > 3. Then, we conclude
τ+r ≤ Tweak ≤ T .

Now, conditioning on τ+r , for all t ≥ τ+r , with t ≤ T per Lemma 10, we have

mt ≥ mτ+
r
+

t−1∑
j=τ+

r

h(mj)(1−m2
j )−

ε

6
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Now, consider t ≤ τ+1−ε/6 ∧ T , so that h(mj)(1−m2
j ) > Sk

ε
6 for all j ≤ τ+1−ε/6. Hence,

mt ≥ r +
η(t− τ+r )Skε

6
− ε

6
>

η(t− τ+r )Skε

6

Hence, notice that the RHS of the inequality is greater than 1 at time t = τ+r + ⌈ 6
ηSkε

⌉ ≤ Tweak +

⌈ 6
ηSkε

⌉. Hence, it must be the case that τ+1−ε/6 ∧ T ≤ Tweak + ⌈ 6
ηSkε

⌉. However, notice that

T = ⌈dVk(log dVk)
δSkε

⌉ which is larger than Tweak + ⌈ 6
ηSkε

⌉ so it must be the case that τ+1−ε/6 ≤ T .
Finally, we need to show that mt stays above 1− ε after it crosses 1− ε/6. However, notice that for
t′ ≥ t ≥ τ+r , we have

mt′ −mt ≥

∣∣∣∣∣∣mt −mτ+
r
− η

t−1∑
j=0

h(mj)(1−m2
j )

∣∣∣∣∣∣+
∣∣∣∣∣∣mt′ −mτ+

r
− η

t′−1∑
j=0

h(mj)(1−m2
j )

∣∣∣∣∣∣+
t′−1∑
j=t

h(mj)(1−m2
j )

≥ −ε

3

so that mt ≥ 1 − ε
2 for t ≥ τ+1−ε/6. Hence, we conclude that mT ≥ 1 − ε

2 . Since this result holds
for any τ+r , we can conclude the proof.

D EXAMPLE CONSTRUCTIONS MENTIONED IN THE MAIN TEXT

D.1 MULTIPLE GLOBAL OPTIMA WHEN ASSUMPTION 2 DOES NOT HOLD

The following example shows that if the direction u of the perturbation lies in the span of the base
model weight vectors, then there exist multiple global optima.
Example 1. Let λ1, λ = 1, let w1 = (1, 0), w2 = (0, 1), and consider the activation σ(z) = z2. If
the base model f : R2 → R is given by f(x) =

∑2
i=1 λiσ(⟨wi, x⟩), then observe that the following

two rank-1 perturbations of equal scale are equal.

First, take u = (1/
√
2, 1/

√
2) and u′ = (1/

√
3,
√
6/3). Then define c = (−(1+

√
2)(2+

√
3), (1+√

2)(
√
2+

√
3)) and c′ = −c. Then one can verify that the teacher models

∑2
i=1 λiσ(⟨wi+ciu, x⟩)

and
∑2

i=1 λiσ(⟨wi + c′iu
′, x⟩) are functionally equivalent, even though {w1 + c1u,w2 + c2u} ≠

{w1 + c′1u
′, w2 + c′2u

′}, regarded as unordered pairs of vectors in R2. Furthermore, ∥c∥ = ∥c′∥.

D.2 EXAMPLE OF A BASE NETWORK WHOSE PERTURBATION REQUIRES MANY SAMPLES TO
LEARN FROM SCRATCH

We are looking for an example where the target model is hard to learn from scratch but fine tuning
is easy. Since the activations are hermite, it suffices to give an example of a target function that has
orthonomal weights. Then, we aim to construct wi + ciu ⊥ wj + cju for i ̸= j. Notice that when
u ⊥ wi, this is equivalent to ⟨wi, wj⟩ = −cicj . Hence, if we can control the pairwise correlations
of the wi as we want, we can construct this example. Then, consider the following, where each row
is a wi, with ci = (− 1

2 )
i.

W =


1
2

1
2

1
2 0 0 0 1

2 0 0 0 0
1
2 0 0 1

2
1
2 0 0 1

2 0 0 0

0 − 1
2 0 1

2 0 1
2 0 0 1

2 0 0

0 0 1
2 0 − 1

2
1
2 0 0 0 1

2 0


We aim to generalize this example to general k in the following proposition.

Claim 10. When d > 1+ k(k+1)
2 , for λi = 1, there exists unit norm weights {wi}ki=1, a perturbation

u ⊥ span(wi), weights ci ∈
{
± 1√

k

}
, such that ⟨wi+ciu,wj+cju⟩

∥wi+ciu∥∥wj+cju∥ = δij .

Proof. We are looking for a setup where ⟨wi, wj⟩ = −cicj . We will construct k vectors that pairwise
only share one non-zero coordinate. For l ∈ [d], l ≤ k, let (wl)l =

1√
k

. Then, for a given coordinate
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l ∈ [d], l > k, we want exactly two wi, wj to have non-zero l’th coordinate. Since d− k > 1 +
(
k
2

)
,

we can assign every pair (i, j) with i ̸= j a coordinate, and we will have at least 1 coordinate left.
Then, notice that the inner product ⟨wi, wj⟩ for i ̸= j only depends on 1 coordinate, which is unique

for every (i, j). We choose the magnitude of this entry to be 1√
k

. Then, for any c ∈
{
± 1√

k

}k

we
can simply choose the signs of these coordinates accordingly to ensure ⟨wi, wj⟩ = −cicj . Notice
that each wi has unit norm, and there is a coordinate, which we can WLOG assume to be the
p ≜ k(k+1)

2 ’th coordinate, that is zero for all wi. We let u = ep.

Then, notice that ⟨wi+ciu,wj+cj⟩
∥wi+ciu∥∥wj+cju∥ =

⟨wi,wj⟩+cicj
∥wi+ciu∥∥wj+cju∥ = 0 for i ̸= j, as desired.

Proposition 9. Let ξ = 1, and consider the example in Claim 10. Suppose σ = hp is the p’th

hermite coefficient for some p > 2. Then, h(m) = 2p
(

k
k+1

)p
h̃(m) where

h̃(m) =

k∑
i=1

λ2
i ciĉi +O

(
λ2
max

k

)
Moreover, with high probability over the choice of ĉ, we have h(m)sign(h(0)) ≥ |h(0)|

2 .

Proof. Initially, note

h(m) = 2p

(
k

k + 1

)p k∑
i,j=1

λiλjciĉj(⟨wi, wj⟩+ ciĉjm)p−1

In this case, notice that because |⟨wi, wj⟩| ≤ 1
k , we have∣∣∣∣∣∣

k∑
i,j=1

λiλjciĉj(⟨wi, wj⟩+ ciĉj⟨u, û⟩)p−1 −
k∑

i=1

λ2
i ciĉi(1 + ciĉi⟨u, û⟩)p−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
i ̸=j

λiλjciĉj
2

kp−1

∣∣∣∣∣∣ ≤ λ2
max

kp−2

Hence, defining h̃(m) = 2p
(

k
k+1

)p
to factor out the constant, we have

h̃(m) =

k∑
i=1

λ2
i ciĉi(1 + ciĉim)p−1 +O

(
λ2
max

kp−2

)
Then, expanding the diagonal term, note

k∑
i=1

ciĉiλ
2
i (1 + ciĉi⟨u, û⟩)p−1 =

p−1∑
s=0

(
p− 1

s

) k∑
i=1

λ2
i (ciĉi)

s+1⟨u, û⟩s =
k∑

i=1

λ2
i ciĉi +O

(
λ2
max

k

)
Then, for p ≥ 3, we have

h̃(m) =

k∑
i=1

λ2
i ciĉi +O

(
λ2
max

k

)

Then, over the randomization of ĉ, with high probability, we have h(0) = Ω
(

λ2
min√
k

)
due to anti

concentration (Lemma 6). Then, with high probability h(m)signh(0) ≥ |h(0)|
2 uniformly.

Hence, in the construction given in Claim 10, even though the ci’s are non-random, we still have
with high probability over the randomization of ĉ that h satisfies Assumption 8. Then, we have the
following

Theorem 9. Fine tuning on Claim 10, learns the teacher network perturbation u in O(dk
2

ε4 ) samples,
whereas training from scratch using any CSQ algorithm requires at least O(dp/2) queries or τ =
O(d−d/4) tolerance.
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Proof. The first part follows directly from the fact that h satisfies the gradient lower bound in As-
sumption 8 with a Ω(

λ2
min√
k
) lower bound, and Theorem 8. For training from scratch, notice that the

target model is of the form

f(x) =

k∑
i=1

λihp(⟨vi, x⟩)

where the vi are orthonormal. Fix k. Then, we can embed f into a random k dimensional subspace
M by rotating the vi (since the vectors wi+ciu can all be rotated without effecting the construction).
The CSQ lower bound in (Abbe et al., 2023, Proposition 6) states that any CSQ algorithm using n
queries with tolerance τ cannot achieve less than some small c > 0 error with probability 1 −
Cn
τ2 d

− p
2 . Hence, to achieve constant probability of succes, one either needs n = Θ(dp/2) queries or

tolerance τ = Θ(d−p/4).

D.3 SECOND LAYER TRAINING

In this section, we show that learning u is sufficient to learning the teacher model by adding addi-
tional features to the model and training the second layer.

Definition 2 (Linear Model Family From Learned Features). Let û be given. Then, define the model
family

Lλ =

{
k∑

i=1

λi,1σ

(〈
wi +

ξ√
k
û√

1 + ξ2/k
, x

〉)
+ λi,2σ

(〈
wi − ξ√

k
û√

1 + ξ2/k
, x

〉)
: λ ∈ Rk × Rk

}
(13)

Then, we will show that once we learn û to a sufficient accuracy, there exist a choice of λ that allows
the linear model to closely approximate the teacher model.

Theorem 10 (Learning u is sufficient to learn f∗). Suppose û is such that 1 − |⟨u, û⟩| ≤ ε ·
k+ξ2

2Cσλ2
maxξ

2k2 which is Θ(ε/k) for ξ = Θ(1) and Θ(ε/k2) for ξ = Θ(
√
k) Then, there exists a

model h ∈ Lλ as defined in Equation (13) such that Ex(f
∗(x)− h(x))2 ≤ ε. In particular, second

layer training on the family of neural networks defined as Lλ, we

Proof. WLOG suppose ⟨u, û⟩ > 0, otherwise we flip all the signs of the ci in the later part of the
proof. Consider the candidate model h ∈ Lλ (given in eq. (13)) given by

h(x) =

k∑
i=1

λiσ

(〈
wi + ξciû√
1 + ξ2/k

, x

〉)

We aim to show Ex(f
∗(x)− f̂(x))2 ≤ ε. Notice

Ex(f
∗(x)− f̂(x))2 ≤ k

k∑
i=1

λ2
iEx (σ(⟨vi, x⟩)− σ(⟨ṽi, x⟩))2

where vi is as before and ṽi =
wi+ξciû√
1+ξ2/k

. Then, it suffices to show that the expectation is less than
ε

λ2
maxk

2 . Note

Ex(σ(⟨vi, x⟩)− σ(⟨vi, x⟩))2 ≤ Cσ ∥vi − v̂i∥2

Furthermore, we have

∥vi − v̂i∥ =
ξ/
√
k ∥u− û∥√
1 + ξ2/k

So that

k

k∑
i=1

λ2
iEx(σ(⟨vi, x⟩)− σ(⟨vi, x⟩))2 ≤ Cσλ

2
maxk

2ξ2(1− ⟨u, û⟩)
1 + ξ2/k

Then, it suffices to get 1− ⟨u, û⟩ ≤ ε · k+ξ2

2Cσλ2
maxξ

2k2 as desired.
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Remark 8. The above result can be extended to the case when the ci are not necessarily quantized,
by quantizing the interval [−1, 1] into a sufficiently granular discrete set of elements. Then, the
algorithm follows similarly by adding these features into the model and training the second layer
(e.g. via linear regression or SGD).
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