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ABSTRACT

Since the proposal of the graph neural network (GNN) by Gori et al. (2005) and
Scarselli et al. (2008), one of the major problems in training GNNs was their
struggle to propagate information between distant nodes in the graph. We propose
a new explanation for this problem: GNNs are susceptible to a bottleneck when
aggregating messages across a long path. This bottleneck causes the over-squashing
of exponentially growing information into fixed-size vectors. As a result, GNNs
fail to propagate messages originating from distant nodes and perform poorly
when the prediction task depends on long-range interaction. In this paper, we
highlight the inherent problem of over-squashing in GNNs: we demonstrate that
the bottleneck hinders popular GNNs from fitting long-range signals in the training
data; we further show that GNNs that absorb incoming edges equally, such as GCN
and GIN, are more susceptible to over-squashing than GAT and GGNN; finally,
we show that prior work, which extensively tuned GNN models of long-range
problems, suffer from over-squashing, and that breaking the bottleneck improves
their state-of-the-art results without any tuning or additional weights. Our code is
available at https://github.com/tech-srl/bottleneck/ .

1 INTRODUCTION

Graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008; Micheli, 2009) have seen
sharply growing popularity over the last few years (Duvenaud et al., 2015; Hamilton et al., 2017;
Xu et al., 2019). GNNs provide a general framework to model complex structural data containing
elements (nodes) with relationships (edges) between them. A variety of real-world domains such as
social networks, computer programs, chemical and biological systems can be naturally represented as
graphs. Thus, many graph-structured domains are commonly modeled using GNNs.

A GNN layer can be viewed as a message-passing step (Gilmer et al., 2017), where each node updates
its state by aggregating messages flowing from its direct neighbors. GNN variants (Li et al., 2016;
Veličković et al., 2018; Kipf and Welling, 2017) mostly differ in how each node aggregates the
representations of its neighbors with its own representation. However, most problems also require the
interaction between nodes that are not directly connected, and they achieve this by stacking multiple
GNN layers. Different learning problems require different ranges of interaction between nodes in the
graph to be solved. We call this required range of interaction between nodes – the problem radius.

In practice, GNNs were observed not to benefit from more than few layers. The accepted explanation
for this phenomenon is over-smoothing: node representations become indistinguishable when the
number of layers increases (Wu et al., 2020). Nonetheless, over-smoothing was mostly demonstrated
in short-range tasks (Li et al., 2018; Klicpera et al., 2018; Chen et al., 2020a; Oono and Suzuki,
2020; Zhao and Akoglu, 2020; Rong et al., 2020; Chen et al., 2020b) – tasks that have small problem
radii, where a node’s correct prediction mostly depends on its local neighborhood. Such tasks include
paper subject classification (Sen et al., 2008) and product category classification (Shchur et al., 2018).
Since the learning problems depend mostly on short-range information in these datasets, it makes
sense why more layers than the problem radius might be extraneous. In contrast, in tasks that also
depend on long-range information (and thus have larger problem radii), we hypothesize that the
explanation for limited performance is over-squashing. We further discuss the differences between
over-squashing and over-smoothing in Section 6.
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Figure 1: The bottleneck that existed in RNN seq2seq models (before attention) is strictly more
harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed
into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

To allow a node to receive information from other nodes at a radius of K, the GNN needs to have
at least K layers, or otherwise, it will suffer from under-reaching – these distant nodes will simply
not be aware of each other. Clearly, to avoid under-reaching, problems that depend on long-range
interaction require as many GNN layers as the range of the interaction. However, as the number
of layers increases, the number of nodes in each node’s receptive field grows exponentially. This
causes over-squashing: information from the exponentially-growing receptive field is compressed
into fixed-length node vectors. Consequently, the graph fails to propagate messages flowing from
distant nodes, and learns only short-range signals from the training data.

In fact, the GNN bottleneck is analogous to the bottleneck of sequential RNN models. Traditional
seq2seq models (Sutskever et al., 2014; Cho et al., 2014a;b) suffered from a bottleneck at every
decoder state – the model had to encapsulate the entire input sequence into a fixed-size vector.
In RNNs, the receptive field of a node grows linearly with the number of recursive applications.
However in GNNs, the bottleneck is asymptotically more harmful, because the receptive field of a
node grows exponentially. This difference is illustrated in Figure 1.

This work does not aim to propose a new GNN variant. Rather, our main contribution is introducing
the over-squashing phenomenon – a novel explanation for the major and well-known issue of training
GNNs for long-range problems, and showing its harmful practical implications. We use a controlled
problem to demonstrate how over-squashing prevents GNNs from fitting long-range patterns in the
data, and to provide theoretical lower bounds for the required hidden size given the problem radius
(Section 5). We show, analytically and empirically, that GCN (Kipf and Welling, 2017) and GIN
(Xu et al., 2019) are susceptible to over-squashing more than other types of GNNs such as GAT
(Veličković et al., 2018) and GGNN (Li et al., 2016). We further show that prior work that extensively
tuned GNNs to real-world datasets suffer from over-squashing: breaking the bottleneck using a
simple fully adjacent layer reduces the error rate by 42% in the QM9 dataset, by 12% in ENZYMES,
by 4.8% in NCI1, and improves accuracy in VARMISUSE, without any additional tuning.

2 PRELIMINARIES

A directed graph G = (V, E) contains nodes V and edges E , where (u, v) ∈ E denotes an edge from
a node u to a node v. For brevity, in the following definitions we treat all edges as having the same
type; in general, every edge can have a type and features (Schlichtkrull et al., 2018).

Graph neural networks Graph neural networks operate by propagating neural messages between
neighboring nodes. At every propagation step (a graph layer): the network computes each node’s
sent message; every node aggregates its received messages; and each node updates its representation
by combining the aggregated incoming messages with its own previous representation.

Formally, each node is associated with an initial representation h
(0)
v ∈ Rd0 . This representation is

usually derived from the node’s label or its given features. Then, a GNN layer updates each node’s
representation given its neighbors, yielding h

(1)
v ∈ Rd. In general, the k-th layer of a GNN is a
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Figure 2: The NEIGHBORSMATCH: green nodes ( A , B , C ) have blue neighbors ( A ) and an
alphabetical label. The goal is to predict the label (A, B, or C) of the green node that has the same
number of blue neighbors as the target node ( ? ) in the same graph. In this example, the correct label
is C, because the target node has two blue neighbors, like the node marked with C in the same graph.

parametric function fk that is applied to each node by considering its neighbors:

h(k)
v = fk

(
h(k−1)
v , {h(k−1)

u | u ∈ Nv}; θk
)

(1)

where Nv is the set of nodes that have edges to v: Nv = {u ∈ V | (u, v) ∈ E}. The total number of
layers K is usually determined empirically as a hyperparameter.

The design of the function f is what mostly distinguishes one type of GNN from the other. For
example, graph convolutional networks (GCN) define f as:

h(k)
v = σ

(∑
u∈Nv∪{v}

1

cu,v
W (k)h(k−1)

u

)
(2)

where σ is a nonlinearity such as ReLU , and cu,v is a normalization factor often set to
√
|Nv| · |Nu|

or |Nv| (Hamilton et al., 2017). As another example, graph isomorphism networks (GIN) (Xu et al.,
2019) update a node’s representation using the following definition:

h(k)
v =MLP (k)

((
1 + ε(k)

)
h(k−1)
v +

∑
u∈Nv

h(k−1)
u

)
(3)

Usually, the last (K-th) layer’s output is used for prediction: in node-prediction, h(K)
v is used to

predict a label for v; in graph-prediction, a permutation-invariant “readout” function aggregates the
nodes of the final layer using summation, averaging, or a weighted sum (Li et al., 2016).

3 THE GNN BOTTLENECK

Given a graph G = (V, E) and a given node v, we denote the problem’s required range of interaction,
the problem radius, by r. r is generally unknown in advance, and usually approximated empirically
by tuning the number of layers K. We denote the set of nodes in the receptive field of v by NK

v ,
which is defined recursively as N 1

v := Nv and NK
v := NK−1

v ∪ {w | (w, u) ∈ E ∧ u ∈ NK−1
v }.

When a prediction problem relies on long-range interaction between nodes, the GNN must have as
many layers K as the estimated range of these interactions, or otherwise, these distant nodes would
not be able to interact. It is thus required that K ≥ r. However, the number of nodes in each node’s
receptive field grows exponentially with the number of layers:

∣∣NK
v

∣∣ = O (exp (K)) (Chen et al.,
2018). As a result, an exponentially-growing amount of information is squashed into a fixed-length
vector (the vector resulting from the

∑
in Equations (2) and (3)), and crucial messages fail to reach

their distant destinations. Instead, the model learns only short-ranged signals from the training data
and consequently might generalize poorly at test time.

Example Consider the NEIGHBORSMATCH problem of Figure 2. Green nodes ( A , B , C ) have a
varying number of blue neighbors ( A ) and an alphabetical label. Each example in the dataset is a
different graph that has a different mapping from numbers of neighbors to labels. The rest of the
graph (marked as ) represents a general, unknown, graph structure. The goal is to predict a
label for the target node, which is marked with a question mark ( ? ), according to its number of blue
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neighbors. The correct answer is C in this case, because the target node has two blue neighbors, like
the node marked with C in the same graph. Every example in the dataset has a different mapping
from numbers of neighbors to labels, and thus message propagation and matching between the target
node and all the green nodes must be performed for every graph in the dataset.

Since the model must propagate information from all green nodes before predicting the label, a
bottleneck at the target node is inevitable. This bottleneck causes over-squashing, which can prevent
the model from fitting the training data perfectly. We demonstrate the bottleneck empirically in this
problem in Section 4; in Section 5, we provide theoretical lower bounds for the GNN’s hidden size.
Obviously, adding direct edges between the target node and the green nodes, or making the existing
edges bidirectional, could ease information flow for this specific problem. However, in real-life
domains (e.g., molecules), we do not know the optimal message propagation structure a priori, and
must use the given relations (such as bonds between atoms) as the graph’s edges.

Although this is a contrived problem, it resembles real-world problems that are often modeled as
graphs. For example, a computer program in a language such as Python may declare multiple
variables (i.e., the green nodes in Figure 2) along with their types and values (their numbers of blue
neighbors in Figure 2); later in the program, predicting which variable should be used in a specific
location (predict the alphabetical label in Figure 2) must use one of the variables that are available
in scope based on the required type and the required value at that point. We experiment with this
VARMISUSE problem in Section 4.4.

Short- vs. long-range problems Much of prior GNN work has focused on problems that were local
in nature, with small problem radii, where the underlying inductive bias was that a node’s most
relevant context is its local neighborhood, and long-range interaction was not necessarily needed.
With the growing popularity of GNNs, their adoption expanded to domains that required longer-range
information propagation as well, without addressing the inherent bottleneck. In this paper, we focus
on problems that require long-range information. That is, a correct prediction requires considering
the local environment of a node and interactions beyond the close neighborhood. For example, a
chemical property of a molecule (Ramakrishnan et al., 2014; Gilmer et al., 2017) can depend on
the combination of atoms that reside in the molecule’s opposite sides. Problems of this kind require
long-range interaction, and thus, a large number of GNN layers. Since the receptive field of each node
grows exponentially with the number of layers, the more layers – over-squashing is more harmful.

In problems that are local in nature (small r) – the bottleneck is less troublesome, because a GNN
can perform well with only few layers (e.g., K=2 layers in Kipf and Welling (2017)), and the
receptive field of a node can be exponentially smaller. Domains such as citation networks (Sen et al.,
2008), social networks (Leskovec and Mcauley, 2012), and product recommendations (Shchur et al.,
2018) usually raise short-range problems and are thus not the focus of this paper. So, how long is
long-range? We discuss and analyze this question in Section 5.

4 EVALUATION

First, we wish to empirically show that the GNN bottleneck exists, and find the smallest values
of r that raise over-squashing. We generated a synthetic benchmark that is theoretically solvable;
however, in practice, all GNNs fail to reach 100% training accuracy because of the bottleneck
(Section 4.1). Second, we examine whether the bottleneck exists in prior work, which addressed
real-world problems (Sections 4.2 to 4.4).

4.1 SYNTHETIC BENCHMARK: NEIGHBORSMATCH

The NEIGHBORSMATCH problem (Figure 2) is a contrived problem that we designed to provide an
intuition to the extent of the effect of over-squashing, while allowing us to control the problem radius
r, and thus control the intensity of over-squashing. We focus on the training accuracy of a model, to
show that over-squashing prevents models from fitting long-range signals in the training set.

TREE-NEIGHBORSMATCH From the perspective of a single node v, the rest of the graph may
look like a tree of height K, rooted at v (Xu et al., 2018; Garg et al., 2020). To simulate this
exponentially-growing receptive field, we created an instance of the general NEIGHBORSMATCH
problem that we described in Section 3 and portrayed in Figure 2. We instantiated the subgraph in the
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middle of the graph (marked as in Figure 2) as a binary tree of depth depth where the green
nodes are its leaves, and the target node is the tree’s root. All edges are directed toward the root, such
that information is propagated from all nodes toward the target node. The goal, as in Section 3, is to
predict a label for the target node, where the correct answer is the label of the green node that has
the same number of blue neighbors as the target node. An illustration is shown in Figure 5 in the
appendix. This allows us to control the problem radius, i.e., r = depth. In this section we observe
the bottleneck empirically; in Section 5 we provide a lower bound for the GNN’s hidden size given r.

Model We implemented a network with r+1 graph layers to allow an additional nonlinearity after
the information from the leaves reaches the target node. Our PyTorch Geometric (Fey and Lenssen,
2019) implementation is available at https://github.com/tech-srl/bottleneck/. Our
training configuration and hyperparameter ranges are detailed in Appendix A.

2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.0

0.60

0.38

0.21 0.16

0.41

0.77

0.29

1.0

0.70

0.19
0.14 0.09 0.08

r (the problem radius)

Acc GGNN (train)
GAT (train)
GIN (train)
GCN (train)

Figure 3: Accuracy across problem radius (tree depth)
in the NEIGHBORSMATCH problem. Over-squashing
starts to affect GCN and GIN even at r = 4.

Results Figure 3 shows the following sur-
prising results: some GNNs fail to fit the
dataset starting from r=4. For example,
the training accuracy of GCN (Kipf and
Welling, 2017) at r=4 is 70%. At r=5, all
GNNs fail to perfectly fit the data. Starting
from r=4, the models suffered from over-
squashing that resulted in underfitting: the
bottleneck prevented the models from dis-
tinguishing between different training ex-
amples, even after they were observed tens
of thousands of times. These results clearly
show the existence of over-squashing, start-
ing from r=4.

Why did some GNNs perform better than others? GCN and GIN managed to perfectly fit r=3 at
most, while GGNN and GAT also reached 100% accuracy at r=4. This difference can be explained
by their neighbor aggregation computation: consider the target node that receives messages in the
r’th step. GCN and GIN aggregate all neighbors before combining them with the target node’s
representation; they thus must compress the information flowing from all leaves into a single vector,
and only afterward interact with the target node’s own representation (Equations (2) and (3)). In
contrast, GAT uses attention to weight incoming messages given the target’s representation: at the
last layer only, the target node can ignore the irrelevant incoming edge, and absorb only the relevant
incoming edge, which contains information flowing from half of the leaves. That is, a single vector
compresses only half of the information. Since the number of leaves grows exponentially with r, it
is expected that GNNs that need to compress only half of the information (GGNN and GAT) will
succeed at an r that is larger by 1. Following Levy et al. (2018), we hypothesize that the GRU cell in
GGNNs filters incoming edges as GAT, but perform this filtering as element-wise attention.

If all GNNs have reached low training accuracy, how do GNN-based models usually do fit the
training data in public datasets of long-range problems? We hypothesize that they overfit short-
range signals and artifacts from the training set, rather than learning the long-range information that
was squashed in the bottleneck, and thus generalize poorly at test time.

4.2 QUANTUM CHEMISTRY: QM9

We wish to measure over-squashing in existing models. But, how can we measure over-squashing?
Instead, we measure whether breaking the bottleneck improves the results of long-range problems.

Adding a fully-adjacent layer (FA) In Sections 4.2 to 4.4, we took extensively tuned models from
previous work, and modified adjacency in the last layer: given a GNN with K layers, we modified
the K-th layer to be a fully-adjacent layer (FA). A fully-adjacent layer is a GNN layer in which every
pair of nodes is connected by an edge. In terms of Equations (1) to (3), converting an existing layer to
be fully-adjacent means that Nv := V for every node v ∈ V , in that layer only. This does not change
the type of layer nor add weights, but only changes adjacency of a data sample in a single layer. Thus,
the K − 1 graph layers exploit the graph structure using their original sparse topology, and only the
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R-GIN R-GAT GGNN

Property base† +FA base† +FA base† +FA

mu 2.64±0.11 2.54±0.09 2.68±0.06 2.73±0.07 3.85±0.16 3.53±0.13
alpha 4.67±0.52 2.28±0.04 4.65±0.44 2.32±0.16 5.22±0.86 2.72±0.12
HOMO 1.42±0.01 1.26±0.02 1.48±0.03 1.43±0.02 1.67±0.07 1.45±0.04
LUMO 1.50±0.09 1.34±0.04 1.53±0.07 1.41±0.03 1.74±0.06 1.63±0.06
gap 2.27±0.09 1.96±0.04 2.31±0.06 2.08±0.05 2.60±0.06 2.30±0.05
R2 15.63±1.40 12.61±0.37 52.39 ±42.5 15.76±1.17 35.94±35.7 14.33±0.47
ZPVE 12.93±1.81 5.03±0.36 14.87±2.88 5.98±0.43 17.84±3.61 5.24±0.30
U0 5.88±1.01 2.21±0.12 7.61±0.46 2.19±0.25 8.65±2.46 3.35±1.68
U 18.71±23.36 2.32±0.18 6.86±0.53 2.11±0.10 9.24±2.26 2.49±0.34
H 5.62±0.81 2.26±0.19 7.64±0.92 2.27±0.29 9.35±0.96 2.31±0.15
G 5.38±0.75 2.04±0.24 6.54±0.36 2.07±0.07 7.14±1.15 2.17±0.29
Cv 3.53±0.37 1.86±0.03 4.11±0.27 2.03±0.14 8.86±9.07 2.25±0.20
Omega 1.05±0.11 0.80±0.04 1.48±0.87 0.73±0.04 1.57±0.53 0.87±0.09

Relative: -39.54% -44.58% -47.42%

Table 1: Average error rates (5 runs ± stdev for each property) on the QM9 dataset. The best result
for every property in every GNN type is highlighted in bold. Results marked with † were previously
reported by Brockschmidt (2020) and reproduced by us.

K-th layer is an FA layer that allows the topology-aware node-representations to interact directly and
consider nodes beyond their original neighbors. Hopefully, this would ease information flow, prevent
over-squashing, and reduce the effect of the previously-existed bottleneck. We re-trained the models
using the authors’ original code, without performing any additional tuning, to rule out hyperparameter
tuning as the source of improvement. Statistics of all datasets can be found in Appendix D.

We note that an FA layer is a simple solution. Its purpose is merely to demonstrate that over-squashing
in GNNs is so prevalent and untreated that even the simplest solution helps. Our main contribution
is not the solution, but rather, highlighting and explaining the over-squashing problem. This simple
solution opens the path for a variety of follow-up improvements and solutions for over-squashing.

Data The QM9 dataset (Ramakrishnan et al., 2014; Gilmer et al., 2017; Wu et al., 2018) contains
~130,000 graphs with ~18 nodes. Each graph is a molecule where nodes are atoms, and undirected,
typed edges are different types of bonds between the atoms. The goal is to regress each graph to 13
real-valued quantum chemical properties such as dipole moment and isotropic polarizability.

Models We modified the implementation of Brockschmidt (2020) who performed an extensive
hyperparameter tuning for multiple GNNs, by searching over 500 configurations; we took the same
splits and their best-found configurations. For most GNNs, Brockschmidt found that the best results
are achieved using K=8 layers. This hints that this problem depends on long-range information and
relies on both graph structure and distant nodes. We re-trained each modified model for each target
property using the same code, configuration, and training scheme as Brockschmidt (2020), training
each model five times (using different random seeds) for each target property task. We compare the
“base” models, reported by Brockschmidt, with our modified and re-trained “+FA” models.

Results Results for the top GNNs are shown in Table 1. The main results are that breaking the
bottleneck by modifying a single layer to be an FA layer significantly reduces the error rate, by 42%
on average, across six GNN types. These experiments clearly show evidence for a bottleneck in the
original GNN models. Results for the other GNNs are shown in Appendix B due to space limitation.

Over-squashing or under-reaching? Barceló et al. (2020) discuss the inability of a GNN node to
observe nodes that are farther away than the number of layers K. We denote this limitation as under-
reaching: for every fixed number of layers K, local information cannot travel farther than distance K
along edges. So, was the improvement of the FA layer in Table 1 achieved thanks to the reduction in
over-squashing, or did the FA layer only extend the nodes’ reachability and prevent under-reaching?
To answer this, we measured the graphs’ diameter in the QM9 dataset – the maximum shortest path
between any two nodes in a graph. We found that the average diameter is 6.35±0.91, the maximum
diameter is 10, and the 90’th percentile is 8, while most models were trained with K=8 layers. That
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NCI1 ENZYMES

No Struct† 69.8±2.2 65.2±6.4

DiffPool base† 76.9±1.9 59.5±5.6
+FA 77.6±1.3 65.7±4.8

GraphSAGE base† 76.0±1.8 58.2±6.0
+FA 77.7±1.8 60.8±4.5

DGCNN base† 76.4±1.7 38.9±5.7
+FA 76.8±1.5 42.8±5.3

GIN base† 80.0±1.4 59.6±4.5
+FA 81.5±1.2 67.7±5.3

Table 2: Average accuracy (30 runs±stdev) on
the biological datasets. † – previously reported
by Errica et al. (2020).

SeenProj UnseenProj

GGNN
† base† 85.7±0.5 79.3±1.2

+FA 86.3±0.7 79.1±1.1

R-GCN base† 88.3±0.4 82.9±0.8
+FA 88.4±0.7 83.8±1.0

R-GIN base† 87.1±0.1 81.1±0.9
+FA 87.5±0.7 81.7±1.2

GNN-MLP base† 86.9±0.3 81.4±0.7
+FA 87.3±0.2 81.2±0.5

R-GAT base† 86.9±0.7 81.2±0.9
+FA 87.9±1.0 82.0±1.9

Table 3: Average accuracy (5 runs±stdev)
on VARMISUSE. † – previously reported by
Brockschmidt (2020).

is, at least 90% of the examples in the dataset certainly did not suffer from under-reaching, because
the number of layers was greater or equal than their diameter. We trained another set of models with
10 layers, which did not show an improvement over the base models. We conclude that the source of
improvement was clearly not the increased reachability, but instead, the reduction in over-squashing.

Can larger hidden sizes achieve a similar improvement? We trained another set of models
with doubled dimensions. These models achieved only 5.5% improvement over the base model
(Appendix B.2), while adding the FA layer achieved 42% improvement using the original dimensions
and without adding weights. Consistently, in Section 5 we present an analysis that shows how
dimensionality increase is ineffective in preventing over-squashing.

Is the entire FA layer needed? We experimented with using only a sampled fraction of edges
in the FA layer. As Appendix B.3 shows, the fraction of added edges in the last layer correlates
with the decrease in error. For example, using only half of the possible edges in the last layer (a
“semi-adjacent” layer) still reduces the error rate by 31.5% on average compared to “base”.

If all GNNs benefitted from direct interaction between all nodes, maybe the graph structure
is not even needed? We trained another set of models (Appendix B.2) where all K layers are FA
layers, thus ignoring the original graph topology; these models produced 1500% higher (worse) error.

4.3 BIOLOGICAL BENCHMARKS

Data The NCI1 dataset (Wale et al., 2008) contains 4110 graphs with ~30 nodes on average, and its
task is to predict whether a biochemical compound contains anti-lung-cancer activity. ENZYMES
(Borgwardt et al., 2005) contains 600 graphs with ~36 nodes on average, and its task is to classify an
enzyme to one out of six classes. We used the same 10-folds and split as Errica et al. (2020).

Models We used the implementation of Errica et al. (2020) who performed a fair and thorough
comparison between GNNs. The final reported result is the average of 30 test runs (10 folds×3
random seeds). Additional training details are provided in Appendix C.

In ENZYMES, Errica et al. found that a baseline that does not use the graph topology at all (“No
Struct”) performs better than all GNNs. In NCI1, GIN performed best. We converted the last layer
into an FA layer by modifying the implementation of Errica et al., and repeated the same training
procedure. We compare the “base” models from Errica et al. with our re-trained “+FA” models.

Results Results are shown in Table 2. The main results are as follows: (a) in NCI1, GIN+FA improves
by 1.5% over GIN-base, which was previously the best performing model; (b) in ENZYMES, where
Errica et al. (2020) found that none of the GNNs exploit the topology of the graph, we find that
GIN+FA does exploit the structure and improves by 8.1% over GIN-base and by 2.5% over No Struct.
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On average, models with FA layers relatively reduce the error rate by 12% in ENZYMES and by 4.8%
in NCI1. These experiments clearly show evidence for a bottleneck in the original GNN models.

4.4 PROGRAMS: VARMISUSE

Data VARMISUSE (Allamanis et al., 2018) is a node-prediction problem that depends on long-range
information in computer programs. We used the same splits as Allamanis et al. (2018).

Models We use the implementation of Brockschmidt (2020) who performed an extensive hyperpa-
rameter tuning by searching over 30 configurations for each GNN type. The best results were found
using 6-10 layers, which hints that this problem requires long-range information. We modified the
last layer to be an FA layer, and used the resulting representations for node classification. We used
the same best found configurations as Brockschmidt (2020) add re-trained each model five times.

Results Results are shown in Table 3. The main result is that adding an FA layer to all GNNs improves
their SeenProjTest accuracy, obtaining a new state-of-the-art of 88.4%. In the UnseenProjTest set,
adding an an FA layer improves the results of some of most of the GNNs, obtaining a new state-
of-the-art of 83.8%. These improvements are significant, especially since they were achieved on
extensively tuned models, without any further tuning by us.

5 HOW LONG IS LONG-RANGE?
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Figure 4: Combinatorial and empirical lower bounds of
the model dimension given the problem radius.

In this section, we analyze over-
squashing combinatorially in the
TREE-NEIGHBORSMATCH problem.
We provide a combinatorial lower bound
for the minimal hidden size that a GNN
requires to perfectly fit the data (learn to
100% training accuracy) given its problem
radius r. We denote the arity of such a
tree by m (=2 in our experiments); the
counting base as b=2; the number of bits
in a floating-point variable as f=32; and
the hidden dimension of the GNN, i.e., the
size of a node vector h(k)

v , as d.

A full tree of arity m and problem radius
r=depth has mr green label-nodes. All
(mr)! possible permutations of the labels
{A, B, C, ...} are valid, disregarding the
order of sibling nodes. Thus, the number of label assignments of green nodes is (mr)!/ (m!)

mr−1

(there are mr − 1 parent nodes, where the order of each of their m siblings can be permutated).
Right before interacting with the target node and predicting the label, a single vector of size d must
encapsulate the information flowing from all green nodes (Equations (2) and (3)).1 Such a vector
contains d floating-point elements, each of them is stored as f bits. Overall, the number of possible
cases that this vector can distinguish between is bf ·d. The number of possible cases that the vector
can distinguish between must be greater than the number of different examples that this vector may
encounter in the training data. This requirement is expressed in Equation (4). Considering binary
trees (m=2), and floating-point values of f=32 binary (b=2) bits, we get Equation (5):

bf ·d >
(mr)!

(m!)
mr−1 (4) 232·d >

(2r)!

22r−1
(5)

1The analysis holds for GCN and GIN. Architectures that use the representation of the recipient node to
aggregate messages, like GAT, need to compress the information from only half of the leaves in a single vector.
This increases the final upper bounds on r by up to 1 and demonstrated empirically in Section 4.1.
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Since factorial grows faster than an exponent with a constant base, a small increase in r requires a
much larger increase in d. Specifically, for d=32 as in the experiments in Section 4.1, the maximal
problem radius is as low as r=7. That is, a model with d=32 cannot obtain 100% accuracy for r>7.

In practice, the problem is worse; i.e., the empirical minimal d is higher than the combinatorial,
because even if a solution to storing some information in a vector of a certain size exists, a gradient
descent-based algorithm is not guaranteed to find it. Figure 4 shows the combinatorial lower bound of
d given r. We also repeated the experiments from Section 4.1 and report the minimal empirical d for
each value of r. As shown in Figure 4, the empirical and the theoretical minimal d grow exponentially
with r; for example, even d=512 can empirically fit r=7 at most.

6 RELATED WORK

Under-reaching Barceló et al. (2020) found that the expressiveness of GNNs captures only a small
fragment of first-order logic. The main limitation arises from the inability of a node to be aware of
nodes that are farther away than the number of layers K, while the existence of such nodes can be
easily described using logic. We denote this limitation as under-reaching. Nevertheless, even when
information is reachable withinK edges, we show that this information might be over-squashed along
the way. Thus, the over-squashing limitation described in this paper is tighter than under-reaching.

Over-smoothing As observed before, node representations become indistinguishable and prediction
performance severely degrades as the number of layers increases. The accepted explanation to this
phenomenon is over-smoothing (Li et al., 2018; Wu et al., 2020; Oono and Suzuki, 2020). This might
explain the empirical optimality of few layers in short-range tasks (e.g., only K=2 layers in Kipf and
Welling (2017)). Nonetheless, some problems depend on longer-range information propagation and
thus require more layers, to avoid under-reaching. We hypothesize that in long-range problems, the
explanation for the degraded performance is over-squashing rather than over-smoothing. For further
discussion of over-smoothing vs. over-squashing, see Appendix E.

Avoiding over-squashing Some previous work avoid over-squashing by various profitable means:
Gilmer et al. (2017) add “virtual edges” to shorten long distances; Scarselli et al. (2008) add
“supersource nodes”; and Allamanis et al. (2018) designed program analyses that serve as 16 “shortcut”
edge types. However, none of these explicitly explained these solutions using over-squashing, and
did not identify the bottleneck and its negative cross-domain implications.

7 CONCLUSION

We propose a novel explanation to a well known limitation in training graph neural networks: a
bottleneck that causes over-squashing. Problems that depend on long-range interaction require as
many GNN layers as the desired radius of each node’s receptive field. This causes an exponentially-
growing amount of information to be squashed into a fixed-length vector. As a result, the GNN fails
to propagate long-range information, learns only short-range signals from the training data instead,
and performs poorly when the prediction task depends on long-range interaction.

We demonstrate the existence of the bottleneck in a controlled problem, provide theoretical lower
bounds for the hidden size given the problem radius, and show that GCN and GIN are more susceptible
to over-squashing than GAT and GGNN. We further show that prior models of chemical, biological
and programmatical benchmarks suffer from over-squashing by showing that they can be dramatically
improved using a simple FA layer. We conclude that over-squashing in GNNs is so prevalent and
untreated in some benchmarks – that even the simplest solution helps. Our observations open the
path for a variety of follow-up improvements and even better solutions for over-squashing.
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?

Figure 5: An example of a TREE-NEIGHBORSMATCH, that is an instance of the general NEIGH-
BORSMATCH problem that we examine in Section 4. The target node ( ? ) is the root of a tree of
depth=3 (from the target node to the green nodes). The green nodes ( A , B , C , ...) have blue
neighbors ( A ) and an alphabetical label. The node B has a single blue neighbor; the node C has
two blue neighbors; and the node D has no blue neighbors; each other green node has another unique
number of blue neighbors. The goal it to predict a label for the target node ( ? ) according to its
number of blue neighbors. The correct answer is C in this example, because the target node has
two blue neighbors, like the green node that is marked with C in the same graph. To make a correct
prediction, the network must propagate information from all leaves toward the target node, and make
the decision given a single fixed-sized vector that compresses all this information.

A TREE-NEIGHBORSMATCH – TRAINING DETAILS

Data We created a separate dataset for every tree depth (which is equal to r, the problem radius)
and sampled up to 32,000 examples per dataset. The label of each leaf (“A”, “B”, “C” in Figure 2)
is represented as a one-hot vector. To tease the effect of the bottleneck from the ability of a GNN
to count neighbors, we concatenated each leaf node’s initial representation with a 1-hot vector
representing the number of blue neighbors, instead of creating the blue nodes. The target node is
initialized with a learned vector as its (missing) label, concatenated with a 1-hot vector representing
its number of blue neighbors. Intermediate nodes are initialized with another learned vector.

Model The network has an initial linear layer, followed by r + 1 GNN layers. Afterward, the
final target node representation goes through a linear layer and a softmax to predict its label. We
experimented with GCN (Kipf and Welling, 2017), GGNN (Li et al., 2016), GIN (Xu et al., 2019)
and GAT (Veličković et al., 2018) as the graph layers.

In Section 4.1, we used model dimensions of d=32. Larger values led to the exact same trend. We
added residual connections, summing every node with its own representation in the previous layer to
increase expressivity, and layer normalization which eased convergence. We used the Adam optimizer
with a learning rate of 10−3, decayed by 0.5 after every 1000 epochs without an increase in training
accuracy, and stopped training after 2000 epochs of no training accuracy improvement. This usually
led to tens of thousands of training epochs, sometimes reaching 100,000 epochs.
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MLP R-GCN GNN-FiLM

Property base† +FA base† +FA base† +FA

mu 2.36±0.04 2.19±0.04 3.21±0.06 2.92±0.07 2.38±0.13 2.26±0.06
alpha 4.27±0.36 1.92±0.06 4.22±0.45 2.14±0.08 3.75±0.11 1.93±0.08
HOMO 1.25±0.04 1.19±0.04 1.45±0.01 1.37±0.02 1.22±0.07 1.11±0.01
LUMO 1.35±0.04 1.20±0.05 1.62±0.04 1.41±0.01 1.30±0.05 1.21±0.05
gap 2.04±0.05 1.82±0.05 2.42±0.14 2.03±0.03 1.96±0.06 1.79±0.07
R2 14.86±1.62 12.40±0.84 16.38±0.49 13.55±0.50 15.59±1.38 11.89±0.73
ZPVE 12.00±1.66 4.68±0.29 17.40±3.56 5.81±0.61 11.00±0.74 4.68±0.49
U0 5.55±0.38 1.71±0.13 7.82±0.80 1.75±0.18 5.43±0.96 1.60±0.12
U 6.20±0.88 1.72±0.12 8.24±1.25 1.88±0.22 5.95±0.46 1.75±0.08
H 5.96±0.45 1.70±0.08 9.05±1.21 1.85±0.18 5.59±0.57 1.93±0.42
G 5.09±0.57 1.53±0.15 7.00±1.51 1.76±0.15 5.17±1.13 1.77±0.05
Cv 3.38±0.20 1.69±0.08 3.93±0.48 1.90±0.07 3.46±0.21 1.64±0.10
Omega 0.84±0.02 0.63±0.04 1.02±0.05 0.75±0.04 0.98±0.06 0.69±0.05

Relative: -40.33% -43.40% -39.53%

Table 4: Average error rates and standard deviations on the QM9 targets. Best result for every
property in every GNN type is highlighted in bold. Results marked with † were previously reported
by Brockschmidt (2020).

To rule out hyperparameter tuning as the source of degraded performance, we experimented with
changing activations (ReLu, tanh, MLP, none), using layer normalization and batch normalization,
residual connections, various batch sizes, and whether or not the same GNN weights should be
“unrolled” over time steps. The presented results were obtained using the configurations that achieved
the best results.

Over-squashing or just long-range? To rule out the possibility that the long-range itself is pre-
venting the GNNs from fitting the data, we repeated the experiment of Figure 3 for depths 4 to 8,
where the distance between the leaves and the target node remained the same, but the amount of
over-squashing was as in r=2. That is, the graph looks like a tree of depth=2, where the root is
connected to a “chain” of length of up to 6, and the target node is at the other side of the chain. This
setting maintains the long-range as in the original problem, but reduces the amount of information
that needs to be squashed. In other words, This setting disentangles of the effect of the long-range
itself from the effect of the growing amount of information (i.e., from over-squashing). In this setting,
all GNN types managed to easily fit the data to close to 100% across all distances, showing that the
problem is the amount of over-squashing, rather than the long-range itself.

B QM9 – ADDITIONAL RESULTS

B.1 ADDITIONAL GNN TYPES

Because of space limitations, in Section 4.2 we presented results on the QM9 dataset only for R-GIN,
R-GAT and GGNN. In this section, we show that additional GNN architectures benefit from breaking
the bottleneck using a fully-adjacent layer: GNN-MLP , R-GCN (Schlichtkrull et al., 2018) and
GNN-FiLM (Brockschmidt, 2020).

All experiments were performed using the extensively-tuned implementation of Brockschmidt (2020)
who experimented with over 500 hyperparameter configurations.

Table 4 contains additional results for GGNN, R-GCN and R-GIN. As shown in Table 4, adding an
FA layer significantly improves results across all GNN architectures, for all properties.

B.2 ALTERNATIVE SOLUTIONS

Table 5 shows additional experiments, all performed using GCN. base† is the original model of
Brockschmidt (2020) as in Table 4. +FA is the model that we re-trained with the last layer modified
to an FA layer.
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Property base† +FA 2×d All FA 2×FA Penultimate FA

mu 3.21±0.06 2.92±0.07 2.99±0.08 11.52 2.89±0.08 2.80±0.08
alpha 4.22±0.45 2.14±0.08 3.57±0.40 9.19 2.23±0.04 2.14±0.10
HOMO 1.45±0.01 1.37±0.02 1.36±1.87 9.95 1.39±0.02 1.34±0.03
LUMO 1.62±0.04 1.41±0.01 1.43±0.04 19.13 1.42±0.04 1.37±0.02
gap 2.42±0.14 2.03±0.03 2.33±0.23 24.62 2.06±0.05 2.00±0.03
R2 16.38±0.49 13.55±0.50 18.4±0.76 168.09 13.97±0.56 12.92±0.11
ZPVE 17.40±3.56 5.81±0.61 15.8±2.59 591.33 5.79±0.50 4.53±0.62
U0 7.82±0.80 1.75±0.18 7.60±2.07 188.59 1.90±0.1 1.98±0.25
U 8.24±1.25 1.88±0.22 7.65±1.51 189.72 1.71±0.16 2.05±0.23
H 9.05±1.21 1.85±0.18 8.67±1.10 191.11 1.83±0.11 1.73±0.14
G 7.00±1.51 1.76±0.15 2.90±1.15 173.68 1.93±0.11 1.96±0.42
Cv 3.93±0.48 1.90±0.07 3.99±0.07 64.18 1.90±0.14 1.83±0.11
Omega 1.02±0.05 0.75±0.04 1.03±0.54 23.89 0.69±0.06 0.67±0.01

relative 0.0% -43.40% -5.50% +1520% -43.30% -45.2%

Table 5: Average error rates and standard deviations on the QM9 targets with GCN using alternative
solutions.

2×d is a model that was trained with a doubled hidden dimension size, d = 256 instead of d = 128
as in the base model. As shown, doubling the hidden dimension size leads to a small improvement of
only 5.5% reduction in error. In comparison, the +FA model used the original dimension sizes and
achieves a much larger improvement of 43.40%.

All FA is a model that was trained with all GNN layers converted into FA layers, practically ignoring
the graph topology. This led to much worse results of more than 1500% higher error. This shows that
the graph topology is important in this benchmark, and that a direct interaction between nodes (as in
a single FA layer) must be performed in addition to considering the topology.

2×FA is a model where the last layer was modified into an FA layer, and an additional FA layer was
stacked on top of it. This led to results that are very similar to +FA.

Penultimate FA is a model where the FA layer is the penultimate layer (the K − 1-th), followed by a
standard GNN layer as the K-th layer. This led to results that are even slightly better than +FA.

base† 0.25× FA 0.5× FA 0.75× FA +FA (as in Table 4)

Avg. error compared to base† -0% -8.4% -31.5% -37.1% -43.4%

Table 6: Average error rates and standard deviations on the QM9 targets with GCN, where we use
only a fraction of the edges in the FA layer.

B.3 PARTIAL-FA LAYERS

We also examined whether instead of adding a “full fully-adjacent layer”, we can randomly sample
only a fraction of these edges. We randomly sampled only {0.25, 0.5, 0.75} of the edges in the
full FA layer in every example, and trained the model for each target property 5 times. Table 6
shows the results of these experiments using GCN. base† is the original model of Brockschmidt
(2020) as in Table 4. +FA is the model that we re-trained with the last layer modified to an FA layer.
{0.25, 0.5, 0.75}× FA are the models were only a fraction of the edges in the FA layer were used.

As shown in Table 6, the full FA layer achieves the largest reduction in error (-43.4%), but even
adding a fraction of the edges improves the results over the base model. For example, using only
half of the edges (0.5× FA) reduces the error by 31.5%. Overall, the percentage of used edges in the
partial-FA layer is correlated with its reduction in error.
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C BIOLOGICAL BENCHMARKS – TRAINING DETAILS

We used the implementation of Errica et al. (2020) who performed a fair and thorough comparison
between GNNs, by splitting each dataset to 10-folds; then, for each GNN type they select a configu-
ration among a grid of 72 configurations according to the validation set; finally, the best configuration
for each fold is trained three additional times, early stopped using the validation set, and evaluated on
the test set. The final reported result is the average of all 30 test runs (10-folds×3). The final standard
deviation is computed among the average results of each of the ten folds.

D DATA STATISTICS

D.1 SYNTHETIC DATASET: TREE-NEIGHBORSMATCH

Statistics of the synthetic TREE-NEIGHBORSMATCH dataset are shown in Table 7.

Table 7: The number of examples, in our experiments and combinatorially, for every value of depth.

depth # Training examples sampled
Total combinatorial:(

2depth!
)
· 2depth

2 96 96
3 8000 > 3 · 105
4 16,000 > 3 · 1014
5 32,000 > 1036

6 32,000 > 1090

7 32,000 > 10217

8 32,000 > 10509

D.2 QUANTUM CHEMISTRY: QM9

Statistics of the quantum chemistry QM9 dataset, as used in Brockschmidt (2020) are shown in
Table 8.

Table 8: Statistics of the QM9 chemical dataset (Ramakrishnan et al., 2014) as used by Brockschmidt
(2020).

Training Validation Test

# examples 110,462 10,000 10,000
# nodes - average 18.03 18.06 18.09
# nodes - standard deviation 2.9 2.9 2.9
# edges - average 18.65 18.67 18.72
# edges - standard deviation 3.1 3.1 3.1

D.3 BIOLOGICAL BENCHMARKS

Statistics of the biological datasets, as used in Errica et al. (2020), are shown in Table 9.

D.4 VARMISUSE

Statistics of the VARMISUSE dataset, as used in Allamanis et al. (2018) and Brockschmidt (2020),
are shown in Table 10.
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Table 9: Statistics of the biological datasets, as used by Errica et al. (2020).

NCI1 (Wale et al., 2008) ENZYMES (Borgwardt et al., 2005)

# examples 4110 600
# classes 2 6
# nodes - average 29.87 32.63
# nodes - standard deviation 13.6 15.3
# edges - average 32.30 64.14
# edges - standard deviation 14.9 25.5
# node labels 37 3

Table 10: Statistics of the VARMISUSE dataset (Allamanis et al., 2018) as used by Brockschmidt
(2020).

Training Validation UnseenProject Test SeenProject Test

# graphs 254360 42654 117036 59974
# nodes - average 2377 1742 1959 3986
# edges - average 7298 7851 5882 12925

E DISCUSSION: OVER-SMOOTHING VS. OVER-SQUASHING

Although over-smoothing and over-squashing are related, they are disparate phenomena that occur in
different types of problems. For example, imagine a triangular graph containing only three nodes,
where every node has a scalar value, an edge to each of the other nodes, and needs to compute a
function of its own value and the other nodes’ values. The problem radius r in this case is r=1. As
we increase the number of layers, the representations of the nodes might become indistinguishable,
and thus suffer from over-smoothing. However, there will be no over-squashing in this case, because
there is no growing amount of information that is squashed into fixed-sized vectors while passing
long-range messages. Contrarily, in the TREE-NEIGHBORSMATCH problem, there is no reason for
over-smoothing to occur, because there are no two nodes that can converge to the same representation.
A node in a “higher” level in the tree contains twice the information than a node in a “lower” level.
Thus, this is a case where over-squashing can occur without over-smoothing.
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