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Abstract

Unsupervised skill discovery carries the promise that an intelligent agent can learn
reusable skills through autonomous, reward-free environment interaction. Existing
unsupervised skill discovery methods learn skills by encouraging distinguishable
behaviors that cover diverse states. However, in complex environments with
many state factors (e.g., household environments with many objects), learning
skills that cover all possible states is impossible, and naively encouraging state
diversity often leads to simple skills that are not ideal for solving downstream
tasks. This work introduces Skill Discovery from Local Dependencies (SkiLD),
which leverages state factorization as a natural inductive bias to guide the skill
learning process. The key intuition guiding SkiLD is that skills that induce diverse
interactions between state factors are often more valuable for solving downstream
tasks. To this end, SkiLD develops a novel skill learning objective that explicitly
encourages the mastering of skills that effectively induce different interactions
within an environment. We evaluate SkiLD in several domains with challenging,
long-horizon sparse reward tasks including a realistic simulated household robot
domain, where SkiLD successfully learns skills with clear semantic meaning and
shows superior performance compared to existing unsupervised reinforcement
learning methods that only maximize state coverage. Code and visualizations are
at https://wangzizhao.github.io/SkiLD/.

1 Introduction

Reinforcement learning (RL) achieves impressive successes when solving decision-making problems
with well-defined reward functions [65, 20, 33]. However, designing this reward function is often not
trivial [7, 61]. In contrast, humans and other intelligent creatures can learn, without external reward
supervision, behaviors that produce repeatable and predictable changes in the environment [18].
These behaviors, which we call skills, can be later repurposed to solve downstream tasks efficiently.
One of the promises of this form of unsupervised RL is to endow artificial agents with similar
capabilities to discover reusable skills without explicit rewards.

One predominant strategy of prior skill discovery methods focuses on training skills to reach diverse
states while being distinguishable [19, 59, 50]. However, in complex environments that contain many
state factors—distinct elements such as individual objects in a household (a formal description in
Sec. 2.1), the exponential number of distinct states makes it impossible to learn skills that cover
every state. Consequently, these methods typically result in simple skills that only change the
easy-to-control factors (e.g., in a manipulation task moving the agent itself to diverse positions or
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Figure 1: Skill Discovery from Local Dependencies (SkiLD) describes skills that encode interactions
(i.e., local dependencies) between state factors. In contrast to prior diversity-based methods that
can easily get stuck by moving the robot to diverse, but non-interactive states, and factor-based
methods that are trained to manipulate the hammer and nail, but not their interactions, SkiLD not only
manipulate each object (left, middle) but also induce interactions between them (right), by specifying
different local dependencies. These skills are often more useful than the “easy” skill learned by
previous methods for downstream task-solving.

manipulating each factor independently), and fail to cover other desirable but challenging behaviors.
Meanwhile, in a factored state space, many downstream tasks require inducing interactions between
state factors, e.g., cooking requires using a knife to cut the ingredients and cooking them in a pan, etc.
Unsurprisingly, these simple skills often struggle to solve such tasks, resulting in poor downstream
performance.

Our key insight is to utilize interactions between state factors as a powerful inductive bias for learning
useful skills. In factored state spaces and their downstream tasks, there usually exist bottleneck states
that an agent must pass through to explore different regions of the environment, and many of them
can be characterized by interactions between state factors. For example, in a household environment,
a robot must first grasp the knife before moving it to different locations, with the bottleneck being
the interaction between the robot and the knife. In environments that have a large state space due to
many state factors, rather than inefficiently relying on randomly visiting different states to reach such
bottlenecks, we propose to train the agent to actively induce these critical interactions.

To this end, we introduce Skill Discovery from Local Dependencies (SkiLD), a novel skill discovery
method that explicitly learns skills that induce diverse interactions. Specifically, SkiLD models the
interactions between state factors using the framework of local dependencies (where local refers to
state-specific, see details in Sec. 2.2) and proposes a novel intrinsic reward that 1) encourages the agent
to induce specified interactions, and 2) encourages the agent to discover diverse ways of inducing
specified interaction, as visualized in Figure 1. During skill learning, SkiLD gradually discovers
new interactions and learns to induce them, based on the skills that it already mastered, resulting
in a diverse set of interaction-inducing behaviors that can be readily repurposed for downstream
tasks. During task learning, the skill policy is reused, and a task-specific policy is learned to select (a
sequence of) skills to maximize task rewards efficiently.

We evaluate the performance of SkiLD on factor-rich environments with 10 downstream tasks against
existing unsupervised reinforcement learning methods. Our experiments indicate that SkiLD learns
to induce diverse interactions and outperforms other methods on most of the examined tasks.

2 Background

In this paper, our unsupervised skill discovery method is set up in a factored Markov decision process
and builds off previous diversity-based methods, as described in Sec. 2.1. To enhance the expressivity
of skills, our method further augments the skill representation with interactions between state factors,
which we formalize as local dependencies as described in Sec. 2.2.

2.1 Factored Markov Decision Process (Factored MDP)

We consider unsupervised skill discovery in a reward-free Factored Markov Decision Process [8]
defined by the tuple M = (S , A, p). S = S1 × · · · × SN is a factored state space with N subspaces,
where each subspace Si is a multi-dimensional continuous or discrete random variable. Then,
correspondingly, each state s ∈ S consists of N state factors, i.e., s = (s1, . . . , sN ), si ∈ Si. In this
paper, we use uppercase letters to denote random variables and lowercase for their specific values (e.g.,
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S denotes the random variable for states s). A is the action space, and p is an unknown Markovian
transition model that captures the probability distribution over the next state S′ ∼ p(·|S,A).
The factorization in S inherently exists in many environments, and is a common assumption in prior
unsupervised skill discovery works [22, 29, 27]. For example, in robotics, an environment typically
consists of a robot and several objects to manipulate, and, for each object, Si would represent its
attributes of interest, like pose. In this work, we explore how we can utilize a given state factorization
to improve unsupervised skill discovery. In practice, the factorization can either be directly provided
by the environment or obtained from image observations with existing disentangled representation
learning methods [47, 31].

Following prior work, our method consists of two stages—skill learning and task learning. During the
skill learning phase, we seek to learn a skill policy πω(·|s, z), which defines a conditional distribution
over actions given the current state s and some skill representation z, where skills indicate the desired
behaviors of the agent. Once the skills are learned, they can be chained together to solve downstream
tasks during the task learning phase through an extrinsic reward-optimizing policy. During task
learning, a downstream task reward function r : S × A → R is provided by the environment. A
high-level policy π(z|s) is then trained to optimize the expected return through outputting correct
skills z given state s.

2.2 Identifying Local Dependencies between State Factors

A key insight of SkiLD is to utilize interactions between state factors (or, formally, local dependencies)
as part of the skill representation. In later sections, these local dependencies are compiled into a
binary matrix G(s, a, s′) = {0, 1}N×(N+1) representing the local dependencies between all factors.
In this section, we first formally define local dependencies, introduce their identification, and finally
discuss their application to factored MDPs.

SkiLD takes a causality-inspired approach for defining and detecting local dependencies [6, 58],
where we use local to refer to a particular assignment of values for a random variable, as opposed to
global which applies to all values. Formally, for an event of interest Y = y and its potential causes
X = (X1, . . . , XN ), given the value of X = x, local dependencies focus on which Xis are the
state-specific cause of the outcome event Y = y (for simplicity of presentation, in this section we
overload N as the number of potential causes rather than number of variables and p as the transition
function according to a subset of the variables). Formally, we denote the general data generation
process of Y as p : X → Y and the data generation process when Y is only influenced by a subset of
X as pX̄ : X̄ → Y , where X̄ ⊆ X . Then, given the value of all variables, X1 = x1, · · · , XN = xN

and Y = y, we say Y locally depends on X̄ , if X̄ is the minimal subset of X such that knowing their
values is necessary and sufficient to generate the result of Y = y, i.e.,

argmin
X̄⊆X

|X̄| s.t. pX̄(Y = y|X̄ = x̄) = p(Y = y|X = x), (1)

where |X̄| is the number of variables in X̄ . For example, suppose that a robot opens a refrigerator
door in a particular transition. The event of interest Y = y is the refrigerator door becoming open,
and it locally depends on two factors: the robot and the refrigerator door, while other state factors
such as objects inside the refrigerator do not locally influence Y .

To identify local dependencies, one can conduct a conditional independence test y ⊥⊥ xi|{x/xi} to
examine whether a variable Xi is necessary for predicting Y = y. In prior works, one form of this
test is to examine whether the pointwise conditional mutual information (pCMI) is greater than 0,

pCMI(y;xi|{x/xi}) = log
p(y|x)

p{X/Xi}(y|{x/xi})
> 0. (2)

If so, then it suggests that knowing Xi = x provides additional information about Y that is not
present in {X/Xi}, and Y locally depends on Xi. As the data generation processes are generally
unknown, one has to approximate them with learned models. Recent work in RL has utilized various
approximations such as attention weights [53], Granger causality [14], and input gradients [63].

In this work, for a transition (S = s,A = a, S′ = s′), the event of interest is each next state factor
being (Si)′ = (si)′, and we infer whether it locally depends on each state factor Sj and the action A
(i.e., whether there is an interaction between state factors i and j, where factor j influences i). Then
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Figure 2: During skill learning of SkiLD, the graph-selection policy specifies desired local depen-
dencies for the skill policy to induce, and the induced dependency graph is identified by the dynamics
model and used to update both policies. During task learning (right), the skill policy is kept frozen
and a task policy is trained to select skills to maximize task reward.

we aggregate all local dependencies into a state-specific dependency graph (abbreviated in this work to
dependency graph). This overall dependency graph is represented with G(s, a, s′) = {0, 1}N×(N+1),
and an edge Gij(s, a, s′) denotes, during the transition (s, a, s′), that state factor (si)′ (the “Y = y”)
locally depends on sj (one of the Xj):

Gij := pCMI((xi)′;xj |{x/xj}) > 0 (3)

This graph is used to enhance skill representation, as explained in detail in Section 3.

3 Skill Discovery from Local Dependencies (SkiLD)

In this section, we describe SkiLD, which enhances skills using local dependencies. SkiLD represents
local dependencies as state-specific dependency graphs, defined in Sec. 2.2, and learns to induce
different dependency graphs in the environment for different skills. To intelligently generate target
dependency graphs during training, SkiLD frames unsupervised skill discovery as a hierarchical RL
problem described in Fig. 2 and Alg. 1, where a high-level graph selection policy chooses target local
dependencies to guide exploration and skill learning, and a graph-conditioned skill policy learns to
induce the specified local dependencies using primitive actions.

This framerwork requires formalizing three components: (1) the skill representation Z , presented in
Sec. 3.1, (2) the graph selection policy πG(z|s) and its reward function RG , presented in Sec. 3.2, and
(3) the skill policy πskill(a|s, z) and its corresponding reward function Rskill, presented in Sec. 3.3.

3.1 Skill Representation Z

Prior unsupervised skill discovery methods usually focus skill learning on changing the state or each
factor diversely, which is inefficient when there exist bottleneck states for explorations. Consequently,
they are can be limited to learning simple skills, for example, only changing the easiest-to-control
factor in the state (i.e., the agent itself). To address this problem, SkiLD not only focuses on changing
the state but also considers the interactions between state factors.

Skill Representation. SkiLD represents the skill space as the combination of two components:
Z = G × B, where g ∈ G is a state-specific dependency graph that specifies the desired local
dependencies between state factors (e.g., hammering the nail), and b ∈ B is a diversity indicator the
same as that used in Eysenbach et al. [19]. While the agent inducing particular local dependencies
g, we use b to further encourage it to visit distinguishable states (e.g., under different b values,
training the agent to hammer the nail into different locations). Specifically, the dependency graph is
represented as a binary matrix G = {0, 1}N×(N+1). As described in Sec. 2.2, each edge Gij denotes,
during the transition (s, a, s′), whether the state factor (si)′ locally depends on sj . The diversity
indicator B can be discrete or continuous. In this work, without loss of generality, we follow the
procedure of Eysenbach et al. [19] and use a discrete b sampled uniformly from {1, . . . ,K}, where
K is a predefined number.

Given this skill space, SkiLD learns the skills as a skill-conditioned policy πskill : S ×Z → A, where
πskill is trained to reach diverse states while ensuring that local dependencies specified by the graph g
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Algorithm 1 SkiLD Skill Discovery

1: Initialize the high-level graph-selection policy πG : S → G, the low-level skill policy πskill :
S ×Z → A, the diversity indicator discriminator q : S ×G → p(B), and the dynamics model
f : S ×A → S, graph selection interval L.

2: for each skill training timestep i do
3: // data collection
4: if i % L == 0 then
5: Sample the target dependency graph g ∼ πG(s).
6: Sample the diversity indicator from uniform distribution b ∼ Uniform(B).
7: Compose the skill variable z = (g, b).
8: end if
9: Collect state transitions (s, z, a, s′) with actions from πskill(a|s, z).

10: Infer the induced dependency graph ginduced(s, a, s
′) using the dynamics model f (Sec. 3.1).

11: Update the history of the seen graphs with ginduced(s, a, s
′).

12: // training
13: Sample a batch of (s, z, a, s′) from the replay buffer.
14: Update the dynamics model f(s, a) by minimize the prediction error w.r.t. s′.
15: Update the high-level policy with reward RG (Eq. 5) with the history of seen graphs.
16: Update the discriminator q(b|s, g) with the discrimination (cross-entropy) loss.
17: Infer the induced dependency graph ginduced(s, a, s

′) using the dynamics model f (Sec. 3.1).
18: Infer the diversity reward Rdiversity = log q(b|s, g).
19: Update πskill with Rskill = 1[ginduced(s, a, s

′) = g] · (1 + λRdiversity) (Eq. 4).
20: end for

are induced. Before we describe πskill training in Sec. 3.3, we first discuss how to select the skill z for
πskill to follow during the skill learning stage.

3.2 High-Level Graph-Selection Policy πG

To acquire skills that are useful for downstream tasks, the skill policy πskill needs to learn to induce a
wide range of local dependencies sample-efficiently. To this end, we propose to learn a graph-selection
policy πG : S → G to guide the training of πskill. Specifically, training πskill requires a wise selection
of graphs — as graph space G increases super-exponentially in the number of state factors N , many
graphs are not inducible. To this end, we only select target graphs for the skill policy from a history
of all seen graphs. As the agent learns to induce existing graphs in diverse ways, new graphs may be
encountered, gradually expanding the set of seen graphs.

However, though this history guarantees graph inducibility, two challenges still remain: (1) How to
efficiently explore novel local dependencies, especially hard-to-visit ones? (2) For all seen graphs,
which one should πskill learn next to maximize training efficiency? We address these challenges
based on the following insight — compared to well-learned skills, πskill should focus its training on
underdeveloped skills. Meanwhile, learning new skills opens up the possibility of visiting novel local
dependencies, e.g., learning to grasp the hammer makes it possible for the robot to hammer the nail.

According to this idea, we learn a graph-selection policy πG that guides the exploration and training
of the skill policy πskill. Specifically, πG : S → G selects a new dependency graph the skill policy
should induce for the next L time steps. To increase the likelihood of visiting hard graphs, πG is
trained to maximize the following graph novelty reward

RG =
1√

C(gvisited)
, (4)

where C(gvisited) is the number of times that we have seen the graph in the collected transition.

3.3 Low-Level Skill Policy πskill

Given the skill parameter z from the graph-selection policy, SkiLD learns skills as a skill-conditioned
policy πskill : S ×Z → A, where πskill learns to reach diverse states while ensuring that the local
dependencies specified by g are induced. During skill learning, we select actions by iteratively calling
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the skill policy πskill, and we denote ginduced(s, a, s
′) as the graph that describes the local dependencies

induced in a transition (s, a, s′) when executing a selected action a. We design the reward function
of the skill policy as:

Rskill = 1[ginduced(s, a, s
′) = g] · (1 + λRdiversity), (5)

where 1[ginduced(s, a, s
′) = g] measures whether the induced dependency graph matches the desired

graph, Rdiversity is the weighted diversity reward that further encourages visiting diverse states when
the desired graph is induced, and λ is the coefficient of diversity reward. In the following paragraphs,
we describe how we infer ginduced(s, a, s

′) and estimate Rdiversity for each transition.

Inferring Induced Graphs. To infer the induced graph for a transition (S = s,A = a, S′ = s′),
we need to determine, for each (S ′)i, whether it locally depends on each factor Sj and the action
A. Following Sec. 2.2, we evaluate the conditional dependency (si)′ ⊥̸⊥ sj |{s/sj , a} by examining
whether their pointwise conditional mutual information (pCMI) is greater than a predefined threshold
ϵ. If pCMIij = p((si)′|s,a)

p((si)′|{s/sj ,a}) ≥ ϵ, it suggests that sj is necessary to predict (si)′ and thus the local
dependency exists. Meanwhile, as the transition probability p is unknown, we approximate it with a
learned dynamics model that is trained to minimize prediction error.

Finally, after obtaining the induced dependency graph, we evaluate 1[ginduced(s, a, s
′) = g] by

examining whether each edge gijinduced matches the corresponding edge in the desired graph gij . As
Rskill only provides sparse rewards to the skill policy when the desired graph is induced, we use
hindsight experience replay [2] to enrich learning signals, by relabelling induced graphs as desired
graphs in some episodes.

Diversity Rewards. When the skill policy induces the desired graph, Rdiversity further encourages
it to visit different distinguishable states under different diversity indicators b, e.g., hammering
the nail to different locations. This diversity enhances the applicability of learned skills. To this
end, we design the diversity reward Rdiversity as the forward mutual information between visited
states and the diversity indicator I(s; b), following DIAYN. To estimate the mutual information, we
approximate it with a variational lower bound I(s; b) ≥ Eb,s log q(b|s), where q(b|s) is a neural
network discriminator trained to predict the diversity indicator b from the visited state.

In practice, rather than learning a single low-level skill to handle all graphs, SkiLD utilizes a factorized
lower-level policy. When the target dependency graph is specified, SkiLD identifies which state factor
should be influenced and uses its corresponding policy to sample primitive actions. More details
about this subdivision can be found in Appendix A.

3.4 Downstream Task Learning

In SkiLD, after the skill learning stage, we utilize hierarchical RL to solve reward-supervised
downstream tasks with the discovered skills. The skill policy, πskill acts as the low-level policy while
a task policy, πtask : S → Z , is learned to select which skill z = (g, b) to execute for L steps.
Compared to diversity-based skills that are limited to simple behaviors, our local-dependency-based
skills enable a wide range of interactions between state factors, leading to more efficient exploration
and superior performance of downstream task learning.

4 Experiments

In this section we aim to provide empirical evidence towards the following questions: Q1) Do the
skills learned by SkiLD induce a diverse set of interactions among state factors? Q2) Do the skills
learned by SkiLD enable more efficient downstream task learning compared to other unsupervised
reinforcement learning methods? Our learned skills are visualized at https://sites.google.
com/view/skild/.

4.1 Domains

In this work, we focus on addressing the challenge of vast state space brought by the number of state
factors. Hence, we evaluate our method on two challenging object-rich embodied AI benchmarks:
Mini-behavior [32] and Interactive Gibson [42].
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(a) Thawing (b) Cleaning Car (c) Interactive Gibson

Figure 3: Evaluation domains: Mini-behavior: Installing Printer, Thawing and Cleaning Car, and
iGibson.

The Mini-behavior (Mini-BH) domain [32] (Figure 3a) contains a set of gridworld environments
where an agent can move around and interact with a variety of objects to accomplish certain household
tasks. While conceptually simple, due to highly sequentially interdependent state factors (see details
in the Appendix), this domain has been shown to be extremely challenging for the agent’s exploration
ability, especially under sparse reward [32]. Each Mini-BH environment contains different objects
and different success criteria. We tested on three particular environments in Mini-behavior, including:

• Installing Printer: A relatively simple environment with three state factors: the agent, a table, and
a printer that can be installed.

• Cleaning Car: An environment where the objects have rich and complex interactions. The state
factors include the agent, a toggleable sink, a piece of rag that can be soaked in the sink, a car that
the rag can clean, a soap and a bucket which can together be used to clean the rag.

• Thawing: An environment with lots of movable objects. The state factors include the agent, a sink,
a fridge that can be opened, and three objects that can be thawed in the sink: fish, olive, and a date.

The Interactive Gibson (iGibson) domain [43] (Figure 3b) contains a realistic simulated Fetch
Robot that operates in a kitchen environment with a refrigerator, sink, knife, and peach. The peach
can be washed or cut. This domain is very difficult especially when using low-level motor commands
because much of the domain is free space, meaning that only a minute fraction of action sequences
will manipulate the objects meaningfully.

Both Mini-BH and iGibson require learning long-horizon policies spanning many low-level actions
from sparse reward, making these challenging domains (see details in Appendix).

4.2 Baselines

Before evaluating the empirical questions, we provide a brief description of the baselines. These
baselines include unsupervised skill learning, and causal and hierarchical methods.

Diversity is all you need (DIAYN [19]): This method learns unsupervised state-covering skills using
a mutual information objective. SkiLD utilizes a version of this for state-diversity skills modulated by
a desired dependency graph. This baseline determines how incorporating graph information affects
the algorithm.

Controllability-Aware Skill Discovery (CSD [50]): Extends DIAYN with a factorization based on
controllability. This baseline is a comparable skill learning method that leverages state factorization
but does not encode local dependencies.

Exploration via Local Dependencies (ELDEN [63]): This method utilizes gradient-based techniques
to infer local dependencies for exploration. However, without a skill learning component, it can
struggle to chain together complex behavior.

Chain of Interaction Skills (COInS [14]): This is a hierarchical algorithm that constructs a chain
of skills using Granger-causality to identify local dependencies. Because it is restricted to pairwise
interactions, it struggles to represent the rich policies necessary for these tasks.

Vanilla RL: This baseline uses PPO [57] to directly train an agent with the extrinsic reward. Unlike
other baselines, this method does not have a pertaining phase. Since all the task rewards are sparse
and the tasks are often long horizon, vanilla RL often struggles.
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4.3 Interaction Graph Diversity
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Figure 4: The percentage of episodes where a de-
pendency graph is induced through random skill
sampling. Standard deviation is calculated across
five random seeds.

We first evaluate whether SkiLD is indeed ca-
pable of achieving complex interaction graphs
(Q1), comparing against two strong skill discov-
ery baselines introduced earlier: DIAYN and
CSD.

Each of these methods is trained for 10 Million
steps without having access to any reward. Then
to evaluate their learned skills, we unroll each of
them for 500 episodes with randomly sampled
skills z and examine the diversity of the interac-
tion graphs they can induce. Figure 4 illustrates
the percentages of episodes where some hard
local dependencies have been induced at least
once, in Mini-BH Cleaning Car (for simplic-
ity of presentation, see Appendix for results on
all inducible local dependency graphs and their
meanings). We find that DIAYN and CSD are
limited to skills that only manipulate one ob-
ject individually, for example, picking up the
rag (agent, rag, action → rag) or the soap (agent,
soap, action → soap). By contrast, SkiLD learns
to induce more complicated causal interactions,
such as soaking the rag in the sink (sink, rag →
rag) and cleaning the car with the soaked mug (car, rag → car).

4.4 Sample Efficiency and Performance

Next, we evaluate whether the local dependency coverage provided by SkiLD leads to a performance
boost in downstream task learning under the same number of environment interactions (Q2). We
follow the evaluation setup in the unsupervised reinforcement learning benchmark [38], where for
a given environment, an agent is first pre-trained without access to task reward for Kpt steps, and
then finetuned for Kft steps. Importantly, the same pre-trained skills are reused on multiple distinct
downstream tasks within the same environment, so that only the upper-level skill-selection policy
is task-specific. We have Kpt = 2M , Kft = 1M for installing printer, Kpt = 10M , Kft = 5M for
thawing and cleaning car, and Kpt = 4M , Kft = 2M for iGibson, and evaluate each method for each
task across 5 random seeds. Hyperparameter details can be found in Appendix D. Specifically, we
evaluate on the following downstream tasks:

• Installing Printer: We have a single downstream task in this environment, where the agent needs
to pick up the printer, put it on the table, and turn it on.

• Thawing: We have three downstream tasks: thawing the fish or the olive or the date.
• Cleaning Car: We consider three downstream tasks, where each task is a pre-requisite of the

following one. The tasks are: soak the rag in the sink; clean the car with the rag; and clean the dirty
rag using the soap in the bucket.

• IGibson: The tasks for this domain are: grasping the peach, washing the peach in the sink, and
cutting the peach with a knife.

After skill learning, we train a new upper-level policy that uses z as actions and is trained with extrinsic
reward, as described in Section 3.4. Figure 5 illustrates the improvement of SkiLD as compared to
other methods. Without combining dependency graphs with skill learning, other methods struggle
with any but the simpler tasks. COInS performs poorly because of its chain structure, which restricts
the agent controlling policy from picking up objects. ELDEN’s exploration reaches graphs, but
without skills struggles to utilize that information in downstream tasks. DIAYN learns skills, but few
manipulate the objects, so a downstream model struggles to utilize those skills to achieve meaningful
rewards. By comparison, SkiLD achieves superior performance on 9 of the 10 downstream tasks
evaluated. In the two hardest tasks which require a very long sequence of precise controls, Clean Rag
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Figure 5: Training curves of SkiLD and baselines on multiple downstream tasks (reward supervised
second phase). Each curve depicts the mean and standard deviation of the success rate over 5 random
seeds. SkiLD outperforms all baselines for most tasks, converging faster and to higher returns.

and Cut Peach, SkiLD is the only method that can achieve a non-zero success rate (although still far
from fully mastering the tasks), showcasing the potential of local dependencies for skill learning.

4.5 Graph and Diversity Ablations

We also explore the functionality of the graph and diversity components of the skill parameter z
by assessing the downstream performance of SkiLD without these components. This produces two
ablative versions of SkiLD: SkiLD without diversity and SkiLD without dependency graphs. To
isolate learning from the effect of learned local dependencies, we use ground truth dependency
graphs for ablative evaluations where relevant. In Figure 6, learning without graphs results in zero
performance, consistent with DIAYN results. In addition, removing diversity produces a notable
decline in performance, especially on more challenging tasks like clearning the rag. These evaluations
demonstrate that SkiLD benefits from both the incorporation of dependency graphs and diversity.

5 Related Work

This work lies in the unsupervised skill learning framework [37], where the agent must discover a
set of useful skills which are reward independent. It then extends these skills to construct a 2-layer
hierarchical structure [60], where the upper policy receives reward both for achieving novel skills,
and can then be tuned to utilize the learned skills to accomplish an end task. Finally, the skills are
identified using token causality, a specific problem identified in causal literature.

5.1 Unsupervised Skill Learning

This work describes a framework for utilizing local dependency graphs and diversity to discover
unsupervised skills. Diversity-based state coverage skills have been explored in literature [19]
utilizing forward and backward mutual information techniques to learn a goal space Z , and a skill
encoder q(z|·) [11]. This unsupervised paradigm has been extended with Lipschitz constraints [49],
contrastive objectives [39], information bottleneck [35], population based methods such as particle
estimation [45], quality diversity [44] and mixture of experts [12]. These skills can then be used for
hierarchical policies or planners [56, 67, 23], which mirrors the same structure as SkiLD. Unlike
these methods, SkiLD adds additional subdivision through dependency graphs, which mitigates the
combinatorial explosion of skills that can result from trying to cover a large factored space.

5.2 Hierarchical Reinforcement Learning

The hierarchical policy structure in SkiLD where a higher level policy passes a parameter to be inter-
preted by low-level planners has been formalized in [60], and learned using deep networks utilizing
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Figure 6: A figure illustrating the ablative performance of SkiLD without diversity or without graphs.
Each curve depicts the mean and standard deviation of the success rate over 5 random seeds. Without
graphs, the method collapses completely, while removing diversity results in a noticeable reduction
in downstream performance.

extrinsic reward [3, 62], attention mechanisms [16], initiation critera [34, 4] and deliberation cost [26].
Hierarchies of goal-based policies [40] has been extended with object-centric representations [66],
offline data [48], empowerment [41] and goal counts [51]. In practice, SkiLD uses graph and diversity
parameters similar to goal-based methods. However, the space of goals can often be intractable
large, and methods to address this use graph laplacians [36] causal chains [13, 14] or general causal
relationships [29]. SkiLD is similar to these causal methods but utilizes local dependence along with
general two-layer architectures, thus showing increased generalizability.

5.3 Causality in Reinforcement Learning

This work investigates the application of local dependency to hierarchical reinforcement learning.
This kind of reasoning has been described as “local causality” or “interactions” in prior RL work
for data augmentation [53, 54], learning skill chains [13, 14] and exploration [63]. This work is
the first synthesis of unsupervised skill learning and local dependencies applied to general 2-layer
hierarchical reinforcement learning. Other general causality work investigates action-influence
detection [58, 28], affordance learning [10], model learning [30, 21], critical state identification [46],
and disentanglement [17]. In the context of relating local dependency and causal inference, we
provide a discussion in Appendix C. SkiLD incorporates causality-inspired local dependence to skill
learning, resulting in a set of diverse skills.

6 Conclusion

Unsupervised skill discovery is a powerful tool for learning useful skills in long-horizon sparse
reward tasks. However, many unsupervised skill-learning methods do not take advantage of factored
environments, resulting in poor performance in complex environments with several objects. Skill
Discovery from Local Dependencies utilizes state-specific dependency graphs, identified using
learned pointwise conditional mutual information models, to guide skill discovery. The framework
of defining skills according to a dependency graph and diversity goal, combined with a learned
sampling scheme, achieves difficult downstream tasks. In domains where hand-coded primitive
skills are typically given to the agent, like Mini-behavior and Interactive Gibson, SkiLD can achieve
high performance without requiring explicit domain knowledge. These impressive results arise
intuitively from incorporating local dependencies as skill targets, illuminating a meaningful direction
for unsupervised skill learning to be applied to a wider array of environments.

Limitations and Future Work An important assumption of SkiLD is its access to factored state
space. While factored state space can often be naturally obtained from existing RL benchmarks
and many real-world environments, developments in disentangled representation learning [47, 31]
will help with extending SkiLD to unfactored image domains. Secondly, SkiLD requires accurate
detection of local dependencies. While off-the-shelf methods [63, 58] work well for detecting local
dependencies in our experiments, future works that can more accurately detect local dependencies
will be beneficial to the performance of SkiLD.
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A Factored Skills

Learning to reach both a desired graph g and a diversity parameter b through primitive actions is
challenging. First, different graphs often have substantially different characteristics, with some
graphs that are easy to achieve (eg. action→agent), and others that are quite challenging and rare (eg.
agent, knife, fruit→fruit). Not only would it be challenging for a single policy to encode all of these
behaviors, the diversity parameter notwithstanding, but over-training the frequency at which certain
graphs are called might vary significantly. Rather than trying to learn a single monolithic policy, then,
we instead structure the skill parameterized policy πskill as a collection of factored skills: πskill,i, for
each factor i ∈ {1, . . . , N}.

This modification to the policy structure results in three changes: 1) The upper-level action space
passes a single row of the graph G, denoted with gi, and the desired factor i. 2) Instead of achieving
an entire graph use the achieved row 1[gachieved,i = gi]. 3) The history of seen graphs H is replaced
with a history of factored graph rows Hf .

Define the history of graph rows as Hf := {unique (i, gachieved,i ∀i ∈ 1, . . . , N ∀gachieved ∈ D)}.
This takes the unique graph rows from all those seen in previous data. Then the upper policy uses the
same historical sampling procedure as with unfactorized graphs: the policy samples discretely from
the new history, which will by default return i, gi, a graph row, and the desired factor. This resolves
points 1,3. Point 2 is addressed by replacing Equation 5 with 1[gachieved,i = gi].

Empirically, we found that without this change, the lower policy rarely learns anything, even simple
control of the agent.

B Environment Details

In this section, we provide a detailed description of the environment, including its semantic stages
representing internal progress toward task completion, state space, and action space. We also highlight
that while each task consists of multiple semantic stages, agents do not have access to this information.

(a) Installing Printer (b) Thawing (c) Cleaning Car (d) iGibson

Figure 7: Environments.

Installing Printer As shown in Fig. 7(a), the Installing Printer environment is relatively simple,
consisting of 3 factors: the agent, a printer, and a table. The task requires the agent to complete the
following stages: (1) pick up the printer, (2) bring the printer to and place it on the table, and (3)
turn on the printer. The discrete state space consists of (i) the agent’s position and direction, (ii) the
positions of the printer and whether it is on or off, and (iii) the position of the table. The discrete
action space consists of (i) moving forward, turning left or right, (ii) picking up / placing down the
printer, and (iii) turning on / off the printer.

Thawing As shown in Fig. 7(b) and Fig. 10(a), the Thawing environment consists of 6 factors:
the agent, a sink, a refrigerator, and three frozen objects: fish, olive, and date. Thawing each object
requires the agent to complete the following stages: (1) move to and open the refrigerator, (2) take
the frozen fish out of the refrigerator, (3) put the fish into the sink, and (4) turn on the sink to thaw
it. The discrete state space consists of (i) the agent’s position and direction, (ii) the positions of all
environment entities, (iii) whether the sink door is turned on, (iv) whether the refrigerator door is
opened, and (v) the thawing status of three objects. The discrete action space consists of (i) moving
forward, turning left or right, (ii) opening / closing the refrigerator, (iii) turning on / off the sink, and
(iv) picking up / placing down each object.
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Cleaning Car As shown in Fig. 7(c), the Cleaning Car environment consists of 7 factors: the agent,
a car, a sink, a bucket, a shelf, a rag, and a piece of soap. Cleaning both the car and the rag requires
the agent to complete the following stages: (1) take the rag off the shelf, (2) put it in the sink, (3)
toggle the sink to soak the rag up, (4) clean the car with the soaked rag, (5) take the soap off the
self, and (6) clean the rag with the soap inside the bucket. The discrete state space consists of (i) the
agent’s position and direction, (ii) the positions of all environment entities, (iii) whether the sink is
turned on, (iv) the soak status of the rag, (v) the cleanness of the rag, and (vi) the cleanness of the car.
The discrete action space consists of (i) moving forward, turning left or right, (ii) turning on / off the
sink, and (iii) picking up / placing down the rag / soap.

iGibson As shown in Fig. 7(d), the iGibson environment consists of 4 factors: the robot, a knife, a
peach, and a sink. The robot can do the following things: (1) grasp peach: move close to the peach
and grasp it, (3) wash peach: grasp the peach and place it into the sink, (3) grasp knife: move close to
the knife and grasp it, (4) cut peach: grasp the knife and use it to cut the peach. The continuous state
space consists of (i) the robot’s proprioception, (ii) the poses of all environment entities, and (iii)
whether the peach is cut. The continuous action space consists of (i) end-effector position change, (ii)
base linear and angular velocity, and (iii) gripper torque (to open/close the gripper).

Though looking conceptually simple, we emphasize that these environments are challenging because
of the following factors:

• The state factors are highly sequentially interdependent, making skill learning and task learning
challenging: for example, in cleaning car environments, the agent can’t clean the car until it picks
up the rag, turns on the sink, and soaks the rag. These interdependencies between state factors pose
great challenges to the agent’s exploration ability.

• During the skill-learning stage, we would like the agents to learn all possible skills (e.g., manipu-
lating all objects) rather than learning to manipulate a single object.

• During task learning, we use sparse rewards, and thus it is further challenging for agents to
explore.

• In addition, we use primitive actions, and many actions have no effect if it’s not applicable in
the current state. So the task is especially challenging for exploration.

C Local Dependencies and Causal Inference

In this work, we define local dependencies according to the state factors X = (X1, . . . , XN )
and event of interest Y , which in the context of an MDP is a subset of the next state factors
X ′ = (X

′1, . . . , X
′N ). In the factored MDP formulation [8], we assume that p, the transition

dynamics, are represented by a dynamic Bayesian network (DBN) which is a time-directed bipartite
graph, with edges only from factors in X to factors in X ′. In this work, we assume that the underlying
ground truth DBN, that is the transition function p, can be decomposed according to subsets of state
factors X̄ , such there exists a pX̄(Y = y|X̄ = x) for every state.

The factored transition dynamics analogizes with causal inference in the following way: If the state
factors and next state factors are each assigned a causal variable by adding the assumption that they
can be independently intervened on, and each next state variable carries an associated unobserved
noise variable U i, which we assume is independent of any Xk not connected to X

′j and any other
next state variable X

′j , then we can represent the transition dynamics p with a structural causal model
(SCM) [52], a graph connecting the causal variables in X to the causal variables in X ′.

For a particular outcome variable Y that is one of the next state causal variables X ′, we can describe
local dependence in the RL context according to assumptions about the structural causal model.
Represent the non-noise parents of Y as pa(Y ), and the noise parents as paU (Y ). Under normal
causal assumptions, the structural causal model for Y is a function fY (pa(Y ), paU (Y )) = Y . Define
X̄ as a subset of the endogenous parents of Y and Ū as an equivalent subset of the noise variables.
Further define the values that pa(Y ), paU (Y ), X̄, Ū can take on as pa(y), paU (y), x̄, ū respectively,
and (pa(Y)), X̄ , Ū as the set of states the parents of Y , the variables in X̄ and variables in Ū can take
on respectively.

To formalize local invariance, we add the assumption that fY can be decomposed into a series of func-
tions (fY 1(X̄1 = x̄1, Ū1 = ū1), . . . , fY k(X̄k = x̄, Ūk = ūk)) and gY (pa(Y ) = pa(y), paU (Y ) =
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paU (y)), where each fY i : X̄ × Ū → Y and g : pa(Y) → {1, . . . , k}, a function mapping the parents
of Y to one of the functions. Then if f is represented as:

f(pa(x), paU (y)) :=
k∑

i=1

1(gY (pa(y), paU (y)) = i)fY i(x̄i, ūi) (6)

The local dependence of Y = y in a particular state (x, x′) is then the set of variables in X̄i for the
particular i where 1(gY (pa(y), paU (y)) = i) = 1, and the pCMI test is a way of uncovering these
local dependencies from observational data.

Local dependence has been investigated in the field of context-specific independence [55, 9], which
seeks to find particular assignments of a subset of the causal variables under which an outcome
is independent of some subset of the inputs. In particular, context-set specific independence [9]
determines if a variable is independent of other variables on a particular subset of states, described as
the partial context set. While our work uses the pCMI test described in Equation 2, context-specific
independence focuses on complete independence using knowledge of the structural model.

Alternatively, interactions can be viewed as the causes (X̄) of particular effects (Y ), which have
also been investigated under the description of token or actual cause [25] (as opposed to general
cause). Actual cause utilizes a series of counterfactual tests to determine if a cause is necessary,
sufficient, and minimal for an outcome. Actual cause has primarily been applied in simple, discrete
examples [5, 24], making it difficult to directly apply to RL. However, recent work has incorporated
the notion of context-specific independence and extended actual cause to more complex domains [15].

D Implementation Details

The hyperparameters of skill learning and task learning can be found in Table 1. As it is challenging
to identify local dependencies using learned dynamics models in Thawing and iGibson environments,
we use ground truth local dependencies from simulator. The codebase is built on tianshou [64] for
backend RL, though with significant modifications.

The 5 seeds selected are 0 - 4. The experiments were conducted on machines of the following
configurations:

• Nvidia A40 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz
• Nvidia A100 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz

E Additional Results

E.1 Interaction Graph Diversity

Figure 8 illustrates the percentages of episodes where all local dependencies have been induced at
least once, in Mini-BH Cleaning Car. Again, SkiLD (ours) induces all inducible dependency graphs,
while baselines fail to induce hard graphs with challenging pre-conditions.

The meaning of the graphs are:

• agent, action → agent: agent moving.
• agent, rag, action → rag: agent picking up the rag or moving it.
• agent, soap, action → soap: agent picking up the soap or moving it.
• agent, X → agent: X blocking the agent’s motion.
• agent, sink, action → sink: agent turning on or off the sink.
• agent, sink, rag, action → rag: agent soaking the rag in the sink (which requires that the sink is

turned on).
• sink, rag → rag: the same as above.
• car, rag → car: the rag cleaning the car and getting dirty (which requires that the rag is soaked).
• car, rag → rag: the same as above.
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Table 1: Parameters of Skill Learning and Task Learning. Parameters shared if not specified.
Name Environments

Printer Thawing Cleaning Car iGibson

Skill
Policy

algorithm Rainbow TD3
n step 3 5

skill horizon 30 100
exploration noise 0.4 0.2

MLP size [512, 512]
optimizer Adam

learning rate 3× 10−4

batch size 64

Graph Selection
Policy

algorithm PPO
optimizer Adam

learning rate 1× 10−4

batch size 1024
clip ratio 0.1
MLP size [512, 512]
GAE λ 0.95

entropy coefficient 0.1

Learned
Dynamics Model

optimizer Adam
learning rate 3× 10−4

batch size 128
number of attention layers 1
attention embedding size 128

number of heads 4

Task Skill
Selection Policy

algorithm PPO
MLP size [512, 512]
optimizer Adam

learning rate 1× 10−4

batch size 1024
clip ratio 0.1
GAE λ 0.95

entropy coefficient 0.02

Training # of random seeds 5
diversity reward coefficient β 0.5

• bucket, soap → bucket: the water in the bucket getting soap in it.
• bucket, rag → rag: the rag getting cleaned in the bucket (which requires that the rag is dirty and the

water in the bucket gets soap in it).

E.2 2D Minecraft Results

In addtion to the environments shown in the paper, we further evaluating our method in larger-scale
settings in 2D Minecraft with 15 state factors following Andreas et al. [1].

The state space (15 state factors) consits of: the agent (location and direction), 10 environment entities
(the positions of 3 wood, 1 grass, 1 stone, 1 gold, and 4 rocks surrounding the gold), and 4 inventory
cells (i.e., the number of stick, rope, wood axe, and stone axe that the agent has).

The action space (9 discrete actions) consists of:

• 4 navigation actions: moving up, down, left, right,
• picking up the environment entity in front, which has no effect if the agent does not have the

necessary tool for collecting it,
• 4 crafting actions: crafting a stick/rope/wood axe/stone axe, no effect if the agent does not have

enough ingredients.

In the downstream Mine Gold task, the agent will receive a sparse reward after finishing all the
following steps
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Figure 8: Among all inducible dependency graphs, the percentage of episodes where each graph is
induced through random skill sampling. Standard deviation is calculated across five random seeds.

• collecting a unit of wood to craft a wood stick,
• collecting another unit of wood and combining it with the stick to craft a wood axe that is required

for collecting the stone and for removing the rock,
• collecting a unit of wood and a unit of stone to craft a stick and then a stone axe that is required for

collecting the gold, remove the rock surrounding the gold and collect the gold with the stone axe.

As shown in Fig. 9, SkiLD still outperforms all baselines in this complex task, demonstrating the
usefulness of its learned skills for downstream task solving.

F Skill Visualizations

In Figure 10 we visualize three challenging long-horizon skills learned by SkiLD: thawing the olive,
cleaning the car, and cutting the peach. All of these skills require a sequence of interactions that is
difficult to recover without directed behavior. Thus, comparable baselines do not learn skills of similar
complexity. More skill visualizations can be found at: https://wangzizhao.github.io/SkiLD/.
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Figure 9: Training curves of SkiLD and baselines on the 2D Minecraft downstream task (reward
supervised second phase). Each curve depicts the mean and standard deviation of the success rate
over 5 random seeds. SkiLD outperforms all baselines, converging faster and to higher returns.
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(a) Thaw Olive Skill (b) Clean Car Skill (c) Cut Fruit Skill

Figure 10: Policy rollouts for learned policies that achieve long horizon tasks (a) Mini-BH thaw olive,
(b) Mini-BH clean car, (b) iGibson cut peach.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make the following claims in the abstract and introduction.
(a) Existing methods that reach diverse, distinguishable states can struggle in complex

environments with state factors because they focus on simple state factors: This result
is empirically verified in the performance results in experimental domains in Figure 5,
where DIAYN and CSD struggle to capture any of the skill requiring the manipulation
of multiple state factors, such as cleaning the car or cutting the peach. In Figure 4 we
also demonstrate how CSD and DIAYN fail to capture graphs that cover multi-factor
interactions.

(b) Guiding skill learning with interactions and exploring state coverage within that
space can uncover desirable interactions: This result is empirically verified in the
performance results of SkiLD illustrated in Figure 5, where SkiLD is able to handle
complex, multi-object interactions such as cleaning the rag after cleaning the car or
cutting the peach. Figure 4 also illustrates how desirable interactions like putting soap
in the bucket or cleaning with the rag are uncovered.

(c) The skills learned directed by local dependencies can be reused to efficiently maximize
task rewards: Again, Figure 5 illustrates that compared to vanilla PPO learning, SkiLD,
which uses local dependencies, is able to reuse skills with greater sample efficiency,
and often even higher downstream performance. In these results, the pretrained skills
are reused across tasks in the same domain, such as thawing the fish, thawing the olive
and thawing the date. We provide details about teh training procedure in Section 4.4.

(d) Combining local dependencies with state diversity is important to induce diverse in-
teractions: This claim is supported in Section 4.5 and Figure 6, where performance
noticeably declines after removing the local dependencies and state diversity individu-
ally, especially for more long horizon multi-interaction tasks such as cleaning the car
or cleaning the rag.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of this work in the second paragraph of
the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not make any theoretical claims, since this work primarily focuses on
incorporating an inductive bias into unsupervised skill learning and empirical assessment of
that claim.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3 provides a complete description of the method, with a diagram
illustrating the dataflow in Figure 2. The environments are described in Section 4.1 with
additional details in Appendix B. The number of seeds and amounts of data used for the skill
pretraining and task learning is provided in Section 4.4. We provide all hyperparameters in
Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In https://github.com/wangzizhao/SkiLD, we provide all code for the envi-
ronments, as well as install dependencies for training SkiLD in the Readme of the interac-
tionHRL folder. With the environments, any data for this environment is generated. We
also provide a description of the compute requirements for running these experiments in
Appendix D.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The core experimental setting is presented in Sec. 4. The detailed settings are
included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided error bars in all quantitative results, which are standard deviations
computed from 5 random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the computation resources used in our experiments in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We did not violate the NeurIPS Code of Ethics in this research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of our knowledge, the work performed does not have notable
societal impacts that need to be explicitly addressed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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