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Abstract: Preference-based reinforcement learning (PbRL) aligns a robot behav-
ior with human preferences via a reward function learned from binary feedback
over agent behaviors. We show that dynamics-aware reward functions improve
the sample efficiency of PbRL by an order of magnitude. In our experiments we
iterate between: (1) learning a dynamics-aware state-action representation zsa via
a self-supervised temporal consistency task, and (2) bootstrapping the preference-
based reward function from zsa, which results in faster policy learning and better
final policy performance. For example, on quadruped-walk, walker-walk, and
cheetah-run, with 50 preference labels we achieve the same performance as ex-
isting approaches with 500 preference labels, and we recover 83% and 66% of
ground truth reward policy performance versus only 38% and 21%. The per-
formance gains demonstrate the benefits of explicitly learning a dynamics-aware
reward model. Repo: https://github.com/apple/ml-reed.
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1 Introduction

The quality of a reinforcement learned (RL) policy depends on the quality of the reward func-
tion used to train it. However, specifying a reliable numerical reward function is challenging.
For example, a robot may learn to maximize a defined reward function without actually com-
pleting a desired task, known as reward hacking [1, 2]. Instead, preference-based reinforcement
learning (PbRL) infers the reward values by way of preference feedback used to train a policy
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Using preference feedback avoids the need to manually define
absolute numerical reward values (e.g. in TAMER [13]) and is easier to provide than corrective
feedback (e.g. in DAGGER [14]). However, many existing PbRL methods require either demonstra-
tions [5], which are not always feasible to provide, or an impractical number of feedback samples
[3, 4, 11, 12, 15].

We target sample-efficient reward function learning by exploring the benefits of dynamics-aware
preference-learned reward functions or Rewards Encoding Environment Dynamics (REED) (Sec-
tion 4.1). Fast alignment between robot behaviors and human needs is essential for robots operating
on real world domains. Given the difficulty people face when providing feedback for a single state-
action pair [13], and the importance of defining preferences over transitions instead of single state-
action pairs [4], it is likely that people’s internal reward functions are defined over outcomes rather
than state-action pairs. We hypothesize that: (1) modelling the relationship between state, action,
and next-state triplets is essential to learn preferences over transitions, (2) encoding awareness of
dynamics with a temporal consistency objective will allow the reward function to better generalize
over states and actions with similar outcomes, and (3) exposing the reward model to all transitions
experienced by the policy during training will result in more stable reward estimations during re-
ward and policy learning. Therefore, we incorporate environment dynamics via a self-supervised
temporal consistency task using the state-of-the-art self-predictive representations (SPR) [16] as one
such method for capturing environment dynamics.
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We evaluate the benefits of dynamics-awareness using the current state-of-the-art in preference
learning [3, 4]. In our experiments, which follow Lee et al. [10], REED reward functions out-
perform non-REED reward functions across different preference dataset sizes, quality of preference
labels, observation modalities, and tasks (Section 5). REED reward functions lead to faster policy
training and reduce the number of preference samples needed (Section 6) supporting our hypotheses
about the importance of environments dynamics for preference-learned reward functions.

2 Related Work

Learning from Human Feedback. Learning reward functions from preference-based feedback
[7, 17, 18, 19, 20, 21, 22, 23] has been used to address the limitations of learning policies directly
from human feedback [24, 25, 26] by inferring reward functions from either task success [27, 28, 29]
or real-valued reward labels [30, 31]. Learning policies directly from human feedback is inefficient
as near constant supervision is commonly assumed. Inferring reward functions from task success
feedback requires examples of success, which can be difficult to acquire in complex and multi-step
task domains. Finally, people have difficulty providing reliable, real-valued reward labels. PbRL
was extended to deep RL domains by Christiano et al. [3], then improved upon and made more effi-
cient by PEBBLE [4] followed by SURF [11], Meta-Reward-Net (MRN) [12], and RUNE [15]. To
reduce the feedback complexity of PbRL, PEBBLE [4] sped up policy learning via (1) intrinsically-
motivated exploration, and (2) relabelling the experience replay buffer. Both techniques improved
the sample complexity of the policy and the trajectories generated by the policy, which were then
used to seek feedback. SURF [11] reduced feedback complexity by incorporating augmentations and
pseudo-labelling into the reward model learning. RUNE [15] improved feedback sample complexity
by guiding policy exploration with reward uncertainty. MRN [12] incorporated policy performance
in reward model updates, but further investigation is required to ensure that the method does not
allow the policy to influence and bias how the reward function is learned, two concerns called out
in [32]. SIRL [33] adds an auxiliary contrastive objective to encourage the reward function to learn
similar representations for behaviors human labellers consider to be similar. However, this approach
requires extra feedback from human teachers to provide information about which behaviors are sim-
ilar to one another. Additionally, preference-learning has also been incorporated into data-driven
skill extraction and execution in the absence of a known reward function [34]. Of the extensions and
improvements to PbRL, only MRN [12] and SIRL [33], like REED, explore the benefits of auxiliary
information.

Encoding Environment Dynamics. Prior work has demonstrated the benefits of encoding environ-
ment dynamics in the state-action representation of a policy [16, 35, 36], and reward functions for
imitation learning [37, 38] and inverse reinforcement learning [39, 40]. Additionally, it is common
for dynamics models to predict both the next state and the environment’s reward [35], which sug-
gests it is important to imbue the reward function with awareness of the dynamics. The primary self-
supervised approach to learning a dynamics model is to predict the latent next state [16, 35, 41, 42],
and the current state-of-the-art in data efficient RL [16, 36] uses SPR [16] to do exactly this. Unlike
prior work in imitation and inverse reinforcement learning, we explicitly evaluate the benefits of
dynamics-aware auxiliary objectives versus auxiliary objective induced regularization effect.

3 Preference-based Reinforcement Learning

RL trains an agent to achieve tasks via environment interactions and reward signals [43]. For each
time step t the environment provides a state st used by the agent to select an action according to its
policy at ∼ πϕ(a|st). Then at is applied to the environment, which returns a next state according to
its transition function st+1 ∼ τ(st, at) and a reward r(st, at). The agent’s goal is to learn a policy πϕ
maximizing the expected discounted return,

∑∞
k=0 γ

kr(st+k, at+k). In PbRL [3, 4, 5, 7, 8, 9, 10] πϕ
is trained with a reward function r̂ψ distilled from preferences Pψ iteratively queried from a teacher,
where rψ is assumed to be a latent factor explaining the preference Pψ . A buffer B of transitions is
accumulated as πϕ learns and explores.
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A labelled preference dataset Dpref is acquired by querying a teacher for preference labels every K
steps of policy training and is stored as triplets (σ1, σ2, yp), where σ1 and σ2 are trajectory segments
(sequences of state-action pairs) of length l, and yp is a preference label indicating which, if any,
of the trajectories is preferred [10]. To query the teacher, the M maximally informative pairs of
trajectory segments (e.g. pairs that most reduce model uncertainty) are sampled from B, sent to the
teacher for preference labelling, and stored inDpref [10, 23, 44, 45]. TypicallyDpref is used to update
r̂ψ on a schedule conditioned on the training steps for πϕ (e.g. every time the teacher is queried).

The preference triplets (σ1, σ2, yp) create a supervised preference prediction task to approximate rψ
with r̂ψ [3, 4, 19]. The prediction task follows the Bradley-Terry model [46] for a stochastic teacher
and assumes that the preferred trajectory has a higher cumulative reward according to the teacher’s
rψ . The probability of the teacher preferring σ1 over σ2 (σ1 ≻ σ2) is formalized as:

Pψ[σ
1 ≻ σ2] =

exp
∑
t r̂ψ(s

1
t , a

1
t )∑

i∈{1,2} exp
∑
t r̂ψ(s

i
t, a

i
t)
, (1)

where sit is the state at time step t of trajectory i ∈ {1, 2}, and ait is the corresponding action taken.

The parameters ψ of r̂ψ are optimized such that the binary cross-entropy over Dpref is minimized:

Lψ = − E
(σ1,σ2,yp)∼Dpref

[
yp(0) logPψ[σ

2 ≻ σ1] + yp(1) logPψ[σ
1 ≻ σ2]

]
. (2)

While Pψ[σ1 ≻ σ2] andLψ are defined over trajectory segments, r̂ψ operates over individual (st, at)
pairs. Each reward estimation in Equation 1 is made independently of the other (st, at) pairs in the
trajectory and Pψ[σ1 ≻ σ2] simply sums the independently estimated rewards. Therefore, environ-
ment dynamics, or the outcome of different actions in different states, are not explicitly encoded in
the reward function, limiting its ability to model the relationship between state-action pairs and the
values associated with their outcomes. By supplementing the supervised preference prediction task
with a self-supervised temporal consistency task (Section 4.1), we take advantage of all transitions
experienced by πϕ to learn a state-action representation in a way that explicitly encodes environment
dynamics, and can be used to learn to solve the preference prediction task.

4 Dynamics-Aware Reward Function

In this section, we present our approach to encoding dynamics-awareness via a temporal consistency
task into the state-action representation of a preference-learned reward function. There are many
methods for encoding dynamics and we show results using SPR, the current state of the art. The
main idea is to learn a state-action representation that is predictive of the latent representation of the
next state using a self-supervised temporal consistency task and all transitions experienced by πϕ.
Preferences are then learned with a linear layer over the state-action representation.

4.1 Rewards Encoding Environment Dynamics (REED)

We use the SPR [16] self-supervised temporal consistency task to learn state-action representations
that are predictive of likely future states and thus environment dynamics. The state-action represen-
tations are then bootstrapped to solve the preference prediction task in Equation 1 (see Figure 1 for
an overview of the architecture). The SPR network is parameterized by ψ and θ, where ψ is shared
with r̂ψ and θ is unique to the SPR network. At train time, batches of (st, at, st+1) triplets are
sampled from a buffer B and encoded: fs(st, ψs)→ zst , fa(at, ψa)→ zat , fsa(zst , z

a
t , ψsa)→ zsat ,

and fs(st+t, ψs) → zst+1. The embedding zst+1 is used to form our target for Equations 3 and 4. A
dynamics function gd(zsat , θd)→ ẑst+1 then predicts the latent representation of the next state zst+1.
The functions fs(·), fa(·), and gd(·) are multi-layer perceptrons (MLPs), and fsa(·) concatenates zst
and zat along the feature dimension before encoding them with a MLP. To encourage knowledge of
environment dynamics in zsat , gd(·) is kept simple, e.g. a linear layer.

Following [16], a projection head hpro(·, θpro) is used to project both the predicted and target
next state representations to smaller latent spaces via a bottleneck layer and a prediction head

3



PREFERENCE-LEARNED

REWARD FUNCTION

SELF-PREDICTIVE REPRESENTATION (SPR)

State Encoder

fs( ⋅ , ψs)

Action Encoder

fa( ⋅ , ψa) State Action Encoder


fsa( ⋅ , ⋅ , ψsa)
Dynamics

gd( ⋅ , θd)

Prediction

hpre( ⋅ , θpre)

Projection

hpro( ⋅ , θpro)

State Encoder

fs( ⋅ , ψs)

Projection

hpro( ⋅ , θpro)

Replay

Buffer


ℬ state

st

action

at

next state

st+1

sample

ℒSS

za
t

zsa
t

zs
t

̂zs
t+1

zs
t+1

̂yd
t+1

yd
t+1

MLP
predicted 

reward


̂rψ

Figure 1: Architecture for self-predictive representation (SPR) objective [16] (in yellow), and
preference-learned reward function (in blue). Modules in green are shared between SPR and the
preference-learned reward function.

hpre(·, θpre) is used to predict the target projections: ŷdt+1 = hpre(hpro(ẑt+1, θpro), θpre) and ydt+1 =
hpro(zt+1, θpro). Both hpro and hpre are modelled using linear layers.

The benefits of REED should be independent of the self-supervised objective function. Therefore,
we present results for two different self-supervised objectives: Distillation (i.e. SimSiam with loss
LSS) [36, 47] and Contrastive (i.e. SimCLR with loss LC) [48, 49, 50], referred to as Distillation
REED and Contrastive REED respectively. LSS and LC are defined as:

LSS = − cos(ŷdt+1, sg(ydt+1)), (3)

LC = − log
exp(cos(ŷdt+1, sg(ydt+1))/τ)∑2N

k=1 1[sk ̸=st+1] exp(cos(y
d
t+1, ŷ

d
k)/τ)

. (4)

In LSS, a stop gradient operation, sg(...), is applied to ydt+1 and then ŷdt+1 is pushed to be consistent
with ydt+1 via a negative cosine similarity loss. In LC, a stop gradient operation is applied to ydt+1

and then ŷdt+1 is pushed to be predictive of which candidate next state is the true next state via the
NT-Xent loss.

Rather than applying augmentations to the input, temporally adjacent states are used to create the
different views [16, 36, 49, 50]. Appendix D details the architectures for the SPR component net-
works.

State-Action Fusion Reward Network. REED requires a modification to the reward network ar-
chitecture used by Christiano et al. [3] and PEBBLE [4] as latent state representations are compared.
Instead of concatenating raw state-action features, we separately encode the state, fs(·), and action,
fa(·), before concatenating the embeddings and passing them to the body of our reward network.
For the purposes of comparison, we refer to the modified reward network as the state-action fusion
(SAF) reward network. For architecture details, see Appendix D.

4.2 Incorporating REED into PbRL

The self-supervised temporal consistency task is used to update the parameters ψ and θ each time
the reward network is updated (every K steps of policy training, Section 3). All transitions in
the buffer B are used to update the state-action representation zsa, which effectively increases the
amount of data used to train the reward function from M ·K preference triplets to all state-action
pairs experienced by the policy1. REED precedes selecting and presenting the M queries to the
teacher for feedback. Updating ψ and θ prior to querying the teacher exposes zsa to a larger space
of environment dynamics (all transitions collected since the last model update), which enables the
model to learn more about the world prior to selecting informative trajectory pairs for the teacher
to label. The state-action representation zsa and a linear prediction layer are used to solve the

1Note the reward function is still trained with M ·K triplets, but the state-action encoder has the opportunity
to better capture the dynamics of the environment.
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preference prediction task (Equation 1). After each update to r̂ψ , πϕ is trained on the updated r̂ψ .
See Appendix C for REED incorporated into PrefPPO [3] and PEBBLE [4].

5 Experimental Setup

Our experimental results in Section 6 demonstrate that learning a dynamics-aware reward function
explicitly improves PbRL policy performance for both state-space and image-space observations.
To verify that the performance improvements are due to dynamics-awareness rather than just the
inclusion of a self-supervised auxiliary task, we compared against an image-augmentation-based
auxiliary task (Image Aug.). The experiments and results are provided in Appendix G) and show
that indeed the performance improvements are due specifically to encoding environment dynamics
in the reward function. Additionally, we compare against the SURF [11], RUNE [15], and MRN
[12] extensions to PEBBLE.

We follow the experiments outlined by the B-Pref benchmark [10]. Models are evaluated on the
DeepMind Control Suite (DMC) [51] and MetaWorld [52] environment simulators. DMC provides
locomotion tasks with varying degrees of difficulty and MetaWorld provides object manipulation
tasks. For each DMC and MetaWorld task, we evaluate performance on varying amounts of feed-
back, i.e. different preference dataset sizes, and different labelling strategies for the synthetic teacher.
The number of queries (M ) presented to the teacher every K steps is set such that for a given task,
teacher feedback always stops at the same episode. Feedback is provided by simulated teachers
following [3, 4, 10, 11, 34], where six labelling strategies are used to evaluate model performance
under different types and amounts of label noise. The teaching strategies were first proposed by
B-Pref [10]. An overview of the labelling strategies is provided in Appendix B.

Following Christiano et al. [3] and PEBBLE [4], r̂ψ is modelled with an ensemble of three networks
with a corresponding ensemble for the SPR auxiliary task. The ensemble is key for disagreement-
based query sampling (Appendix A) and has been shown to improve final policy performance [10].
All queried segments are of a fixed length (l = 50)2. The Adam optimizer [53] with β1 = 0.9,
β2 = 0.999, and no L2-regularization [54] is used to train the reward functions. For all PEBBLE-
related methods, intrinsic policy training is reported in the learning curves and occurs over the
first 9000 steps. The batch size for training on the preference dataset is M , matching the number of
queries presented to the teacher, and varies based on the amount of feedback. For details about model
architectures, hyper-parameters, and the image augmentations used in the image-augmentation self-
supervised auxiliary task, refer to Appendices D, E, and G. None of the hyper-parameters nor archi-
tectures are altered from the original SAC [55], PPO [56], PEBBLE [4], PrefPPO [4], Meta-Reward-
Net [12], RUNE [15], nor SURF [11] papers. The policy and preference learning implementations
provided in the B-Pref repository [57] are used for all experiments.

6 Results

The synthetic preference labellers allow policy performance to be evaluated against the ground truth
reward function and is reported as mean and standard deviation over 10 runs. Both learning curves
and mean normalized returns are reported, where mean normalized returns [10] are given by:

normalized returns =
1

T

∑
t

rψ(st, π
r̂ψ
ϕ (at))

rψ(st, π
rψ
ϕ (at))

, (5)

where T is the number of policy training training steps or episodes, rψ is the ground truth reward
function, πr̂ψϕ is the policy trained on the learned reward function, and πrψϕ is the policy trained on
the ground truth reward function.

2Fixed segments lengths are not strictly necessary, and, when evaluating with simulated humans, are harmful
when the reward is a constant step penalty.
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Table 1: Mean and ± s.d. normalized return (Equation 5) over 10 random seeds with the oracle
labeller and disagreement sampling. The best result for each condition is in bold. BASE refers to the
PEBBLE or PrefPPO baseline, +DISTILL distillation REED, and +CONTRAST contrastive REED.
SURF, RUNE, and MRN are baselines. Results are normalized relative to SAC. See Appendices
H.2 and H.4 for all tasks, feedback amounts, and PREFPPO results.

TASK FEED. PEBBLE

BASE +DISTILL +CONTRAST SURF [11] RUNE [15] MRN [12]

WALKER
WALK

500 0.74 ± 0.18 0.86 ± 0.20 0.90 ± 0.17 0.78 ± 0.12 0.76 ± 0.20 0.77 ± 0.20
50 0.21 ± 0.10 0.66 ± 0.24 0.62 ± 0.22 0.47 ± 0.13 0.23 ± 0.12 0.38 ± 0.12

QUADRUPED
WALK

500 0.56 ± 0.21 1.10 ± 0.21 1.10 ± 0.21 0.80 ± 0.18 1.10 ± 0.20 1.10 ± 0.21
50 0.38 ± 0.26 0.65 ± 0.16 0.31 ± 0.18 0.48 ± 0.19 0.44 ± 0.21 0.83 ± 0.12

CHEETAH
RUN

500 0.86 ± 0.14 0.88 ± 0.22 0.94 ± 0.21 0.56 ± 0.16 0.61 ± 0.17 0.80 ± 0.16
50 0.35 ± 0.11 0.63 ± 0.23 0.70 ± 0.28 0.55 ± 0.18 0.32 ± 0.12 0.38 ± 0.16

BUTTON
PRESS

10K 0.66 ± 0.26 Collapses 0.65 ± 0.27 0.68 ± 0.29 0.45 ± 0.21 0.59 ± 0.27
2.5K 0.37 ± 0.18 Collapses 0.49 ± 0.25 0.40 ± 0.18 0.22 ± 0.10 0.35 ± 0.15

SWEEP
INTO

10K 0.28 ± 0.12 Collapses 0.47 ± 0.23 0.48 ± 0.26 0.29 ± 0.15 0.28 ± 0.25
2.5K 0.15 ± 0.09 Collapses 0.21 ± 0.13 0.25 ± 0.13 0.16 ± 0.11 0.22 ± 0.12

MEAN - 0.46 0.47 0.64 0.55 0.46 0.57

Figure 2: Learning curves for three DMC and two MetaWorld tasks with 50 and 500 (DMC) and
2.5k and 10k (MetaWorld) pieces of feedback, for state-space observations, disagreement sampling,
and oracle labels. Refer to Appendices H.1 and H.3 for more tasks and feedback amounts.
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Figure 3: Mean normalized return across or-
acle, noisy, mistake, and equal labellers Lee
et al. [10] on quadruped-walk with state-
space observations for 50, 500, and 1000
pieces of feedback.

Learning curves for state-space observations for
SAC and PPO trained on the ground truth reward,
PEBBLE, PrefPPO, PEBBLE + REED, PrefPPO +
REED, Meta-Reward-Net, SURF, and RUNE are
shown in Figure 2, and mean normalized returns
[10] are shown in Table 1 (Appendix H.2 and H.4
for PrefPPO). The learning curves show that reward
functions learned using REED consistently outper-
form the baseline methods for locomotive tasks,
and for manipulation tasks REED methods are con-
sistently a top performer, especially for smaller
amounts of feedback. On average across tasks and
feedback amounts, REED methods outperform baselines (MEAN in Table 1).

Learning curves for image-space observations are presented for the PEBBLE and PEBBLE+REED
methods in Figure 4, and mean normalized returns [10] in Appendix H.4 . The impact of preference
label quality on policy performance for PEBBLE and PEBBLE+REED is shown in Figure 3 and
Table 2. On average, across labeller strategies, REED-based methods outperform baselines.

Figures 2, 3 and 4 show that REED improves the speed of policy learning and the final performance
of the learned policy relative to non-REED methods. The increase in policy performance is observed
across environments, labelling strategies, amount of feedback, and observation type. We ablated the
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pebble+contr.pebble+dist.pebblepposac prefppo prefppo+distill. prefppo+contr.

Figure 4: Learning curves for three DMC and two MetaWorld tasks with 50 and 500 (DMC) and
2.5k and 10k (MetaWorld) pieces of feedback, for image–space observations, disagreement sam-
pling, and oracle labels. Only PEBBLE is evaluated for the image-space due to the poor state-space
performance of PrefPPO. Results for more tasks and feedback amounts are available in Appendices
H.1 and H.3.

impact of the modified reward architecture and found that the REED performance improvements are
not due to the modified reward network architecture (Appendix F). Refer to Appendix H for results
across all combinations of task, feedback amount, and teacher labelling strategies for state-space
observations (H.1 and H.2), and image-space MetaWorld results on more tasks (drawer open, drawer
close, window open, and door open) and feedback amounts (H.3 and H.4). The trends observed in
the subset of tasks included in Table 1, and Figures 2 and 4 are also observed in the additional tasks
and experimental conditions in the Appendices.

6.1 Source of Improvements
Table 2: Mean normalized returns across
feedback amounts, tasks, and labeller types
(oracle, mistake, noisy, and equal).

PEBBLE +DISTILL +CONTRAST SURF RUNE MRN

0.53 0.47 0.68 0.54 0.46 0.50

There is no clear advantage between the Distillation
and Contrastive REED objectives on the DMC loco-
motion tasks, suggesting the improved policy perfor-
mance stems from encoding awareness of dynamics
rather than any particular self-supervised objective.
However in the MetaWorld object manipulation tasks, Distillation REED tends to collapse with Con-
trastive REED being the more robust method. From comparing SAC, PEBBLE, PEBBLE+REED,
and PEBBLE+Image Aug. (Appendix G.3), we see that PEBBLE+Image Aug. improves perfor-
mance over PEBBLE with large amounts of feedback (e.g. 4.2 times higher mean normalized re-
turns for walker-walk at 1000 pieces of feedback), but does not have a large effect on performance
for lower-feedback regimes (e.g. 5.6% mean normalized returns with PEBBLE+Image Aug. versus
5.5% with PEBBLE for walker-walk at 50 pieces of feedback). In contrast, incorporating REED
always yields higher performance than both the baseline and PEBBLE+Image Aug. regardless of
the amount of feedback. For results analyzing the generalizability and stability of reward function
learning when using a dynamics-aware auxiliary objective, see Appendix I.

7 Discussion and Limitations

The benefits of dynamics awareness are especially pronounced for labelling types that introduce in-
correct labels (i.e. mistake and noisy) (Figure 3 and Appendix H) and smaller amounts of preference
feedback. For example, on state-space observation DMC tasks with 50 pieces of feedback, REED
methods more closely recover the performance of the policy trained on the ground truth reward re-
covering 62 – 66% versus 21% on walker-walk, and 65 – 85% versus 38% on quadruped-walk for
PEBBLE-based methods (Table 1). Additionally, PEBBLE+REED methods retain policy perfor-
mance with a factor of 10 fewer pieces of feedback compared to PEBBLE. Likewise, when con-
sidering image-space observations, PEBBLE+REED methods trained with 10 times less feedback
exceed the performance of base PEBBLE on all DMC tasks. For instance, PEBBLE+Contrastive
REED achieves a mean normalized return of 53% with 50 pieces of feedback whereas baseline
PEBBLE reaches 36% on the same task with 500 pieces of feedback.
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The policy improvements are smaller for REED reward functions on MetaWorld tasks than they are
for DMC tasks and are generally smaller for PrefPPO than PEBBLE due to a lack of data diversity in
the buffer B used to train on the temporal consistency task. For PrefPPO lack of data diversity is due
to slow learning and for MetaWorld a high similarity between observations. In particular, Distillation
REED methods on state-space observations frequently suffer representation collapse and are not
reported here. The objective, in this case SimSiam, learns a degenerate solution, where states are
encoded by an constant function and actions are ignored due to the source and target views having a
near perfect cosine similarity. However, representation collapse is not observed for the image-space
observations, and baseline performance is retained with one quarter the amount of feedback when
training with PEBBLE+REED methods. If the amount of feedback is kept constant, we notice a
25% to 70% performance improvement over the baseline for all PEBBLE+REED methods in the
Button Press task.

The benefits of dynamics awareness can be compared against the benefits of other approaches to
improving feedback sample complexity, specifically pseudo-labelling (in SURF) [11], guiding pol-
icy exploration with reward uncertainty (in RUNE) [15], and incorporating policy performance into
reward updates (in MRN) [12]. REED methods consistently outperform SURF, RUNE, and MRN
on the DMC tasks demonstrating the importance of dynamics awareness for locomotion tasks. On
the MetaWorld object manipulation tasks, REED frequently outperforms SURF, RUNE, and MRN,
especially for smaller amounts of feedback, but the performance gains are smaller than for DMC.
Smaller performance gains on MetaWorld relative to other sample efficiency methods is in line
with general REED findings for MetaWorld (above) that relate to the slower environment dynamics.
However, it is important to call out that all four methods are complementary and can be combined.

Across tasks and feedback amounts, policy performance is higher for rewards that are learned on
the state-space observations compared to those learned on image-space observations. There are
several tasks, such as cheetah-run and sweep into, for which PEBBLE, and therefore all REED
experiments that build on PEBBLE, are not able to learn reward functions that lead to reasonable
policy performance when using the image-space observations.

The results demonstrate the benefits and importance of environment dynamics to preference-learned
reward functions.

Limitations The limitations of REED are: (1) more complex tasks still require a relatively large
number of preference labels, (2) extra compute and time are required, (3) Distillation REED can
collapse when observations have high similarity, and (4) redundant transitions in the buffer B from
slow policy learning or state spaces with low variability result in over-fitting on the temporal consis-
tency task.

8 Conclusion

We have demonstrated the benefits of dynamics awareness in a preference-learned reward for PbRL,
especially when feedback is limited or noisy. Across experimental conditions, we found REED
methods retain the performance of PEBBLE with a 10-fold decrease in feedback. The benefits are
observed across tasks, observation modalities, and labeller types. Additionally, we found that, com-
pared to the other PbRL extensions targeting sample efficiency, REED most consistently produced
the largest performance gains, especially for smaller amounts of feedback. The resulting sample ef-
ficiency is necessary for learning reward functions aligned with user preferences in practical robotic
settings.
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lems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

[2] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. Dragan. Inverse reward design.
Advances in Neural Information Processing Systems, 30, 2017.

[3] P. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. volume 30, 2017.

[4] K. Lee, L. Smith, and P. Abbeel. PEBBLE: Feedback-efficient interactive reinforcement learn-
ing via relabeling experience and unsupervised pre-training. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 6152–6163. PMLR, 2021.

[5] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
preferences and demonstrations in Atari. Advances in Neural Information Processing Systems,
31, 2018.

[6] D. Hadfield-Menell, S. Russell, P. Abbeel, and A. Dragan. Cooperative inverse reinforcement
learning. Advances in Neural Information Processing Systems, 29, 2016.

[7] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg. Scalable agent alignment
via reward modeling: A research direction. arXiv preprint arXiv:1811.07871, 2018.

[8] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and
P. Christiano. Learning to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008–3021, 2020.

[9] J. Wu, L. Ouyang, D. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. Christiano. Recursively
summarizing books with human feedback. arXiv preprint arXiv:2109.10862, 2021.

[10] K. Lee, L. Smith, A. Dragan, and P. Abbeel. B-Pref: Benchmarking preference-based rein-
forcement learning. Neural Information Processing Systems, 2021.

[11] J. Park, Y. Seo, J. Shin, H. Lee, P. Abbeel, and K. Lee. SURF: Semi-supervised reward learning
with data augmentation for feedback-efficient preference-based reinforcement learning. arXiv
preprint arXiv:2203.10050, 2022.

[12] R. Liu, F. Bai, Y. Du, and Y. Yang. Meta-Reward-Net: Implicitly differentiable reward learn-
ing for preference-based reinforcement learning. Advances in Neural Information Processing
Systems, 35, 2022.

[13] W. Knox and P. Stone. Tamer: Training an agent manually via evaluative reinforcement. In
Proceedings of the International Conference on Development and Learning, pages 292–297.
IEEE, 2008.

[14] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, pages 627–635, 2011.

[15] X. Liang, K. Shu, K. Lee, and P. Abbeel. Reward uncertainty for exploration in preference-
based reinforcement learning. 2022.

[16] M. Schwarzer, A. Anand, R. Goel, R. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. In Proceedings of the International
Conference on Learning Representations, 2020.

[17] R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Proceedings of
the Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 12–27. Springer, 2011.

9



[18] R. Akrour, M. Schoenauer, and M. Sebag. April: Active preference learning-based reinforce-
ment learning. In Proceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 116–131. Springer, 2012.

[19] A. Wilson, A. Fern, and P. Tadepalli. A Bayesian approach for policy learning from trajectory
preference queries. Advances in Neural Information Processing Systems, 25, 2012.

[20] H. Sugiyama, T. Meguro, and Y. Minami. Preference-learning based inverse reinforcement
learning for dialog control. In Proceedings of Interspeech, 2012.

[21] C. Wirth and J. Fürnkranz. Preference-based reinforcement learning: A preliminary survey. In
Proceedings of the Workshop on Reinforcement Learning from Generalized Feedback: Beyond
Numeric Rewards, 2013.

[22] C. Wirth, J. Fürnkranz, and G. Neumann. Model-free preference-based reinforcement learning.
In Proceedings of the Conference on Artificial Intelligence (AAAI), 2016.

[23] D. Sadigh, A. Dragan, S. Sastry, and S. Seshia. Active preference-based learning of reward
functions. 2017.

[24] P. Pilarski, M. Dawson, T. Degris, F. Fahimi, J. Carey, and R. Sutton. Online human training
of a myoelectric prosthesis controller via actor-critic reinforcement learning. In Proceedings
of the International Conference on Rehabilitation Robotics, pages 1–7. IEEE, 2011.

[25] J. MacGlashan, M. Ho, R. Loftin, B. Peng, G. Wang, D. Roberts, M. Taylor, and M. Littman.
Interactive learning from policy-dependent human feedback. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 2285–2294. PMLR, 2017.

[26] D. Arumugam, J. Lee, S. Saskin, and M. Littman. Deep reinforcement learning from policy-
dependent human feedback. arXiv preprint arXiv:1902.04257, 2019.

[27] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. Solar: Deep structured
representations for model-based reinforcement learning. In Proceedings of the International
Conference on Machine Learning, pages 7444–7453. PMLR, 2019.

[28] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-end robotic reinforcement
learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

[29] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine. AVID: Learning multi-stage tasks
via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

[30] W. Knox and P. Stone. Interactively shaping agents via human reinforcement: The TAMER
framework. In Proceedings of the International Conference on Knowledge Capture, pages
9–16, 2009.

[31] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone. Deep Tamer: Interactive agent shaping
in high-dimensional state spaces. In Proceedings of the Conference on Artificial Intelligence
(AAAI), volume 32, 2018.

[32] S. Armstrong, J. Leike, L. Orseau, and S. Legg. Pitfalls of learning a reward function online.
arXiv preprint arXiv:2004.13654, 2020.

[33] A. Bobu, Y. Liu, R. Shah, D. S. Brown, and A. D. Dragan. Sirl: Similarity-based implicit
representation learning. In Proceedings of the 2023 ACM/IEEE International Conference on
Human-Robot Interaction, pages 565–574, 2023.

[34] X. Wang, K. Lee, K. Hakhamaneshi, P. Abbeel, and M. Laskin. Skill preferences: Learning to
extract and execute robotic skills from human feedback. In Proceedings of the Conference on
Robot Learning, pages 1259–1268. PMLR, 2021.

10



[35] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant representations
for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

[36] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering Atari games with limited data.
Advances in Neural Information Processing Systems, 34, 2021.

[37] D. Brown, R. Coleman, R. Srinivasan, and S. Niekum. Safe imitation learning via fast bayesian
reward inference from preferences. In International Conference on Machine Learning, pages
1165–1177. PMLR, 2020.

[38] H. Sikchi, A. Saran, W. Goo, and S. Niekum. A ranking game for imitation learning. arXiv
preprint arXiv:2202.03481, 2022.

[39] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783–792. PMLR, 2019.

[40] L. Chen, R. Paleja, and M. Gombolay. Learning from suboptimal demonstration via self-
supervised reward regression. In Conference on robot learning, pages 1262–1277. PMLR,
2021.

[41] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. In Proceedings of the International Conference on
Machine Learning, pages 2555–2565. PMLR, 2019.

[42] A. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. Advances in Neural Information Processing
Systems, 33:741–752, 2020.

[43] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[44] E. Biyik and D. Sadigh. Batch active preference-based learning of reward functions. In Pro-
ceedings of the Conference on Robot Learning, pages 519–528. PMLR, 2018.

[45] E. Biyik, N. Huynh, M. Kochenderfer, and D. Sadigh. Active preference-based gaussian pro-
cess regression for reward learning. In Proceedings of the Robotics: Science and Systems,
2020.

[46] R. Bradley and M. Terry. Rank analysis of incomplete block designs: I. The method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

[47] X. Chen and K. He. Exploring simple Siamese representation learning. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021.

[48] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learn-
ing of visual representations. In Proceedings of the International Conference on Machine
Learning, pages 1597–1607. PMLR, 2020.

[49] A. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[50] B. Mazoure, R. Tachet des Combes, T. Doan, P. Bachman, and R. Hjelm. Deep reinforcement
and InfoMax learning. Advances in Neural Information Processing Systems, 33:3686–3698,
2020.

[51] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[52] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-World: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Proceedings of
the Conference on Robot Learning, pages 1094–1100. PMLR, 2020.

11



[53] D. Kingma and J. Ba. ADAM: A method for stochastic optimization. volume 3, 2015.

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems,
32, 2019.

[55] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic actor. In Proceedings of the International
Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[56] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

[57] K. Lee, L. Smith, A. Dragan, and P. Abbeel. B-Pref, 2021. URL https://github.com/

rll-research/BPref.

[58] Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation
learning. In Proceedings of the International Conference on Robotics and Automation, pages
2434–2444. IEEE, 2022.

[59] P. Goyal, S. Niekum, and R. Mooney. Pixl2r: Guiding reinforcement learning using natural
language by mapping pixels to rewards. In Proceedings of the Conference on Robot Learning,
pages 485–497. PMLR, 2021.

A Disagreement Sampling

For all experiments in this paper, disagreement sampling is used to select which trajectory pairs will
be presented to the teacher for preference labels. Disagreement-based sampling selects trajectory
pairs as follows: (1) N segments are sampled uniformly from the replay buffer; (2) the M pairs
of segments with the largest variance in preference prediction across the reward network ensemble
are sub-sampled. Disagreement-based sampling is used as it reliably resulted in highest performing
policies compared to the other sampling methods discussed in Lee et al. [10].

B Labelling Strategies

An overview of the six labelling strategies is provided below, ordered from least to most noisy (see
[10] for details and configuration specifics):

1. oracle - prefers the trajectory segment with the larger return and equally prefers both seg-
ments when their returns are identical

2. skip - follows oracle, except randomly selects 10% of the M query pairs to discard from
the preference dataset Dpref

3. myopic - follows oracle, except compares discounted returns (γ = 0.9) placing more
weight on transitions at the end of the trajectory

4. equal - follows oracle, except marks trajectory segments as equally preferable when the
difference in returns is less than 0.5% of the average ground truth returns observed during
the last K policy training steps

5. mistake - follows oracle, except randomly selects 10% of theM query pairs and assigns in-
correct labels in a structured way (e.g., a preference for segment two becomes a preference
for segment one)

6. noisy - randomly assigns labels with probability proportional to the relative returns asso-
ciated with the pair, but labels the segments as equally preferred when they have identical
returns
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C REED Algorithm

The REED task is specified in Algorithm 1 in the context of the PEBBLE preference-learning al-
gorithm. The main components of the PEBBLE algorithm are included, with our modifications
identified in the comments. For the original and complete specification of PEBBLE, please see [4] -
Algorithm 2.

Algorithm 1 PEBBLE + REED Training Procedure

1: Given:
2: K ▷ teacher feedback frequency
3: M ▷ queries per feedback
4: Initializes:
5: Qθ ▷ parameters for Q-function
6: r̂ψ ▷ learned reward function
7: SPR(ψ,θ) ▷ self-future consistency (ψ parameters shared with r̂ψ)
8: Dpref ← ∅ ▷ preference dataset
9: DSPR ← ∅ ▷ SPR dataset

10: ▷ unsupervised policy training and exploration ◁
11: B, πϕ ← EXPLORE() ▷ [4] - Algorithm 1

12: ▷ joint policy and reward training ◁
13: for policy train step do
14: if step % K = 0 then
15: Dsfc ← Dsfc

⋃
B ▷ update SPR dataset

16: for each SPR gradient step do
17: {(st, at, st+1)} ∼ Dsfc ▷ sample minibatch
18: {(ẑst+1, z

s
t+1)} ← SFC FORWARD({(st, at, st+1)}) ▷ Section D.2

19: optimize Lreed with respect to SPR(ψ,θ) ▷ Equations (3) and (4)
20: r̂ψ ← SPRψ ▷ copy shared SPR parameters to reward model
21: update Dpref, r̂ψ , and B ▷ following [4] - Algorithm 2 [lines 9 - 18]
22: update B, πϕ, and Qθ ▷ following [4] - Algorithm 2 [lines 20 - 27]
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D Architectures

The network architectures are specified in PyTorch 1.13. For architecture hyper-parameters, e.g.
hidden size and number of hidden layers, see Appendix E.2

D.1 Self-Predictive Representations Network

The SPR network is implemented in PyTorch. The architectures for the next state projector

and consistency predictor when image observations are used come from [58]. The image
encoder architecture comes from [59]. The SPR network is initialized as follows:

def build_spr_network(
self ,
state_size: int ,
state_embed_size: int ,
action_size: int ,
action_embed_size: int ,
hidden_size: int ,
consistency_projection_size: int ,
consistency_comparison_hidden_size: int ,
with_consistency_prediction_head: bool ,
num_layers: int ,
image_observations: bool ,
image_hidden_num_channels: int

):
"""
The network architecture and build logic to the complete the REED
self -supervised temporal consistency task based on SPR.

Args:
state_size: number of features defining the agent’s state space
state_embed_size: number of dimensions in the state embedding
action_size: number of features defining the agent ’s actions
action_embed_size: number of dimensions in the action embedding
hidden_size: number of dimensions in the hidden layers of

state -action embedding network
consistency_projection_size: number of units used to compare the

predicted and target latent next
state

consistency_comparison_hidden_size: number of units in the hidden
layers of the next_state_projector
and the consistency_predictor

with_consistency_prediction_head: when using the contrastive of
objective the consistency
prediction is not used , but is
when using the distillation
objective

num_layers: number of hidden layers used to embed the
state -action representation

image_observations: whether image observations are used. If image
observations are not used , state -space
observations are used

image_hidden_num_channels: the number of channels to use in the
image encoder ’s hidden layers

"""
# build the network that will encode the state features
if image_observations:

state_conv_encoder = nn.Sequential(
nn.Conv2d(

state_size [0],
image_hidden_num_channels ,
3,
stride =1

),

14



nn.ReLU(),
nn.MaxPool2d (2, 2),

nn.Conv2d(
image_hidden_num_channels ,
image_hidden_num_channels ,
3,
stride =1

),
nn.ReLU(),
nn.MaxPool2d (2, 2),

nn.Conv2d(
image_hidden_num_channels ,
image_hidden_num_channels ,
3,
stride =1

),
nn.ReLU(),
nn.MaxPool2d (2, 2)

)
conv_out_size = torch.flatten(

_state_conv_encoder(
torch.rand(size =[1] + list(state_size ))

)). size ()[0]
self.state_encoder = nn.Sequential(

_state_conv_encoder
nn.Linear(conv_out_size , state_embed_size)
nn.LeakyReLU(negative_slope =1e-2)

)
else:

self.state_encoder = torch.nn.Sequential(
torch.nn.Linear(state_size , state_embed_size),
torch.nn.LeakyReLU(negative_slope =1e-2),

)

# build the network that will encode the action features
self.action_encoder = torch.nn.Sequential(

torch.nn.Linear(action_size , action_embed_size),
torch.nn.LeakyReLU(negative_slope =1e-2),

)

# build the network that models the relationship between the
# state and action embeddings
state_action_encoder = []
hidden_in_size = action_embed_size + state_embed_size
for i in range(num_layers ):

state_action_encoder.append(
torch.nn.Linear(hidden_in_size , hidden_size),

)
state_action_encoder.append(

torch.nn.LeakyReLU(negative_slope =1e-2),
)
hidden_in_size = hidden_size

self.state_action_encoder = torch.nn.Sequential (* state_action_encoder)
# this is a single dense layer because we want to focus as much of
# the useful semantic information as possible in the state -action
# representation
self.next_state_predictor = torch.nn.Linear(

hidden_size , state_embed_size
)

if image_observations:
self.next_state_projector = nn.Sequential(

nn.BatchNorm1d(state_embed_size),
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nn.ReLU(inplace=True),
nn.Linear(

state_embed_size ,
consistency_comparison_hidden_size

),
nn.ReLU(inplace=True),
nn.Linear(

consistency_comparison_hidden_size ,
consistency_projection_size

),
nn.LayerNorm(consistency_projection_size)

)
if with_consistency_prediction_head:

self.consistency_predictor = nn.Sequential(
nn.ReLU(inplace=True),
nn.Linear(

consistency_projection_size ,
consistency_comparison_hidden_size

),
nn.ReLU(inplace=True),
nn.Linear(

consistency_comparison_hidden_size ,
consistency_projection_size

),
nn.LayerNorm(consistency_projection_size)

)
else:

predictor = None
else:

self.next_state_projector = torch.nn.Linear(
state_embed_size ,
consistency_projection_size

)
if with_consistency_prediction_head:

self.consistency_predictor = nn.Linear(
consistency_projection_size ,
consistency_projection_size

)
else:

self.consistency_predictor = None

A forward pass through the SFC network is as follows:

def spr_forward(self ,
transitions: EnvironmentTransitionBatch ,
with_consistency_prediction_head: bool):

"""
The logic for a forward pass through the SPR network.
Args:

transitions: a batch of environment transitions composed of
states , actions , and next states

with_consistency_prediction_head: when using the contrastive of
objective the consistency
prediction is not used , but is
when using the distillation
objective

Returns:
predicted embedding of the next state - p in SimSiam paper
next state embedding (detached from graph) - z in SimSiam paper
dimensionality: (batch , time step)

"""
# encode the state , the action , and the state -action pair
# st → zst
states_embed = self.state_encoder(transitions.states)
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# at → zat
actions_embed = self.action_encoder(transitions.actions)
# (st, at) → zsat
state_action_embeds = torch.concat(

[states_embed , actions_embed], dim=-1
)
state_action_embed = self.state_action_encoder(

state_action_embeds
)

# predict and project the representation of the next state
# zsat → ẑst+1

next_state_pred = self.next_state_predictor(state_action_embed)
next_state_pred = self.next_state_projector(next_state_pred)
if with_consistency_prediction_head:

next_state_pred = self.consistency_predictor(next_state_pred)

# we don’t want gradients to back -propagate into the learned
# parameters from anything we do with the next state
with torch.no_grad ():

# st+1 → zst+1

# embed the next state
next_state_embed = self.state_encoder(transitions.next_states)
# project the next state embedding into a space where it can be
# compared with the predicted next state
projected_next_state_embed = self.next_state_projector(

next_state_embed
)

# from the SimSiam paper , this is p and z
return next_state_pred , projected_next_state_embed

D.2 SAF Reward Network

The architecture of the SAF Reward Network is a subset of the SFC network with the addition of a
linear to map the state-action representation to predicted rewards. The SFC network is implemented
in PyTorch and is initialized following the below build method:

def build_saf_network(
self ,
state_size: int ,
state_embed_size: int ,
action_size: int ,
action_embed_size: int ,
hidden_size: int ,
num_layers: int ,
final_activation_type: str ,
image_observations: bool ,
image_hidden_num_channels: int

):
"""
Args:

state_size: number of features defining the agent’s state space
state_embed_size: number of dimensions in the state embedding
action_size: number of features defining the agent ’s actions
action_embed_size: number of dimensions in the action embedding
hidden_size: number of dimensions in the hidden layers of

state -action embedding network
num_layers: number of hidden layers used to embed the

state -action representation
final_activation_type: the activation used on the final layer
image_observations: whether image observations are used. If image

observations are not used , state -space
observations are used
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image_hidden_num_channels: the number of channels to use in the
image encoder ’s hidden layers

"""
# build the network that will encode the state features

if image_observations:
state_conv_encoder = nn.Sequential(

nn.Conv2d(
state_size [0],
image_hidden_num_channels ,
3,
stride =1

),
nn.ReLU(),
nn.MaxPool2d (2, 2),

nn.Conv2d(
image_hidden_num_channels ,
image_hidden_num_channels ,
3,
stride =1

),
nn.ReLU(),
nn.MaxPool2d (2, 2),

nn.Conv2d(
image_hidden_num_channels ,
image_hidden_num_channels ,
3,
stride =1

),
nn.ReLU(),
nn.MaxPool2d(2, 2)

)
conv_out_size = torch.flatten(

_state_conv_encoder(
torch.rand(size =[1] + list(state_size ))

)). size ()[0]
self.state_encoder = nn.Sequential(

_state_conv_encoder
nn.Linear(conv_out_size , state_embed_size)
nn.LeakyReLU(negative_slope =1e-2)

)
else:

self.state_encoder = torch.nn.Sequential(
torch.nn.Linear(state_size , state_embed_size),
torch.nn.LeakyReLU(negative_slope =1e-2),

)

# build the network that will encode the action features
self.action_encoder = torch.nn.Sequential(

torch.nn.Linear(action_size , action_embed_size),
torch.nn.LeakyReLU(negative_slope =1e-2),

)

# build the network that models the relationship between the
# state and action embeddings
state_action_encoder = []
hidden_in_size = action_embed_size + state_embed_size
for i in range(num_layers ):

state_action_encoder.append(
torch.nn.Linear(hidden_in_size , hidden_size),

)
state_action_encoder.append(

torch.nn.LeakyReLU(negative_slope =1e-2),
)
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hidden_in_size = hidden_size
self.state_action_encoder = torch.nn.Sequential (* state_action_encoder)

# build the prediction head and select a final activation
self.prediction_head = torch.nn.Linear(hidden_size , 1)
if final_activation_type == "tanh":

self.final_activation = torch.nn.Tanh()
elif final_activation_type == "sig":

self.final_activation = torch.nn.Sigmoid ()
else:

self.final_activation_type = torch.nn.ReLU()

A forward pass through the SAF network is as follows:

def saf_forward(self , transitions: EnvironmentTransitionBatch ):
"""
Args:

transitions: a batch of environment transitions composed of
states , actions , and next states

Returns:
predicted embedding of the next state - p in SimSiam paper
next state embedding (detached from graph) - z in SimSiam paper
dimensionality: (batch , time step)

"""
# encode the state , the action , and the state -action pair
# st → zst
states_embed = self.state_encoder(transitions.states)
# at → zat
actions_embed = self.action_encoder(transitions.actions)
# (st, at) → zsat
state_action_embeds = torch.concat(

[states_embed , actions_embed], dim=-1
)
state_action_embed = self.state_action_encoder(

state_action_embeds
)

return self.final_activation(
self.prediction_head(state_action_embed)

)

E Hyper-parameters

E.1 Train Hyper-parameters

This section specifies the hyper-parameters (e.g. learning rate, batch size, etc) used for the experi-
ments and results (Section 6). The SAC, PPO, PEBBLE, and PrefPPO experiments all match those
used in [55], [56], and [4] respectively. The SAC and PPO hyper-parameters are specified in Table
3, the PEBBLE and PrefPPO hyper-parameters are given in Table 4, and the hyper-parameters used
to train on the REED task are in Table 5.

The image-space models were trained on images of size 50x50. For PEBBLE and REED on DMC
tasks, color images were used, and for MetaWorld tasks, grayscale images were used. All pixel
values were scaled to the range [0.0, 1.0].

For the image-based REED methods, we found that a larger value of k was important for the Meta-
World experiments compared to the DMC experiments due to slower environment dynamics. In
MetaWorld the differences between subsequent observations are far more similar than in DMC. In
the state-space, the mean cosine similarity between all observations accumulated in the replay buffer
was 0.9. For the image-space observations, the mean cosine similarity was 0.7. Additionally, for
sweep into, due to the similarity in MetaWorld observations, the slower environment dynamics, and
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difficulty of tasks like sweep into, we found it beneficial to update on the REED objective every 5th

update to the reward model in order to avoid over fitting on the REED objective and reducing the
accuracy of the r̂ψ preference predictions.

Table 3: Training hyper-parameters for SAC [55] and PPO [56].

HYPER-PARAMETER VALUE

SAC

Learning rate 1e-3 (cheetah), 5e-4 (walker),
1e-4 (quadruped), 3e-4 (MetaWorld)

Batch size 512 (DMC), 1024 (MetaWorld)

Total timesteps 500k, 1M (quadruped, sweep into)

Optimizer Adam [53]

Critic EMA τ 5e-3

Critic target update freq. 2

(B1,B2) (0.9, 0.999)

Initial Temperature 0.1

Discount γ 0.99

PPO

Learning rate 5e-5 (DMC), 3e-4 (MetaWorld)

Batch size 128 (all but cheetah), 512 (cheetah)

Total timesteps 500k (cheetah, walker, button press),
1M (quadruped, sweep into)

Envs per worker 8 (sweep into), 16 (cheetah, quadruped),
32 (walker, sweep into)

Optimizer Adam [53]

Discount γ 0.99

Clip range 0.2

Entropy bonus 0.0

GAE parameter λ 0.92

Timesteps per rollout 250 (MetaWorld), 500 (DMC)
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Table 4: Training hyper-parameters for PEBBLE [4] and PrefPPO [3, 4]. The only hyper-parameter
that differs between PEBBLE and PrefPPO is the DMC learning rate. The batch size for the reward
network changes based per total feedback amount to match the number of queries M sent to the
teacher for labelling each feedback session.

HYPER-PARAMETER VALUE

Learning rate PEBBLE 3e-4

Learning rate PrefPPO 5e-4 (DMC), 3e-4 (MetaWorld)

Optimizer Adam [53]

Segment length l 50 (DMC), 25 (MetaWorld)

Feedback amount / number queries (M ) 1k/100, 500/50, 200/20, 100/10, 50/5 (DMC)
20k/100, 10k/50, 5k/25, 2.5k/12 (MetaWorld)

Steps between queries (K) 20k (walker, cheetah), 30k (quadruped),
5k (MetaWorld)

Table 5: Training hyper-parameters for REED with the SPR objective [16] (Section 4.1). The REED
hyper-parameters were used with both the PEBBLE [4] and PrefPPO [3, 4] preference-learning algo-
rithms. Hyper-parameters are by environment/task and shared by the two SSL objectives: Distilla-
tion versus Contrastive (Section 4.1). Training on the REED task occurred every K steps (specified
in Table 4) prior to updating on the preference task. The SPR objective predicts future latent states
k steps in the future. While our hyper-parameter sweep evaluated multiple values for k, we found
that k = 1 vs. k > 1 had no real impact on learning quality for these state-action feature spaces. For
Contrastive REED experiments (state-space and image-space observations), τ = 0.005. In general,
the image-based experiments REED were less sensitive to the hyper-parameters than the state-space
experiments experiments.

ENVIRONMENT LEARNING RATE EPOCHS PER UPDATE BATCH SIZE OPTIMIZER K

STATE-SPACE OBSERVATIONS

Walker 1e-3 20 12 SGD 1
Cheetah 1e-3 20 12 SGD 1
Quadruped 1e-4 20 128 Adam [53] 1
Button Press 1e-4 10 128 Adam [53] 1
Sweep Into 5e-5 5 256 Adam [53] 1

IMAGE-SPACE OBSERVATIONS

Walker 1e-4 5 256 Adam [53] 1
Cheetah 1e-4 5 256 Adam [53] 1
Quadruped 1e-4 5 256 Adam [53] 1
Button Press 1e-4 5 256 Adam [53] 5
Sweep Into 1e-4 5 512 Adam [53] 5
Drawer Open 1e-4 5 256 Adam [53] 5
Drawer Close 1e-4 5 256 Adam [53] 5
Window Open 1e-4 5 256 Adam [53] 5
Door Open 1e-4 5 256 Adam [53] 5
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E.2 Architecture Hyper-parameters

The network hyper-parameters (e.g. hidden dimension, number of hidden layers, etc) used for the
experiments and results (Section 6) are specified in Table 6.

Table 6: Architecture hyper-parameters for SAC [55], PPO [56], the base reward model (used for
PEBBLE [4] and PrePPO [3, 4]), the SAF reward model (Section 4.1), and the SPR model (Section
4.1). The hyper-parameters reported here are intended to inform the values to used to initialize the
architectures in Appendix D. Hyper-parameters not relevant to a model are indicated with “N/A”.
The SPR model is what REED uses to construct the self-supervised temporal consistency task. The
base reward model is used with PEBBLE and PrefPPO in Lee et al. [4] and [10]. The SAF reward
network is used for all REED conditions in Section 6. The “Final Activation” refers to the activation
function used just prior to predicting the reward for a given state action pair. The action embedding
sizes are the same for the state-space and image-space observations.

HYPER-PARAMETER SAC PPO BASE REWARD SAF REWARD SPR NET

STATE-SPACE OBSERVATIONS

State embed size N/A N/A N/A

20 (walker), 20 (walker),
17 (cheetah), 17 (cheetah),
78 (quadruped), 78 (quadruped),
30 (MetaWorld) 30 (MetaWorld)

Action embed size N/A N/A N/A

10 (walker), 10 (walker),
6 (cheetah), 6 (cheetah),
12 (quadruped), 12 (quadruped),
4 (MetaWorld) 4 (MetaWorld)

Comparison units N/A N/A N/A N/A

5 (walker),
4 (cheetah),
10 (quadruped),
5 (MetaWorld)

Num. hidden 2 (DMC), 3 3 3 3
3 (MetaWorld)

Units per layer 1024 (DMC), 256 256 256 256
256 (MetaWorld)

Final activation N/A N/A tanh tanh N/A

IMAGE-SPACE OBSERVATIONS

State embed size N/A N/A N/A

20 (walker), 20 (walker),
17 (cheetah), 17 (cheetah),
78 (quadruped), 78 (quadruped),
30 (MetaWorld) 30 (MetaWorld)

Comparison units N/A N/A N/A N/A 128

Num. hidden 2 (DMC), 3 3 3 3
3 (MetaWorld)

Units per layer 1024 (DMC), 256 256 256 256
256 (MetaWorld)

Final activation N/A N/A tanh tanh N/A
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F SAF Reward Net Ablation
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Figure 5: Ablation of the SAF reward net for walker-walk, quadruped-walk, sweep into, and button
press with 500 (walker and quadruped) and 5k (sweep into and button press) teacher-labelled queries
with disagreement-based sampling and the oracle labelling strategy.

We present results ablating the impact of our modified SAF reward network architecture in Table 7,
see Section 4.1, State-Action Fusion Reward Network, for details. In our ablation, we replace the
original PEBBLE reward network architecture from [4] with our SAF network and then evaluate
on the joint experimental condition with no other changes to reward function learning. We evaluate
the impact of the SAF reward network on the walker-walk, quadruped-walk, sweep into, and button
press tasks. Policy and reward function learning is evaluated across feedback amounts and labelling
styles. All hyper-parameters match those used in all other experiments in the paper (see Appendix
E). We compare PEBBLE with the SAF reward network architecture (PEBBLE + SAF) against SAC
trained on the ground truth reward, PEBBLE with the original architecture (PEBBLE), PEBBLE
with Distillation REED (PEBBLE+Dist.), and PEBBLE with Contrastive REED (PEBBLE+Contr.).

The inclusion of the SAF reward network architecture does not meaningfully impact policy perfor-
mance. In general, across domains and experimental conditions, PEBBLE + SAF performs on par
with or slightly worse than PEBBLE. The lack of performance improvements suggest that the per-
formance improvements observed when the auxiliary temporal consistency objective are due to the
auxiliary objective and not the change in network architecture.
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Table 7: The impact of the SAF reward network is ablated. Ratio of policy performance on learned
versus ground truth rewards for walker-walk, quadruped-walk, sweep into, and button press
across preference learning methods, labelling methods and feedback amounts (with disagreement
sampling).

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

WALKER-WALK

1K

PEBBLE 0.85 (0.17) 0.76 (0.21) 0.88 (0.16) 0.85 (0.17) 0.79 (0.18) 0.81 (0.18) 0.83
+SAF 0.81 (0.19) 0.62 (0.18) 0.88 (0.16) 0.81 (0.19) 0.74 (0.17) 0.81 (0.19) 0.78
+DIST. 0.9 (0.16) 0.77 (0.2) 0.91 (0.12) 0.89 (0.16) 0.8 (0.17) 0.88 (0.17) 0.86
+CONTR. 0.9 (0.16) 0.77 (0.2) 0.91 (0.12) 0.89 (0.16) 0.8 (0.17) 0.88 (0.17) 0.86

500

PEBBLE 0.74 (0.18) 0.61 (0.17) 0.84 (0.19) 0.75 (0.19) 0.67 (0.19) 0.69 (0.19) 0.72
+SAF 0.68 (0.17) 0.51 (0.13) 0.76 (0.17) 0.68 (0.17) 0.56 (0.15) 0.68 (0.17) 0.65
+DIST. 0.86 (0.2) 0.71 (0.2) 0.87 (0.2) 0.87 (0.2) 0.82 (0.22) 0.84 (0.2) 0.83
+CONTR. 0.9 (0.17) 0.81 (0.19) 0.9 (0.14) 0.9 (0.17) 0.88 (0.16) 0.88 (0.18) 0.88

250

PEBBLE 0.59 (0.17) 0.41 (0.12) 0.67 (0.2) 0.56 (0.17) 0.43 (0.13) 0.51 (0.13) 0.53
+SAF 0.53 (0.16) 0.41 (0.15) 0.59 (0.18) 0.53 (0.16) 0.36 (0.1) 0.48 (0.14) 0.48
+DIST. 0.8 (0.23) 0.6 (0.16) 0.85 (0.21) 0.8 (0.24) 0.75 (0.26) 0.8 (0.24) 0.77
+CONTR. 0.85 (0.19) 0.73 (0.23) 0.85 (0.19) 0.85 (0.2) 0.79 (0.2) 0.85 (0.22) 0.82

QUADRUPED-WALK

2K

PEBBLE 0.94 (0.15) 0.55 (0.19) 1.1 (0.26) 1.0 (0.16) 0.93 (0.13) 0.56 (0.19) 0.86
+SAF 0.97 (0.15) 0.45 (0.17) 1.2 (0.22) 0.87 (0.19) 0.76 (0.13) 0.59 (0.14) 0.81
+DIST. 1.3 (0.31) 0.47 (0.19) 1.4 (0.37) 1.3 (0.26) 1.2 (0.18) 0.96 (0.15) 1.09
+CONTR. 1.3 (0.25) 0.7 (0.16) 1.2 (0.24) 1.3 (0.29) 1.3 (0.28) 1.0 (0.16) 1.13

1K

PEBBLE 0.86 (0.15) 0.53 (0.19) 0.88 (0.15) 0.91 (0.14) 0.73 (0.18) 0.48 (0.25) 0.73
+SAF 0.79 (0.16) 0.44 (0.19) 0.99 (0.23) 0.9 (0.19) 0.63 (0.15) 0.6 (0.2) 0.72
+DIST. 1.1 (0.19) 0.59 (0.14) 1.2 (0.22) 1.3 (0.3) 1.1 (0.21) 1.0 (0.15) 1.04
+CONTR. 1.1 (0.19) 0.63 (0.16) 1.2 (0.29) 1.1 (0.19) 1.1 (0.19) 0.83 (0.14) 0.99

500

PEBBLE 0.56 (0.21) 0.48 (0.21) 0.66 (0.2) 0.64 (0.15) 0.47 (0.22) 0.48 (0.23) 0.55
+SAF 0.63 (0.16) 0.4 (0.22) 0.85 (0.14) 0.75 (0.19) 0.56 (0.18) 0.5 (0.19) 0.61
+DIST. 1.1 (0.21) 0.58 (0.16) 1.2 (0.24) 1.0 (0.22) 1.0 (0.19) 0.68 (0.16) 0.93
+CONTR. 1.1 (0.21) 0.64 (0.11) 1.1 (0.22) 1.1 (0.17) 1.0 (0.17) 0.85 (0.14) 0.97

250

PEBBLE 0.53 (0.18) 0.36 (0.23) 0.64 (0.15) 0.62 (0.16) 0.46 (0.22) 0.47 (0.21) 0.51
+SAF 0.51 (0.2) 0.36 (0.22) 0.73 (0.18) 0.53 (0.17) 0.53 (0.19) 0.45 (0.24) 0.52
+DIST. 0.98 (0.15) 0.58 (0.18) 1.0 (0.19) 0.79 (0.12) 0.9 (0.18) 0.77 (0.16) 0.84
+CONTR. 0.98 (0.15) 0.58 (0.18) 1.0 (0.19) 0.79 (0.12) 0.9 (0.18) 0.77 (0.16) 0.84

BUTTON PRESS

20K
PEBBLE 0.72 (0.26) 0.57 (0.26) 0.77 (0.25) 0.75 (0.26) 0.68 (0.21) 0.72 (0.24) 0.70

+SAF 0.77 (0.23) 0.72 (0.28) 0.84 (0.23) 0.75 (0.24) 0.78 (0.21) 0.77 (0.22) 0.77
+CONTR. 0.65 (0.25) 0.61 (0.28) 0.67 (0.27) 0.67 (0.27) 0.67 (0.24) 0.69 (0.26) 0.66

10K
PEBBLE 0.66 (0.26) 0.47 (0.21) 0.67 (0.27) 0.63 (0.26) 0.67 (0.24) 0.6 (0.26) 0.62

+SAF 0.7 (0.25) 0.66 (0.26) 0.74 (0.23) 0.71 (0.25) 0.67 (0.19) 0.71 (0.25) 0.70
+CONTR. 0.65 (0.27) 0.61 (0.3) 0.66 (0.27) 0.62 (0.26) 0.6 (0.25) 0.68 (0.28) 0.64

5K
PEBBLE 0.48 (0.21) 0.31 (0.12) 0.56 (0.25) 0.54 (0.24) 0.59 (0.23) 0.52 (0.23) 0.50

+SAF 0.63 (0.25) 0.55 (0.24) 0.65 (0.26) 0.68 (0.24) 0.62 (0.21) 0.7 (0.24) 0.64
+CONTR. 0.55 (0.24) 0.54 (0.26) 0.65 (0.27) 0.63 (0.26) 0.57 (0.24) 0.63 (0.28) 0.60

2.5K
PEBBLE 0.37 (0.18) 0.21 (0.088) 0.44 (0.21) 0.34 (0.15) 0.4 (0.17) 0.34 (0.18) 0.35

+SAF 0.58 (0.26) 0.38 (0.17) 0.61 (0.26) 0.54 (0.23) 0.52 (0.21) 0.54 (0.2) 0.53
+CONTR. 0.49 (0.25) 0.42 (0.22) 0.52 (0.24) 0.5 (0.23) 0.44 (0.17) 0.45 (0.21) 0.47

SWEEP INTO

20K
PEBBLE 0.53 (0.25) 0.26 (0.15) 0.51 (0.23) 0.52 (0.27) 0.47 (0.28) 0.47 (0.26) 0.46

+SAF 0.5 (0.24) 0.36 (0.15) 0.47 (0.22) 0.39 (0.19) 0.49 (0.21) 0.6 (0.21) 0.47
+CONTR. 0.5 (0.22) 0.36 (0.13) 0.41 (0.2) 0.6 (0.22) 0.54 (0.21) 0.61 (0.25) 0.50

10K
PEBBLE 0.28 (0.12) 0.22 (0.13) 0.45 (0.21) 0.33 (0.17) 0.47 (0.25) 0.51 (0.24) 0.38

+SAF 0.41 (0.2) 0.32 (0.19) 0.48 (0.2) 0.47 (0.17) 0.46 (0.2) 0.57 (0.24) 0.45
+CONTR. 0.47 (0.23) 0.3 (0.14) 0.45 (0.24) 0.32 (0.21) 0.42 (0.22) 0.44 (0.21) 0.40

5K
PEBBLE 0.17 (0.099) 0.17 (0.089) 0.28 (0.19) 0.24 (0.15) 0.23 (0.13) 0.22 (0.12) 0.22

+SAF 0.36 (0.15) 0.2 (0.13) 0.4 (0.23) 0.38 (0.17) 0.19 (0.11) 0.41 (0.2) 0.32
+CONTR. 0.34 (0.14) 0.23 (0.19) 0.52 (0.24) 0.37 (0.2) 0.4 (0.24) 0.44 (0.18) 0.38

2.5K
PEBBLE 0.15 (0.086) 0.13 (0.076) 0.16 (0.1) 0.16 (0.09) 0.18 (0.075) 0.25 (0.11) 0.17

+SAF 0.33 (0.19) 0.12 (0.082) 0.32 (0.17) 0.18 (0.09) 0.27 (0.11) 0.22 (0.14) 0.25
+CONTR. 0.21 (0.13) 0.19 (0.22) 0.29 (0.17) 0.17 (0.09) 0.25 (0.15) 0.28 (0.16) 0.23
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G Image Aug. Task Details

We present results ablating the impact of environment dynamics on top of the PEBBLE model
to show how much of the REED gains come from encoding environment dynamics versus incor-
porating an auxiliary task. In our ablation, we replace the REED auxiliary task with an image-
augmentation-based self-supervised learning auxiliary task that compares a batch of image obser-
vation states with augmented versions of the same observations using either LSS (Equation 3), or
LC (Equation 4). We compare the impact of the SSL data augmentation auxiliary task (PEBBLE +
Img. Aug.) with the impact of PEBBLE + REED on the image-based PEBBLE preference learning
algorithm using the walker-walk, quadruped-walk, and cheetah-run DMC tasks. Policy and reward
function learning is evaluated across feedback amounts and with the oracle labeler. All hyper-
parameters match those specified in Appendix E, with the exception of those listed below (Table
8).

The Img. Aug. task learns representations of the state, not state-action pairs, as is done in REED,
and so the Img. Aug. representations do not encode environment dynamics. To separate out states
and actions, the Img. Aug. task uses the SAF reward model architecture. The data augmentations
match those used in [58].

The PEBBLE + Img. Aug. algorithm is the same as PEBBLE + REED (Algorithm C), except, in-
stead of updating the SPR network using the temporal dynamics task, the SSL Image Augmentation
network (Appendix G.2) is updated using the image-augmentation task. The state encoder is shared
between the reward and the SSL Image Augmentation networks.

The inclusion of an auxiliary task to improve the state encodings does improve the performance of
PEBBLE, but does not improve as much as with the encoded environment dynamics. This can be
seen across feedback types and DMC environments (see Figure 6 and Table 12). The performance
improvement against the PEBBLE baseline suggests that having the auxiliary task does have some
benefit. However, the performance improvements of REED against the image augmentation aux-
iliary task suggest that the performance improvements observed when the auxiliary task encodes
environment dynamics gives meaningful improvements.

G.1 Data Augmentation Parameters

This section presents the PEBBLE + Img. Aug. method for creating the augmented image observa-
tions. We evaluate the impact of both the “weak” and “strong” image augmentations used in [58].
The augmentation parameters for both the weak and strong styles are given in Table 9.
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Table 8: Image Augmentation hyper-parameters for the PEBBLE reward + SSL model that differ
from the parameters outlined in Appendix E.

HYPER-PARAMETER VALUE

REWARD MODEL

Learning Rate 1e-4

Grayscale Images False

Normalize Images True

SSL DATA AUGMENTATION MODEL

Learning Rate 5e-5

Grayscale Images False

Normalize Images True

Use Strong Augmentations (Table 9) False

Batch Size 256

Loss Distillation

Table 9: Data Augmentation hyper-parameters for PEBBLE+SSL as specified in MOSAIC [58].

HYPER-PARAMETER VALUE

WEAK AUGMENTATIONS

Random Jitter (ρ) 0.01

Normalization (µ, σ) [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]

Random Resize Crop (scale min/max, ratio) [0.7, 1.0], [1.8, 1.8]

STRONG AUGMENTATIONS

Random Jitter (ρ) 0.01

Random Grayscale (ρ) 0.01

Random Horizontal Flip (ρ) 0.01

Normalization (µ, σ) [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]

Random Gaussian Blur (σ min/max, ρ) [0.1, 2.0], 0.01

Random Resize Crop (scale min/max, ratio) [0.6, 1.0], [1.8, 1.8]
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G.2 SSL Data Augmentation Architecture

The SSL Image Augmentation network is implemented in PyTorch. The architecture for the con-
sistency predictor comes from [58]. The image encoder architecture comes from [59]. The SSL
network is initialized as follows:

def build_ssl_network(self ,
state_size: t.List[int],
state_embed_size: int ,
consistency_projection_size: int ,
consistency_comparison_hidden_size: int ,
with_consistency_prediction_head: bool ,
image_hidden_num_channels: int):

"""
The network architecture and build logic to the complete the REED
self -supervised temporal consistency task based on SPR.
Args:
state_size: dimensionality of the states
state_embed_size: number of dimensions in the state embedding
consistency_projection_size: number of units used to compare the

predicted and target latent next
state

consistency_comparison_hidden_size: number of units in the hidden
layers of the next_state_projector
and the consistency_predictor

with_consistency_prediction_head: when using the contrastive of
objective the consistency
prediction is not used , but is
when using the distillation
objective

image_hidden_num_channels: the number of channels to use in the
image encoder ’s hidden layers

"""

# Build the network that will encode the state features.
state_conv_encoder = nn.Sequential(

nn.Conv2d(state_size [0], image_hidden_num_channels , 3, stride =1),
nn.ReLU(),
nn.MaxPool2d (2, 2),
nn.Conv2d(

image_hidden_num_channels ,
image_hidden_num_channels ,
3, stride =1),

nn.ReLU(),
nn.MaxPool2d (2, 2),
nn.Conv2d(

image_hidden_num_channels ,
image_hidden_num_channels ,
3, stride =1),

nn.ReLU(),
nn.MaxPool2d (2, 2)

)
conv_out_size = torch.flatten(state_conv_encoder(torch.rand(size =[1] + list(state_size ))). size ()[0])
self.state_encoder = nn.Sequential(

state_conv_encoder ,
nn.Linear(conv_out_size , state_embed_size),
nn.LeakyReLU(negative_slope =1e-2)

)

self.consistency_projector = nn.Sequential(
# Rearrange(’B T d H W -> (B T) d H W’),
nn.BatchNorm1d(state_embed_size), nn.ReLU(inplace=True),
# Rearrange(’BT d H W -> BT (d H W)’),
nn.Linear(state_embed_size , consistency_comparison_hidden_size), nn.ReLU(inplace=True),
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nn.Linear(consistency_comparison_hidden_size , consistency_projection_size),
nn.LayerNorm(consistency_projection_size)

)
# from: https :// github.com/rll -research/mosaic/blob /561814 b40d33f853aeb93f1113a301508fd45274/mosaic/models/rep_modules.py#L118
if with_consistency_prediction_head:

self.consistency_predictor = nn.Sequential(
nn.ReLU(inplace=True),
nn.Linear(consistency_projection_size , consistency_comparison_hidden_size),
nn.ReLU(inplace=True),
nn.Linear(consistency_comparison_hidden_size , consistency_projection_size),
nn.LayerNorm(consistency_projection_size ))

else:
self.consistency_predictor = None

A forward pass through the SSL network is as follows:

def ssl_forward(self ,
observations: RawAugmentedObservationsBatch ,
with_consistency_prediction_head: bool):

"""
The logic for a forward pass through the SSL network.
Args:

observations: a batch of environment raw observations and
augmented observations

with_consistency_prediction_head: when using the contrastive
objective the consistency
prediction is not used , but is
when using the distillation
objective

Returns:
predicted embedding of the augmented state and the augmented state embedding (detached from graph)
dimensionality: (batch , time step)

"""

# Encode the observations.
observations_embed = self.state_encoder(observations.states)

# Predict the augmented observations.
if with_consistency_prediction_head:

augmented_observation_pred = self.consistency_predictor(self.state_projector(observations_embed ))
else:

augmented_observation_pred = self.state_projector(observations_embed)

# we don’t want gradients to back -propagate into the learned parameters from anything we do with the augmented observation
with torch.no_grad ():

# embed the augmented observation
augmented_observation_embed = self.state_encoder(observations.augmented_states)
# project the augmented observation embedding into a space where it can be compared with the predicted augmented observation
projected_agumented_observation_embed = self.state_projector(augmented_observation_embed)

return augmented_observation_pred , projected_agumented_observation_embed
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G.3 Image Aug. Auxiliary Task Results

We present results comparing the impact of REED’s temporal auxiliary task and the Image Aug.
auxiliary task. Learning curves (Figure 6) and normalized returns (Table 10) are provided for image-
space observation walker-walk, cheetah-run, and quadruped-walk tasks across different amounts of
feedback. We compare the contributions of the Image Aug. auxiliary task to PEBBLE against SAC
trained on the ground truth reward, PEBBLE, PEBBLE + Distillation REED (+Dist.), and PEBBLE
+ Contrastive REED (+Contr.). Results are reported for the Image Aug. task using the distillation
objective (Equation 3) as +Dist.+Img. Aug.

The inclusion of the Image Aug. auxiliary task improves performance relative to PEBBLE, but does
not reach the level of performance achieved by REED. The gap policy performance between REED
and the Image Aug. auxiliary task suggests that encoding environment dynamics in the reward
function and not including an auxiliary task that trains on all policy experiences is the cause of the
performance gains observed from REED.
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Figure 6: Episode returns learning curves for walker walk, quadruped walk, and cheetah run
across preference-based RL methods and feedback amounts for image-based observations. The
oracle labeller is used to generate preference feedback. Mean policy returns are plotted along the
y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per environment
(grid columns) and feedback amount (grid rows) with corresponding results per learning methods in
each plot. The learning methods evaluated are SAC trained on the ground truth reward, PEBBLE,
PEBBLE with the Image Aug. auxiliary task (pebble+img. aug.), PEBBLE + Distillation REED
(pebble+dist.), and PEBBLE + Contrastive REED (pebble+contr.). From top to bottom, the rows
correspond to 2.5k, 5k, 10k, and 20k pieces of teacher feedback. From left to right, the columns
correspond to walker walk, quadruped walk, and cheetah run.

29



Table 10: Ratio of policy performance on learned versus ground truth rewards for walker-walk,
cheetah-run, and quadruped-walk across feedback amounts (with disagreement sampling). The
results are reported as means (standard deviations) over 10 random seeds.

DMC

TASK METHOD 50 100 250 500 1000 MEAN

WALKER-WALK
PEBBLE 0.06 (0.02) 0.07 (0.02) 0.09 (0.02) 0.11 (0.03) 0.11 (0.03) 0.09

+DIST. 0.18 (0.03) 0.33 (0.10) 0.40 (0.09) 0.57 (0.16) 0.68 (0.23) 0.43
+CONTR. 0.28 (0.12) 0.35 (0.13) 0.46 (0.14) 0.58 (0.14) 0.61 (0.16) 0.46
+DIST.+IMG.AUG. 0.06 (0.02) 0.10 (0.02) 0.16 (0.02) 0.24 (0.03) 0.46 (0.11) 0.20

QUADRUPED-WALK
PEBBLE 0.28 (0.23) 0.23 (0.19) 0.23 (0.15) 0.23 (0.19) 0.47 (0.09) 0.29

+DIST. 0.56 (0.15) 0.59 (0.16) 0.61 (0.12) 0.71 (0.14) 0.72 (0.19) 0.64
+CONTR. 0.53 (0.16) 0.64 (0.10) 0.69 (0.17) 0.73 (0.22) 0.71 (0.16) 0.66
+DIST.+IMG.AUG. 0.43 (0.19) 0.35 (0.17) 0.42 (0.17) 0.68 (0.17) 0.62 (0.16) 0.50

CHEETAH-RUN
PEBBLE 0.01 (0.01) 0.02 (0.01) 0.02 (0.02) 0.02 (0.03) 0.03 (0.02) 0.02

+DIST. 0.06 (0.03) 0.07 (0.04) 0.07 (0.02) 0.12 (0.04) 0.18 (0.07) 0.10
+CONTR. 0.05 (0.02) 0.14 (0.04) 0.14 (0.04) 0.23 (0.09) 0.16 (0.06) 0.14
+DIST.+IMG.AUG. 0.02 (0.01) 0.05 (0.02) 0.14 (0.05) 0.11 (0.04) 0.12 (0.05) 0.09
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H Complete Joint Results

Results are presented for all tasks, feedback amounts, and teacher labelling styles. The benefits of
the SPR rewards are greatest: 1) for increasingly more challenging tasks, 2) when there is limited
feedback available, and 3) when the labels are increasingly noisy.

H.1 State-space Observations Learning Curves

Learning curves are provided for walker-walk (Figure 7), cheetah-run (Figure 8), quadruped-walk
(Figure 9), button press (Figure 10), and sweep into (Figure 11) across feedback amounts and all
teacher labelling strategies for state-space observations.
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Figure 7: Returns learning curves for walker-walk across preference-based RL methods, labelling
style, and feedback amount for state-space observations. Mean policy returns are plotted along the
y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per labelling style
(grid columns) and feedback amount (grid rows) with corresponding results per learning methods
in each plot. From top to bottom, the rows correspond to 50, 100, 500, and 1000 pieces of teacher
feedback. From left to right, the columns correspond to equal, noisy, mistake, myopic, oracle, and
skip labelling styles (see Appendix B for details).
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Figure 8: Returns learning curves for cheetah-run across preference-based RL methods, labelling
style, and feedback amount for state-space observations. Mean policy returns are plotted along the
y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per labelling style
(grid columns) and feedback amount (grid rows) with corresponding results per learning methods
in each plot. From top to bottom, the rows correspond to 50, 100, 500, and 1000 pieces of teacher
feedback. From left to right, the columns correspond to equal, noisy, mistake, myopic, oracle, and
skip labelling styles (see Appendix B for details).
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Figure 9: Returns learning curves for quadruped-walk across preference-based RL methods, la-
belling style, and feedback amount for state-space observations. Mean policy returns are plotted
along the y-axis with number of steps (in units of 1e6) along the x-axis. There is one plot per la-
belling style (grid columns) and feedback amount (grid rows) with corresponding results per learning
methods in each plot. From top to bottom, the rows correspond to 50, 100, 500, 1000, and 2000
pieces of teacher feedback. From left to right, the columns correspond to equal, noisy, mistake,
myopic, oracle, and skip labelling styles (see Appendix B for details).
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Figure 10: Success rate learning curves for button press across preference-based RL methods, la-
belling style, and feedback amount for state-space observations. Mean success rates are plotted
along the y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per la-
belling style (grid columns) and feedback amount (grid rows) with corresponding results per learning
methods in each plot. From top to bottom, the rows correspond to 2.5k, 5k, 10k, and 20k pieces of
teacher feedback. From left to right, the columns correspond to equal, noisy, mistake, myopic, ora-
cle, and skip labelling styles (see Appendix B for details).
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Figure 11: Success rate learning curves for sweep into across preference-based RL methods, la-
belling style, and feedback amount for state-space observations. Mean success rates are plotted
along the y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per la-
belling style (grid columns) and feedback amount (grid rows) with corresponding results per learning
methods in each plot. From top to bottom, the rows correspond to 2.5k, 5k, 10k, and 20k pieces of
teacher feedback. From left to right, the columns correspond to equal, noisy, mistake, myopic, ora-
cle, and skip labelling styles (see Appendix B for details).
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H.2 State-space Normalized Returns

The normalized returns (see Section 6 and Equation 5) for walker-walk, quadruped-walk, cheetah-
run, button press, and sweep into, across all teacher labelling styles and a larger range of feedback
amounts for state-space observations, are given in Table 11.
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Table 11: Ratio of policy performance on learned versus ground truth rewards for walker-walk, cheetah-run, quadruped-walk, sweep into, and button press
across preference learning methods, labelling methods and feedback amounts (with disagreement sampling). The results are reported as means (standard deviations)
over 10 random seeds.

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

WALKER-WALK

1K

PEBBLE 0.85 (0.17) 0.76 (0.21) 0.88 (0.16) 0.85 (0.17) 0.79 (0.18) 0.81 (0.18) 0.83
+DIST. 0.9 (0.16) 0.77 (0.2) 0.91 (0.12) 0.89 (0.16) 0.8 (0.17) 0.88 (0.17) 0.86
+CONTR. 0.9 (0.16) 0.77 (0.2) 0.91 (0.12) 0.89 (0.16) 0.8 (0.17) 0.88 (0.17) 0.86

PREFPPO 1.0 (0.034) 0.92 (0.056) 1.0 (0.029) 1.0 (0.031) 1.0 (0.044) 0.96 (0.056) 0.99
+DIST. 1.1 (0.025) 0.92 (0.05) 1.0 (0.031) 1.0 (0.02) 0.99 (0.035) 0.96 (0.046) 1.00
+CONTR. 1.0 (0.029) 0.93 (0.043) 1.1 (0.021) 1.0 (0.028) 0.98 (0.033) 0.95 (0.045) 1.00

500

PEBBLE 0.74 (0.18) 0.61 (0.17) 0.84 (0.19) 0.75 (0.19) 0.67 (0.19) 0.69 (0.19) 0.72
+DIST. 0.86 (0.2) 0.71 (0.2) 0.87 (0.2) 0.87 (0.2) 0.82 (0.22) 0.84 (0.2) 0.83
+CONTR. 0.9 (0.17) 0.81 (0.19) 0.9 (0.14) 0.9 (0.17) 0.88 (0.16) 0.88 (0.18) 0.88

PREFPPO 0.95 (0.052) 0.83 (0.087) 0.95 (0.044) 0.96 (0.058) 0.89 (0.076) 0.88 (0.069) 0.91
+DIST. 0.88 (0.074) 0.81 (0.084) 0.98 (0.025) 0.95 (0.027) 0.9 (0.073) 0.9 (0.069) 0.90
+CONTR. 0.93 (0.061) 0.85 (0.077) 0.95 (0.046) 0.92 (0.059) 0.82 (0.085) 0.77 (0.098) 0.88

200

PEBBLE 0.52 (0.17) 0.46 (0.15) 0.67 (0.2) 0.54 (0.15) 0.46 (0.13) 0.45 (0.14) 0.52
+DIST. 0.74 (0.2) 0.65 (0.21) 0.79 (0.22) 0.74 (0.19) 0.64 (0.21) 0.8 (0.25) 0.73
+CONTR. 0.84 (0.2) 0.69 (0.2) 0.84 (0.18) 0.84 (0.2) 0.75 (0.19) 0.84 (0.21) 0.80

PREFPPO 0.93 (0.058) 0.83 (0.076) 0.93 (0.027) 0.88 (0.045) 0.87 (0.079) 0.82 (0.06) 0.88
+DIST. 0.78 (0.087) 0.68 (0.11) 0.81 (0.062) 0.77 (0.081) 0.77 (0.077) 0.78 (0.053) 0.77
+CONTR. 0.81 (0.088) 0.81 (0.079) 0.86 (0.044) 0.85 (0.055) 0.76 (0.13) 0.74 (0.1) 0.80

100

PEBBLE 0.34 (0.11) 0.31 (0.11) 0.37 (0.1) 0.37 (0.12) 0.29 (0.085) 0.41 (0.13) 0.35
+DIST. 0.68 (0.23) 0.57 (0.2) 0.72 (0.25) 0.67 (0.23) 0.61 (0.19) 0.66 (0.24) 0.65
+CONTR. 0.78 (0.21) 0.69 (0.22) 0.74 (0.22) 0.74 (0.19) 0.68 (0.19) 0.74 (0.22) 0.73

PREFPPO 0.68 (0.08) 0.59 (0.093) 0.73 (0.065) 0.73 (0.065) 0.58 (0.11) 0.68 (0.072) 0.67
+DIST. 0.67 (0.08) 0.63 (0.11) 0.71 (0.075) 0.71 (0.084) 0.63 (0.099) 0.63 (0.094) 0.66
+CONTR. 0.72 (0.084) 0.49 (0.14) 0.71 (0.063) 0.65 (0.091) 0.64 (0.1) 0.58 (0.13) 0.63

50

PEBBLE 0.21 (0.1) 0.22 (0.12) 0.22 (0.12) 0.23 (0.14) 0.21 (0.11) 0.18 (0.11) 0.21
+DIST. 0.66 (0.24) 0.44 (0.13) 0.6 (0.21) 0.64 (0.24) 0.44 (0.12) 0.48 (0.15) 0.54
+CONTR. 0.62 (0.22) 0.44 (0.11) 0.72 (0.22) 0.62 (0.22) 0.54 (0.16) 0.54 (0.17) 0.58

PREFPPO 0.51 (0.13) 0.41 (0.18) 0.57 (0.12) 0.59 (0.11) 0.51 (0.14) 0.51 (0.14) 0.52
+DIST. 0.58 (0.13) 0.41 (0.17) 0.6 (0.13) 0.56 (0.13) 0.58 (0.12) 0.48 (0.13) 0.54
+CONTR. 0.58 (0.12) 0.54 (0.15) 0.62 (0.12) 0.63 (0.11) 0.5 (0.13) 0.57 (0.12) 0.57

Continues on next page...
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TABLE 11 – continued from previous page

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

CHEETAH-RUN

1K

PEBBLE 0.87 (0.18) 0.82 (0.18) 0.91 (0.2) 0.89 (0.17) 0.87 (0.16) 0.82 (0.18) 0.86
+DIST. 0.93 (0.2) 0.83 (0.18) 0.88 (0.14) 0.92 (0.16) 1.0 (0.18) 0.86 (0.21) 0.90
+CONTR. 0.9 (0.17) 0.84 (0.18) 0.89 (0.17) 0.96 (0.17) 1.0 (0.21) 0.85 (0.13) 0.91

PREFPPO 0.71 (0.064) 0.72 (0.086) 0.76 (0.069) 0.71 (0.076) 0.75 (0.066) 0.69 (0.093) 0.72
+DIST. 0.67 (0.054) 0.7 (0.076) 0.75 (0.08) 0.66 (0.064) 0.79 (0.084) 0.65 (0.081) 0.70
+CONTR. 0.7 (0.069) 0.8 (0.11) 0.72 (0.07) 0.71 (0.065) 0.78 (0.089) 0.65 (0.083) 0.73

500

PEBBLE 0.86 (0.14) 0.84 (0.18) 0.86 (0.19) 0.71 (0.16) 0.79 (0.16) 0.71 (0.15) 0.79
+DIST. 0.88 (0.22) 0.83 (0.18) 0.93 (0.15) 0.76 (0.15) 0.85 (0.14) 0.8 (0.19) 0.84
+CONTR. 0.94 (0.21) 0.72 (0.14) 0.9 (0.21) 0.89 (0.18) 0.93 (0.18) 0.82 (0.16) 0.87

PREFPPO 0.62 (0.043) 0.63 (0.047) 0.77 (0.089) 0.66 (0.06) 0.66 (0.04) 0.72 (0.09) 0.67
+DIST. 0.67 (0.062) 0.74 (0.14) 0.7 (0.072) 0.63 (0.069) 0.67 (0.076) 0.68 (0.081) 0.68
+CONTR. 0.66 (0.062) 0.61 (0.072) 0.73 (0.082) 0.69 (0.065) 0.61 (0.047) 0.67 (0.073) 0.66

200

PEBBLE 0.71 (0.23) 0.62 (0.22) 0.71 (0.24) 0.57 (0.2) 0.75 (0.18) 0.6 (0.22) 0.66
+DIST. 0.77 (0.28) 0.61 (0.19) 0.77 (0.22) 0.79 (0.25) 0.76 (0.25) 0.65 (0.27) 0.72
+CONTR. 0.73 (0.22) 0.67 (0.21) 0.83 (0.25) 0.8 (0.24) 0.83 (0.19) 0.76 (0.23) 0.77

PREFPPO 0.57 (0.042) 0.73 (0.13) 0.66 (0.059) 0.54 (0.052) 0.64 (0.073) 0.56 (0.099) 0.62
+DIST. 0.53 (0.066) 0.52 (0.047) 0.66 (0.066) 0.53 (0.049) 0.55 (0.054) 0.57 (0.085) 0.56
+CONTR. 0.62 (0.071) 0.49 (0.046) 0.61 (0.06) 0.63 (0.1) 0.56 (0.062) 0.58 (0.048) 0.58

100

PEBBLE 0.4 (0.14) 0.4 (0.13) 0.61 (0.22) 0.47 (0.2) 0.55 (0.21) 0.42 (0.14) 0.48
+DIST. 0.69 (0.26) 0.59 (0.22) 0.79 (0.28) 0.65 (0.29) 0.67 (0.26) 0.53 (0.21) 0.65
+CONTR. 0.64 (0.28) 0.65 (0.21) 0.78 (0.21) 0.7 (0.29) 0.81 (0.26) 0.72 (0.25) 0.72

PREFPPO 0.46 (0.036) 0.51 (0.061) 0.58 (0.051) 0.58 (0.054) 0.6 (0.047) 0.59 (0.054) 0.55
+DIST. 0.49 (0.036) 0.47 (0.088) 0.49 (0.046) 0.49 (0.038) 0.52 (0.04) 0.52 (0.081) 0.50
+CONTR. 0.54 (0.037) 0.51 (0.06) 0.59 (0.085) 0.5 (0.059) 0.59 (0.061) 0.45 (0.039) 0.53

50

PEBBLE 0.35 (0.11) 0.26 (0.098) 0.39 (0.14) 0.39 (0.12) 0.4 (0.15) 0.24 (0.089) 0.34
+DIST. 0.63 (0.23) 0.59 (0.27) 0.69 (0.25) 0.62 (0.23) 0.68 (0.31) 0.46 (0.22) 0.61
+CONTR. 0.7 (0.28) 0.51 (0.21) 0.72 (0.28) 0.53 (0.2) 0.66 (0.28) 0.66 (0.28) 0.63

PREFPPO 0.5 (0.066) 0.49 (0.07) 0.44 (0.076) 0.4 (0.038) 0.34 (0.062) 0.3 (0.066) 0.41
+DIST. 0.44 (0.041) 0.38 (0.039) 0.44 (0.082) 0.3 (0.063) 0.44 (0.085) 0.47 (0.11) 0.41
+CONTR. 0.47 (0.051) 0.42 (0.039) 0.47 (0.093) 0.43 (0.038) 0.46 (0.039) 0.31 (0.061) 0.43

QUADRUPED-WALK

2K
PEBBLE 0.94 (0.15) 0.55 (0.19) 1.1 (0.26) 1.0 (0.16) 0.93 (0.13) 0.56 (0.19) 0.86

+DIST. 1.3 (0.31) 0.47 (0.19) 1.4 (0.37) 1.3 (0.26) 1.2 (0.18) 0.96 (0.15) 1.09

Continues on next page...
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TABLE 11 – continued from previous page

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

2K

+CONTR. 1.3 (0.25) 0.7 (0.16) 1.2 (0.24) 1.3 (0.29) 1.3 (0.28) 1.0 (0.16) 1.13

PREFPPO 1.1 (0.18) 0.89 (0.18) 1.2 (0.22) 1.2 (0.17) 1.0 (0.25) 1.1 (0.18) 1.07
+DIST. 1.1 (0.22) 1.0 (0.2) 1.2 (0.23) 1.1 (0.24) 1.1 (0.26) 0.91 (0.1) 1.06
+CONTR. 1.0 (0.24) 0.9 (0.2) 1.4 (0.3) 1.2 (0.29) 1.1 (0.38) 1.6 (0.32) 1.28

1K

PEBBLE 0.86 (0.15) 0.53 (0.19) 0.88 (0.15) 0.91 (0.14) 0.73 (0.18) 0.48 (0.25) 0.73
+DIST. 1.1 (0.19) 0.59 (0.14) 1.2 (0.22) 1.3 (0.3) 1.1 (0.21) 1.0 (0.15) 1.04
+CONTR. 1.1 (0.19) 0.63 (0.16) 1.2 (0.29) 1.1 (0.19) 1.1 (0.19) 0.83 (0.14) 0.99

PREFPPO 0.9 (0.17) 0.88 (0.17) 1.1 (0.15) 0.98 (0.21) 0.89 (0.18) 0.83 (0.17) 0.92
+DIST. 1.2 (0.21) 0.88 (0.23) 1.2 (0.27) 1.2 (0.23) 1.1 (0.26) 1.1 (0.16) 1.11
+CONTR. 1.1 (0.19) 0.68 (0.28) 1.2 (0.25) 1.1 (0.2) 0.82 (0.31) 0.56 (0.25) 0.82

500

PEBBLE 0.56 (0.21) 0.48 (0.21) 0.66 (0.2) 0.64 (0.15) 0.47 (0.22) 0.48 (0.23) 0.55
+DIST. 1.1 (0.21) 0.58 (0.16) 1.2 (0.24) 1.0 (0.22) 1.0 (0.19) 0.68 (0.16) 0.93
+CONTR. 1.1 (0.21) 0.64 (0.11) 1.1 (0.22) 1.1 (0.17) 1.0 (0.17) 0.85 (0.14) 0.97

PREFPPO 0.8 (0.18) 0.81 (0.22) 0.96 (0.12) 0.72 (0.18) 0.74 (0.24) 0.88 (0.17) 0.82
+DIST. 1.1 (0.2) 0.76 (0.19) 1.0 (0.2) 1.1 (0.25) 0.89 (0.21) 0.81 (0.25) 0.95
+CONTR. 1.1 (0.21) 0.63 (0.25) 0.9 (0.28) 0.89 (0.22) 0.88 (0.16) 1.5 (0.48) 0.95

200

PEBBLE 0.54 (0.19) 0.49 (0.22) 0.64 (0.15) 0.46 (0.2) 0.43 (0.22) 0.48 (0.23) 0.51
+DIST. 0.9 (0.17) 0.57 (0.17) 0.77 (0.16) 0.89 (0.14) 0.76 (0.11) 0.68 (0.15) 0.76
+CONTR. 0.95 (0.15) 0.53 (0.16) 0.86 (0.16) 0.88 (0.14) 0.77 (0.12) 0.74 (0.16) 0.79

PREFPPO 0.7 (0.23) 0.59 (0.28) 0.82 (0.17) 0.65 (0.27) 0.8 (0.25) 0.82 (0.27) 0.73
+DIST. 0.89 (0.15) 0.79 (0.23) 0.95 (0.18) 0.87 (0.16) 0.76 (0.26) 0.79 (0.17) 0.84
+CONTR. 1.0 (0.33) 0.7 (0.15) 0.95 (0.21) 0.86 (0.18) 1.2 (0.43) 1.2 (0.24) 1.01

100

PEBBLE 0.38 (0.21) 0.47 (0.17) 0.64 (0.14) 0.42 (0.22) 0.46 (0.2) 0.44 (0.22) 0.47
+DIST. 0.78 (0.16) 0.54 (0.2) 0.98 (0.19) 0.72 (0.15) 0.75 (0.16) 0.67 (0.18) 0.74
+CONTR. 0.67 (0.18) 0.47 (0.2) 0.89 (0.14) 0.76 (0.15) 0.79 (0.17) 0.65 (0.19) 0.71

PREFPPO 0.56 (0.31) 0.81 (0.31) 0.66 (0.22) 0.62 (0.28) 0.51 (0.31) 0.6 (0.29) 0.63
+DIST. 1.0 (0.24) 0.8 (0.23) 0.82 (0.19) 0.71 (0.23) 0.76 (0.17) 0.81 (0.26) 0.82
+CONTR. 0.91 (0.19) 0.52 (0.42) 0.61 (0.32) 0.6 (0.27) 0.99 (0.21) 0.53 (0.37) 0.69

50

PEBBLE 0.38 (0.26) 0.4 (0.23) 0.49 (0.2) 0.42 (0.25) 0.42 (0.26) 0.36 (0.26) 0.41
+DIST. 0.65 (0.16) 0.47 (0.24) 0.77 (0.14) 0.68 (0.18) 0.67 (0.2) 0.56 (0.19) 0.63
+CONTR. 0.83 (0.12) 0.49 (0.23) 0.8 (0.14) 0.65 (0.18) 0.69 (0.16) 0.62 (0.19) 0.68

PREFPPO 0.68 (0.3) 0.64 (0.28) 0.58 (0.28) 0.49 (0.26) 0.49 (0.3) 0.5 (0.31) 0.56
+DIST. 0.9 (0.19) 0.71 (0.29) 0.9 (0.25) 0.83 (0.18) 0.68 (0.26) 0.77 (0.29) 0.80
+CONTR. 1.2 (0.34) 0.58 (0.29) 0.9 (0.27) 0.82 (0.16) 0.47 (0.44) 1.1 (0.35) 0.85

Continues on next page...
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TABLE 11 – continued from previous page

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

BUTTON-PRESS

20K

PEBBLE 0.72 (0.26) 0.57 (0.26) 0.77 (0.25) 0.75 (0.26) 0.68 (0.21) 0.72 (0.24) 0.70
+CONTR. 0.65 (0.25) 0.61 (0.28) 0.67 (0.27) 0.67 (0.27) 0.67 (0.24) 0.69 (0.26) 0.66

PREFPPO 0.18 (0.03) 0.18 (0.04) 0.21 (0.03) 0.18 (0.03) 0.17 (0.04) 0.17 (0.04) 0.18
+CONTR. 0.22 (0.03) 0.17 (0.03) 0.22 (0.02) 0.17 (0.03) 0.19 (0.03) 0.17 (0.04) 0.19

10K

PEBBLE 0.66 (0.26) 0.47 (0.21) 0.67 (0.27) 0.63 (0.26) 0.67 (0.24) 0.6 (0.26) 0.62
+CONTR. 0.65 (0.27) 0.61 (0.3) 0.66 (0.27) 0.62 (0.26) 0.6 (0.25) 0.68 (0.28) 0.64

PREFPPO 0.18 (0.03) 0.14 (0.04) 0.19 (0.03) 0.17 (0.04) 0.18 (0.03) 0.17 (0.04) 0.17
+CONTR. 0.15 (0.04) 0.12 (0.05) 0.18 (0.03) 0.17 (0.03) 0.17 (0.03) 0.16 (0.03) 0.16

5K

PEBBLE 0.48 (0.21) 0.31 (0.12) 0.56 (0.25) 0.54 (0.24) 0.59 (0.23) 0.52 (0.23) 0.50
+CONTR. 0.55 (0.24) 0.54 (0.26) 0.65 (0.27) 0.63 (0.26) 0.57 (0.24) 0.63 (0.28) 0.60

PREFPPO 0.15 (0.04) 0.13 (0.05) 0.19 (0.03) 0.16 (0.04) 0.16 (0.04) 0.14 (0.04) 0.15
+CONTR. 0.14 (0.04) 0.13 (0.05) 0.18 (0.03) 0.14 (0.04) 0.14 (0.04) 0.14 (0.03) 0.14

2.5K

PEBBLE 0.37 (0.18) 0.21 (0.088) 0.44 (0.21) 0.34 (0.15) 0.4 (0.17) 0.34 (0.18) 0.35
+CONTR. 0.49 (0.25) 0.42 (0.22) 0.52 (0.24) 0.5 (0.23) 0.44 (0.17) 0.45 (0.21) 0.47

PREFPPO 0.14 (0.04) 0.12 (0.05) 0.13 (0.05) 0.13 (0.05) 0.13 (0.05) 0.14 (0.05) 0.13
+CONTR. 0.14 (0.04) 0.11 (0.05) 0.15 (0.04) 0.11 (0.04) 0.14 (0.04) 0.13 (0.04) 0.13

SWEEP-INTO

20K

PEBBLE 0.53 (0.25) 0.26 (0.15) 0.51 (0.23) 0.52 (0.27) 0.47 (0.28) 0.47 (0.26) 0.46
+CONTR. 0.5 (0.22) 0.36 (0.13) 0.41 (0.2) 0.6 (0.22) 0.54 (0.21) 0.61 (0.25) 0.50

PREFPPO 0.16 (0.046) 0.14 (0.047) 0.16 (0.069) 0.18 (0.065) 0.19 (0.063) 0.08 (0.026) 0.15
+CONTR. 0.23 (0.064) 0.11 (0.042) 0.2 (0.058) 0.2 (0.051) 0.19 (0.054) 0.1 (0.034) 0.17

10K

PEBBLE 0.28 (0.12) 0.22 (0.13) 0.45 (0.21) 0.33 (0.17) 0.47 (0.25) 0.51 (0.24) 0.38
+CONTR. 0.47 (0.23) 0.3 (0.14) 0.45 (0.24) 0.32 (0.21) 0.42 (0.22) 0.44 (0.21) 0.40

PREFPPO 0.16 (0.048) 0.19 (0.064) 0.18 (0.05) 0.18 (0.049) 0.12 (0.055) 0.058 (0.024) 0.15
+CONTR. 0.11 (0.034) 0.12 (0.046) 0.15 (0.046) 0.16 (0.056) 0.11 (0.052) 0.054 (0.029) 0.12

5K

PEBBLE 0.17 (0.099) 0.17 (0.089) 0.28 (0.19) 0.24 (0.15) 0.23 (0.13) 0.22 (0.12) 0.22
+CONTR. 0.34 (0.14) 0.23 (0.19) 0.52 (0.24) 0.37 (0.2) 0.4 (0.24) 0.44 (0.18) 0.38

PREFPPO 0.1 (0.039) 0.078 (0.027) 0.1 (0.032) 0.092 (0.025) 0.1 (0.038) 0.051 (0.019) 0.09
+CONTR. 0.14 (0.052) 0.097 (0.034) 0.12 (0.032) 0.14 (0.076) 0.1 (0.026) 0.043 (0.026) 0.11

2.5K PEBBLE 0.15 (0.086) 0.13 (0.076) 0.16 (0.1) 0.16 (0.088) 0.18 (0.075) 0.25 (0.11) 0.17

Continues on next page...
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TABLE 11 – continued from previous page

FEEDBACK METHOD ORACLE MISTAKE EQUAL SKIP MYOPIC NOISY MEAN

2.5K

+CONTR. 0.21 (0.13) 0.19 (0.22) 0.29 (0.17) 0.17 (0.092) 0.25 (0.15) 0.28 (0.16) 0.23

PREFPPO 0.092 (0.032) 0.097 (0.044) 0.15 (0.051) 0.15 (0.049) 0.099 (0.035) 0.032 (0.022) 0.10
+CONTR. 0.058 (0.019) 0.048 (0.018) 0.11 (0.032) 0.072 (0.035) 0.07 (0.016) 0.036 (0.017) 0.07
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H.3 Image-space Observations Learning Curves

Learning curves are provided for the walker-walk, cheetah-run, and quadruped-walk DMC tasks
(Figure 12), and for the button press, sweep into, drawer open, drawer close, window open, and door
close MetaWorld tasks (Figure 13) across feedback amounts for image-space observations. For all
image-based results, the orable labeller is used to provide the preference feedback.
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Figure 12: Episode returns learning curves for walker walk, quadruped walk, and cheetah run
across preference-based RL methods and feedback amounts for image-based observations. The
oracle labeller is used to generate preference feedback. Mean policy returns are plotted along the
y-axis with number of steps (in units of 1000) along the x-axis. There is one plot per environment
(grid columns) and feedback amount (grid rows) with corresponding results per learning methods
in each plot. From top to bottom, the rows correspond to 2.5k, 5k, 10k, and 20k pieces of teacher
feedback. From left to right, the columns correspond to walker walk, quadruped walk, and cheetah
run.
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Figure 13: Success rate learning curves for button press, sweep into, drawer open, drawer close,
window open, and door close across preference-based RL methods and feedback amounts for
image-based observations. The oracle labeller is used to generate preference feedback. Mean suc-
cess rates are plotted along the y-axis with number of steps (in units of 1000) along the x-axis. There
is one plot per environment (grid columns) and feedback amount (grid rows) with corresponding re-
sults per learning methods in each plot. From top to bottom, the rows correspond to 2.5k, 5k, 10k,
and 20k pieces of teacher feedback. From left to right, the columns correspond to button press,
sweep into, drawer open, drawer close, window open, and door close.
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H.4 Image-space Observations Normalized Returns

The normalized returns (see Section ?? and Equation 5) for walker-walk, quadruped-walk, cheetah-
run, button press, sweep into, drawer open, drawer close, window open, and door close across a
larger range of feedback amounts for image-space observations are given in Table 12.

Table 12: Ratio of policy performance on learned versus ground truth rewards for the image-
observations space walker-walk, cheetah-run, quadruped-walk, sweep into,button press,
drawer open, drawer close, window open, and door open tasks across preference learning meth-
ods, labelling methods and feedback amounts (with disagreement sampling). The results are re-
ported as means (standard deviations) over 10 random seeds.

DMC

TASK METHOD 50 100 250 500 1000 MEAN

WALKER-WALK
PEBBLE 0.06 (0.02) 0.07 (0.02) 0.09 (0.02) 0.11 (0.03) 0.11 (0.03) 0.09

+DIST. 0.18 (0.03) 0.33 (0.10) 0.40 (0.09) 0.57 (0.16) 0.68 (0.23) 0.43
+CONTR. 0.28 (0.12) 0.35 (0.13) 0.46 (0.14) 0.58 (0.14) 0.61 (0.16) 0.46

QUADRUPED-WALK
PEBBLE 0.28 (0.23) 0.23 (0.19) 0.23 (0.15) 0.23 (0.19) 0.47 (0.09) 0.29

+DIST. 0.56 (0.15) 0.59 (0.16) 0.61 (0.12) 0.71 (0.14) 0.72 (0.19) 0.64
+CONTR. 0.53 (0.16) 0.64 (0.097) 0.69 (0.17) 0.73 (0.22) 0.71 (0.16) 0.66

CHEETAH-RUN
PEBBLE 0.01 (0.01) 0.02 (0.01) 0.02 (0.02) 0.02 (0.03) 0.03 (0.02) 0.02

+DIST. 0.07 (0.03) 0.07 (0.03) 0.07 (0.02) 0.12 (0.04) 0.18 (0.07) 0.10
+CONTR. 0.05 (0.02) 0.14 (0.04) 0.14 (0.04) 0.23 (0.09) 0.16 (0.06) 0.14

METAWORLD

TASK METHOD 2.5K 5K 10K 20K MEAN

BUTTON PRESS
PEBBLE 0.16 (0.07) 0.20 (0.07) 0.27 (0.09) 0.33 (0.11) 0.24

+DIST. 0.25 (0.04) 0.35 (0.09) 0.46 (0.16) 0.58 (0.23) 0.41
+CONTR. 0.27 (0.04) 0.35 (0.10) 0.34 (0.07) 0.42 (0.11) 0.35

SWEEP INTO
PEBBLE 0.03 (0.02) 0.05 (0.03) 0.04 (0.04) 0.10 (0.08) 0.06

+DIST. 0.06 (0.05) 0.10 (0.10) 0.10 (0.06) 0.10 (0.11) 0.09
+CONTR. 0.10 (0.11) 0.12 (0.06) 0.11 (0.07) 0.12 (0.05) 0.11

DRAWER OPEN
PEBBLE 0.39 (0.10) 0.50 (0.12) 0.55 (0.11) 0.60 (0.14) 0.51

+DIST. 0.55 (0.07) 0.60 (0.11) 0.65 (0.08) 0.70 (0.08) 0.63
+CONTR. 0.60 (0.11) 0.60 (0.12) 0.67 (0.08) 0.71 (0.08) 0.64

DRAWER CLOSE
PEBBLE 0.93 (0.22) 0.82 (0.16) 0.90 (0.17) 0.86 (0.17) 0.88

+DIST. 0.95 (0.11) 0.97 (0.12) 0.93 (0.09) 0.97 (0.06) 0.96
+CONTR. 0.97 (0.13) 0.93 (0.11) 0.93 (0.13) 0.95 (0.08) 0.95

WINDOW OPEN
PEBBLE 0.23 (0.16) 0.18 (0.078) 0.22 (0.1) 0.35 (0.15) 0.25

+DIST. 0.26 (0.13) 0.35 (0.17) 0.49 (0.19) 0.51 (0.19) 0.40
+CONTR. 0.26 (0.12) 0.46 (0.20) 0.48 (0.19) 0.58 (0.19) 0.44

DOOR OPEN
PEBBLE 0.17 (0.06) 0.26 (0.06) 0.23 (0.04) 0.26 (0.06) 0.23

+DIST. 0.34 (0.07) 0.33 (0.08) 0.34 (0.09) 0.49 (0.13) 0.37
+CONTR. 0.19 (0.03) 0.34 (0.15) 0.33 (0.07) 0.40 (0.05) 0.32
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I Stability and Generalization Benefits

I.1 Reward Model Stability
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Figure 14: Variance in predicted r̂ψ reward as r̂ψ is learned and updated in conjunction with πϕ.
There is one plot per feedback amount (columns) and environment (rows) with corresponding re-
sults per learning method and labelling strategy in each plot. The learning methods assessed are
PEBBLE and PEBBLE with the SimSiam temporal consistency objective. The labelling strategies
(see Appendix B for details) are marked along the x-axis.

We evaluate reward model stability across updates by computing the variance in predicted rewards
for each transition in B across reward model updates. We expect lower variance to translate into
more stability and less reward non-stationarity, resulting in better policy performance. Mean and
standard deviation in predicted rewards are provided for each model update over 10 random seeds
in Figure 14. A representative subset of the conditions (walker-walk and quadruped-walk) from
Section 6 are used to evaluate reward model stability.

Figure 14 shows that for fewer feedback samples, the predicted rewards are more stable across
reward updates for REED methods. For larger amounts of feedback (≥ 500), where REED vs.
non-REED reward policy performance is closer, the amount of predicted reward variability does not
differ greatly between REED and non-REED reward functions. Therefore, the benefits of REED
methods are most pronounced when preference feedback is limited.

These reward stability results partially explain why REED leads to better policy performance. Next,
we investigate whether performance differences are solely due the interplay between reward and
policy learning, or if the difference is also due to differences in overall reward quality.

I.2 Reward Reuse

We assess reward re-usability on a representative subset of the conditions from Section 6 by: (1)
learning a preference-based reward function following [3] and [4]; (2) freezing the reward function;
(3) training a SAC policy from scratch using the frozen reward function. Reward function reuse is
evaluated by comparing policy performance to: (a) SAC trained on the ground truth reward, and (b)
SAC learned jointly with the reward function.

Figure 15 shows that, when reusing a reward function, REED improves policy performance relative
to non-REED methods. When environment dynamics are encoded in the reward function, perfor-
mance closely matches or exceeds that of both policies trained on the ground truth and policies
trained jointly with the reward function.

We see different trends when comparing the reused case to the joint case across environments. For
walker-walk, the policy trained on the reused reward function typically slightly under performs the
policy trained in conjunction with the reward function (with the exception of feedback = 200 with
the REED reward function) suggesting the REED and non-REED reward functions are over-fitting to
the transitions they are trained on. For quadruped-walk, policies trained on the reused REED reward
function outperform the policy trained jointly with the REED reward function for feedback amounts
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Figure 15: Preference-learned reward reuse policy learning curves for walker-walk and quadruped-
walk comparing SAC on the ground truth reward function vs. on the PEBBLE learned reward func-
tion vs. on the PEBBLE with SimSiam reward function with the oracle labeller across feedback
amount. Mean policy returns are plotted along the y-axis with number of steps along the x-axis.

> 200 and matches for 200. To our surprise, SAC is able to learn faster on the REED reward
function than on the ground truth reward function whenever the amount of feedback is > 200.
Whereas for the non-REED reward function, the policy trained on the reused reward function under-
performs, matches, or out-performs the policy learned jointly with the reward function depending
on the amount of feedback. The results suggest that the REED method are less prone to over-fitting.

I.2.1 Complete Reward Reuse Results

The complete reward reuse results for walker-walk (Figure 16), quadruped-walk (Figure 17), and
cheetah-run (Figure 18) across feedback amounts and teacher labelling strategies.
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Figure 16: Learning curves for walker-walk comparing joint reward and policy learning with policy
learning using a previously learned reward function across preference-based RL method, labelling
style, and feedback amount. Mean policy returns are plotted along the y-axis with number of steps
(in units of 1000) along the x-axis. There is one plot per labelling style (grid columns) and feedback
amount (grid rows) with corresponding results per learning methods in each plot. From top to
bottom, the rows correspond to 50, 100, 200, 500, and 1000 pieces of teacher feedback. From left
to right, the columns correspond to equal, noisy, mistake, myopic, oracle, and skip labelling styles
(see Appendix b for details).
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Figure 17: Learning curves for quadruped-walk comparing joint reward and policy learning with
policy learning using a previously learned reward function across preference-based RL method,
labelling style, and feedback amount. Mean policy returns are plotted along the y-axis with number
of steps (in units of 1000) along the x-axis. There is one plot per labelling style (grid columns)
and feedback amount (grid rows) with corresponding results per learning methods in each plot.
From top to bottom, the rows correspond to 50, 100, 200, 500, 1000, and 2000 pieces of teacher
feedback. From left to right, the columns correspond to equal, noisy, mistake, myopic, oracle, and
skip labelling styles (see Appendix b for details).
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Figure 18: Learning curves for cheetah-run comparing joint reward and policy learning with policy
learning using a previously learned reward function across preference-based RL method, labelling
style, and feedback amount. Mean policy returns are plotted along the y-axis with number of steps
(in units of 1000) along the x-axis. There is one plot per labelling style (grid columns) and feedback
amount (grid rows) with corresponding results per learning methods in each plot. From top to
bottom, the rows correspond to 50, 100, 200, 500, and 1000 pieces of teacher feedback. From left
to right, the columns correspond to equal, noisy, mistake, myopic, oracle, and skip labelling styles
(see Appendix b for details).
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