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Abstract

This study evaluates Direct Preference Opti-001
mization (DPO) and its variants for aligning002
Large Language Models (LLMs) with human003
preferences, testing three configurations: (1)004
with Supervised Fine-Tuning (SFT), (2) with-005
out SFT, and (3) without SFT but using an006
instruction-tuned model. We further investi-007
gate how training set size influences model008
performance. Our evaluation spans 13 bench-009
marks—covering dialogue, reasoning, mathe-010
matical problem-solving, question answering,011
truthfulness, MT-Bench, Big Bench, and the012
Open LLM Leaderboard. We find that: (1)013
alignment methods often achieve near-optimal014
performance even with smaller subsets of train-015
ing data; (2) although they offer limited im-016
provements on complex reasoning tasks, they017
enhance mathematical problem-solving; and018
(3) using an instruction-tuned model improves019
truthfulness. These insights highlight the con-020
ditions under which alignment methods excel,021
as well as their limitations.022

1 Introduction023

Large Language Models (LLMs) demonstrate ex-024

ceptional capabilities across various tasks, but025

aligning them with human preferences presents026

challenges, including high data demands and in-027

consistent performance across tasks. These mod-028

els excel in mathematical reasoning problem-029

solving (Cobbe et al., 2021a; Wei et al., 2022;030

Lewkowycz et al., 2022), code generation program-031

ming (Chen et al., 2021; Austin et al., 2021; Li032

et al., 2022), text generation (Bubeck et al., 2023;033

Touvron et al., 2023), summarization, and creative034

writing, among other tasks. Notably, LLMs have035

achieved significant performance with human pref-036

erences, based on alignment methods including037

Supervised Fine-Tuning (SFT) and Reinforcement038

Learning from Human Feedback (RLHF) (Sanh039

et al., 2022; Ouyang et al., 2022). While RLHF040

exhibits remarkable performance compared to just041
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Figure 1: Performance comparison of alignment meth-
ods on MT-Bench under two scenarios: 1) fine-tuning a
model with SFT (Mistral+SFT) and 2) fine-tuning a pre-
trained model without SFT (Mistral). Unlike IPO and
DPO, other methods like CPO and KTO demonstrate
similar performance to model that undergo SFT.

SFT, it faces limitations such as reward hacking 042

(Liu et al., 2024). Therefore, Direct Preference 043

Optimization (DPO) (Rafailov et al., 2023), a state- 044

of-the-art offline reinforcement learning method, 045

has been proposed to optimize human preferences 046

without the need for the RL process. 047

Recent studies have highlighted limitations in 048

alignment methods, including issues like overfit- 049

ting, inefficient learning and memory utilization, 050

preferences ranking, and dependence on prefer- 051

ences across various scenarios like dialogue sys- 052

tems (Tunstall et al., 2023), summarization, senti- 053

ment analysis (Wu et al., 2023), helpful and harm- 054

ful question answering (Liu et al., 2024), and ma- 055

chine translation (Xu et al., 2024). Despite the 056

significance of these studies, none have thoroughly 057

examined critical ambiguities in alignment, such as 058

(1) the learnability of emerged alignment methods 059

without SFT, (2) fair comparison between these 060

methods, (3) evaluating their performance post- 061

SFT, (4) the impact of data volume on performance, 062

and weaknesses inherent in these methods. Ad- 063
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dressing these areas is crucial for gaining a com-064

prehensive understanding for alignment methods.065

In this study, we delve into the performance of066

alignment methods such as DPO (Rafailov et al.,067

2023), IPO(Azar et al., 2023), KTO (Ethayarajh068

et al., 2023), and CPO (Xu et al., 2024), which069

are based on RL-free algorithms. These methods070

typically involve two steps: 1) Supervised fine-071

tuning of a policy model and 2) Optimization of072

the SFT model with alignment algorithms such as073

DPO. Our exploration spans across various tasks074

including dialogue systems, reasoning, mathemat-075

ical problem-solving, question answering, truth-076

fulness, and multi-task understanding. We eval-077

uate these alignment methods across 13 bench-078

marks such as MT-Bench (Zheng et al., 2023),079

Big Bench (bench authors, 2023), and Open LLM080

Leaderboard (Beeching et al., 2023). To assess081

the performance of these methods, we define three082

distinct scenarios: 1) Fine-tuning an SFT model,083

2) Fine-tuning a pre-trained model, and 3) Fine-084

tuning an instruction model. In scenario 1, we085

employ a supervised fine-tuned model on chat com-086

pletion and fine-tune it with different alignment087

methods. In scenario 2, we omit the SFT phase and088

directly fine-tune a pre-trained model with align-089

ment methods. In scenario 3, we skip the SFT090

phase and utilize an instruction-tuned model as the091

base model, fine-tuning it with alignment methods.092

The results indicate that in the standard align-093

ment process, KTO outperforms other methods094

across all tasks except for multi-task understand-095

ing. However, the performance of SFT and other096

alignment methods in reasoning tasks is relatively097

comparable, suggesting that RL-free algorithms do098

not significantly affect reasoning. Moreover, un-099

like DPO when skipping the SFT phase, KTO, and100

CPO demonstrate comparable performance on MT-101

Bench. Comparing the performance of methods102

with and without the SFT phase reveals a signifi-103

cant improvement in TruthfulQA (Lin et al., 2022)104

and GSM8K (Cobbe et al., 2021b). Additionally,105

an interesting finding is that alignment methods106

in the standard process exhibit better performance107

with smaller training data subsets. Lastly, it is108

observed that the instruction-tuned model has a109

notable impact only on truthfulness.110

In summary, our contributions are as follows:111

1. We explore the learning capabilities of align-112

ment methods, aiming to mitigate overfitting113

challenges within the DPO framework. Our114

findings indicate that CPO and KTO show 115

comparable performance with skipping the 116

SFT part in MT-Bench (See Figure 1). 117

2. We examine the effectiveness of alignment 118

methods across dialogue systems, reasoning, 119

mathematical problem-solving, question an- 120

swering, truthfulness, and multi-task under- 121

standing in three different scenarios. 122

3. A comprehensive evaluation reveals that align- 123

ment methods exhibit a lack of performance 124

in reasoning tasks yet demonstrate impressive 125

performance in solving mathematical prob- 126

lems and truthfulness. 127

4. We observe that in the standard alignment 128

process, fine-tuning an SFT model with all 129

alignment algorithms using a small subset of 130

training data yields better performance. (See 131

Figure 3). 132

2 Related Works 133

Recent advancements in pre-training LLMs, such 134

as LLaMA-2 (Touvron et al., 2023), GPT-3 (Brown 135

et al., 2020), Gopher (Rae et al., 2022), Vicunna 136

(Chiang et al., 2023), Mistral (Jiang et al., 2023), 137

and PaLM 2 (Anil et al., 2023), have led to impres- 138

sive performance gains in zero-shot (Radford et al., 139

2019) and few-shot (Chowdhery et al., 2022) sce- 140

narios across various tasks. However, when applied 141

to downstream tasks, LLMs’ performance tends to 142

degrade. While fine-tuning models using human 143

completions aids in alignment and performance 144

enhancement, obtaining human preferences for re- 145

sponses is often more feasible than collecting ex- 146

pert demonstrations. Consequently, recent research 147

has shifted focus towards fine-tuning LLMs using 148

human preferences. In this section, we present a 149

brief review of alignment algorithms on various 150

tasks. 151

RLHF (Christiano et al., 2023) proposed to 152

optimize for maximum reward operates by en- 153

gaging with a reward model trained using the 154

Bradley-Terry (BT) model (Bong and Rinaldo, 155

2022) through reinforcement algorithms like Prox- 156

imal Policy Optimization (PPO) (Schulman et al., 157

2017). While RLHF enhances model performance, 158

it grapples with challenges such as instability, re- 159

ward hacking, and scalability inherent in reinforce- 160

ment learning. 161

Recent studies have introduced methods to ad- 162

dress these challenges by optimizing relative prefer- 163

ences without depending on reinforcement learning 164
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(RL). Optimizing a model using the BT model on165

preference datasets helps ensure alignment with166

human preferences.167

Sequence Likelihood Calibration (SLiC) (Zhao168

et al., 2023) introduced a novel approach to rank-169

ing preferences produced by a supervised fine-170

tuned (SFT) model, employing calibration loss171

and regularization fine-tuning loss during training.172

Meanwhile, Rank Response with Human Feedback173

(RRHF) (Yuan et al., 2023) trains the SFT model174

utilizing a zero-margin likelihood contrastive loss,175

assuming multiple ranked responses for each input.176

Despite their efficacy, SLiC and RRHF lack theo-177

retical underpinnings. In response, DPO proposed178

a method to fit an SFT model directly to human179

preferences using the Bradley-Terry (BT) model,180

offering theoretical insights into the process.181

Statistical Rejection Sampling Optimization182

(RSO) (Liu et al., 2024) combines the method-183

ologies of SLiC and DPO while introducing an184

enhanced method for gathering preference pairs185

through statistical rejection sampling. IPO (Azar186

et al., 2023), akin to DPO approaches, has mathe-187

matically demonstrated the limitations of the DPO188

approach regarding overfitting and generalization,189

proposing a comprehensive objective for learning190

from human preferences. Zephyr (Tunstall et al.,191

2023) has enhanced DPO by leveraging state-of-192

the-art (SOTA) models to generate responses for193

the same input and ranking them using teacher mod-194

els like GPT-4. Additionally, they highlight the195

necessity of SFT as a preliminary step before em-196

ploying DPO.197

KTO (Ethayarajh et al., 2023), inspired by Kah-198

neman and Tversky’s seminal work on prospect the-199

ory (TVERSKY and KAHNEMAN, 1992), aims to200

maximize the utility of LLM generations directly201

rather than maximizing the log-likelihood of pref-202

erences. This approach eliminates the need for203

two preferences for the same input, as it focuses204

on discerning whether a preference is desirable or205

undesirable.206

Self-Play fIne-tuNing (SPIN) (Chen et al., 2024)207

introduced a self-training approach to enhance208

DPO using the dataset employed in the SFT step.209

The key idea of this approach is to utilize synthetic210

data generated as the rejected response and the211

gold response from the SFT dataset as the chosen212

response. Meanwhile, Constrictive Preference Op-213

timization (CPO) (Xu et al., 2024) proposed an214

efficient method for learning preferences by com-215

bining the maximum-likelihood loss and the DPO 216

loss function, aiming to improve memory and learn- 217

ing efficiency. 218

We note that the aforementioned works lack com- 219

parative studies on alignment methods concerning 220

both completion and preference learning. While 221

those studies address unlearning a DPO method 222

without the SFT step, further exploration of alter- 223

native methods is warranted. Although the sig- 224

nificance of high-quality preferences is widely ac- 225

knowledged, there remains a necessity to explore 226

the influence of data quantity on performance of the 227

alignment methods. Additionally, the crucial aspect 228

of generalization remains unexplored. While align- 229

ing a model aims to enhance performance across 230

all categories, improving alignment methods often 231

comes at the expense of performance in other areas. 232

Further investigation in this regard is necessary. To 233

this end, we examine the performance of alignment 234

methods both before and after SFT to assess the 235

learning capabilities of IPO, KTO, and CPO. More- 236

over, we highlight the weaknesses of alignment 237

methods by comparing their performance across 238

five different domains, demonstrating the signifi- 239

cant impact of dataset quantity on performance. 240

3 Exiting Alignment Methods 241

In this section, we explain various RL-free align- 242

ment methods and discuss the reasons behind their 243

development. Typically, the alignment process un- 244

folds in three phases: 1) Fine-tuning a policy model 245

using Supervised Fine-Tuning (SFT), 2) training a 246

reward model, and 3) further fine-tuning the initial 247

policy model using reinforcement learning (RL), 248

where the reward model provides the feedback 249

mechanism. A recent development by DPO in- 250

troduced an RL-free approach aimed at aligning a 251

policy model by optimizing the likelihood of the 252

preferred and unpreferred responses. This is imple- 253

mented using a dataset labeled D, where x repre- 254

sents the input, yw denotes the preferred response, 255

and yl indicates the unpreferred response. The 256

DPO loss function is mathematically articulated in 257

Equation 1 as follows: 258

LDPO (πθ;πref ) =− E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

−β log
πθ (yl | x)
πref (yl | x)

)]
(1) 259

where πθ is the parameterized policy, σ is sig- 260

moid function and β is a parameter controlling 261

the deviation from the base reference policy πref. 262
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Figure 2: Comparison performance of the alignment method in different tasks based on two different scenarios: 1)
fine-tuning an SFT model (Mistral+SFT) with alignment methods and 2) fine-tuning a pre-train model (Mistral)
with them. For more details about reasoning and question answering, refer to Appendix B.

Despite DPO surpassing RLHF through RL-free263

methodology, it faces constraints like overfitting264

and the need for extensive regularization, which265

can impede the efficacy of the policy model. Ad-266

dressing these limitations, in (Azar et al., 2023)267

introduced the IPO algorithm, which defines a gen-268

eral form of the DPO and reformulates it to solve269

the overfitting and regularization. The formulation270

of the IPO loss function is in Equation 2 as follows:271

LIPO(π) = −E
(yw,yl,x)∼D

(
hπ(yw, yl, x)−

τ−1

2

)2

(2)
272

273

hπ(y, y
′, x) = log

(
π (y | x)πref (y

′ | x)
π (y′ | x)πref (y | x)

)
274

where x represents the input, yw denotes the275

preferred response, yl indicates the unpreferred re-276

sponse, πref is the reference policy and τ is a real277

positive regularisation parameter. Although the278

IPO algorithm overcomes the problems of over-279

fitting and the need for extensive regularization280

present in DPO, the approach of aligning based on281

two preferences has different complications. The282

KTO study seeks to enhance the effectiveness of283

the DPO method by implementing a strategy that284

utilizes only a single preference. This method is in-285

spired by the Kahneman & Tversky theory, which286

observes that humans are more acutely affected by 287

losses than gains of comparable magnitude. In this 288

algorithm, having a clear understanding of whether 289

a preference is suitable or unsuitable is crucial, 290

eliminating the necessity for an alternative prefer- 291

ence. The KTO loss function is defined in Equation 292

3 as follows: 293

LKTO(πθ, πref;β) = Ex,y∼D

[
1− ĥ(x, y;β)

]
(3) 294295

ĥ(x, y;β) =


σ
(
β log πθ(y|x)

πref(y|x) − Ex′∼D [βKL(πθ ∥ πref)]
)

if y ∼ ydesirable|x,
σ
(
Ex′∼D [βKL(πθ ∥ πref)]− β log πθ(y|x)

πref(y|x)

)
,

if y ∼ yundesirable|x

296

where πθ is the model we are optimizing, β is a 297

parameter controlling the deviation from the base 298

reference policy πref, σ is the logistic function, KL 299

is the KL-divergence between the two distributions 300

and x is the input. IPO and KTO have enhanced 301

the performance of the DPO model and addressed 302

some of its shortcomings. However, the simulta- 303

neous loading of two models has led to inefficient 304

learning in DPO algorithm. To improve upon this, 305

the CPO method was developed, enhancing the ef- 306

ficiency of the DPO approach. Research detailed 307

in (Xu et al., 2024) demonstrated that it is unneces- 308

sary to load a reference policy model (πref ) during 309
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training. By omitting the reference model from310

the memory, CPO increases operational efficiency,311

enabling the training of larger models at reduced312

costs compared to DPO. The CPO loss function is313

specified in Equation 4 as follows:314

LNLL = −E(x,yw)∼D [log πθ (yw | x)]315

316

Lprefer = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

− β log πθ(yl|x))
)]317

318
LCPO = Lprefer + LNLL (4)319

where πθ is the parameterized policy, yw and yl320

denotes the preferred and unpreferred responses, x321

is a set of source sentences, β is a parameter, and322

σ is the logistic function. In the next section, we323

assess the alignment methods, highlighting their324

strengths and weaknesses.325

4 Experiments326

Description. In this section, we assess the align-327

ment methods across three scenarios: 1) fine-tuning328

an SFT model with alignment methods, 2) fine-329

tuning a pre-trained model with alignment methods,330

and 3) fine-tuning an instruction-tuned model with331

alignment methods. Subsequently, within each sce-332

nario, we examine their performance across reason-333

ing, mathematical problem-solving, truthfulness,334

question-answering, and multi-task understanding.335

Details regarding these scenarios are provided in336

the following section.337

Evaluation Metrics. To evaluate the methods338

for reasoning, we utilize benchmarks such as339

ARC (Clark et al., 2018), HellaSwag (Zellers340

et al., 2019), Winogrande (Sakaguchi et al.,341

2019), Big Bench Sports Understanding (BB-342

sports), Big Bench Causal Judgment (BB-casual),343

Big Bench Formal Fallacies (BB-formal), and344

PIQA (Bisk et al., 2019). To evaluate their mathe-345

matical problem-solving abilities, we employ the346

GSM8K (Cobbe et al., 2021b) benchmark. Truth-347

fulness is evaluated using the TruthfulQA (Lin348

et al., 2022) benchmark. Additionally, we gauge349

their performance in multitask understanding us-350

ing the MMLU (Hendrycks et al., 2021) bench-351

mark. OpenBookQA (Mihaylov et al., 2018) and352

BoolQ (Clark et al., 2019) benchmarks are em-353

ployed to assess their performance in question-354

answering tasks. Finally, to evaluate their effec-355

tiveness in dialog systems, we utilize MT-Bench356
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Figure 3: Comparison of performance for KTO, IPO,
CPO, and DPO alignment methods on MT-Bench across
various training set sizes. All methods demonstrated
optimal performance with training sets ranging from 1K
to 10K data points.

benchmarks, which consist of 160 questions across 357

eight knowledge domains, with GPT-4 scoring the 358

model-generated answers on a scale from 0 to 10. 359

4.1 Scenario 1: Fine-tune an SFT Model 360

Motivation. In this scenario, we first train an SFT 361

model and then refine it with the aforementioned 362

alignment methods. These methods, designed to 363

enhance the performance of DPO, have been ap- 364

plied to various tasks, such as machine transla- 365

tion. However, there hasn’t been a comprehensive 366

evaluation comparing them on the same task. The 367

primary motivation behind these scenarios is to as- 368

sess their performance across different benchmarks. 369

Additionally, we aim to determine whether the per- 370

formance of alignment methods improves with in- 371

creasing training data, as it seems that alignment 372

methods may not require extensive data beyond the 373

SFT phase. 374

Models. We employ the zephyr-sft-full 375

model as our SFT model, which underwent fine- 376

tuning utilizing the UltraChat (Ding et al., 2023) 377

dataset. Its baseline model is Mistral-7B-v0.1. 378

We proceed by training the zephyr-sft-full 379

model with DPO, IPO, KTO, and CPO. For further 380

information regarding the training and evaluation 381

procedures, please refer to the Appendix A. 382

Datasets. We utilize the UltraFeedback- 383

binarized (Tunstall et al., 2023) dataset, akin to 384

the UltraChat dataset, specifically designed for 385

the chat completion task. Comprising 63k pairs 386

of selected and rejected responses corresponding 387
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to specific inputs, the UltraFeedback-binarized388

dataset is employed for training alignment models.389

KTO outperforms other alignment methods.390

The findings depicted in Figures 2 and 3 indicate391

that KTO surpasses other alignment methods in392

MT-Bench, and across all academic benchmarks, it393

exhibits superior performance, with the exception394

of MMLU (See Table 1). Particularly notewor-395

thy is KTO’s remarkable performance on GSM8K,396

highlighting its strong aptitude for solving mathe-397

matical problems(Mathematics plot in Figure 2).398

Model DPO KTO IPO CPO SFT

Mistral 63.14 62.31 62.44 62.61 60.92
Mistral+SFT 59.88 59.53 59.87 59.14 -

Table 1: Performance comparison of alignment meth-
ods on MMLU across two scenarios: 1) Fine-tuning a
pre-trained model (Mistral) using alignment methods,
and 2) Fine-tuning an SFT model (Mistral+SFT) using
alignment methods. "-" represents that there is no value
for this model. We note that the MMLU score for the
Mistral model fine-tuned with SFT is 60.92.

Alignment methods don’t require a large train-399

ing set. The results depicted in Figure 3 reveal400

that all alignment methods perform better with a401

smaller training set. We posit that in the typical402

alignment process, a significant portion of model403

alignment occurs during the SFT phase. Therefore,404

when aiming to enhance the performance of the405

SFT model with methods like KTO, DPO, IPO,406

and CPO, it is beneficial to utilize a smaller dataset407

for training. In essence, there exists a trade-off be-408

tween aligning with SFT and aligning with RL-free409

methods to achieve optimal performance.410

SFT is still enough. Another intriguing observa-411

tion is that none of the alignment methods outper-412

form SFT in MMLU (See Table 1). This suggests413

that SFT remains superior to other methods for414

multitask understanding. Additionally, apart from415

the KTO algorithm in reasoning, truthfulness, and416

question answering, SFT demonstrates comparable417

performance (See Reasoning, Question Answering,418

and Truthfulness plots in Figure 2). This indicates419

that alignment methods struggle to achieve notable420

performance improvements in these tasks.421

4.2 Scenario 2: Fine-tune a Pre-Train Model422

Motivation. In this scenario, we train a pre-423

trained model directly with alignment methods on424

the UltraFeedback dataset. Several motivations un- 425

derlie this scenario. Firstly, we seek to determine 426

whether alignment methods necessitate the SFT 427

phase. Secondly, we aim to compare the perfor- 428

mance of models aligned with DPO, CPO, KTO, 429

and IPO against those trained with SFT. Lastly, we 430

aim to illustrate the impact of the SFT phase on var- 431

ious tasks by comparing the performance of models 432

with and without this component. 433

Models. We employ Mistral-7B-v0.1 as the 434

pre-trained model and fine-tune it with DPO, CPO, 435

KTO, and IPO. Further information regarding the 436

training and evaluation process can be found in the 437

Appendix A. 438

Datasets. We train an SFT model using the Ultra- 439

Chat dataset, which contains 200k examples gen- 440

erated by GPT-3.5-TURBO across 30 topics and 20 441

text material types, providing a high-quality dataset. 442

Additionally, for training the pre-trained model 443

with alignment methods, we utilize the UltraFeed- 444

back dataset, as explained in Section 4.1. It is worth 445

noting that both UltraChat and UltraFeedback were 446

curated specifically for the chat completion task. 447

KTO and CPO don’t require SFT. The findings 448

presented in Figure 1 indicate that skipping the SFT 449

phase resulted in Mistral+IPO and Mistral+DPO 450

performing poorly in the dialogue system, as they 451

attained lower scores compared to SFT. However, 452

Mistral+KTO and Mistral+CPO achieved scores 453

comparable to Mistral+SFT. 454

SFT significantly affects academic benchmarks. 455

The results depicted in Figure 2 reveal several key 456

findings. Firstly, skipping the SFT phase leads 457

to a marginal improvement in reasoning perfor- 458

mance without significant impact. Secondly, there 459

is a notable and consistent improvement across 460

all alignment methods except IPO in GSM8K and 461

TruthfulQA benchmarks. Moreover, in the MMLU 462

benchmark, skipping the SFT phase not only en- 463

hances performance but also results in all alignment 464

methods outperforming the SFT baseline (See Ta- 465

ble 1). 466

4.3 Scenario 3: Fine-tune an Instruction 467

Tuned Model 468

Motivation. The primary motivation for this sce- 469

nario is to investigate the impact of the instruction- 470

tuned model on the performance of various align- 471

ment methods. Thus, we train an instruction-tuned 472

6



Model ARC HellaSwag Winogrande BB-sports BB-casual BB-formal PIQA Average
Mistral-Instruct+SFT 61.17 81.93 76.87 71.39 60 50.73 83.02 69.3
Mistral-Instruct+IPO 63.05 84.69 77.26 75.25 59.47 51.65 80.41 70.25
Mistral-Instruct+KTO 62.71 85.52 77.5 74.23 61.57 51.23 81.55 70.62
Mistral-Instruct+CPO 52.38 80.95 77.5 72.31 58.94 52.02 81.55 67.95
Mistral-Instruct+DPO 63.48 85.34 77.34 74.64 59.47 51.12 81.01 70.34

Table 2: Performance comparison of various alignment methods in scenario 3 on reasoning benchmarks. To
assess reasoning abilities, we focused on common sense reasoning, logical reasoning, and causal reasoning (See
Section 4.3).

Model GSM8K MMLU TruthfulQA OpenBookQA BoolQ Average
Mistral-Instruct+SFT 37.68 61.03 49.46 48.4 86.02 67.21
Mistral-Instruct+IPO 38.05 60.72 66.97 48.2 85.9 67.05
Mistral-Instruct+KTO 38.28 61.72 66.97 49.4 86.17 67.78
Mistral-Instruct+CPO 38.51 60.46 63.9 46.8 84.98 65.89
Mistral-Instruct+DPO 33.58 61.61 68.22 49.2 85.19 67.19

Table 3: Performance evaluation of alignment methods in scenario 3, focusing on solving mathematics problems,
truthfulness, multi-task understanding, and question-answering tasks. For more detailed information, refer to
Section 4.3.

Model Align
First Turn

(Score)
Second Turn

(Score)
Average
(Score)

Mistral-Instruct SFT 7.78 7.16 7.47
Mistral-Instruct DPO 7.61 7.42 7.51
Mistral-Instruct KTO 7.66 7.36 7.51
Mistral-Instruct CPO 7.18 6.98 7.08
Mistral-Instruct IPO 7.88 7.32 7.60

Table 4: Performance comparison of alignment methods
using an instruction-tuned model without SFT on MT-
Bench (More details in Section 4.3).

model with KTO, IPO, DPO, and CPO and evalu-473

ate their performance across different benchmarks.474

To ensure a fair comparison, we assess the perfor-475

mance of the alignment methods alongside the SFT476

method to discern their effects. Consequently, in477

this scenario, we bypass the SFT phase and utilize478

the instruction-tuned model for evaluation.479

Models. We utilize Mistral-instruct-7B-v0.2 as480

the instruction-tuned model and fine-tune it with481

DPO, CPO, KTO, and IPO. Further information482

regarding the training and evaluation process can483

be found in the Appendix A.484

Datasets. Like Section 4.2, we train an SFT485

model using the UltraChat dataset. Additionally,486

we employ UltraFeedback to train the pre-trained487

model with alignment methods, as described in488

scenario 1. It’s worth noting that both UltraChat489

and UltraFeedback were curated specifically for490

the chat completion task.491

Aligning an instruction-tuned model signifi- 492

cantly affects truthfulness. The findings pre- 493

sented in Table 3 indicate that KTO and IPO out- 494

perform SFT by 17.5%, whereas KTO, based on a 495

pre-trained model, outperforms SFT by 9.5% (See 496

Table 9 in Appendix B). This underscores the high 497

effectiveness of an instruction-tuned model, par- 498

ticularly in terms of truthfulness. Additionally, it 499

is observed that KTO surpasses other methods in 500

MT-Bench (See Table 4). 501

SFT based on instruction tuning is enough. 502

The findings presented in Tables 2 and 3 indi- 503

cate that SFT demonstrates comparable perfor- 504

mance across reasoning, mathematics, question- 505

and-answer, and multi-task understanding bench- 506

marks. While alignment methods exhibit better per- 507

formance than SFT, the challenge of preparing the 508

preference dataset remains significant, making SFT 509

preferable in most cases. It is noteworthy that in 510

MT-Bench, CPO performs even worse compared to 511

SFT, suggesting that models fine-tuned with CPO 512

exhibit weaker performance in the dialogue system 513

compared to those fine-tuned with SFT (See Table 514

4). 515

Same or higher than GPT-4. We observe that 516

while improving overall performance, there is a 517

decrease in the model’s ability in certain domains 518

(See Figure 4). However, another intriguing dis- 519

covery is that not only does KTO achieve an equal 520

score with GPT-4 in Humanities, but CPO also out- 521

performs GPT-4 in the STEM domain (See Figure 522
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Figure 4: Performance comparison of the alignment
methods based on the instruction-tuned model on MT-
Bench. There exists a substantial disparity in perfor-
mance between GPT-4 and alignment methods across
reasoning, mathematics, and coding tasks. The score is
between 0 and 10 generated by GPT-4.
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Figure 5: Alignment methods based on instruction-
tuned model not only demonstrate equivalent perfor-
mance to GPT-4 but can also outperform it, particularly
in comparisons based on MT-Bench score. The score is
between 0 and 10 generated by GPT-4.

5). This finding highlights the alignment methods’523

capability to rival state-of-the-art models such as524

GPT-4 with smaller models.525

5 Conclusions526

In this paper, we assessed the performance of RL-527

free algorithms such as DPO, KTO, IPO, and CPO528

across various tasks, including reasoning, mathe-529

matics problem-solving, truthfulness, question an-530

swering, and multi-task understanding in three dis-531

tinct scenarios. Our findings show that KTO con-532

sistently outperforms the other alignment methods533

in all three scenarios. However, we noted that these534

techniques do not significantly enhance model per-535

formance in reasoning and question answering dur-536

ing regular alignment processes, though they sig-537

nificantly improve mathematical problem-solving.538

Our research also indicates that alignment methods539

are particularly sensitive to the volume of training540

data, performing best with smaller data subsets.541

Notably, unlike DPO, other methods, such as KTO 542

and CPO, can bypass the SFT part and achieve 543

comparable performance on MT-Bench. We pri- 544

marily utilized an instruction-tuned model as the 545

base for alignment, which significantly influenced 546

truthfulness. Although this study focused on dia- 547

logue systems, we plan to extend our research to 548

include other areas, such as safety, believing our re- 549

sults hold significant implications for the alignment 550

community. 551

6 Limitations 552

A key constraint is the challenge of preparing an 553

appropriate dataset for training alignment meth- 554

ods. Furthermore, ranking multiple preferences 555

presents another limitation that can affect the qual- 556

ity of the research. Inefficiencies in learning and 557

memory also hinder progress in alignment research. 558

Additionally, using essential benchmarks like MT- 559

Bench and AlpacaEval (Dubois et al., 2023) is 560

costly and necessitates access to GPT-4 for evalua- 561

tion. 562

Ethics Statement 563

We have used AI assistants (Grammarly and 564

ChatGPT) to address the grammatical errors and 565

rephrase the sentences. 566
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Appendix916

A Training and Validation Details917

We utilized the Transformer Reinforcement Learn-918

ing (TRL) library for fine-tuning (von Werra et al.,919

2020). It’s noted that the notation "+" is used to920

indicate that a model has been fine-tuned with a spe-921

cific algorithm, such as "+DPO". All models were922

trained using the AdamW optimizer without weight923

decay. Furthermore, parameter-efficient techniques924

such as LoRA (Hu et al., 2021) were not employed.925

The experiments were conducted on 6 A100 GPUs,926

utilizing bfloat16 precision, and typically required927

5-8 hours to complete. All models are trained for928

one epoch, employing a linear learning rate sched-929

uler with a peak learning rate of 5e-7 and 10%930

warmup steps. Additionally, the global batch size is931

set to 8, and β = 0.1 is used to regulate the deviation932

from the reference model. For every dataset used933

in our evaluation, we detail the count of few-shot934

examples utilized along with the specific metric935

employed for assessment (See Table 5).936

B More Details for Scenarios 1 and 2937

In this section, we present the details for reasoning938

benchmarks for scenario 1 in Table 6 and for sce-939

nario 2 in Table 7. Additionally, we provide details940

for other benchmarks in Tables 8 and 9.941
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Datasets ARC TruthfulQA GSM8K Winogrande HellaSwag MMLU BB-causal BB-sports BB-formal OpenBookQA BoolQ PIQA
# few-shot 25 0 5 5 10 5 3 3 3 1 10 0

Metric acc_norm mc2 acc acc acc_norm acc mc mc mc acc_norm acc acc_norm

Table 5: Detailed information of Open LLM Leaderboard, Big Bench and other benchmarks.

Model ARC HellaSwag Winogrande BB-sports BB-casual BB-formal PIQA Average
Mistral+SFT 60.41 81.69 74.19 61.76 51.57 51.4 81.66 66.09

Mistral+SFT+DPO 61.60 82.11 77.82 72.31 51.57 51.28 81.33 65.64
Mistral+SFT+IPO 59.56 81.08 76.55 68.76 51.05 52.03 81.55 67.22
Mistral+SFT+CPO 54.52 79.24 76.4 72.21 53.68 52.18 80.9 67.1
Mistral+SFT+KTO 57.84 82.19 77.26 73.52 57.89 51.19 81.93 68.83

Table 6: Performance comparison of the various alignment methods in scenario 1 on reasoning benchmarks. To
assess reasoning abilities, we focused on common sense reasoning, logical reasoning, and causal reasoning.

Model ARC HellaSwag Winogrande BB-sports BB-casual BB-formal PIQA Average
Mistral+SFT 60.41 81.69 74.19 61.76 51.57 51.4 81.66 66.09
Mistral+DPO 63.82 84.99 78.92 74.64 57.89 50.69 83.02 70.56
Mistral+IPO 68 81.7 77.03 73.93 58.94 52.3 83.18 70.72
Mistral+CPO 60.49 82.21 78.45 72 55.78 52.88 82.15 69.13
Mistral+KTO 64.5 85.31 78.68 77.68 56.84 51.05 83.35 71.05

Table 7: Performance comparison of the various alignment methods in scenario 2 on reasoning benchmarks. To
assess reasoning abilities, we focused on common sense reasoning, logical reasoning, and causal reasoning.

Model GSM8K MMLU TruthfulQA OpenBookQA BoolQ Average
Mistral+SFT 26.76 60.92 43.73 43.2 85.16 64.18

Mistral+SFT+DPO 30.62 59.88 44.78 46 85.29 65.64
Mistral+SFT+IPO 31.31 59.87 41.37 45 84.77 64.88
Mistral+SFT+CPO 27.89 59.14 45.1 44 84.28 64.14
Mistral+SFT+KTO 34.72 59.53 45.9 47 85.87 66.43

Table 8: Evaluation of alignment methods in scenario 1, focusing on solving mathematics problems, truthfulness,
multi-task understanding, and question-answering tasks.

Model GSM8K MMLU TruthfulQA OpenBookQA BoolQ Average
Mistral+SFT 26.76 60.92 43.73 43.2 85.16 64.18
Mistral+DPO 36.01 63.14 51.2 49.4 86.78 68.09
Mistral+IPO 19.86 62.44 52.28 50 86.78 68.39
Mistral+CPO 34.19 62.61 50.04 47.4 86.14 66.77
Mistral+KTO 42.15 62.31 52.98 48.8 86.78 67.79

Table 9: Evaluation of alignment methods in scenario 2, focusing on solving mathematics problems, truthfulness,
multi-task understanding, and question-answering tasks.
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