
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROBUST TRAINING OF NEURAL NETWORKS AT ARBI-
TRARY PRECISION AND SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The discontinuous operations inherent in quantization and sparsification introduce
obstacles to backpropagation. This is particularly challenging when training deep
neural networks in ultra-low precision and sparse regimes. We propose a novel,
robust, and universal solution: a denoising affine transform that stabilizes training
under these challenging conditions. By formulating quantization and sparsifica-
tion as perturbations during training, we derive a perturbation-resilient approach
based on ridge regression. Our solution employs a piecewise constant backbone
model to ensure a performance lower bound and features an inherent noise re-
duction mechanism to mitigate perturbation-induced corruption. This formulation
allows existing models to be trained at arbitrarily low precision and sparsity levels
with off-the-shelf recipes. Furthermore, our method provides a novel perspective
on training temporal binary neural networks, contributing to ongoing efforts to
narrow the gap between artificial and biological neural networks.

1 INTRODUCTION

The recent surge in the size and complexity of generative AI models has elevated computational
efficiency to the forefront of AI research (Chowdhery et al., 2022; Peng et al., 2023). Among the
diverse approaches to achieving efficiency, quantization and sparsification techniques stand out as
two classic and widely explored methods. Quantization and sparsity techniques can effectively
reduce the computational requirements of large language models (LLMs). Quantization reduces the
precision of model weights and activations, thereby decreasing storage requirements. Sparsification,
on the other hand, prunes redundant weights, leading to a more compact model. These techniques
enable LLMs to be deployed on resource-constrained devices, such as mobile phones and embedded
systems, while also improving their speed and memory efficiency. This facilitates the widespread
adoption of LLMs by a broader range of individuals and businesses.

Despite their promise, quantization and sparsification introduce non-differentiable operations, such
as rounding and hard thresholding, which are incompatible with the differentiable design of back-
propagation, the cornerstone of neural network training. This incompatibility has plagued training
algorithms for decades, hindering progress in the field of efficient neural networks (Bengio et al.,
2013; Li et al., 2017; Yin et al., 2019).

To tackle the discontinuity challenges inherent in training efficient neural networks, algorithms have
primarily focused on adapting gradient descent algorithms to work with non-differentiable opera-
tions. Empirical techniques such as the straight-through estimator (STE) (Bengio et al., 2013) have
been employed to define gradients for non-differentiable operations. However, even with the STE,
the perturbation introduced by quantization has been observed to disrupt existing training recipes
(Fig. 1(a)). Consequently, clipping is commonly applied to limit the signals within a small range
to prevent divergence. Despite these techniques, training quantized networks remains restricted to
specific precisions (Rastegari et al., 2016; Courbariaux et al., 2016; Lin et al., 2023; Liu et al.,
2021a) or models (Zhang et al., 2022; 2023). When moving to low precisions, these approaches
usually also make changes to model architectures and recipes, such as inserting extra normaliza-
tions(Zhang et al., 2022; Wang et al., 2023), changing learning rates(Wang et al., 2023), replacing
optimizers (Liu et al., 2021a), keeping several layers unquantized (Abdolrashidi et al., 2021; Liu
et al., 2021a) or through fine-tuning (McKinstry et al., 2018). It is unclear if these techniques are
effective and flexible enough in the large generative AI models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Steps

5

10

15

20

25

30

35

40

45

Lo
ss

Training Loss for 2-bit Activation and 1-bit Weights
A2W1 (standard)
A2W1 (this work)

(a)

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
 =
 = 0
 = 0.1

(b)

0 20000 40000 60000 80000 100000 120000
Steps

0

10

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy

ResNet-50 Top-1 Validation Accuracy on ImageNet

ResNet50.FP32
ResNet50.W4
ResNet50.W2
ResNet50.W1

(c)

0 5000 10000 15000 20000 25000
Steps

0

5

10

15

20

25

30

35

BL
EU

Transformer BLEU Score on WMT2014

Transformer.FP32
Transformer.W4
Transformer.W2
Transformer.W1

(d)

Figure 1: (a) Our approach consistently trains models at ultra-low precision levels where state-of-the-art quan-
tization algorithms often fail due to divergence. (b) Our method decomposes the quantized signal into a noise-
free, piecewise constant backbone (green) and a non-smooth component (red) capturing the perturbed signal.
The non-smooth component is suppressed (blue) when combined with the backbone, ensuring training stabil-
ity even at arbitrary precision and sparsity levels. We demonstrate our approach’s effectiveness by training
ResNet-50 (c) and Transformer (d) models at various weight precision levels (down to 1-bit), achieving state-
of-the-art results. Activation is quantized to 4-bit in (c, d). Our robust training allows for exploring performance
trade-offs across different precision levels. (See Section 4 for results with other precision).

In contrast to the intricate and often empirically tuned techniques of prior methods, we adopt an-
other approach that formulates discontinuous operations as the introduction of perturbations (Golub
& Van Loan, 2013). We address this challenge directly by suppressing the effects of these perturba-
tions, effectively denoising the signal. Our approach comprises three fundamental steps:

1. Affine Transform for Quantization (Sec. 3.1): An initial affine transform f scales the input signal
without introducing additional operations (e.g., clipping).

2. Perturbation Injection (Sec. 3.2): A controlled perturbation δ is injected into the signal, precisely
modeling the effect of quantization.

3. A Denoising Affine Transform for Reconstruction (Sec. 3.3): A key innovation of our approach is
the introduction of another affine transform g that effectively reconstructs the original signal while
mitigating quantization noise.

Our method offers several key advantages: 1. Continuous control over quantization noise: This en-
sures stable model training and prevents divergence. 2. Graceful degradation: Under extreme noise,
our approach seamlessly transitions to a lower-resolution (through averaging) model, guaranteeing
a performance lower bound. 3. Compatibility: Our method works with existing architectures and
training recipes, eliminating the need for extensive modifications or hyperparameter tuning.

These innovations enable the development of diverse, efficient neural networks for various appli-
cations. We demonstrate the effectiveness of our approach by training sparse models and temporal
binary neural networks. Our key contributions include:

• A simple, robust, and universal solution for training quantized neural networks.
• A novel theoretical perspective and practical solution for training networks with discontin-

uous operations, based on decomposition and denoising.
• State-of-the-art results with ultra-low precision models, using standard architectures and

training recipes.
• Easy adaptation to train sparse neural networks.
• A novel shortcut formula for computing quantized matrix multiplication.
• Successful training of temporal binary neural networks, demonstrating its potential for

bridging the gap between artificial and biological neural networks.

2 MOTIVATIONS

2.1 A COMPREHENSIVE PICTURE OF MODEL EFFICIENCY

While extreme quantization and sparsification can significantly reduce storage and computational
requirements, they also introduce the risk of quality degradation. Existing studies on quantization
and sparsity primarily focus on showcasing the effectiveness of specific implementations through

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

meticulous tuning. While these studies provide valuable insights, they fall short of providing a com-
prehensive understanding of the performance trade-offs involved in applying these techniques to ex-
treme levels. The absence of a robust, universal algorithm for training quantized and sparse neural
networks has hindered an accurate comparison of different approaches and has limited the explo-
ration of the full potential of these techniques. To address these limitations, a more comprehensive
and rigorous approach is needed to evaluate the trade-off between efficiency and quality. This ne-
cessitates the development of a universal approach that can effectively manage extreme quantization
and sparsity levels (Fig. 1(c,d)).

2.2 A BIOPHYSICAL BASIS FOR SPARSE QUANTIZATION

One of the most significant achievements in 20th-century neural physiology was the development of
the Hodgkin–Huxley model for modeling animal neural networks (Hodgkin & Huxley, 1952; Dayan
& Abbott, 2005). This model unveiled the intriguing fact that animal neural networks primarily
consist of brief electrical impulses, commonly known as spikes in their activity patterns. Despite
this critical insight, the question of how animals efficiently learn and process information through
these spike trains continues to pose a profound and unresolved challenge. Since the rise of regular
neural networks, researchers have strived to find a more biophysically plausible approach to artificial
intelligence through spiking neural networks (Yamazaki et al., 2022; Lee et al., 2016; Tavanaei et al.,
2019; Gallego et al., 2020). However, the lack of differentiability in spiking neural networks prevents
the straightforward application of gradient descent algorithms, the foundation of modern neural
networks. Consequently, these networks have limited application and popularity. The development
of universal training algorithms for quantized and sparse neural networks could open up new avenues
in the field of spiking neural networks.

3 METHODS

We primarily focus on explaining our formulation for quantization, as it is more widely supported
by modern hardware and offers a broader range of applications. Subsequently, we demonstrate how
our formulation can be extended to sparsification. Our method’s flexibility enables it to address
quantization and sparsification individually or together, allowing users to apply it to model weights
and activations independently or in combination.

3.1 AFFINE TRANSFORM FOR QUANTIZATION

We begin our study by using min-max scaling to move and scale the floating-point vector x to
the desired range, e.g. [0, 2bits − 1]. We formulate with this range for simplicity. The range can
be shifted if signed integers are more compatible with specific hardware. This affine transform is
implemented using standard functions in neural network libraries for backpropagation training.

f(x) =
x− xmin

xmax − xmin + ε
· (2bits − 1) (1)

3.2 PERTURBATION INJECTION

Quantization reduces the number of bits used to represent f(x) by rounding to the nearest inte-
ger. This rounding operation introduces discontinuities at half-integer values, rendering it non-
differentiable. These discontinuities can lead to training difficulties, as neural networks rely on
gradients for learning. Most existing methods for training neural networks with non-smooth op-
erations employ the straight-through estimator (STE) (Bengio et al., 2013). The STE provides a
technique for defining gradients for non-differentiable operations. However, even with the STE,
training algorithms may diverge when moving to lower bits (Fig. 1(a)).

Building upon prior research (Golub & Van Loan, 2013; Bengio et al., 2013; Lee et al., 2016), we
model the impact of these operations as perturbations within the network, recognizing their role in
causing training instability. Specifically, quantization of f(x) can be modeled as injecting a bounded
perturbation:

q = f(x) + δ, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where δ = round(f(x))− f(x), δi ∈ [−0.5, 0.5]. We avoid empirical operations such as clipping,
which can introduce larger perturbations and degrade model performance. By directly incorporating
the quantization noise into the model, our method maintains signal fidelity and achieves superior
results compared to traditional clipping-based approaches. Combining with the first affine transform
(Eq. 1), our quantization can be found in Fig. 2.

3.3 DENOISING AFFINE TRANSFORM FOR RECONSTRUCTION

A core innovation of our approach is the introduction of an additional affine transformation g, de-
signed to be resilient to perturbations. This enhances the robustness of quantized neural networks,
and remarkably, we find that standard training methods used for full-precision models can still ef-
fectively converge even when perturbations are present.

Quantization algorithms typically introduce a one-dimensional affine or linear transform, often re-
ferred to as dequantization, to approximate the original vector x. To streamline computations, most
practical implementations simply invert the scaling involved in Eq. 1 (Abdolrashidi et al., 2021;
Zhang et al., 2022; 2023) or minimize the L2 reconstruction error (Rastegari et al., 2016; Dettmers
et al., 2023). However, focusing solely on minimizing this approximation error may overlook the
crucial challenge of training neural networks to be robust against perturbations (Fig. 1(a)).

Our approach, counterintuitively, increases the approximation error but naturally resolves this long-
standing issue. We formulate the reconstruction as a ridge regression problem, introducing a regu-
larization factor λ and solving for two parameters:

min
a,b

1

2N
||a · q + b− x||2 +

λ

2
a2 (3)

Here N is the dimension/length of x. Taking the derivative with respect to b, and setting to zero
yields the following equation: 1

N

∑
i(b+ aqi − xi) = 0.

Solving for b yields:
b = x− aq (4)

And from setting the derivative with respect to a to zero: 1
N

∑
i qi(aqi + b − xi) + λa = 0.

Simplifying the equation, we obtain:

q2a+ qb− xq + λa = 0 (5)

Substituting Eq. 4 into Eq. 5: q2a+ q̄x̄− q2a− xq + λa = 0.

We arrive at the solution for a:
a =

Covxq
V arq + λ

(6)

Substituting a and b back into the ridge regression yields the reconstructed vector, representing the
quantized version of x:

r = g(q) = a · q + b =
Covxq

V arq + λ
(q − q) + x (7)

This affine transformation can also be seamlessly implemented using fundamental operations readily
available in neural network libraries (Fig. 3). Quantization and reconstruction can be represented
as a straightforward addition of δ between the two affine transform operations: r = g(f(x) + δ).
During actual computations, f(x) + δ is cast to the appropriate data type.

3.3.1 A NOVEL VIEW OF THE QUANTIZED SIGNAL

The reconstruction from Eq. 7 provides a novel decomposition of the quantized signal r into a
smooth component, x, and a non-smooth component, a(q − q), drawing inspiration from detail
enhancement techniques in computer vision (He et al., 2012; Farbman et al., 2008). Importantly,
the bounded perturbation from quantization, δ, is entirely contained within this non-smooth com-
ponent. This observation is key, as this non-smoothness directly contributes to training instability.
Consequently, we can stabilize the training by suppressing this component using the parameter λ.
In essence, λ acts as a control knob, regulating the balance between signal and noise that enters the
training process, as visualized in Fig. 1(b).

Our design exhibits two important properties:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 1. By adjusting λ, the quantized model can be trained to converge if the training algo-
rithm converges on a smaller scale network.

Proof. As λ approaches infinity, the perturbation can be completely suppressed, resulting in the
mean value x serving as a fail-safe vector for the reconstruction of x. This behavior is mathemati-
cally expressed as: limλ→∞ a = 0, limλ→∞ b = x.

The structure of this smaller scale network will be explained in Sec. 3.5. In practice, we find that a
small λ provides a good trade-off between preserving the original signal and suppressing quantiza-
tion noise. This leads us to discuss the other extreme case of λ = 0.

Proposition 2. The regularized model evolves continuously from the original model through the
control parameter λ.

Proof. Setting λ = 0 (no regularization) and δ = 0 (eliminating perturbations) restores the network
to its original form. Intuitively, this behavior arises from the fact that for unperturbed input data
x, q = f(x). The scaling factor a, calculated as Covxf(x)

V arf(x)
= xmax−xmin+ε

2bits−1 , effectively inverts
the scaling in Eq. 1. Since a · f(x) = x − xmin, the reconstructed signal r is then computed as
r = a · (f(x)− f(x)) + x = x− xmin − x+ xmin + x = x. In practice, a very small λ is used,
the resulting model is a small change from the original network. This property suggests the full
precision networks can be easily finetuned to a low precision networks. These properties highlight
the robustness and flexibility of our proposed quantization method.

3.3.2 THE SENSITIVITY OF THE SCALING FACTOR

By inverting the scaling factor in Equation 1, we can map the maximum perturbation of 0.5 to a
perturbation scaled at a magnitude of xmax−xmin

2bits
in the original training signals. This implies that

the perturbation intensity doubles with each reduction in bit precision, leading to a substantially
amplified impact on the training process. This heightened perturbation has disrupted traditional
training recipes (Fig. 1(a)), necessitating the introduction of a regularization term to stabilize the
training process.

The analysis of the solution for a is rooted in well-established principles of perturbation theory, as
outlined in Golub’s work (Golub & Van Loan, 2013) (Section 2.6).

(V arq + λ)a = Covxq (8)

When δ is bounded, the impact of δ on a is proportional to κ = 1
V arq+λ

(Golub & Van Loan, 2013)
(Eq. 2.6.4). λ plays a crucial role in establishing an upper bound on κ. In the absence of λ, the
influence of δ on a may become unbounded. This aligns with our observations that strong pertur-
bations associated with lower precision lead to corrupted training. The introduction of λ effectively
stabilizes the training process by mitigating the impact of quantization noise and ensuring that the
solution to Eq. 8 remains well-conditioned.

3.4 EXTENSION TO SPARSIFICATION

Similar to quantization, sparsification introduces discontinuities through the hard thresholding oper-
ation H . Consequently, the sparsification process can also be modeled as introducing perturbations,
where δ = H(x)−x. In our experiment section we show this leads to significant gain in sparsifying
the model. Since the perturbation from sparsification rarely leads to divergence, we may set λ = 0
to pass the entire perturbed signal when only sparsification is applied.

When dealing with extreme sparsity or quantization, it is noteworthy that 100% sparsity, under the
traditional definition, results in an all-zero vector. To address this limitation, we revisit Equation 7,
which defines the reconstructed signal. Equation 7 involves adding back significant deviations to a
mean vector of x, ensuring that the mean x remains the foundation of the signal even at extreme
sparsity levels. Therefore, sparsification towards the mean presents itself as the most intuitive ap-
proach. In this context, significance is measured by the deviation from the mean xi − x, not from
zero. Consequently, extreme sparsity results in the mean x being preserved, rather than zero.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5 QUANTIZED MATRIX MULTIPLICATION

Consider the matrix multiplication Y = Xn×i ·Wi×o, we apply quantization along the rows of X
and columns of W (Eq. 7). We aim to analyze the quantized matrix multiplication Ỹ = [(aX ·1′

)�
QX + bX · 1′

] · [QW � (1 · aW) + 1W · bW]. Computing Ỹ typically leads to a sum of four terms.
The following shortcut formula simplifies the sum into three terms.

Theorem 1. The result Ỹ , can be expressed as the sum of three terms: a quantized matrix multipli-
cation term and two rank-1 terms. Specifically,

Ỹ = (aXn×1 · aW1×o)� (QX ·QW) + [Xn×1 ·W 1×o − (aX �QX)n×1 · (QW � aW)1×o] · i (9)

The code is presented in Fig. 4. The proof can be found in the appendix (Sec. A.5). In addition,
we apply sub-channel quantization to split vectors along the contraction dimension into smaller,
manageable chunks. Quantizing each chunk independently leads to a higher overall approximation
quality than quantizing the entire vector or matrix at once. This finer-grained approach reduces per-
turbation, resulting in a more stable model. The resulting “fail-safe” backbone model (obtained as
λ → ∞) can be visualized as a piecewise constant function (Fig. 1(b)), where each piece is repre-
sented by its mean value. This is akin to lowering the granularity of the original model, effectively
providing a trainable backbone with reduced complexity.

This sub-channel quantization approach permits low-precision block-wise calculation of the expen-
sive matrix multiplication, followed by summation of partial results, can be implemented through
batch matrix multiplication, drastically reducing the overall computational burden. While the pro-
vided reference code (Fig. 5) utilizes “fake-quantization” for clarity, the actual implementation is
based on Eq. 9 to achieve performance gains (Sec. A.5).

The memory savings achieved depend on the chosen block size B. For instance, when a and b
are stored as 16-bit floats, this results in an additional memory overhead of 32 bits per block. The
effective number of bits per element is reduced to 32/B. In practice we notice that even 8-bit
floats deliver similar quality results. A typical block size of 128 is employed to maintain a storage
overhead of less than one bit. The block size introduces a trade-off between memory savings and
model accuracy. We investigate this trade-off further in our experiments.

4 EXPERIMENTS

To ensure consistency, we maintained a fixed block size of 128 across all experiments unless oth-
erwise specified. Our experiments revealed that the regularization parameter λ = 0.01 consistently
yielded satisfactory results. Quantization was applied to all linear transforms within the model,
including convolutional layers. All models were trained from scratch, with architectures and pa-
rameters unchanged to enable a fair comparison between full-precision and quantized models. We
utilize the notation “AxWy” to represent the quantization configuration of a neural network, where
“A” denotes the bitwidth for activations and “W” denotes the bitwidth for weights. For instance,
“A4W4” indicates that both activations and weights are quantized to 4 bits.

Perturbations can have a two-sided effect on neural network training. While small perturbations
can mimic data augmentation and enhance the training process, they can also introduce unwanted
variability into the training signal, especially when dealing with ultra-low bit and extremely sparse
representations. This unwanted variability can prevent the model from learning effectively and slow
down the model’s convergence. To further assess the performance of the low-precision models, we
extended our main experiments by four times the training duration. With extended training our 1-bit
models remain highly competitive without any architectural change or recipe tweaking (Tables 1, 3).
This demonstrates the robustness of our method and its ability to maintain model performance over
extended training periods.

Our methodology stands out for its simplicity and generality, having undergone extensive testing
on a diverse range of models and datasets, from small to large-scale. To showcase its efficacy,
we present results on two well-established architectures applied to two widely recognized datasets.
First, we demonstrate the effectiveness of our approach on ResNet-50 trained on ImageNet, achiev-
ing satisfactory performance without any empirical tuning. Subsequently, we evaluate our method

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Precision 100 Epochs 400 Epochs
A32W32 76.41 -
A4W4 76.45 -
A4W2 75.12 75.59
A4W1 72.04 73.97

Table 1: Top-1 Validation Accuracy of ResNet-50 on the ImageNet Dataset.

Method FP32 A4W4 GE PT Clip LB
AQT (Abdolrashidi et al., 2021) 76.65 76.4∗ Y Y Y 4
VS-Quant (Dai et al., 2021) 76.16 75.28 Y Y Y 3
FAQ (McKinstry et al., 2018) 76.15 76.25 Y Y Y 4
HAQ (Wang et al., 2019) 76.15 76.14 N Y Y 4
Ours 76.41 76.45 N N N 1

Table 2: Comparison of top-1 accuracy for A4W4 ResNet-50. The columns represent: FP32: Full precision
baseline. A4W4: Quantizing both activations and weights to 4 bits. GE: Whether gradient estimation is
involved. PT: Pretraining/finetuning/calibration required. Clip: Clipping required. LB: The lowest bitwidth
reported in the corresponding paper. * estimated from Fig. 1 (Abdolrashidi et al., 2021)

under the same setting on the Transformer model, which is more relevant to generative AI applica-
tions. Our low precision training consistently surpasses the full-precision training results, demon-
strating its adaptability to different model architectures and tasks.

4.1 ULTRA-LOW PRECISION MODELS

4.1.1 RESNET-50 ON IMAGENET

We utilized the Flax framework to train ResNet-50 from scratch on ImageNet, employing stochastic
gradient descent with an initial learning rate of 0.1, training the model for 100 epochs with weight
decay of 0.0001. As shown in Table 1, the top-1 accuracy from the A4W4 configuration (76.45) sur-
passes the baseline (76.41) without any hyperparameter tuning. This demonstrates the effectiveness
of our method in achieving competitive performance without requiring extensive optimization. We
compared our results to previously reported A4W4 quantization results for ResNet-50 trained on Im-
ageNet. Our results compare favorably to existing work, without the need for additional operations
such as parameter search, fine-tuning, calibration, clipping, gradient estimation, or reinforcement
learning (Table 2).

4.1.2 TRANSFORMER ON WMT

To evaluate the effectiveness of our method on transformer models, we employed the Flax frame-
work to train the transformer model on two WMT2017 datasets (EN-DE, DE-EN) and subsequently
assessed its performance on the corresponding WMT2014 datasets. The training process utilized the
AdamW optimizer with weight decay set to 0.1 and a cosine scheduler for 25,000 steps, employing
a batch size of 1024. Recognizing the known slow convergence of transformer models, we extended
the training duration to 100,000 steps (Table 3). Remarkably, our low-precision results consistently
surpass the full-precision baseline.

Given the prevalence of transformers in large language models, extensive research has been dedi-
cated to quantizing transformer models. We compare our findings to other works, and ours stands
out as the only method that can surpass the full-precision baseline (Table 4). This achievement
highlights the unique strength of our formulation, which not only preserves signal fidelity but also
benefits from regularization effects. Several recent works have explored alternative quantization ap-
proaches using different datasets, which are not included in this table. One such method is AWQ,
a weight-only quantization 4-bit quantization method (Lin et al., 2023), requires retaining 1% of
salient weights and all activations unquantized. Their method also involves searching for an opti-
mal scaling factor and a calibration set. Additionally, BitNet (Wang et al., 2023), presents a 1-bit
quantization method for transformers. The lowest activation precision achieved in their work is 8
bits, exceeding the highest activation bit in our method. Their method also necessitates clipping,
additional normalization, and recipe changes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

DE-EN EN-DE
Steps 25k 100k 25k 100k
A32W32 33.5 33.9 29.49 29.8
A4W4 33.78 33.64 29.71 30.17
A4W2 33.45 34.04 28.58 30.03
A4W1 32.76 33.66 27.06 28.32
A2W2 32.32 33.51 27.56 28.61
A2W1 31.39 32.51 26 27.4
A1W1 27.4 28.27 21.42 23.64

Table 3: BLEU Score of training low precision Transformers on the WMT datasets.

Method FP32 A4W4 GE PT Clip LB
LSQ+LUQ (Xi et al., 2023) 27.5 27.17 Y N Y 4
Fixed-Point (Boo & Sung, 2020) 28.48 26.94 Y Y Y 4
GradScale (Sun et al., 2020) 27.5 25.9 Y N N 4
LUQ+SMP (Chmiel et al., 2021) 27.5 27.25 N Y Y 4
Ours 29.49 29.71 N N N 1

Table 4: BLEU score comparison of A4W4 transformers. Columns are defined as in Table 2

4.1.3 BINARY TRANSFORMERS

In biological neural networks, information is transmitted via electrical impulses called action po-
tentials, or spikes. The complex processes governing spike transmission within the nervous system
have been extensively investigated (Dayan & Abbott, 2005). While binary signals can effectively
represent these spike trains, the learning rule for spikes remains an open question (Yamazaki et al.,
2022; Tavanaei et al., 2019).

Inspired by the temporal nature of the transformer model, we reduced the activation precision to
1-bit for all linear layers, transforming it into a temporal binary network, akin to a quasi-spiking
neural network. However, unlike traditional spiking neural networks, our model doesn’t simulate
spike generation or consider spiking frequency.

To evaluate our approach, we assigned 1, 2, and 4 bits to the weights (Table 5). While introduc-
ing perturbations into spiking neural networks during training using backpropagation is not entirely
new, our approach differs from previous attempts in several key aspects. Earlier studies have pre-
dominantly focused on introducing perturbations only at the spikes (Lee et al., 2016). In contrast,
our formulation introduces perturbations during signal quantization, irrespective of the spikes. This
mirrors the inherent noisiness of the learning process and aligns with the biological reality of neu-
ral networks, where noise is an intrinsic part of neural signaling. Our results showcase that these
converted binary transformers remain highly competitive with full-precision counterparts.

A recent study attempted to binarize transformers (Zhang et al., 2023). Their approach included
extra normalization layers, clipping, and progressive quantization during training. We compared
our method to their A1W1 configuration (Table 1, BMT-6 in their work, trained with 200k steps),
achieving significant improvements (Table 5, last column).

DE-EN EN-DE
Steps 25k 100k 25k 100k
A1W4 29.74 30.74 24.07 26.28 (-11.81%)
A1W2 28.81 29.81 23.4 25 (-16.11%)
A1W1 27.4 28.27 21.42 23.64 (-20.67%)
A1W1 (Zhang et al., 2023) - - - 17.87 (-32.18%)

Table 5: BLEU Score of Transformers with binary activations on the WMT datasets. For the last column we
record the drop from full precision models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Sparsity Baseline Ours + A4W4 + A4W1

D
E

-E
N 25% 33.45 33.64 33.63 32.55

50% 33.38 33.73 33.94 31.32
75% 32.08 33.4 33.37 30.28
90% 29.5 31.94 32.22 29.31

E
N

-D
E 25% 29.25 30.03 29.92 27.58

50% 28.54 29.07 29.45 26.32
75% 27.25 28.98 28.73 25.05
90% 20.6 27.02 26.7 23.24

Table 6: BLEU score of training Transformers with sparse weights for 25k steps on the WMT datasets. We
present the baseline result, our sparsification result, and ours with both sparsification and quantization. Sparsi-
fication contributes to regularization, we mark improved results in bold (compared with Table 3).

Block 32 128 512
A1W1 29.71 28.27 27.14

Table 7: BLEU Score comparison of adjusting the block size when training the A1W1 Transformers for 100k
steps on the WMT DE-EN Dataset.

4.2 QUANTIZATION AND SPARSIFICATION

In this section, we assess the effectiveness of our sparsification through perturbation proposal
by comparing it to a baseline approach that employs a multiplicative mask, wsparse = w �
1|w|>threshold, obtaining significant improvements. Additionally, we evaluate the performance of
combining the proposed sparsity technique with quantization. Our findings indicate that moder-
ate levels of sparsification perturbations introduce beneficial regularization effects during training,
leading to improved BLEU scores. These findings are summarized in Table 6. Our supplementary
section A.2 further explores the integration of structured sparsity, demonstrating how its combina-
tion with binarization techniques yields sub-1 bit models that achieve competitive performance.

Quantization and sparsification are both valuable approaches for compressing neural networks, but
both can also introduce performance degradation. Therefore, carefully balancing these techniques is
crucial to achieve the desired trade-off between model size and accuracy. Sparsification is performed
within each block (of size 128) before quantization. This choice of order is made because quantized
values have limited sparsity levels, making the reverse process less well-defined and potentially less
effective. Striking a balance between compression and accuracy is paramount when applying quan-
tization and sparsification techniques. Excessive application can lead to substantial performance
degradation. Our experiments demonstrate that low-level sparsification perturbations are beneficial.
However, as quantization levels increase, the tolerable level of sparsity decreases (Table 6).

4.2.1 BLOCK SIZE AND λ

In addition to precision and sparsity, block size also presents a trade-off between accuracy and effi-
ciency. We observe that its influence is more pronounced at extremely low precision levels, such as
1-bit. While using a smaller block size can improve performance, the effective bits per element can
easily exceed the original design. We provide some comparisons here. Considering this trade-off,
lower precision models may not always be more efficient (Table 7). Firstly, the accuracy achieved
with smaller blocks in an A1W1 models may not surpass the accuracy achieved using A2W2. The
perturbations introduced during lower precision training often remain high, hindering the achieve-
ment of high quality. Optimal selection needs to be made based on the underlying hardware support
and the problem of interest. Our work facilitates a comprehensive study of this trade-off.

The parameter λ suppresses the impact of perturbations and prevents training explosion, especially
during the transition to 1-bit quantization. Standard quantization approaches often omit the use of
λ in an attempt to minimize quantization error. However, this can lead to training divergence in
the early stages, as demonstrated in Fig. 1(a). We compared with the classic inverse scaling-based
quantization implementation in the AQT library (Abdolrashidi et al., 2021) to observe this effect.
In our experiments, we observe that a wide range of λ values yield satisfactory results (Table 8).
However, our preference set on the safer side, and use λ = 0.01 for all settings. For higher precision
(≥ 4-bits), smaller λ values, such as 0.0001, can be safely used to allow more signals to pass through

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

λ 1.0 0.01 0.0001 0
A1W1 5.83 21.42 20.08 NaN

Table 8: BLEU Score comparison of adjusting the λ when training the A1W1 Transformers for 25k steps on
the WMT EN-DE Dataset.

without causing training instability. Extremely small λ can cause numerical instability, particularly
exacerbated by the inherent numerical noise introduced by neural network operations.

5 RELATED WORK

Neural network quantization has become a widely adopted technique for reducing memory foot-
print and accelerating inference time, enabling efficient deployment on resource-constrained de-
vices (Gholami et al., 2022). While full-precision models typically store weights in floating-point
format, quantized weights are represented as integers, typically using 8 bits (Dai et al., 2021; Worts-
man et al., 2023; Jacob et al., 2018), 3-4 bits (Dettmers et al., 2023; Liu et al., 2021b; Abdolrashidi
et al., 2021; Dai et al., 2021), or even 1 bit (Zhang et al., 2022; Liu et al., 2021a; Wang et al.,
2023; Zhang et al., 2023; Courbariaux et al., 2016; Rastegari et al., 2016). In addition to quantizing
weights, model activations can also be quantized to further enhance computational efficiency (Dai
et al., 2021; Jacob et al., 2018; Esser et al., 2019).

Although 8-bit quantization is commonly used as a standard practice in industry (Jacob et al., 2018),
achieving lower-bit quantization remains challenging and requires specialized techniques to ensure
robust training. Several common techniques include: 1. Mixed precision quantization: This ap-
proach selectively assigns different bit levels to different weights, aiming to optimize the trade-off
between model size and accuracy (Wang et al., 2019; Lin et al., 2023; Han et al., 2015; Défossez
et al., 2021). 2. Training recipes: These techniques compensate for the discontinuities introduced
by quantization by employing strategies such as sharpness-aware minimization (Liu et al., 2021b;
Foret et al., 2020), state-aware optimization (Liu et al., 2021a), knowledge distillation (Kim et al.,
2019), and multi-phase training (Liu et al., 2021c). 3. Quantization-friendly network architectures:
This approach involves replacing original network layers with alternatives that are more amenable
to quantization (Zhang et al., 2022).

In contrast to prior work, our method explicitly models quantization discontinuities as perturbations.
We decompose the perturbed signal into clean and noisy components, then apply denoising to sup-
press the noise. This approach leads to a closed-form solution that guarantees training convergence
even at extremely low bitwidths. While previous methods have also modeled quantization noise
using continuous distributions (e.g., Uniform or Gaussian) for gradient estimation (Défossez et al.,
2021; Ballé et al., 2016), they do not optimize the reconstruction process itself to enhance training
stability.

To further reduce model footprint, researchers have been combining sparsity/pruning and quanti-
zation in a unified formulation to further compress neural networks (Park et al., 2022; Yang et al.,
2020). In this paper, we extend our noise injection and denoising reconstruction theory to sparsity
and argue that instead of pruning small values to zero, moving near-mean values to mean better
preserves signal fidelity.

6 SUMMARY

Discontinuous operations such as quantization and sparsification pose a significant challenge to
backpropagation training, as they introduce non-differentiability into the learning process. This
non-differentiability has long been considered the Achilles heel of backpropagation, hindering the
development of efficient and accurate neural network training algorithms. We address this challenge
by re-framing these discontinuities as perturbations. This allows us to introduce a novel, continuous
control mechanism that seamlessly handles non-differentiability during training. Our approach is
expected to facilitate the deployment of large-scale neural network models on resource-constrained
devices, enabling the widespread adoption of deep learning for mobile applications. Additionally,
our technique holds promise for the development of biophysically plausible neural networks, which
have the potential to revolutionize artificial intelligence and machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal, Jonathan Malmaud, Oleg Rybakov, Chas Le-
ichner, and Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3091–3099, 2021.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression.
arXiv preprint arXiv:1611.01704, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoonho Boo and Wonyong Sung. Fixed-point optimization of transformer neural network. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1753–1757. IEEE, 2020.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben Yaacov, and Daniel Soudry. Logarithmic un-
biased quantization: Simple 4-bit training in deep learning. arXiv preprint arXiv:2112.10769,
2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference.
Proceedings of Machine Learning and Systems, 3:873–884, 2021.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathematical
modeling of neural systems. MIT press, 2005.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. Differentiable model compression via
pseudo quantization noise. arXiv preprint arXiv:2104.09987, 2021.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-preserving decomposi-
tions for multi-scale tone and detail manipulation. ACM transactions on graphics (TOG), 27(3):
1–10, 2008.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi,
Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al. Event-based vision:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(1):154–180, 2020.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE transactions on pattern
analysis and machine intelligence, 35(6):1397–1409, 2012.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Patel, and Nojun Kwak. Qkd: Quantization-aware
knowledge distillation. arXiv preprint arXiv:1911.12491, 2019.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. Advances in Neural Information Processing Systems,
30, 2017.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Chunlei Liu, Peng Chen, Bohan Zhuang, Chunhua Shen, Baochang Zhang, and Wenrui Ding. Sa-
bnn: State-aware binary neural network. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 2091–2099, 2021a.

Jing Liu, Jianfei Cai, and Bohan Zhuang. Sharpness-aware quantization for deep neural networks.
arXiv preprint arXiv:2111.12273, 2021b.

Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen, Dong Huang, and Kwang-Ting Cheng.
How do adam and training strategies help bnns optimization. In International conference on
machine learning, pp. 6936–6946. PMLR, 2021c.

Jeffrey L McKinstry, Steven K Esser, Rathinakumar Appuswamy, Deepika Bablani, John V Arthur,
Izzet B Yildiz, and Dharmendra S Modha. Discovering low-precision networks close to full-
precision networks for efficient embedded inference. arXiv preprint arXiv:1809.04191, 2018.

Jun-Hyung Park, Kang-Min Kim, and Sangkeun Lee. Quantized sparse training: A unified train-
able framework for joint pruning and quantization in dnns. ACM Transactions on Embedded
Computing Systems (TECS), 21(5):1–22, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakrish-
nan. Ultra-low precision 4-bit training of deep neural networks. Advances in Neural Information
Processing Systems, 33:1796–1807, 2020.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural networks, 111:47–63, 2019.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
tization with mixed precision. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8612–8620, 2019.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. arXiv preprint
arXiv:2304.13013, 2023.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
arXiv preprint arXiv:2306.11987, 2023.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain Sciences, 12(7):863, 2022.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression by
sparsity-quantization joint learning: A constrained optimization-based approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178–2188, 2020.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight accuracy.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12475–12485, 2022.

Yichi Zhang, Ankush Garg, Yuan Cao, Lukasz Lew, Behrooz Ghorbani, Zhiru Zhang, and Orhan Fi-
rat. Binarized neural machine translation. 2023. URL https://openreview.net/forum?
id=XAyPlfmWpu.

13

https://openreview.net/forum?id=XAyPlfmWpu
https://openreview.net/forum?id=XAyPlfmWpu

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

def quantize(x, bits, axis, eps=1e-8):
 # quantize to [0, 2^bits-1]
 max_value = jnp.max(x, axis=axis, keepdims=True)
 min_value = jnp.min(x, axis=axis, keepdims=True)
 scaled_x = (
 (x - min_value) / (max_value - min_value + eps)
 * (2**bits - 1)
) # scale to [0, 2^bits-1]
 delta_x = jax.lax.stop_gradient(jnp.round(scaled_x) - scaled_x)
 q = scaled_x + delta_x # perturb to integers
 return q

Figure 2: JAX reference code for quantization: q = f(x) + δ.

def reconstruct(q, x, axis, lmd=1e-2):
 # ridge regression
 E_q2 = jnp.mean(q**2, axis=axis, keepdims=True)
 E_q = jnp.mean(q, axis=axis, keepdims=True)
 E_qx = jnp.mean(q * x, axis=axis, keepdims=True)
 E_x = jnp.mean(x, axis=axis, keepdims=True)

 Var_q = E_q2 - E_q**2
 Cov_qx = E_qx - E_q * E_x
 a = Cov_qx / (Var_q + lmd) # b = E_x - a * E_q

 return a * (q - E_q) + E_x # r = a * q + b

Figure 3: The denoising affine transform r = g(q).

A APPENDIX

A.1 REFERENCE CODE

We provide the reference code for:

• q = f(x) + δ (Fig. 2)

• r = g(q) (Fig. 3)

• The Shortcut formula for quantized matrix multiplication (Fig. 4)

• Quantized matrix multiplication with subchannel quantization (Fig. 5)

A.2 TERNARY WEIGHTS VIA STRUCTURED SPARSITY

Our sparsification method flexibly handles M:N structured sparsity, enabling a class of ultra-low
precision models (even below 1-bit) by combining quantization and sparsity.

First, we introduce perturbations to enforce an M:N sparsity constraint (for simplicity, we setN = 4
and M ∈ 1, 2, 3). Non-zero values are then quantized to −1, 1 by taking their sign. This structured
sparsity effectively introduces an extra bin of 0, resulting in ternary weight encoding.

def quantized_matmul_shortcut(x, w, l_bits, r_bits, lmd=1e-2):
 q_x, a_x, _ = quant(x, bits=l_bits, axis=1, lmd=lmd)
 q_w, a_w, _ = quant(w, bits=r_bits, axis=0, lmd=lmd)

 n = x.shape[-1]
 res = a_x * (q_x @ q_w) * a_w
 res += x.sum(1,keepdims=True) @ w.sum(0,keepdims=True) / n
 res -= (a_x * q_x.sum(1,keepdims=True)) @ (q_w.sum(0,keepdims=True) * a_w) / n
 return res

Figure 4: The shortcut formula for quantized matrix multiplication.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

def fake_quant(x, bits, axis, lambda_):
 q = quantize(x, bits, axis=axis)
 return reconstruct(q, x, axis=axis, lambda_=lambda_)

def quantized_matmul(x, w, bits=4, lambda_=1e-2, block=128):
 r_x=fake_quant(x.reshape(-1, block), bits=bits, axis=1,

lambda_=lambda_).reshape(x.shape)
 r_w=fake_quant(w.reshape(-1, block, w.shape[-1]), bits=bits, axis=1,

lambda_=lambda_).reshape(w.shape)
 return jnp.dot(r_x, r_w)

Figure 5: Reference code for a quantized matrix multiplication.

Sparsity Precision BLEU Bits
Dense Binary 32.76 1
25% Binary 32.55 1
1:4 Ternary 32.1 0.5
2:4 Ternary 32.66 1
3:4 Ternary 33.1 1.5

Table 9: BLEU Score comparison of Transformer on WMT DE-EN using A4W1 with/without structured spar-
sity. Ignoring the storage overhead of the reconstruction coefficients, we report the average number of bits
required to store each weight parameter in the final column.

Since model weights typically have a close to 0 mean, during weights reconstruction, we reformu-
lating the ridge regression without the bias term b:

min
a

1

2N
||a · q − x||2 +

λ

2
a2 (10)

And for each quantization block of 128, we solving for the scaling factor only:

a =
qx

q2 + λ
(11)

We applied this method to a transformer model trained on the WMT DE-EN dataset with 4-bit
activations and ternary weights. Our results show that this 2:4 ternary implementation achieves
comparable performance (Table 9) with dense binary weights.

Regarding storage efficiency, encoding 1:4 structured sparsity necessitates only 2 bits for every
group of 4 elements (due to one non-zero position within each group). 2:4 sparsity demands 4 bits
per 4-element block, resulting in storage requirements on par with dense binary weights. Impor-
tantly, the 1:4 structured sparsity design yields a remarkably efficient 0.5-bit per element model that
maintains competitive performance (as shown in Table 9). Moreover, the additional zero-bin inher-
ent to structured sparsity contributes to both diminished storage needs and enhanced outcomes for
this class of models (compared with Table 6).

A.3 LOWER PRECISION FLOATS

In practical implementations, our scaling factor and bias demonstrate resilience to lower precision
representations. Empirical evidence confirms that utilizing float8 (E5M2) precision does not ad-
versely affect the accuracy of our results. This robustness can be interpreted as introducing minor
perturbations to the scaling and bias values.

Leveraging this property, we can further reduce the subchannel block size to 32 elements while
maintaining a storage overhead of less than 1 bit per element. This approach strikes a compelling
balance between memory efficiency and model performance.

In addition to quantizing to integer vectors, our proposed method also supports quantization to low-
precision floats. In this scenario, the quantization vector q can take on values in FP4 or FP8 formats.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 CONNECTION WITH THE STRAIGHT-THROUGH ESTIMATOR

Unlike traditional straight-through estimators (STEs) that rely on defining backward gradients (Ben-
gio et al., 2013; Yin et al., 2019), our novel approach directly incorporates discontinuous operations
into the forward pass. This is effectively a forward implementation of the STE. Our denoising re-
construction process explicitly mitigates the disruptive effects of these discontinuities.

We experimented with replacing the additive noise term (Eq. 2) with a controlled multiplicative
activation function: δ(f(x)) = s · f(x) where s = stop gradient(q

f(x)) represents element-
wise precomputed scaling values. This approach aimed to eliminate explicit gradient scaling during
backpropagation while incorporating quantization directly into the activation function. However,
our experiments did not reveal any significant performance gains resulting from this modification.

A.4.1 LIMITATIONS

As demonstrated in Section 4.2.1(Table 7), quantization algorithms generally achieve the highest
accuracy with small sub-channel quantization blocks. However, the data reshaping required for these
blocks can create a performance bottleneck, especially in low-precision settings where integer matrix
multiplications are relatively fast. Furthermore, the ridge regression computations add additional
overhead. To achieve an efficient implementation in practice, careful low-level optimization and
consideration of the underlying hardware capabilities will be crucial.

A.5 THE SHORTCUT FORMULA FOR QUANTIZED MATRIX MULTIPLICATION

We provide two proofs for the shortcut formula for quantized matrix multiplication (Theorem 1).

A.5.1 PROOF THROUGH RANK-1 APPROXIMATION

Matrix multiplication can be decomposed as:

Y =Xn×i ·Wi×o

=(X −Xn×1 · 1
′
+Xn×1 · 1

′
) · (W − 1 ·W 1×o + 1 ·W 1×o)

=(X −X · 1
′
) · (W − 1 ·W) +X · 1

′
· (W − 1 ·W)− (X −X · 1

′
) · 1 ·W +X · 1

′
· 1 ·W

=(X −X · 1
′
) · (W − 1 ·W) +Xn×1 ·W 1×o · i

(12)

If we apply scalar quantization (signed integers together with Eq. 11) to the first term:

Ỹ = (aXn×1 · aW1×o)� (QX ·QW) +Xn×1 ·W 1×o · i (13)

Eq. 13 has two parts: a smooth part that is a rank-1 approximation of the matrix multiplication, the
non-smooth part is adding details to the approximation. Theorem 1 states that the affine transform g
(Eq. 7) only adds another rank-1 correction term.

We apply the affine quantization to Eq. 12. Let the mean subtracted matrices beX0 = X−Xn×1 ·1
′

andW0 = W−1·W 1×o. When equations 1, 4, 6 are applied for the quantization and reconstruction,
we can be easily find that aX = aX0 , bX = bX0 + X . Since X0, W0 are mean-subtracted, taking
the mean gives 0.

Proof.

Ỹ = [AX � (QX −QX · 1
′
) +X0 · 1

′
] · [(QW − 1 ·QW)�AW + 1 ·W0] +Xn×1 ·W 1×o · i

= (aXn×1 · aW1×o)� [(QX −QX · 1
′
) · (QW − 1 ·QW)] +Xn×1 ·W 1×o · i

= (aXn×1 · aW1×o)� [QX ·QW −QX · 1
′
· 1 ·QW)] +Xn×1 ·W 1×o · i

= (aXn×1 · aW1×o)� (QX ·QW)− (aX �QX)n×1 · (QW � aW)1×o · i+Xn×1 ·W 1×o · i
(14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5.2 THE DIRECT PROOF

Proof. Consider quantizing the matrix multiplication: Yn×o = Xn×i ·Wi×o. We use · for the regular
dot product, and � for the Hadamard (element-wise) product. Quantized matrix multiplication
computes:

Ỹn×o = [(aXn×1 · 1X1×i)�QXn×i + bXn×1 · 1X1×i] · [QWi×o � (1Wi×1 · aW1×o) + 1Wi×1 · bW1×o]
= (aXn×1 · aW1×o)� (QXn×i ·QWi×o)
+ bXn×1 · [(1X1×i ·QWi×o)� aW1×o]
+ [aXn×1 � (QXn×i · 1Wi×1)] · bW1×o
+ bXn×1 · (1X1×i · 1Wi×1) · bW1×o

(15)

This direct implementation results in a sum of four terms. We will now simplify this expression to
the sum of a quantized matrix product and two rank-1 terms.

We begin by rewriting the second term in the sum in Equation 15, by using Eq. 4:

bXn×1 · [(1X1×i ·QWi×o)� aW1×o]

=(X − (aXn×1 · 1X1×i)�QX) · 1Wi×1 · 1X1×i · (QWi×o � (1Wi×1 · aW1×o)) ·
1

1′1

=(X − (AX �QX)) · 1 · 1
′
· (QW �AW)) · 1

1′1

=[X · 1 · 1
′
· (QW �AW)−AX �QX · 1 · 1

′
· (QW �AW)] · 1

1′1

(16)

Following a similar approach, we rewrite the third term in Equation 15:

[aXn×1 � (QXn×i · 1Wi×1)] · bW1×o

=(AX �QX) · 1 · 1
′
· (W −QW �AW) · 1

1′1

=[AX �QX · 1 · 1
′
·W −AX �QX · 1 · 1

′
· (QW �AW)] · 1

1′1

(17)

The forth term can be rewritten as:

bXn×1 · (1X1×i · 1Wi×1) · bW1×o

=(X − (AX �QX)) · 1 · 1
′
· (W −QW �AW) · 1

1′1

=[X · 1 · 1
′
·W −AX �QX · 1 · 1

′
·W −X · 1 · 1

′
· (QW �AW) +AX �QX · 1 · 1

′
· (QW �AW)] · 1

1′1
(18)

Taking into account equations 16, 17, 18, we can simplify Eq. 15 into:

Ỹ = (aXn×1 · aW1×o)� (QX ·QW) + [(X · 1) · 1
′
·W −AX �QX · 1 · 1

′
· (QW �AW)] · 1

1′1

= (aXn×1 · aW1×o)� (QX ·QW) +Xn×1 ·W 1×o · i− (aX �QX)n×1 · (QW � aW)1×o · i
(19)

17

	Introduction
	Motivations
	A Comprehensive Picture of Model Efficiency
	A Biophysical Basis for Sparse Quantization

	Methods
	Affine Transform for Quantization
	Perturbation Injection
	Denoising Affine Transform for Reconstruction
	A Novel View of the Quantized Signal
	The Sensitivity of the Scaling Factor

	Extension to Sparsification
	Quantized Matrix Multiplication

	Experiments
	Ultra-low Precision Models
	ResNet-50 on ImageNet
	Transformer on WMT
	Binary Transformers

	Quantization and Sparsification
	Block Size and

	Related Work
	Summary
	Appendix
	Reference Code
	Ternary Weights via Structured Sparsity
	Lower Precision Floats
	Connection with the Straight-Through Estimator
	Limitations

	The Shortcut Formula for Quantized Matrix Multiplication
	Proof Through Rank-1 Approximation
	The Direct Proof

