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ABSTRACT

In this work, we study offline preference-based reinforcement learning (PbRL),
which relaxes two fundamental supervisory signals in standard reinforcement
learning (online accessible transition dynamics and rewards). In other words, the
agent is provided with fixed offline trajectory transitions and human preferences
between pairs of trajectories. Due to the orthogonality property of rewards and
dynamics, one common practice is combining prior PbRL-based reward learning
objectives with off-the-shelf offline RL algorithms to bridge preference modeling
and offline learning. However, such two isolated optimizations require learning
a separate reward function and thus place an information bottleneck on reward
learning (the bridge). As an alternative, we propose offline preference-guided pol-
icy optimization (OPPO), an end-to-end offline PbRL formulation, which jointly
learns to model the preference (for finding the optimal task policy) and the offline
data (for eliminating OOD). In particular, OPPO introduces an offline hindsight
information matching objective and a preference modeling objective. Then, by it-
erating the two objectives over, we can directly extract a well-performing decision
policy, avoiding a separate reward learning. We empirically show that OPPO can
effectively model the offline preference and outperform prior competing baselines
(including the offline RL algorithms performed over the true reward function).

1 INTRODUCTION

Deep reinforcement learning (RL) presents a flexible framework for learning task-oriented behav-
iors (Kohl & Stone, 2004; Kober & Peters, 2008; Kober et al., 2013; Silver et al., 2017; Kalashnikov
et al., 2018; Vinyals et al., 2019), where the ”task” is often expressed as maximizing the cumulative
reward sum of trajectories generated by rollouting the learning policy in the corresponding environ-
ment. However, the above RL formulation implies two indispensable prerequisites for the training
of decision policy: 1) an interactable environment and 2) a pre-specified reward function. Unfortu-
nately, 1) online interactions with the environment can be costly and unsafe (Mihatsch & Neuneier,
2002; Hans et al., 2008; Garcıa & Fernández, 2015), and 2) designing a suitable reward function of-
ten requires expensive human effort, while the heuristic rewards often used are sometimes incapable
of conveying the true intention (Hadfield-Menell et al., 2017).

To relax these requirements, previous works have either 1) focused on the offline RL formulation
(the online rollout is inaccessible) (Fujimoto et al., 2019), where the learner has access to fixed of-
fline trajectories along with a reward signal for each transition (or along with limited expert demon-
strations), or 2) considered the (online) preference-based RL (PbRL) formulation (Christiano et al.,
2017; Bıyık & Sadigh, 2018; Sadigh et al., 2017; Biyik et al., 2020; Lee et al., 2021a), where mes-
sages about the task objective are passed to the learner through preferences of a (human) annotator
between two trajectories rather than rewards for each transition. To further progress in this setting,
we propose relaxing both requirements and advocating for offline PbRL.

In the offline PbRL setting with access to an offline dataset and labeled preferences between the
offline trajectories, it is straightforward to combine previous (online) PbRL methods and off-the-
shelf offline RL algorithms (Shin & Brown, 2021). As shown in Fig.1 (left), we can first use the
Bradley-Terry model (Bradley & Terry, 1952) to model the preference label and supervisedly learn
a reward function (normally adopted in prior PbRL methods), and then train the policy with any
offline RL algorithm on the transitions relabeled via the learned reward function. Intuitively, such
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Figure 1: A flow diagram of previous offline PbRL algorithms (left) and our OPPO algorithm
(right). Previous works require learning a separate reward function for modeling human preferences
using the Bradley-Terry model. In contrast, our OPPO directly learns the policy network.

a two-step procedure allows preference modeling via a separate reward function. Fundamentally,
however, learning a separate reward function that explains expert preferences does not directly in-
struct the policy how to act optimally. As PbRL tasks are defined by preference labels, the goal is
to learn the most preferred trajectory by the annotator rather than to maximize the cumulative dis-
counted proxy rewards of the policy rollouts. More specifically, when encountering complex tasks
such as non-Markovian tasks, conveying information from preferences to the policy via the scalar
rewards creats a bottleneck in policy improvement. On the other hand, if the learned reward func-
tion is miscalibrated, an isolated policy optimization may learn to exploit loopholes in the relabeled
rewards, resulting in unwanted behaviors. Then why must we learn a reward function considering it
possibly being not able to directly yield optimal actions?

To this end, we propose offline preference-guided policy optimization (OPPO), an end-to-end formu-
lation that jointly models offline preferences and learns the optimal decision policy without learning
a separate reward function (as shown in Fig.1 right). Specifically, we explicitly introduce a hind-
sight information encoder with which we further design an offline hindsight information matching
objective and a preference modeling objective. Via optimizing the two objectives iteratively, we
derive a contextual policy π(a|s, z) to model the offline data and concurrently optimize an optimal
contextual variable z∗ to model the preference. In this way, the focus of OPPO is on learning a high-
dimensional z-space capturing more task-related information and evaluating policies in it. Then, we
arrive at the optimal policy by having the contextual policy π(a|s, z∗) conditioned on the learned
optimal z∗.

In summary, our contributions include 1) OPPO: a simple, stable and end-to-end offline PbRL
method that avoids learning a separate reward function, 2) an instance of preference-based hind-
sight information matching objective and a novel preference modeling objective over the contextual,
and 3) extensive experiments to show and analyze the outstanding performance of OPPO against
previous competitive baselines.

2 RELATED WORK

Preference-based RL. Preference-based RL is also known as learning from human feedback.
Several works have successfully utilized feedback from real humans to train RL agents (Arumugam
et al., 2019; Christiano et al., 2017; Ibarz et al., 2018; Knox & Stone, 2009; Lee et al., 2021b;
Warnell et al., 2017). Christiano et al. (2017) scaled preference-based reinforcement learning to
utilize modern deep learning techniques, and Ibarz et al. (2018) improved the efficiency of this
method by introducing additional forms of feedback such as demonstrations. Recently, Lee et al.
(2021b) proposed a feedback-efficient RL algorithm by utilizing off-policy learning and pre-training.
Park et al. (2022) used pseudo-labeling to utilize unlabeled segments and proposed a novel data
augmentation method called temporal cropping.

Offline RL. To mitigate the impact of distribution shifts in offline RL, prior algorithms (a) con-
strain the action space (Fujimoto et al., 2019; Kumar et al., 2019a; Siegel et al., 2020), (b) incor-
porate value pessimism (Fujimoto et al., 2019; Kumar et al., 2020), and (c) introduce pessimism
into learned dynamics models (Kidambi et al., 2020; Yu et al., 2020). Another line of work ex-
plored learning a wide behavior distribution from the offline dataset by learning a task-agnostic set
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of skills, either with likelihood-based approaches (Ajay et al., 2020; Campos et al., 2020; Pertsch
et al., 2020; Singh et al., 2020) or by maximizing mutual information (Eysenbach et al., 2018; Lu
et al., 2020; Sharma et al., 2019). Shin & Brown (2021) tried to solve offline PbRL by simply
combining previous (online) PbRL methods and off-the-shelf offline RL algorithms.

Supervised learning in RL. Some prior methods for reinforcement learning bear more resem-
blance to static supervised learning, such as Q-learning (Watkins, 1989; Mnih et al., 2013) and
behavior cloning. In these cases, the resulting agent’s performance is positively correlated to the
quality of data used for training. On the other hand, Srivastava et al. (2019) and Kumar et al.
(2019b) studied ”upside-down” reinforcement learning (UDRL), seeking to model behaviors via a
supervised loss conditioned on a target return. Ghosh et al. (2019) extended prior UDRL methods
to perform goal reaching by taking the goal state as the condition, and Paster et al. (2020) further
used an LSTM for goal-conditioned online RL settings. Chen et al. (2021) and Janner et al. (2021)
solved the problem via sequence modeling. Sequence modeling enables to model behaviors without
access to the reward, in a similar style to language (Radford et al., 2018) and images (Chen et al.,
2020). In contrast to both supervised RL and UDRL, the purpose of our method is to search for
the optimal solution supervised by a binary preference signal in the offline setting. Our method can
not only work with sub-optimal demonstrations but also reveal optimal behaviors without injecting
human priors about the optimal demonstration.

3 PRELIMINARIES

We consider reinforcement learning (RL) in a Markov decision process (MDP) described by a tu-
ple (S,A, r, P, p0, γ), where st ∈ S, at ∈ A, and rt = r(st,at) denote the state, action, and
reward at timestep t, P (st+1|st,at) denotes the transition dynamics, p0(s0) denotes the initial state
distribution, and γ ∈ [0, 1) denotes the discount factor. At each timestep t, the agent receives a
state st from the environment and chooses an action at based on the policy π(at|st). In the stan-
dard RL framework, the environment returns a reward rt and the agent transitions to the next state
st+1. The expected return Jr(π) = Eτ∼π(τ)

∑∞
k=0 γ

kr(st+k, at+k) is defined as the expectation of
discounted cumulative rewards, where τ = (s0,a0, s1,a1, . . . ), s0 ∼ p0(s0), at ∼ π(at|st), and
st+1 ∼ P (st+1|st,at). The agent’s goal is to learn a policy π that maximizes the expected return.

3.1 OFFLINE PREFERENCE-BASED REINFORCEMENT LEARNING

In this work, we assume a fully offline setting in which the agent cannot conduct online rollouts
(over the MDP) during training but is provided with a static fixed dataset. The static dataset, D :=
{τ0, . . . , τN}, consists of some pre-collected trajectories, where each trajectory τ i consists of a
contiguous sequence of states and actions: τ i := {si0,ai0, si1, . . . }. Such an offline setting is more
challenging than the standard (online) setting as it removes the ability to explore the environment
and collect additional feedback. Unlike imitation learning, we do not assume that the dataset comes
from a single expert policy. Instead, the dataset D may contain trajectories collected by some sub-
optimal or even random behavior policies.

Further, the standard offline RL assumes the existence of reward signals for each state-action pair in
D. However, in the offline Preference-based RL (PbRL) framework, we do not assume such rewards
are accessible. Instead, the agent can access offline preferences (between some pairs of trajectories
(τ i, τ j)) that are labeled by an expert (human) annotator. Specifically, the annotator gives a feedback
indicating which trajectory is preferred, i.e., y ∈ {0, 1, 0.5}, where 0 indicates τ i ≻ τ j (the event
that trajectory τ i is preferable to trajectory τ j), 1 indicates τ j ≻ τ i (τ j is preferable to τ i), and 0.5
implies an equally preferable case. Each feedback is stored in a labeled offline dataset D≻ as a triple
(τ i, τ j , y). Given these preferences, the goal of PbRL is to find a policy π(at|st) that maximizes
the expected return Jrψ , under the hypothetical reward function rψ(st,at) consistent with human
preferences. To enable this, previous works learn a reward function rψ(st,at) and use the Bradley-
Terry model (Bradley & Terry, 1952) to model the human preference, expressed here as a logistic
function:

P [τ i ≻ τ j ] = logistic(
∑
t

rψ(s
i
t,a

i
t)−

∑
t

rψ(s
j
t ,a

j
t )), (1)
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where (sit,a
i
t) ∼ τ i, (sjt ,a

j
t ) ∼ τ j . Intuitively, this can be interpreted as the assumption that the

probability of preferring a trajectory depends exponentially on the cumulative reward over the trajec-
tory labeled by an underlying reward function. The reward function is then updated by minimizing
the following cross-entropy loss:

−E(τ i,τj ,y)∼D≻

[
(1− y) logP [τ i ≻ τ j ] + y logP [τ j ≻ τ i]

]
. (2)

With the learned reward function rψ used to label each transition in the dataset, we can adopt an
off-the-shelf offline RL algorithm to enable policy learning.

3.2 HINDSIGHT INFORMATION MATCHING

Beyond the typical iterative (offline) RL framework, information matching (IM) (Furuta et al., 2021)
has been recently studied as an alternative problem specification in (offline) RL. The objective of IM
in RL is to learn a contextual policy π(a|s, z) whose trajectory rollouts satisfy some (pre-defined)
desired information statistics value z:

min
π

Ez∼p(z),τz∼π(τz) [ℓ (z, I(τz))] , (3)

where p(z) is a prior, π(τz) denotes the trajectory distribution generated by rolling out π(a|s, z) in
the environment. I(τ) is a function capturing the statistical information of a trajectory τ , such as
the distribution statistics of state and reward, like mean, variance (Wainwright et al., 2008), and ℓ is
a loss function.

On one hand, if we set p(z) as a prior distribution, optimizing Eq.3 corresponds to performing
unsupervised (online) RL to learn a set of skills (Eysenbach et al., 2018; Sharma et al., 2019). On
the other hand, if we set p(z) as statistical information of a given off-policy trajectory (or state-
action) distribution D(τ) (or D(s,a)), Eq.3 corresponds to an objective for hindsight information
matching in (offline) RL. For example, HER (Andrychowicz et al., 2017) and return-conditioned
RL (upside-down RL (Srivastava et al., 2019; Kumar et al., 2019b; Chen et al., 2021; Janner et al.,
2021)) use the above concept of hindsight: specifying any trajectory τ in the dataset as the hindsight
target and setting the information z in Eq.3 as I(τ). Then, we provide the I(·)-driven hindsight
information matching (HIM) objective:

min
π

Eτ∼D(τ),τz∼π(τz) [ℓ (I(τ), I(τz))] , (4)

where z := I(τ). In HER, we can set I(τ) as the final state in trajectory τ ; in reward-conditional
RL, we set I(τ) as the return of trajectory τ . Thus, we can use the hindsight information z := I(τ)
to provide supervision for training the contextual policy π(a|s, z). However, in offline settings,
sampling τz from π(τz) is not accessible. Thus, we are required to model the environment transition
dynamics besides I(·)-driven hindsight information modeling. That is to say, we need to model the
trajectory itself, i.e., minπ Eτ∼D(τ),τz∼π(τz) [ℓ (τ, τz)]. Then, we provide the overall offline HIM
objective:

min
π

Eτ∼D(τ),τz∼π(τz) [ℓ (I(τ), I(τz)) + ℓ (τ, τz)] . (5)

To give an intuitive understanding of the above objective, here we provide a simple example: consid-
ering hindsight I(·) being the return of a trajectory, optimizing ℓ (I(τ), I(τz)) ensures the generated
τz will reach the same return as τ = I−1(z). However, in the offline setting, we must ensure the gen-
erated τz stay in support of the offline data, eliminating the out-of-distribution (OOD) issues. Thus
we minimize ℓ (τ, τz) approximately. In implementation, directly optimizing ℓ (τ, τz) is enough to
ensure the hindsight information is matched, e.g., ℓ (I(τ), I(τz)) < ϵ. Here, we explicitly formalizes
the ℓ (I(τ), I(τz)) term with particular emphasis on the requisite of hindsight information matching
objective and meanwhile highlight the difference, see Section 4, between the above HIM objective
(taking I(·) as a prior) and our OPPO formulation (requiring learning Iθ(·)).
By optimizing Eq.5, we can obtain a contextual policy π(a|s, z). In the evaluation phase, the optimal
policy π(a|s, z∗) can be specified by conditioning the policy on a selected target z∗. For example,
Decision Transformer (Chen et al., 2021) takes the desired performance as the target z∗(e.g., specify
maximum possible return to generate expert behavior); RvS-G (Emmons et al., 2021) takes the goal
state as the target z∗.
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Figure 2: OPPO first maps offline trajectories (both positive τ+ and negative τ−) to a latent space
via the hindsight information extractor Iθ. It then optimizes the offline HIM objective LHIM. Fi-
nally, the belief of the optimal hindsight information z∗ is updated to model the human preference
with objective LPM. Meanwhile, the preference modeling loss also regularizes the learning of the
hindsight information extractor Iθ.

4 OPPO: OFFLINE PREFERENCE-GUIDED POLICY OPTIMIZATION

In this section, we present our method, OPPO (offline preference-guided policy optimization), that
adopts the hindsight information matching (HIM) objective in Section 3.2 to model an offline con-
textual policy π(a|s, z), and introduces a triplet loss to model the human preference as well as the
optimal contextual variable z∗. At testing, we condition the policy on the optimal z∗ and thus con-
duct rollout with π(a|s, z∗). In principle, OPPO can be paired with any PbRL settings, including
both online and offline. In the scope of our analysis and experiments, however, we focus on the
offline setting to decouple exploration difficulties in online RL.

4.1 HIM-DRIVEN POLICY OPTIMIZATION

As described in Section 3.1, to directly implement the off-the-shelf offline RL algorithms, previous
works in PbRL explicitly learn a reward function with Eq.2 (as shown in Fig.1 left). As an alternative
to such a two-step approach, we seek to learn the policy directly from the preference-labeled offline
dataset (as shown in Fig.1 right). Inspired by the offline HIM objective in Section 3.2, we propose to
learn a contextual policy π(a|s, z) in the offline PbRL setting. Assuming Iθ is a (learnable) network
that encodes the hindsight information in PbRL, we formulate the following objective:

min
π,Iθ

LHIM := Eτ∼D(τ),τz∼π(τz)

[
ℓ (Iθ(τ), Iθ(τz)) + ℓ (τ, τz)

]
, (6)

where z := Iθ(τ). Note that Eq.6 is a different instantiation of Eq.5 where we learn the hindsight
information extractor Iθ(·) in the PRBL setting, while previous (offline) RL algorithms normally set
I(·) to be a prior (Chen et al., 2021; Emmons et al., 2021). Such an encoder-decoder structure is
now similar with Bi-directional Decision Transformer (BDT) proposed by (Furuta et al., 2021) for
offline imitation learning. However, since expert demonstrations are missing in the PbRL setting, in
Section 4.2, we propose to use the preference labels in D≻ to extract hindsight information.

4.2 PREFERENCE MODELING

To make the hindsight information Iθ(τ) in Eq.6 to match the preference information in the (labeled)
dataset D≻, we construct the following preference modeling objective inspired by the contrastive
loss in metric learning:

min
z∗,Iθ

E(τ i,τj ,y)∼D≻

[
ℓ(z∗, z+)− ℓ(z∗, z−)

]
, (7)

where z+ and z− represent the embedding of the preferable (positive) trajectory Iθ(yτ
j+(1−y)τ i)

and that of the less preferable (negative) trajectory Iθ(yτ
i + (1 − y)τ j), respectively. Closing to

the idea of using regret for modeling preference (Knox et al., 2022; Chen et al., 2022), our basic as-
sumption of designing the objective in Eq.7 is that humans normally conduct two-level comparisons
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Algorithm 1 OPPO: Offline Preference-guided Policy Optimization
Require: Dataset D := {τ} and labeled dataset D≻ := {(τ i, τ j , y)}, where τ i ∈ D and τ j ∈ D.
Return: π(a|s, z) and z∗.

1: Initialize policy network π(a|s, z), hindsight information extractor Iθ : τ → z, and the optimal
contextual embedding z∗.

2: while not converged do
3: Sample a batch of trajectories from D: {τ}B ∼ D.
4: Update π(a|s, z) and Iθ(·) with sampled {τ}B using LHIM.
5: Sample a batch of preferences from D≻: {(τ i, τ j , y)}B ∼ D≻.
6: Update Iθ(·) and the optimal z∗ with sampled {(τ i, τ j , y)}B using LPM.
7: end while

before giving preferences between two trajectories (τ i, τ j): 1) separately judging the similarity be-
tween trajectory τ i and the hypothetical optimal trajectory τ∗, i.e. −ℓ(z∗, zi), and the similarity
between trajectory τ j and the hypothetical optimal one τ∗, −ℓ(z∗, zj), and 2) judging the difference
of the above two similarities (−ℓ(z∗, zi) vs. −ℓ(z∗, zj)) and setting the trajectory with the higher
similarity as the preferred one. Hence, optimizing Eq.7 guarantees finding the optimal embedding
that is more similar to z+ and less similar to z−. To clarify, z∗ is the coresponding contextual in-
formation for τ∗, whereas τ∗ will always be preferred comparing to any offline trajectories in the
datasets.

In practice, to robustify the preference modeling, we optimize the following objective using the
triplet loss in place of the objective in Eq.7:

min
z∗,Iθ

LPM := E(τ i,τj ,y)∼D≻

[
max(ℓ(z∗, z+)− ℓ(z∗, z−) + margin, 0)

]
. (8)

It is worth mentioning that the posterior of the optimal embedding z∗ and the hindsight information
extractor Iθ(·) are updated alternatively to ensure learning stability. A better estimate of the optimal
embedding helps the encoder to extract features to which the human labeler pay more attention,
while a better hindsight information encoder, on the other hand, accelerates the search process for
the optimal trajectory in the high-level embedding space. In this way, the loss function for the
encoder consists of two parts: 1) a hindsight information matching loss in a supervised style as in
Eq.6 and 2) a triplet loss as in Eq.8 to better incorporate the binary supervision provided by the
preference-labeled dataset.

In summary, OPPO learns a contextual policy π(a|s, z), a context (hindsight information) encoder
Iθ(τ), and the optimal context variable, z∗, for the optimal trajectory τ∗. Algorithm 1 details the
training of OPPO. The entire process is summarized as follows: 1) we sample a batch of trajectories
from the dataset D, 2) in Line 4, use Eq.6 (the hindsight information matching loss) to update
π(a|s, z) and Iθ(·) based on sampled trajectories. Consequently, given the z extracted out of an
offline trajectory by the extractor, the policy is able to reconstruct it. 3) Then sample a batch of
preferences from the labeled dataset D≻, and finally, 4) in Line 6, update Iθ(·) and z∗ based on the
sampled {(τ i, τ j , y)}B using Eq.8, making the optimal embedding z∗ near to the more preferred
trajectory z+, and meanwhile further away from the less preferred trajectory z−.

Compared with previous PbRL works (first learning a reward function with Eq.2 and then learn-
ing offline policy with off-the-shelf offline RL algorithms), OPPO learns the optimal (offline) policy
(π(a|s, z∗)) directly and thus avoids the potential information bottleneck caused by the limited infor-
mation capacity of scalar reward assignment. Compared with the HIM-based offline RL algorithms
(e.g., Decision Transformer (Chen et al., 2021) and RvS-G (Emmons et al., 2021)), at the testing
phase, OPPO does not need to manually specify the target contextual variable for the rollout policy
π(a|s, ·).

5 EXPERIMENTS

In this section, we evaluate and compare OPPO to other baselines in the offline PbRL setting. A cen-
tral premise behind the design of OPPO is that the learned hindsight information encoder Iθ(·) can
capture preferences over different trajectories, as described by Eq.8. Our experiments are therefore
designed to answer the following questions:
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1) Does OPPO truly capture these types of preferences? In other words, does the learned z-space
(encoded by the learned Iθ(·)) align with given preferences?

2) Can the learned optimal contextual policy π(a|s, z∗) obtain a better performance than π(a|s, z)
conditioned on all the other contextual variables z ∈ {Iθ(τ)|τ ∈ D}?

3) Can OPPO also achieve competitive performance against other offline (PbRL) algorithms?
4) What benefits, if any, do we gain from designing the end-to-end offline preference learning, i.e.,

iteratively conducting offline data modeling (Eq.6) and preference modeling (Eq.8)?

To answer the above questions, we evaluate OPPO on the continuous control tasks from the D4RL
benchmark (Fu et al., 2020). Specifically, we choose Hopper, Walker and Halfcheetah as three
base environments, with medium, medium-replay, medium-expert as dataset for each environment.
To build our labeled offline preference dataset D≻ := {(τ i, τ j , y)}, following prior PbRL bench-
mark (Lee et al., 2021a), we use the following stochastic preference model (to simulate a human
annotator and) to label preference between trajectories (τ i, τ j):

y ∼ P [τ i ≻ τ j ;β, γ] = logistic(β
H∑
t=1

γH−tr(sit,a
i
t)− β

H∑
t=1

γH−tr(sjt ,a
j
t )), (9)

where factors γ and β are used to model myopic and rational behaviors (of human annotator) re-
spectively and are both set to 1 in our experiment.

5.1 DOES THE LEARNED z-SPACE ALIGN WITH GIVEN PREFERENCES?

In this subsection, we probe that OPPO can enable well-aligned preferences over the z-space en-
coded by the learned Iθ. We first sample random trajectories from the offline dataset D, and encode
them with the learned Iθ, and utilize t-SNE (van der Maaten & Hinton, 2008) as a tool to visualize
the encoded z, shown in Fig.3. The learned optimal z∗ is marked with an orange dot. Besides, we
also mark the (embedding of) optimal trajectory in D4RL expert dataset, generated by the learned
online optimal policy, with a red dot (z∗∗).

According to Eq.8, embeddings near the actual optimal z∗∗ in z-space means they are more prefer-
able implied by the preference label. Comparing the sampled trajectories (embeddings), we find
OPPO successfully captures the preference. As illustrated in Fig.3, the trajectories (embeddings)
that are near z∗∗ often have high returns (points with a deeper color). Further, we observe that our
learned optimal z∗ constantly stays close to actual optimal z∗∗, which suggests that our learned
z∗ preserves near-optimal behaviors. Thus, it gives justification that OPPO can make meaningful
preference modeling.

Figure 3: We utilize t-SNE to visualize the z-space learned in Hopper environment, encoded with
a well-trained Iθ(·), including the embedding of random trajectories in D, our learned z∗ (“orange
dot”) and the actual optimal z∗∗ (“red dot”), embedding of the best trajectory/policy learned with
online reinforcement learning method. Color of the points represent the normalized return of the
corresponding trajectory τ .

5.2 CAN π(a|s, z) CONDITIONED THE LEARNED z∗ ENABLE BETTER PERFORMANCE?

Fig.3 shows that our learned Iθ(·) can produce a well-aligned embedding z-space exhibiting ef-
fective preference modeling across (embeddings of) trajectories. More importantly, embeddings’
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Table 1: Comparison of (normalized) performance when rollouting the contextual policy π(a|s, ·)
conditioned on different embeddings (z∗, zhigh, and zlow).

Environment Dataset z∗ zhigh zlow

Hopper
Medium-Expert 108.0 ± 5.1 94.2 ± 24.3 79.1 ± 28.8
Medium 86.3 ± 3.2 55.8 ± 7.9 51.6 ± 13.8
Medium-Replay 88.9 ± 2.3 78.6 ± 26.3 26.6 ± 15.2

Walker
Medium-Expert 105.0 ± 2.4 106.5 ± 9.1 93.4 ± 7.4
Medium 85.0 ± 2.9 64.9 ± 24.9 72.6 ± 10.6
Medium-Replay 71.7 ± 4.4 55.7 ± 24.8 6.8 ± 1.7

Halfcheetah
Medium-Expert 89.6 ± 0.8 48.3 ± 14.4 42.6 ± 2.6
Medium 43.4 ± 0.2 42.5 ± 3.9 42.4 ± 3.2
Medium-Replay 39.8 ± 0.2 35.6 ± 8.5 33.9 ± 9.2

Sum 717.7 581.9 448.9

preference property should be preserved when we condition the embedding on the learned con-
textual policy π(a|s, ·). In other words, Iθ(·) transfers the preference relationship from (τ i, τ j)
to (ℓ(zi, z∗), ℓ(zj , z∗)); further, rollouting the contextual policy π(a|s, ·), (τzi , τzj ) should similar
preserve the above preference relationship.

To show that, we compare the performance of rollouts by the contextual policy π(a|s, ·) conditioned
on different embeddings. In Table 1, we choose three contextual embeddings: z∗, zhigh (embed-
ding of the trajectory with the highest return in D), and zlow (embedding of the trajectory with the
lowest return in D) and provide respective rollout performances (averaged over 3 seeds). We dis-
cover that the contextual π(a|s, z) conditioned on z with a high (or low) return (of corresponding
trajectory τ = I−1

θ (z)) obtains an actual high (or low) return when rollouting this policy in the
environment, e.g., π(a|s, zhigh) performs better than π(a|s, zlow) (thus preserving the hindsight pref-
erence relationship). Further, when conditioned on the learned optimal z∗, π(a|s, z∗) produces the
best performance over that conditioned on all other offline embeddings. Notice that our learned
optimal π(a|s, z∗) performs better than the contextual policy π(a|s, zhigh). This result implies that
the trajectory of our optimal policy is better than any trajectories in the offline dataset.

5.3 CAN OPPO ACHIEVE COMPETITIVE PERFORMANCE ON OFFLINE (PBRL) BENCHMARK?

We have shown that OPPO produces a near-optimal embedding z∗, and the learned contextual pol-
icy π(a|s, ·) can preserve the hindsight preference. This subsection investigates whether the optimal
policy π(a|s, z∗) can achieve competitive performance on the offline (PBRL) benchmark. For com-
parison, we introduce three offline (PbRL) baselines: 1) DT+r: performing Decision Transformer
with ground-truth reward function, and the results are run by us; 2) DT+rψ: performing Decision
Transformer with a learned reward function (using Eq.2); 3) CQL+r: performing CQL with ground-
truth reward function, reported from the original paper; 4) BC: performing bahavior cloning on the
dataset, the results are reported from (Chen et al., 2021);

Table 2: Performance comparison between OPPO and 3 offline (PbRL) baselines (DT+r, DT+rψ ,
and CQL+r) in D4RL Gym-Mujoco tasks, where results are reported over 3 seeds.

Environment Dataset Ours DT+r DT+rψ CQL+r BC

Hopper
Medium-Expert 108.0 ± 5.1 111.0 ± 0.5 95.6 ± 27.3 111.0 79.6
Medium 86.3 ± 3.2 76.6 ± 3.9 73.3 ± 3.0 58.0 63.9
Medium-Replay 88.9 ± 2.3 87.8 ± 4.7 72.5 ± 22.2 48.6 27.6

Walker
Medium-Expert 105.0 ± 2.4 109.2 ± 0.3 109.7 ± 0.1 98.7 36.6
Medium 85.0 ± 2.9 80.9 ± 3.1 81.1 ± 2.1 79.2 77.3
Medium-Replay 71.7 ± 4.4 79.6 ± 3.1 80.4 ± 4.4 26.7 36.9

HalfCheetah
Medium-Expert 89.6 ± 0.8 86.8 ± 1.3 88.4 ± 0.7 62.4 59.9
Medium 43.4 ± 0.2 43.4 ± 0.1 43.2 ± 0.2 44.4 43.1
Medium-Replay 39.8 ± 0.2 39.2 ± 0.3 38.8 ± 0.3 46.2 4.3

Sum 717.7 714.5 683.0 575.2 429.2
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In Table 2, we provide the comparison results. 1) OPPO has retained a comparable performance
against the Decision Transformer trained using true rewards. OPPO is a PbRL approach requiring
only (human) preferences, which have a more flexible and straightforward form of supervision in
the real world. 2) Although DT+rψ also shows competitive results in these benchmarks, such a
method needs a target of return-to-go determined by the human prior. 1. Our method, in contrast,
avoids the need of such a prior target by searching across the z-space. We argue that this searching
method brings advantages as rewards are usually hard to obtain in real-world RL applications. And
preferences are the only information easily accessible for training and deploying an RL method.

5.4 DO WE GET ANY BENEFITS BY ITERATING OFFLINE HIM AND PREFERENCE MODELING?

Table 3: Ablation study
Task OPPO OPPO-a

Hopper 88.9 ± 2.3 78.3 ± 7.1
Walker 71.7 ± 4.4 66.3 ± 1.6
HalfCheetah 39.8 ± 0.2 39.6 ± 0.1

Sum 200.4 184.2

Here, we conduct an ablation study to analyze the
benefit of iterating LHIM and LPM (for updating Iθ).
Firstly, we removed Iθ from ∂LPM/∂θ and only left
the optimal embedding z∗ to be updated in Eq.8.
Then, we continue to visualize the embedding z-
space for this ablation setting (OPPO-a), and we
show the t-SNE visualization in Fig.4. By compar-
ing Fig.4 to Fig.3, we can see that the preference
relationship in the embedding space (learned with
OPPO-a) is all shuffled. In a less expressive z-space, it is challenging to model the preference
and find the optimal z∗. Further, as shown in Table 3, the comparison results of medium-replay
tasks confirm that such an ablation does cause a performance degradation.

Figure 4: t-SNE visualization of the embedding space learned with OPPO-a in Hopper environment.

6 CONCLUSION

This paper introduces offline preference-guided policy optimization (OPPO), an end-to-end offline
PbRL method. Unlike the previous PbRL approaches that learn policy from a pseudo reward func-
tion (thus, learning a separate reward function is a prerequisite), OPPO directly optimizes the policy
in a high-level embedding space. To enable that, we suggest learning a hindsight information en-
coder network and using it to design an offline hindsight information matching (HIM) objective and
a preference modeling objective. Empirically, we show iterating the above two objectives can pro-
duce meaningful and preference-aligned embeddings. Moreover, conditioned on the learned optimal
embedding, our HIM-based contextual policy can achieve competitive performance on standard of-
fline (PbRL) tasks.

Through the visualization, we demonstrate that the z-space learned by the encoder is informative and
visually interpretable. Besides, the ablation study proves that a preference-guided embedding space
could improve task performance asymptotically by a non-neglectable margin. Moreover, OPPO can
find a contextual variable to represent the embedding of the optimal trajectory, where the resulting
trajectory is better than any offline trajectory in the dataset. Last but not least, in the offline setting
with environment interaction disabled, our method can acquire the optimal behaviors using binary
preference labels between sub-optimal trajectories. As shown in the experiment results, OPPO
achieves a competitive performance over DT trained using either true rewards or pseudo rewards.

1Preference-based relabelled rewards only participate in training phase. During the evaluation phase of
DT+rψ , we pass in the same target return-to-go value as in the original DT paper.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Codebase. Our code is based on Decision Transformer: https://github.com/kzl/
decision-transformer. We provide our source code in the supplementary material.

OpenAI Gym. We choose the OpenAI Gym continuous control tasks from the D4RL bench-
mark (Fu et al., 2020). The different dataset settings are described below.

• Medium: 1 million timesteps generated by a ”medium” policy that achieves approximately
one-third the score of an expert policy.

• Medium-Replay: the replay buffer of an agent trained to the performance of a medium
policy (approximately 25k-400k timesteps in our environments).

• Medium-Expert: 1 million timesteps generated by the medium policy concatenated with 1
million timesteps generated by an expert policy.

For details of these environments and datasets, please refer to D4RL for more information.

Training Objectives In our experiment, we consolidate ℓ in Eq.6 as MSE Loss and in Eq.8 as
Euclidean Distance. In this case, we model z∗ as a point in the z−space and the similarity measure
ℓ is L2 distance. Besides, there is an alternative option to model z∗ as a point sampled from a
learned distribution in the z−space, where ℓ is a measurement between two distributions such as the
KL divergence.

Also, we add a normalization loss Lnorm to constraint the L2 norm of all embeddings generated by
hindsight information extractor Iθ.

Ltotal := LHIM + αLPM + βLnorm (10)

During Offline HIM phase, we weighted sum all these 3 losses as in Eq.10 (with ratios listed in
Table 4) and perform backpropagation, while in Preference Modeling phase, only LPM is computed
and backpropagated.

Hyperparameter Value
α 0.25 for halfcheetah-medium-expert

0.5 for others
β 0.05 for halfcheetah-medium-expert

0.1 for others

Table 4: Hyperparameters of coefficients of combined losses during Offline HIM.

Architecture & Implementation Details The architecture overview of OPPO is shown in Fig.2.
OPPO models the hindsight information extractor Iθ as an encoder network Iθ : τ → z, we use
the BERT architecture. And similar to Chen et al. (2021), we use the GPT architecture to model
π(a|s, z), which predicts future actions via autoregressive modeling.

Hyperparameters Our hyperparameters on all tasks are shown below in Table 5 and Table 6.
Models were trained for 105 gradient steps using the AdamW optimizer Loshchilov & Hutter (2017)
following PyTorch defaults.

Computational resources. The experiments were run on a computational cluster with 20x
GeForce RTX 2080 Ti, and 4x NVIDIA Tesla V100 32GB for 20 days.

A.2 ADDITIONAL RESULTS

More visualization results on z-space. We further show the t-sne results of OPPO and the cor-
responding ablation study in the setting described in Section 5.1 and Section 5.4 in walker and
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Hyperparameter Value
Number of dimensions 8 for halfcheetah

16 for others
Amount of feedback 50k
Type of optimizer AdamW
Learning rate 10−2 for halfcheetah-medium-expert

10−3 for others
Weight decay 10−4

Margin 1

Table 5: Hyperparameters of z∗ searching for OpenAI Gym experiments.

Hyperparameter Value
Number of layers 3
Number of attention heads 2 for encoder transformer

1 for decision transformer
Embedding dimension 128
Nonlinearity function ReLU
Batch size 64
context length K 20
Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps

Table 6: Hyperparameters of Transformer for OpenAI Gym experiments.

halfcheetah environments. By comparing Fig.6 to Fig.5, we discover that the structure of z-space
significantly collapses in eight out of nine environments (except for halfcheetah medium-replay).
More specifically, we can no longer recognize the distribution pattern and clusters emerged in Fig.5,
while such an observation is in line with our conclusion in the main text.

However, it is also worth noting that the performance of OPPO-a in D4RL benchmark, is not hin-
dered much by this uninformative z-space, as shown in Table 7. We attribute this to the effectiveness
of preference modelling phase, where our method is still able to find a meaningful z∗ in a less
expressive z-space.

This is also justified from t-SNE(Fig.6) as there our learned z∗ (orange dot) locates just in the point
of deep color.

Environment Dataset OPPO(Ours) OPPO(as)

Hopper
Medium-Expert 107.8 ± 1.0 103.5 ± 4.4
Medium 67.4 ± 3.5 69.2 ± 7.4
Medium-Replay 88.2 ± 1.7 78.3 ± 7.1

Walker
Medium-Expert 106.8 ± 2.8 108.8 ± 1.0
Medium 81.6 ± 2.8 80.7 ± 1.5
Medium-Replay 70.6 ± 5.1 66.3 ± 1.6

HalfCheetah
Medium-Expert 89.6 ± 0.8 90.1 ± 1.4
Medium 43.4 ± 0.2 43.4 ± 0.2
Medium-Replay 39.8 ± 0.2 39.6 ± 0.1

Sum 717.7 679.8

Table 7: Ablation study
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(a) walker

(b) halfcheetah

Figure 5: t-SNE of OPPO in walker and halfcheetah environments, including the embedding of
random trajectories in D, our learned z∗ (orange dot) and the actual optimal z∗∗ (red dot), embedding
of the best trajectory/policy learned with online RL method. Color of the points represents the
normalized return of the corresponding trajectory τ .

(a) walker

(b) halfcheetah

Figure 6: t-SNE visualization of the embedding space learned with OPPO-a in walker and halfchee-
tah environments.

Ablation of feedback amount For Hopper task, we evaluate the impact of different amounts
of preference labels on the performance of OPPO as shown in Tab.8. More specifically, OPPO
is evaluated using the labels amount from 50k, 3k, 1k, 500, on the dataset from Medium-Expert,
Medium, Medium Replay. As illustrated in the table, OPPO performs the best when given 50k
preference labels and achives a total normalized scoe of 283.1 among the three datasets. When
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Dataset 50k 3k 1k 500
Medium-Expert 108.0 ± 5.1 92.1 ± 9.2 102.9 ± 3.2 104.9 ± 4.1
Medium 86.3 ± 3.2 73.5 ± 14.8 90.8 ± 2.0 77.5 ± 12.8
Medium-Replay 88.9 ± 2.3 66.2 ± 23.3 60.4 ± 3.0 68.5 ± 22.8

283.1 231.8 254.2 250.9

Table 8: Ablation study

the feedback amount decreases to 3k, the performance decreases at the same time. However, the
performance stablizes at around 250 for further reduces to 1k and 500. Therefore, OPPO is robust
to the changes in the amount of feedback used for training.
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