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Abstract

Labeling a training set is not only often expensive but also susceptible to
errors. Consequently, the development of robust loss functions to handle
label noise has emerged as a problem of great importance. The symmetry
condition provides theoretical guarantees for robustness to such noise. In this
work, we investigate a symmetrization method that arises from the unique
decomposition of any multi-class loss function into a sum of a symmetric
loss function and a class-insensitive term. Notably, the special case of
symmetrizing the cross-entropy loss leads to a multi-class extension of the
unhinged loss function. This loss function is linear, but unlike in the binary
case, it must have specific coefficients in order to satisfy the symmetry
condition. Under appropriate assumptions, we demonstrate that this multi-
class unhinged loss function is the unique convex multi-class symmetric
loss function. It holds a significant role among multi-class symmetric loss
functions since the linear approximation of any symmetric loss function
around points with equal components must be equivalent to the multi-class
unhinged. Furthermore, we introduce SGCE and α-MAE, two novel loss
functions that smoothly transition between the multi-class unhinged loss and
the Mean Absolute Error (MAE). Our experiments demonstrate competitive
performance compared to previous state-of-the-art robust loss functions
on standard benchmarks, highlighting the effectiveness of our approach in
handling label noise.

1 Introduction

In recent years, deep learning has made significant advancements, achieving state-of-the-art
performance in various domains such as computer vision and natural language processing
(LeCun et al., 2015). However, these deep learning models often require extensive training
on large datasets. Acquiring correct labels for such datasets can be costly. To mitigate this
problem, crowdsourcing platforms have been employed, but they come with the drawback of
potentially introducing high amount of errors into the labels. Zhang et al. (2017) tried to fit
random labels on CIFAR10 and ImageNet with different deep neural network architectures.
They came to the conclusion that deep networks can easily fit random labels during training
and that their effective capacity is sufficient for memorizing the entire data set. This
memorization ability can become particularly problematic in the presence of label noise, as
the network may learn to fit the noise rather than the true underlying patterns. In order
to address this problem, robust loss functions based on the symmetry condition have been
proposed (Ghosh et al., 2015), Ghosh et al. (2017). A loss function L(z, y), where z is a score
vector for the C classes and y is the label, is symmetric if the quantity

∑C
k=1 L(z, k) remains

constant regardless of z. Additional explanations are provided in Appendix A. Under the
symmetry condition, the optimizers of the expected loss on the clean distribution are the
same as the optimizers of the expected loss on the corrupted distribution with uniform label
noise. Noise robustness results for some types of non uniform noise can also be obtained
(Ghosh et al., 2015), Ghosh et al. (2017). The study and the design of new symmetric loss
functions is therefore of great practical importance.
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This work proposes a principled symmetrization method for multi-class loss functions leading
to a general method for producing symmetric loss functions from non-symmetric loss functions.
Our main contributions are the following:

i) We apply the proposed symmetrization method to different loss functions (section
4). Notably, the symmetrization of the cross-entropy loss (CE) leads to a multi-class
extension to the unhinged loss function (van Rooyen et al., 2015), (Zhou et al., 2023).
Moreover, the symmetrization of the generalized cross-entropy (GCE) (Zhang and
Sabuncu, 2018) gives rise to a loss function that smoothly transitions between the
multi-class unhinged loss and the mean absolute error (MAE). We refer to this loss
as SGCE.

ii) We show the following results about the multi-class unhinged loss function (section
5):

a) It is the unique convex, non-trivial, non-increasing, multi-class symmetric loss
function under the assumption of invariance to permutations (defined in section
3).

b) It is the linear approximation to the cross-entropy loss function and to any
symmetric loss functions satisfying invariance to permutations at points with
equal components (section 5.2).

iii) We introduce α-MAE a loss function combining the unhinged loss with the MAE
where the parameter α directly controls the β-smoothness of the loss (section 6).

Experiments comparing SGCE and α-MAE with previously proposed robust loss functions
on symmetric, asymmetric and natural noise show promising results for our approach (section
7). The proofs of all theoretical results are provided in Appendix D.

2 Related work

Natarajan et al. (2013) proposed a loss correction approach in the binary case which was
extended to the multi-class case in Patrini et al. (2016b) by estimating a noise transition
matrix. In order to facilitate the estimation of this transition matrix, Yao et al. (2020)
considered a factorization of the matrix in two easier to estimate matrices. For its part,
Li et al. (2021) estimated the transition matrix and learned the classifier simultaneously
(end-to-end). In the terminology of Algan and Ulusoy (2021), the different approaches
above belong to the family of noise model based methods since they try to estimate the
noise structure directly. On the other hand, noise model free methods mainly try to design
intrinsically robust loss functions or to exploit different forms of regularization. Our work
is concerned with the problem of designing new robust loss functions (through a process
of symmetrization of a loss function) and so it belongs to the family of noise model free
methods. An advantage of such methods is that they can be computationally less costly
since they do not require to estimate the noise model.
Ghosh et al. (2015) introduced the symmetry condition in the binary case and showed that
it is a sufficient condition to make risk minimization robust to label noise. The sigmoid
loss, the ramp loss and the probit loss satisfy this condition but the common convex loss
functions do not. It turns out that the only binary convex loss function to be symmetric is
the unhinged loss (van Rooyen et al., 2015). While the sigmoid loss, the ramp loss and the
probit loss achieve robustness by reducing the impact of wrongly classified examples during
training (more likely to be corrupted), the unhinged loss achieves robustness by increasing
the impact of correctly classified examples during training (more likely to be clean) by being
negatively unbounded.
Ghosh et al. (2017) proved label noise robustness results for multi-class symmetric loss
functions. Under the symmetry condition, any minimizer of the risk on the corrupted
distribution with uniform label noise is also a minimizer of the risk on the clean distribution.
Noise tolerance under simple non uniform noise and class conditional noise are also obtained
but under some more assumptions (the true risk for the optimal classifier must be 0). They
propose the Mean absolute error (MAE) as a robust loss function for training neural networks.
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Their experimental results show that while the cross-entropy loss eventually severely fits the
noise, the MAE is much more robust. However, the test performance on clean data is often
better for the cross-entropy loss. The MAE loss is seen to be more prone to underfitting and
to be slower to train because the gradient can saturate while training.
In order to exploit both the noise robustness of MAE and the speed of training of CE, Zhang
and Sabuncu (2018) proposes a generalization of the two losses. Their loss function is the
negative Box-Cox transformation and it allows to interpolate between the MAE and the CE
with a hyperparameter. The symmetric cross-entropy loss is proposed in Wang et al. (2019).
This loss function is composed of two terms. A robust term (reverse cross-entropy loss) and
the standard cross-entropy loss (for convergence). The reverse cross-entropy loss is a scalar
multiple of the MAE. Taylor cross entropy loss (Feng et al., 2021) considers approximations
to the cross-entropy loss of different orders. The MAE is the first order Taylor approximation
of CE. The second-order Taylor Series approximation of CE is an average combination of
MAE and a lower bound of Mean Squared Error (MSE). Order 2 and above approximations
of the CE are not symmetric loss functions. Considering different orders of approximation
to the CE is another way to interpolate between the MAE and the CE. These different
methods are therefore all trying to make a compromise between the robustness of the MAE
and the better fitting ability of CE. Our method is always guaranteed to lead to a symmetric
loss function (contrary to the approaches above) and the problem of underfitting can be
alleviated by controlling the amount of saturation in the loss.
In the special case of the cross-entropy loss, our symmetrization method leads to a multi-class
extension of the unhinged loss function. In most previous works, the unhinged loss in the
multi-class setting was taken to be equivalent to the MAE (Zhang and Sabuncu, 2018), (Zhu
et al., 2023). This is not the case in our work. In our case, the multi-class unhinged loss is
a linear symmetric loss function like its binary counterpart. This means that no softmax
function is being used at the final layer. The work of Patrini et al. (2016b) considers a loss
function that they call unhinged in their experiments, but it is actually not a symmetric loss
function. It is equivalent up to an additive constant and a multiplicative constant to minus
the logit at the target label. The same multi-class extension of the unhinged loss as ours is
explored in (Zhou et al., 2023), but in a different context and for a different purpose. They
obtain the multi-class unhinged loss by removing the maximum in the multi-class hinge loss.
Their goal is to simplify the theoretical analysis of gradient descent dynamics, which they
argue is harder to investigate using cross-entropy or mean squared error. Being linear, the
unhinged loss can simplify theoretical research. Our focus, however, is on discussing the
fundamental role of the multi-class unhinged loss among multi-class symmetric loss functions
and proposing new robust loss functions (SGCE, α-MAE) that build upon the unhinged loss.
The closest work to our own is (Ma et al., 2020). They propose a normalization applicable to
any loss function that leads to a symmetric loss function. They observe however that their
robust loss functions often suffer from underfitting. The solution that they propose is called
the active-passive loss framework. An active loss function is only optimizing directly at the
specified label. A passive loss also explicitly minimizes the probability for other classes. An
active-passive loss is then defined to be a weighted combination of an active and a passive
loss. Both the active and the passive loss are required to be robust in order to ensure that
the combination is also robust. Subsequently, Ye et al. (2023) proposed the normalized
negative cross-entropy as a substitute to the MAE in the active-passive framework. Our
work instead proposes a different general method than normalization to produce symmetric
loss functions. Our method exploit the fact that there is a symmetric loss function hidden
within any loss function, as demonstrated by our general decomposition result.
The work of Patrini et al. (2016a) investigates binary loss functions that can be decomposed
as a sum of a class-insensitive term and a linear term. They refer to these losses as linear-odd
losses (the odd part of the loss is linear). The labeled data centroid becomes the quantity of
interest in the linear component of the loss and the subsequent works of Gao et al. (2016),
Gong et al. (2021) and Gong et al. (2022) proposed estimators for this centroid when only
corrupted data is available. Ding et al. (2022) extended these ideas to the multi-class case by
decomposing the multi-class mean squared error loss in order to also reduce the problem to
centroid estimation. Our work considers instead the general decomposition of any multi-class
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loss function into a symmetric loss function and a class-insensitive term. We discuss the
multi-class data centroid related to the multi-class unhinged loss function in Appendix C.

3 Assumptions on multi-class loss functions

We consider loss functions of the form L(z, y), where z = (zi, · · · , zC) = h(x) ∈ RC is the
score vector for some neural network h, x ∈ Rd is an input and y ∈ {1, · · · , C} is a label
for an example (x, y) sampled from a distribution D on Rd × {1, · · · , C}. We will make
two main assumptions on the loss function. First, we want the loss function L(z, y) to be
non-increasing.

Definition 3.1 We say that L(z, y) is a non-increasing multi-class loss function if for all y,
the function L(z, y) is a non-increasing function of zy when zk for k ̸= y is kept fixed.

Secondly, we want a form of symmetry between the classes to hold (different from the notion
of symmetry related to noise robustness). This is done to ensure that L(z, k) and L(z′, k′),
where k ̸= k′, will be the same function when the roles of k and k′ are swapped. We will
refer to this property as invariance to permutations and it is defined precisely below.

Definition 3.2 The loss function L(z, y) is invariant to permutations τ on C elements if
L(τ(z), τ(y)) = L(z, y) for all z, y, and τ . A permutation τ acts on z by permuting the
components of z, that is, τ(z) = (zτ−1(1), · · · , zτ−1(C)).

An example of a loss function satisfying both assumptions above is the standard cross-entropy
loss defined by L(z, y) = − log(py), where py = exp(zy)∑C

k=1
exp(zk)

is obtained via the softmax

function. Another simple example is the linear loss function L(z, y) = −zy. An example of a
loss function that does not satisfy the invariance to permutations property is L(z, y) = −yzy.

4 Symmetrization of loss functions

We ask the question of how to decompose a loss function into a sum of a symmetric loss
function and a class-insensitive term. It happens to be the case that there is a unique such
decomposition up to constants.

Proposition 4.1 There is a unique (up to constants) decomposition of a loss function into
a sum of a symmetric loss function and a class-insensitive term. The symmetric component
is given by

Lsym(z, y) := L(z, y) − 1
C

C∑
k=1

L(z, k). (1)

It is not difficult to verify that if L(z, y) satisfies the property of invariance to permutations,
then Lsym(z, y) must also satisfy it. In the following subsections, we apply equation 1 to
different loss functions.

4.1 Symmetrization of the cross-entropy loss

It is easy to verify that the symmetrization of the multiclass cross-entropy loss is the linear
function

−zy + 1
C

C∑
k=1

zk. (2)

We refer to 2 as the multi-class unhinged loss (see also (Zhou et al., 2023)). We note that since
− log(py) = −zy + log(

∑C
k=1 exp(zk)) and the term log(

∑C
k=1 exp(zk)) is class-insensitive,

the symmetrization of the cross-entropy loss is the same as the symmetrization of the linear
loss −zy.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In cases where the original loss function is the negative log-likelihood, our symmetrization
method can be interpreted as a form of regularization, induced by applying data-dependent
Dirichlet priors to the network’s outputs in a specific amount. Further details on this
interpretation are provided in Appendix E.

4.2 Symmetrization of the mean squared error

The mean squared error for classification is given by

L(z, y) = ||ey − s(z)||22 = ||s(z)||22 + 1 − 2p(y|z),

where ey is the one-hot encoding for the label y, s is the softmax function and the yth coordi-
nate of s(z) is p(y|z). Since the term ||s(z)||22 is independent of the label, the symmetrization
operator removes it and we are left with a loss equivalent to the MAE (the MAE is defined
as 1 − p(y|z)).

4.3 Symmetrization of the generalized cross-entropy loss (SGCE)

The generalized cross-entropy loss (GCE) (Zhang and Sabuncu, 2018) is defined by

Lq(z, y) := 1−p(y|z)q

q ,

where q ∈ (0, 1]. When q goes to 0, the loss converges to the cross-entropy. When q = 1,
we get the MAE. The symmetrization of the generalized cross-entropy loss (SGCE) leads
therefore to a form of interpolation between the multi-class unhinged and the MAE. The
unhinged loss function is robust by maintaining larger gradients for examples already correctly
classified. The MAE is robust by reducing the gradient of incorrectly classified examples
(since they might be corrupted). The SGCE loss function allows to realize a trade-off between
these two strategies.

4.4 Symmetrization of the cosine similarity loss

Consider the cosine similarity loss between the score vector z and the one-hot encoding ey

for the label: 1 − z·ey

||z||||ey|| . The symmetrization of this loss is the multi-class unhinged but
with the normalization of z instead of z as input. This is a simple way to address the fact
that the unhinged is negatively unbounded (see 7.2 for experimental details).

5 Some properties of the multi-class unhinged

5.1 Uniqueness among convex and symmetric loss functions

The multi-class unhinged loss satisfies the same fundamental result as the binary unhinged
loss.

Theorem 5.1 The multi-class unhinged loss is the unique convex, non-trivial, non-
increasing, multi-class symmetric loss function satisfying the property of invariance to
permutations (up to an additive and a multiplicative constant).

The invariance to permutations property plays a crucial role in the proof for the multi-class
case. The initial step in our proof involves establishing constraints on the coefficients of
a linear loss that satisfies the invariance to permutations property (Lemma D.1). These
constraints on the coefficients are subsequently used to prove uniqueness among linear loss
functions (Proposition D.2). The proof can then be completed by observing that any convex
symmetric loss function must be both convex and concave, and therefore is affine.

5.2 Linear approximations of multi-class loss functions

Since not any linear loss function is symmetric in the multi-class setting, it is an interesting
question to ask when the linear approximation around a point z′ (for example the origin) is

5
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symmetric. If this is the case, we can expect the loss function to be robust when training
stays around z′. Regularization methods like weight decay, batch normalization and early
stopping can then all contribute to maintain training in the robust region.
It happens to be the case that the linear approximation of the cross-entropy loss around
z = z′, where the components of z′ are all equal, is equivalent to the multi-class unhinged
loss function. Indeed, the gradient of the cross-entropy loss with respect to z is given by

∇zL(z, y) = s(z) − ey,

where s(z) is the output of the softmax function evaluated at z. The linear approximation
of L(z, y) at z′ is then given by

(s(z′) − ey)T (z − z′) + L(z′, y),

where T denotes transposition. Up to constants from the point of view of the variable z, we
only need to consider (s(z′) − ey)T z. Since s(z′) = ( 1

C , · · · , 1
C ) when all the components of

z′ are equal,

(s(z′) − ey)T z = ( 1
C

− 1)zy + 1
C

∑
k ̸=y

zk = −zy + 1
C

C∑
k=1

zk.

We conclude that the linear approximation of the cross-entropy loss around z′ is equivalent to
the multi-class unhinged loss function. The cross-entropy loss is therefore “locally symmetric”
around any such z′. This can help to explain why the cross-entropy loss can already be
somewhat robust in particular when early stopping is being used. Indeed, if training stays
close enough to an initial point such that the probability for each class is the same, we are
approximately training with a symmetric loss function.
We found an example of a non-robust loss function that happens to be locally equivalent to
the multi-class unhinged loss function at some specific points. If the loss function is globally
robust, it is actually guaranteed to be locally equivalent to the multi-class unhinged loss
function at every point z′ with equal components (that is not a critical point).

Proposition 5.2 Assume that L(z, y) is non-increasing, symmetric, satisfies the property
of invariance to permutations and is differentiable at z′ a vector with equal components.
Then, the linear approximation of L(z, y) at z′ is equivalent to the multi-class unhinged loss
function if ∇zL(z, y)|z=z′ ̸= 0.

β-smoothness allows to bound the size of the remainder of the linear approximation to a
loss function ϕ(z, y). We can then give a quantitative result about the gap between the
solution obtained with ϕ and the multi-class unhinged solution. A smaller β and more
regularization will lead to a solution with a closer unhinged risk to the optimal unhinged
risk when optimizing with the loss ϕ.

Proposition 5.3 Consider an euclidean ball of radius R around 0 ∈ Rd for the domain of
x. Assume that the loss ϕ(z, y) is β-smooth for all y and that its linear approximation at 0
is the multi-class unhinged loss function (denoted by L(z, y)). Furthermore, assume that l is
the number of layers of the feedforward neural network f , the non-linearity is c-Lipschitz at
every layer and the product of the euclidean norm of the weights of each layer is bounded by
r. Then,

LD(f∗
ϕ) − LD(f∗

L) ≤ R2βc2(l−1)r2,

where f∗
ϕ is a minimizer for the true risk for loss ϕ and f∗

L is a minimizer for the true risk
for the multi-class unhinged loss. This means that f∗

ϕ will reach a similar unhinged risk to
the optimal unhinged risk (if β and r are small).
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6 Combining the Multi-Class Unhinged with Non-Linear
Multi-Class Symmetric Loss Functions

From Proposition 5.2, any symmetric loss function L(z, y) satisfying the assumptions of the
proposition can be expressed as:

L(z, y) = L(0, y) + Constant
(

−zy + 1
C

C∑
k=1

zk

)
+ g(z, y),

where g(z, y) represents the residual of the linear approximation of L(z, y) at z = 0. A
straightforward way to control the degree of non-linearity in the loss function is to introduce
a hyperparameter α ∈ [0,∞) in front of g(z, y). Let this new loss function be denoted
as Lα(z, y). If L(z, y) is β-smooth, then Lα(z, y) is αβ-smooth. Hence, α controls the
β-smoothness of the loss.
Without loss of generality, assume that Constant = 1 (otherwise, rescale the loss accordingly).
Then, up to an additive constant, the loss function can be written as:

Lα(z, y) = (1 − α)L0(z, y) + αL(z, y),

where L0(z, y) is exactly equal to the multi-class unhinged loss function. We apply this
approach to the MAE loss and refer to the resulting loss as α-MAE. In this case, the constant
in front of the unhinged loss is 1

C , so we rescale the MAE by C, leading to the following
expression:

α-MAE = (1 − α)
(

−zy + 1
C

C∑
k=1

zk

)
+ αC (1 − p(y|z)) ,

for α ∈ [0,∞).

7 Experiments

7.1 Method

We first compare the performance of the multi-class unhinged loss, SGCE, and α-MAE
against various robust loss functions on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), as
presented in Table 1. For the CIFAR-10 experiments, we trained an 8-layer CNN for 120
epochs, while for CIFAR-100, we used a ResNet-34 (He et al., 2016) architecture and trained
it for 200 epochs. The comparison includes CE, MAE, GCE (Zhang and Sabuncu, 2018),
SCE (Wang et al., 2019), NCE+RCE (Ma et al., 2020), NCE+AGCE (Zhou et al., 2021), and
ANL-CE (Ye et al., 2023). Both symmetric label noise (see A) and asymmetric label noise
(non-uniform corruption probabilities based on class similarities, as described in (Patrini
et al., 2016b)) were considered.
To ensure a fair comparison, we implemented our method within the public implementation
of (Ye et al., 2023). The key difference is that we tuned the weight decay term separately for
each loss function, whereas (Ye et al., 2023) only tuned an additional regularization parameter
δ for their method without adjusting the weight decay for other loss functions. Otherwise,
we followed the same experimental protocol as in (Ma et al., 2020) and (Ye et al., 2023).
On CIFAR-10, the weight decay was tuned over the set {1 × 10−4, 5 × 10−4, 1 × 10−3, 5 ×
10−3, 1 × 10−2}, and for CIFAR-100, over {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3}.
The hyperparameter q for SGCE was selected from {0.2, 0.35, 0.50, 0.65, 0.80}, and the
hyperparameter α for α-MAE was chosen from {0.25, 0.50, 1.0, 2.0, 4.0}.
Hyperparameters were tuned using 10% of the training data as a validation set, based on a
symmetric noise rate of 80%. These hyperparameters were then used across all other noise
rates, including asymmetric noise. The training algorithm used in all cases was SGD with
momentum. The learning rate and other SGD parameters were not tuned. For example, the
learning rate for CIFAR-10 was fixed at 0.01 and for CIFAR-100 at 0.1, consistent with (Ye
et al., 2023). Furthermore, we used a cosine annealing schedule to maintain consistency and
ensure fair comparison with (Ma et al., 2020) and (Ye et al., 2023). While this learning rate

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Accuracy (mean of 3 runs with standard deviation in parentheses) of the multi-class
unhinged, SGCE and α-MAE compared to previously proposed robust loss functions on
CIFAR10 and CIFAR100 with symmetric noise rate η ∈ {0.4, 0.6, 0.8} and asymmetric noise
rate η ∈ {0.2, 0.3, 0.4}. The best result for each case is in bold.

Datasets Loss functions Clean Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.4 0.6 0.8 0.2 0.3 0.4

CIFAR10

CE 93.45(0.30) 69.69(0.52) 51.88(0.37) 32.59(0.76) 85.84(0.26) 81.08(0.47) 75.43(0.21)
MAE 88.80(0.17) 84.33(0.12) 77.27(0.24) 47.86(0.48) 84.47(2.65) 66.56(4.76) 58.72(2.24)
GCE 93.48(0.04) 74.28(0.13) 56.30(0.44) 39.88(2.11) 85.96(0.17) 80.78(0.37) 75.34(0.30)
SCE 92.99(0.06) 87.85(0.36) 79.80(0.16) 22.43(2.18) 90.10(0.06) 85.29(0.41) 76.26(0.15)

NCE+RCE 90.94(0.01) 86.03(0.13) 79.89(0.11) 55.52(2.74) 88.36(0.13) 84.84(0.16) 77.75(0.37)
NCE+AGCE 91.08(0.06) 86.16(0.10) 80.14(0.27) 55.62(4.78) 88.48(0.09) 84.79(0.15) 78.60(0.41)

ANL-CE 91.66(0.04) 87.28(0.02) 81.12(0.30) 61.27(0.55) 89.13(0.11) 85.52(0.24) 77.63(0.31)
Unhinged 93.03(0.11) 86.21(0.31) 76.58(0.20) 50.47(0.89) 88.48(0.33) 83.11(0.15) 76.55(0.23)

SGCE 93.05(0.22) 87.58(0.12) 79.57(0.48) 61.06(1.60) 89.38(0.07) 83.20(0.45) 75.39(0.39)
α-MAE 92.64(0.18) 88.17(0.15) 81.82(0.62) 62.08(1.24) 90.07(0.31) 86.11(0.17) 77.02(0.65)

CIFAR100

CE 77.25(0.60) 47.75(0.31) 29.03(0.23) 14.74(0.44) 63.70(0.23) 55.35(0.54) 45.49(0.15)
MAE 16.74(2.18) 7.29(0.89) 3.78(0.74) 2.42(0.96) 7.44(0.75) 6.30(0.56) 5.62(0.30)
GCE 61.37(0.71) 56.42(0.37) 46.31(1.01) 21.46(0.06) 55.27(1.07) 48.05(0.81) 40.20(0.56)
SCE 76.37(0.19) 48.44(0.14) 30.58(0.57) 11.65(1.38) 63.02(0.01) 54.52(0.28) 44.87(0.50)

NCE+RCE 68.22(0.28) 57.97(0.30) 46.26(1.07) 25.65(0.51) 62.77(0.53) 55.62(0.56) 42.46(0.42)
NCE+AGCE 68.61(0.12) 59.74(0.68) 47.96(0.44) 24.13(0.07) 64.05(0.25) 56.36(0.59) 44.90(0.62)

ANL-CE 70.68(0.23) 61.80(0.50) 51.52(0.53) 28.07(0.28) 66.27(0.19) 59.76(0.34) 45.41(0.68)
Unhinged 74.65(0.44) 59.90(0.03) 44.54(0.35) 20.97(0.67) 59.14(0.21) 50.16(0.30) 42.56(0.28)

SGCE 74.62(0.15) 63.48(0.30) 50.25(0.51) 31.56(0.42) 60.39(0.36) 49.08(0.36) 41.05(0.23)
α-MAE 73.96(0.26) 65.90(0.23) 56.42(0.19) 29.89(0.64) 68.30(0.52) 56.01(0.45) 42.04(0.31)

schedule may not optimize performance, as shown in Table 4—where we report results on
CIFAR-100 using a constant learning rate divided by 10 at 95% of training (one-step decay
of learning rates)—it is a commonly used schedule and was kept to ensure consistency with
previous work. More details about the training configuration and hyperparameters are given
in Appendix G.
We also evaluated our approach in settings with natural noise, comparing it to previously
proposed robust loss functions. Results for CIFAR-10N and CIFAR-100N (Wei et al., 2022)
are shown in Table 2. The same hyperparameters used for CIFAR-10 and CIFAR-100 were
applied in these experiments without further tuning. Additionally, we report SGCE results
on Mini WebVision (using the Google-resized data and the first 50 classes) (Li et al., 2017),
(Jiang et al., 2017). Performance was evaluated on both the WebVision validation set and
the ILSVRC 2012 validation set (Russakovsky et al., 2015), with results presented in Table 3.

7.2 Normalization of the score vector

Since the loss functions resulting from the symmetrization operation and involving the
multi-class unhinged loss can be negatively unbounded, a method to prevent numerical
overflows is required. We considered two approaches: applying Euclidean normalization
to the score vector and adding a batch normalization layer to the score vector. To ensure
numerical stability in Euclidean normalization, an epsilon value of 1×10−5 is used to prevent
division by zero by clamping the denominator away from 0. Using batch normalization on
the score vector was also considered in (Patrini et al., 2016b).
When using the cosine annealing schedule for learning rates, Euclidean normalization
consistently outperformed batch normalization. The results in Tables 1 and 2 were obtained
with Euclidean normalization applied to the unhinged loss, SGCE, and α-MAE. Under the
one-step learning rate decay schedule, SGCE performed better with batch normalization,
while both the unhinged loss and α-MAE achieved better results with Euclidean normalization.
Results obtained using batch normalization are indicated by “(BN)”, while all other results
reported were obtained with Euclidean normalization.

8 Discussion of results

Overall, SGCE and α-MAE maintain competitive performance across varying noise levels
and datasets, showing that the combination of the multi-class unhinged loss with MAE leads
to robustness in both synthetic and natural noise scenarios. α-MAE particularly shines on
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Table 2: Accuracy (mean of 3 runs with standard deviation in parentheses) of the multi-class
unhinged, SGCE and α-MAE compared to previously proposed robust loss functions on
CIFAR-10N and CIFAR-100N. The best result for each case is in bold.

Loss functions CIFAR-10N CIFAR-100NAggregate Random 1 Random 2 Random3 Worst
NCE+RCE 89.17(0.28) 87.62(0.34) 87.66(0.12) 87.70(0.18) 79.74(0.09) 54.27(0.09)

NCE+AGCE 89.27(0.28) 87.92(0.02) 87.61(0.20) 87.62(0.16) 79.91(0.37) 55.96(0.20)
ANL-CE 89.66(0.12) 88.68(0.13) 88.19(0.08) 88.24(0.15) 80.23(0.28) 56.37(0.42)
Unhinged 90.34(0.26) 88.53(0.13) 88.10(0.21) 88.41(0.19) 77.24(0.19) 54.33(0.34)

SGCE 90.62(0.18) 89.19(0.02) 88.92(0.14) 88.94(0.23) 78.47(0.35) 56.31(0.39)
α-MAE 90.67(0.17) 89.57(0.13) 89.37(0.03) 89.49(0.23) 81.28(0.37) 59.41(0.31)

Table 3: Accuracy of SGCE compared to previously proposed robust loss functions when
training a ResNet-50 on the WebVision training data set. Performance on the ILSVRC 2012
validation data and the WebVision validation data are reported. The best result is in bold
for each case.

Methods CE GCE SCE NCE+RCE NCE+AGCE ANL-CE ANL-FL SGCE(BN)
ILSVRC12 Val 58.64 56.56 62.60 62.40 60.76 65.00 65.56 69.52
WebVision Val 61.20 59.44 68.00 64.92 63.92 67.44 68.32 74.04

Table 4: Accuracy (mean of 3 runs with standard deviation in parentheses) of the multi-class
unhinged, SGCE and α-MAE compared to previously proposed robust loss functions on
CIFAR100 with a one-step decay of learning rates. The best result for each case is in bold.

Loss functions Clean Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.4 0.6 0.8 0.2 0.3 0.4

CE 75.15(0.26) 50.57(0.32) 35.64(0.03) 21.70(0.41) 66.86(0.38) 59.75(1.05) 49.08(0.41)
GCE 66.55(0.78) 64.09(0.90) 58.41(0.48) 38.46(0.63) 60.96(0.67) 57.59(0.87) 48.95(1.27)

ANL-CE 73.11(0.15) 65.09(1.43) 58.62(0.59) 32.93(0.53) 69.91(0.24) 65.06(0.26) 51.98(0.11)
Unhinged 72.45(0.13) 65.58(0.38) 58.29(0.78) 37.11(0.61) 70.33(0.25) 69.34(0.37) 64.84(0.28)

SGCE(BN) 73.43(0.11) 66.65(0.27) 59.74(0.31) 43.89(0.91) 70.17(0.15) 63.55(1.70) 50.88(1.00)
α-MAE 71.61(0.24) 64.35(0.20) 57.73(0.36) 37.20(0.99) 69.24(0.20) 68.78(0.50) 65.01(0.50)

various datasets and noise rates, for example, consistently outperforming other methods
on CIFAR-10N and CIFAR-100N. SGCE performed impressively with the one-step decay
of learning rates and symmetric noise. Additionally, both loss functions have only one
hyperparameter to tune, whereas methods from the active-passive approach typically use
two. Notably, the underfitting issues with MAE on CIFAR-100 are resolved by α-MAE.

9 Conclusion

In this work, we proposed a principled symmetrization method for designing robust loss
functions to handle label noise. The symmetrization of the categorical cross-entropy loss leads
to the unique convex, non-trivial, non-increasing multi-class symmetric loss function under
the technical assumption of invariance to permutations. As such, this loss function extends
the binary unhinged loss in the multi-class case. The symmetrization of the generalized cross-
entropy loss (SGCE) and the newly introduced α-MAE allow for the effective combination
of the multi-class unhinged loss with the MAE. Our approach demonstrates competitive
performance compared to previously proposed robust loss functions on the benchmark
datasets CIFAR-10, CIFAR-100, and WebVision.

References
Görkem Algan and Ilkay Ulusoy. Image classification with deep learning in the presence of

noisy labels: A survey. Knowl. Based Syst., 215:106771, 2021. doi: 10.1016/j.knosys.2021.
106771. URL https://doi.org/10.1016/j.knosys.2021.106771.

9

https://doi.org/10.1016/j.knosys.2021.106771


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yongliang Ding, Tao Zhou, Chuang Zhang, Yijing Luo, Juan Tang, and Chen Gong. Multi-
class label noise learning via loss decomposition and centroid estimation. In Arindam
Banerjee, Zhi-Hua Zhou, Evangelos E. Papalexakis, and Matteo Riondato, editors, Proceed-
ings of the 2022 SIAM International Conference on Data Mining, SDM 2022, Alexandria,
VA, USA, April 28-30, 2022, pages 253–261. SIAM, 2022. doi: 10.1137/1.9781611977172.29.
URL https://doi.org/10.1137/1.9781611977172.29.

Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss be
robust to label noise? In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

Wei Gao, Lu Wang, Yu-Feng li, and Zhi-Hua Zhou. Risk minimization in the presence of
label noise. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), Feb. 2016.
doi: 10.1609/aaai.v30i1.10293. URL https://ojs.aaai.org/index.php/AAAI/article/
view/10293.

Aritra Ghosh, Naresh Manwani, and P.S. Sastry. Making risk minimization tolerant to label
noise. Neurocomput., 160(C):93–107, jul 2015. ISSN 0925-2312. doi: 10.1016/j.neucom.
2014.09.081. URL https://doi.org/10.1016/j.neucom.2014.09.081.

Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust loss functions under label noise
for deep neural networks. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 1919–1925. AAAI Press, 2017.

Chen Gong, Hong Shi, Tongliang Liu, Chuang Zhang, Jian Yang, and Dacheng Tao.
Loss decomposition and centroid estimation for positive and unlabeled learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(3):918–932, 2021. doi:
10.1109/TPAMI.2019.2941684.

Chen Gong, Jian Yang, Jane You, and Masashi Sugiyama. Centroid estimation with
guaranteed efficiency: A general framework for weakly supervised learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(6):2841–2855, 2022. doi:
10.1109/TPAMI.2020.3044997.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In Interna-
tional Conference on Machine Learning, 2017. URL https://api.semanticscholar.
org/CorpusID:51876228.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–
444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision database:
Visual learning and understanding from web data, 2017.

Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end
label-noise learning without anchor points. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 6403–6413. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/li21l.html.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey.
Normalized loss functions for deep learning with noisy labels. In Hal Daumé III and Aarti
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A Uniform label noise and the symmetry condition

The influential work of (Ghosh et al., 2015) and (Ghosh et al., 2017) introduced the concept
of symmetric loss functions and established the fundamental results of statistical consistency
that they satisfy when training in the presence of noisy labels. At the limit of infinite data,
an optimal classifier for the corrupted distribution will also be an optimal solution for the
clean distribution if the loss function is symmetric. In this section, we introduce the concept
of symmetric loss functions to readers who are new to these ideas.
Assume that with some probability p, instead of sampling the label of an example from the
true distribution, we sample the label from a uniform distribution on the C classes. In other
words, define the corrupted distribution D to have the same marginal distribution as D (that
is Dx = Dx) but with conditional distribution Dy|x given by

pU({1, · · · , C}) + (1 − p)Dy|x,

where U({1, · · · , C}) is a uniform distribution over {1, · · · , C}. Given a training set S from
D, we can corrupt it to get a set S by changing the label of an example (x, y) ∈ S to a
different label with probability η = (C−1)p

C (each one of the different labels from y having
a probability of p

C of being the new label). The probability η is usually referred to as the
(symmetric) noise rate. We require that p < 1 or, equivalently, η < C−1

C .
It is then straightforward to get

LD(h) = p

C

[
E

x∼Dx

C∑
k=1

L(h(x), k)
]

+ (1 − p)LD(h),

where LD(h) is the expected loss (over distribution D) of classifier h. If we could get rid
of the term Ex∼Dx

∑C
k=1 L(h(x), k) above, the true risk on the clean distribution would be

proportional to the true risk on the corrupted distribution (if p < 1). The optimizers of
LD(h) would then be the same as the optimizers of LD(h). This is the motivation for the
symmetry condition.

Definition A.1 A loss function L(z, y) is said to be symmetric if, for all z,
C∑

k=1
L(z, k) = constant.

B Decomposition in the binary case and Taylor series

In the binary case, the unique decomposition of a loss function ϕ(z) into a sum of a symmetric
loss function and a class-insensitive loss function is the sum of its odd part ϕ(z)−ϕ(−z)
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its even part ϕ(z)+ϕ(−z)
2 . If ϕ admits a Taylor series expansion around 0, it is possible to

characterize the symmetry condition using the coefficients of the Taylor series and to express
the odd part and the even part with the series.

Proposition B.1 Assume that ϕ is an infinitely differentiable potential and without loss of
generality that ϕ(0) = 0. Then, ϕ is symmetric if and only if ϕ(k)(0) = 0 for all k even. That
is, ϕ is symmetric if and only if the even coefficients of its Taylor expansion at 0 are all 0.

Since the odd part of ϕ is the sum over the terms with odd coefficients of the Taylor series,
our symmetrization method corresponds to the very natural process of keeping the odd
coefficients of the original loss and replacing the even coefficients by 0’s. Every truncation
of the Taylor expansion for the symmetric loss function is also symmetric. This allows
approximating any such symmetric loss functions with simpler polynomial symmetric loss
functions.
The decomposition as a sum of an odd and an even function in the binary case makes
sense because changing the label amounts to changing the sign of z. However, this does
not generalize immediately to the multi-class case. When taking the point of view that the
odd binary loss functions are the symmetric loss functions and that the even binary loss
functions are the class-insensitve loss functions, we can get a decomposition holding in the
multi-class case also.

C Linear hypothesis classes and interpretation as kernel
learning

Assume that we are in the linear multi-class case with feature map ψ. Let W be the weight
matrix and L(z, y) the multi-class unhinged loss function. If a bias vector b is present, the
weight matrix will be understood as being extended by an additional column (the vector
b) and the vector ψ(x) will be understood as having an additional entry. Consider the
constrained optimization problem given by minimizing the empirical multi-class unhinged
loss function on the training data under a constraint on the Frobenius norm of the weight
matrix (||W ||F R ≤ r). This constraint is equivalent to ||W ||2F R − r2 ≤ 0. The Lagrangian is
then given by

1
N

∑N
i=1 L(Wψ(xi), yi) + λ(||W ||2F R − r2),

for λ ≥ 0. Define the column vector cy as having yth entry equal to C−1
C and every other

entry given by −1
C . The first order condition on the Lagrangian can then be written as

2λW − 1
N

N∑
i=1

cyiψ(xi)T = 0.

Let

µunh
S := 1

N

∑N
i=1 cyi

ψ(xi)T .

We will refer to µunh
S as the unhinged multi-class data centroid. The above computations

showed that ∇W

[
1
N

∑N
i=1 L(Wψ(xi), yi)

]
= −µunh

S , where the gradient is taken with respect

to the matrix W . The kth row of −µunh
S is equal to the gradient of the multi-class unhinged

loss with respect to the weight vector connected to the kth output (score for class k). If
µunh

S = 0, from the KKT conditions, we get that any W satisfying the constraint is a solution
(taking λ = 0). The problem is degenerate in that case. Indeed, the gradient of the multi-class
unhinged loss on the training set is then 0 for any W . Assume that µunh

S ̸= 0. Then, from the
first order condition on the Lagrangian, we must have λ ̸= 0 and W = 1

2λµ
unh
S . Furthermore,

from the KKT conditions, we must have ||W ||F R = r. Therefore,

13
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W = r
µunh

S

||µunh
S

||F R
.

We note that r is only a scaling factor and so the solution is the same for any r from the
point of view of classification performance in terms of 0 − 1 loss. The quantity µunh

S does
more than offering the solution to our optimization problem, it actually fully characterizes
the loss landscape on training data. Indeed, if two training data sets have the same µunh

S ,
then their multi-class unhinged loss functions have the same gradient everywhere and so can
differ only by a constant. This can also be seen by verifying with a direct computation that

1
N

N∑
i=1

L(Wψ(xi), yi) = −Trace(µunh
S WT ). (3)

Assume now that the feature map is given by a deep neural network with parameters
θ. Denote this feature map by ψθ and the unhinged multi-class data centroid by µunh

S,θ .
Furthermore, let kθ(x, x′) := ψθ(x)Tψθ(x′) be the kernel given by the standard dot product
in the representation space. Substituting W = r

µunh
S,θ

||µunh
S,θ

||F R
in equation 3 allows us to write

the empirical loss as a function of θ only. We denote this empirical loss as LS(θ). Since
Trace([µunh

S,θ ][µunh
S,θ ]T ) = ||µunh

S,θ ||2F R, we get

LS(θ) = −r||µunh
S,θ ||F R.

Minimizing LS(θ) is therefore an equivalent problem to maximizing ||µunh
S,θ ||2F R.

Proposition C.1 The squared Frobenius norm of the unhinged multi-class data centroid
satisfies the equality

||µunh
S,θ ||2F R = 1

N2

∑
i,j

aijkθ(xi, xj), (4)

where aij is equal to C−1
C if yi = yj and to −1

C if yi ̸= yj.

Equation 4 gives a direct and precise interpretation of training neural networks with the
multi-class unhinged loss as a form of kernel learning. When xi and xj share the same
label, the coefficient aij is positive, and the objective aims to increase the similarity (or
alignment) between these points. Conversely, when two points do not share the same label,
the coefficient aij is negative, and the objective seeks to decrease the similarity between the
points.
Ding et al. (2022) obtained a multi-class data centroid by decomposing the mean-squared
error loss. Our multi-class data centroid is different from Ding et al. (2022). They consider
(the transpose of)

µsq
S := 1

N

∑N
i=1 yiψ(xi)T ,

where yi is the one-hot encoding for the class. Our method involves the vector cyi instead
of the vector yi. The relationship between the unhinged multi-class data centroid and
the mean squared multi-class data centroid is given by the following equation: µunh

S =

µsq
S − 1

C

(
1
N

∑N
i=1 1ψ(xi)T

)
, where 1 is a column vector with all entries equal to 1. We can

think of µunh
S as a corrected version of µsq

S .

D Proofs

Proof of Proposition 4.1: Define Lsym(z, y) by the following formula:

Lsym(z, y) := L(z, y) − 1
C

C∑
k=1

L(z, k).

14
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The loss function Lsym(z, y) is symmetric and L(z, y) − Lsym(z, y) is class-insensitive. This
shows the existence of the decomposition. For uniqueness, suppose L = Lsym

1 + Lins
1 =

Lsym
2 + Lins

2 . That is, we have two decompositions of L as a sum of a symmetric and a
class-insensitive loss function. Then,

Lsym
1 − Lsym

2 = Lins
2 − Lins

1 .

Since Lsym
1 − Lsym

2 is symmetric and Lins
2 − Lins

1 is class-insensitive, they must be both
symmetric and class-insensitive. The only loss functions that are both class-insensitive and
symmetric are constant. Indeed, if an arbitrary loss function L′(z, y) is both symmetric and
class-insensitive, then

constant =
C∑

y=1
L′(z, y) = CL′(z, k)

for any 1 ≤ k ≤ C and any z ∈ RC , and therefore L′(z, y) is constant. We conclude that
Lsym

1 is equal to Lsym
2 up to an additive constant and also Lins

1 is equal to Lins
2 up to an

additive constant.■

In order to prove the uniqueness result among convex functions for the multi-class unhinged
loss, we start by proving uniqueness among linear functions. The invariance to permutations
property is crucial and the next Lemma proves some constraints that must hold on the
coefficients of a linear loss satisfying the invariance to permutations property.

Lemma D.1 Assume that a linear loss L(z, y) =
∑C

k=1 ak(y)zk satisfies the invariance to
permutations property. Then,

i) ay(y) = ak(k) for all k, y.

ii) ak(y) = ay(k) for all k, y.

iii) ak(y) = ak′(y) if k ̸= y and k′ ̸= y.

Proof:

i) For given k and y, consider a permutation τ switching k and y. From the invariance
to permutations property, L(z, y) = L(τ(z), τ(y)) = L(τ(z), k) for all z. Pick z = ey.
Then,

ay(y) = L(ey, y) = L(τ(ey), k) = L(ek, k) = ak(k).

ii) Consider τ as above, but now pick z = ek. Then,

ak(y) = L(ek, y) = L(τ(ey), τ(k)) = L(ey, k) = ay(k).

iii) Fix y and let k ̸= y and k′ ̸= y. Consider any permutation τ with fixed point y
satisfying τ(k) = k′ and τ(k′) = k. From the invariance to permutations property,
L(z, y) = L(τ(z), τ(y)) = L(τ(z), y). Since any two linear functions equal everywhere
must have the same coefficients, from the equality L(τ(z), y) = L(z, y) and noting
that the coefficient of zk in L(z, y) is ak(y) and the coefficient of zk in L(τ(z), y) is
ak′(y), we conclude that ak(y) = ak′(y).

Proposition D.2 The multi-class unhinged loss is the unique (up to a multiplicative con-
stant) non-trivial, non-increasing, linear multi-class symmetric loss function that satisfies
the property of invariance to permutations.

Proof: It is easy to verify that the multi-class unhinged loss function is a symmetric,
non-increasing, linear loss function that satisfies the invariance to permutations property.
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We now show that it is the unique such loss function up to a multiplicative constant. Let
L(z, y) =

∑C
k=1 ak(y)zk. Using the symmetry condition and rearranging terms leads to

C∑
k=1

( C∑
y=1

ak(y)
)
zk = constant,

for all z. If a linear function is constant, all its coefficients must be 0 and so
C∑

y=1
ak(y) = 0,

for all k. Using Lemma D.1 ii) leads to
∑C

y=1 ay(k) = 0, for all k. For convenience, we
change the names of the indices in the previous equality and write

C∑
k=1

ak(y) = 0,

for all y. From the assumption that L(z, y) is non-increasing, we must have ay(y) ≤ 0.
If ay(y) = 0, then

∑
k ̸=y ak(y) = 0. But, from Lemma D.1 iii), we must then have

(C − 1)ak(y) = 0 for any k. The loss L(z, y) would then be identically 0. Therefore, for
the loss to be non-trivial, we must have ay(y) < 0. Since we consider the loss up to a
multiplicative constant, we can assume that ay(y) = −1 for all y (this holds for all y from
Lemma D.1 i)). Finally, from Lemma D.1 iii), ak(y) = 1

C−1 if k ̸= y. Consequently,

L(z, y) = −zy + 1
C − 1

∑
k ̸=y

zk = C

C − 1

(
− zy + 1

C

C∑
k=1

zk

)
.

This concludes the proof showing that L(z, y) is equal to the multi-class unhinged loss
function up to a multiplicative constant.■

Remark D.3 Without the property of invariance to permutations, the uniqueness result
would not be true. Indeed, consider the following example with 3 classes:

L(z, y) =


−z1 + z2 + z3 if y=1
−z2 + z1 if y=2
−z3 if y=3

This loss function is convex (actually linear) for all y, non-increasing and symmetric.
However, it is not equivalent to the multi-class uninged loss function.

Proof of Theorem 5.1: Assume that L(z, y) is a convex function of z. From the symmetry
condition, we get

L(z, y) = constant−
∑

k ̸=y L(z, k).

Since a sum of convex functions is convex, −
∑

k ̸=y L(z, k) is concave. It follows that L(z, y)
is both convex and concave. The only functions that are both convex and concave are affine
functions. Therefore, under the assumptions of the theorem, it follows from Proposition D.2
that L(y, z) must be equal to the multi-class unhinged loss function up to an additive and a
multiplicative constant. ■

Proof of Proposition 5.2: We first need to show that
[
∇zL(z, y)|z=z′

]T
z satisfies the

property of invariance to permutations. Let τ be a permutation and P the corresponding
permutation matrix. From the chain rule and the invariance to permutations property for
L(z, y), we get [

∇zL(z, τ(y))|z=z′
]T
τ(z) =

[
∇zL(τ−1(z), y)|z=z′

]T
τ(z)

=
[
∇zL(z, y)|z=τ−1(z′)

]T
P−1τ(z)

=
[
∇zL(z, y)|z=z′

]T
z,
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where the last line is true since τ−1(z′) = z′ when all the components of z′ are equal. We
conclude that

[
∇zL(z, y)|z=z′

]T
z satisfies the property of invariance to permutations.

We now need to show that
[
∇zL(z, y)|z=z′

]T
z satisfies the symmetry condition. Differ-

entiating both sides of the symmetry condition for L(z, y) with respect to z at z′ leads
to

C∑
k=1

∇zL(z, k)|z=z′ = 0.

Taking the dot product with z on both sides leads to the conclusion that
[
∇zL(z, y)|z=z′

]T
z

is symmetric. From the uniqueness result for the multi-class unhinged loss, the proposition
follows if

[
∇zL(z, y)|z=z′

]T
z is non-trivial, that is, if ∇zL(z, y)|z=z′ ̸= 0. ■

Example D.4 When a differentiable loss function is globally symmetric, it is also locally
symmetric everywhere. However, it need not be equivalent to the multi-class unhinged
loss everywhere. Indeed, even if the loss function satisfies the property of invariance to
permutations, the linear approximation might not satisfy the same property everywhere. An
example is the MAE in three variables:

L(z, y) = 2 − 2 exp (zy)∑3
k=1 exp (zk)

.

If we let l(z, y) =
[
∇zL(z, y)|z=z′

]T
z with z′ = (1, 0, 0), we get

l(z, y) = 2
(e+2)2


(−2e, e, e) · z if y=1
(e,−e− 1, 1) · z if y=2
(e, 1,−e− 1) · z if y=3

.

This loss is symmetric as it should be. However, it does not satisfy the property of invariance
to permutations and it is not equivalent to the multi-class unhinged loss function.

Proof of Proposition 5.3: Denote by Ry(z) the remainder for the linear approximation of
ϕ(z, y) at 0. Then,

LD(f∗
ϕ) − LD(f∗

L) = Ex,y∼D

[
L(f∗

ϕ(x), y) − L(f∗
L(x), y)

]
= Ex,y∼D

[
ϕ(f∗

ϕ(x), y) − ϕ(0, y) −Ry(f∗
ϕ(x)) − L(f∗

L(x), y)
]

= Ex,y∼D

[
ϕ(f∗

ϕ(x), y)
]

− Ex,y∼D

[
ϕ(0, y) +Ry(f∗

ϕ(x)) + L(f∗
L(x), y)

]
≤ Ex,y∼D

[
ϕ(f∗

L(x), y)
]

− Ex,y∼D

[
ϕ(0, y) +Ry(f∗

ϕ(x)) + L(f∗
L(x), y)

]
= Ex,y∼D

[
ϕ(f∗

L(x), y) − ϕ(0, y) −Ry(f∗
ϕ(x)) − L(f∗

L(x), y)
]

= Ex,y∼D

[
Ry(f∗

L(x)) −Ry(f∗
ϕ(x))

]
≤ 2 sup

z,y
|Ry(z)|.

The proof is completed by exploiting β-smoothness to bound the remainder and by bounding
the size of the outputs of the neural network:

|Ry(z)| ≤ β
2 ||z||2 ≤ β

2 (Rc(l−1)r)2.

■

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Proposition C.1: We have

||µunh
S,θ ||2F R =

C∑
k=1

|| 1
N

N∑
i=1

c(k)
yi
ψθ(xi)||2

=
C∑

k=1

(
1
N

N∑
i=1

c(k)
yi
ψθ(xi)T

)(
1
N

N∑
j=1

c(k)
yj
ψθ(xj)

)

= 1
N2

C∑
k=1

∑
i,j

c(k)
yi
c(k)

yj
kθ(xi, xj)

= 1
N2

∑
i,j

kθ(xi, xj)
( C∑

k=1
c(k)

yi
c(k)

yj

)
.

The quantity
∑C

k=1 c
(k)
yi c

(k)
yj can be easily computed. If yi = yj then,

C∑
k=1

c(k)
yi
c(k)

yj
=
(
C − 1
C

)2
+ (C − 1) 1

C2 = C − 1
C

.

If yi ̸= yj then,

C∑
k=1

c(k)
yi
c(k)

yj
= 2
(
C − 1
C

)(
−1
C

)
+ (C − 2) 1

C2 = −1
C

.

Let aij be equal to C−1
C if yi = yj and −1

C if yi ̸= yj . We then get

||µunh
S,θ ||2F R = 1

N2

∑
i,j

aijkθ(xi, xj).

■

E Conditional data-dependent Dirichlet priors

In the case where the original loss function is the negative log-likelihood, our symmetrization
method can be interpreted as a form of regularization induced from using Dirichlet priors on
the outputs of the network. We explain precisely how below.
We consider neural networks having as outputs probability vectors on C classes. That is,
for a neural network with parameters θ, the output of the neurak network on input x is the
conditional distribution p(y|x, θ). Let ∆C := {π = (π1, · · · , πC) | πi ≥ 0 and

∑C
i=1 πi = 1}

be the probability simplex in dimension C. A neural network fθ is then a function

fθ : Rd −→ ∆C .

Suppose that we have a training set of n i.i.d. pairs (xi, yi) and denote by X the d × n
matrix obtained from aggregating the n column vectors xi. Also denote by Y the column
vector of training labels. In a Bayesian treatment, we would be interrested in the posterior
distribution p(θ |X,Y ). From Bayes rule, we get

p(θ |X,Y ) ∝ p(Y |X, θ)p(θ |X).

It is commonly assumed that the prior is chosen completely independently of the training
data, that is p(θ |X) = p(θ). However, it is also possible to maintain the dependency on X,
leading to the notion of a data-dependent prior. This data-dependent prior depends only on
the observed covariates X and not on the observed response variables Y .
We want to define p(θ |X). Each θ represents a neural network fθ. Since we have access to
X, we can look at fθ(x) ∈ ∆C for x in the training examples to define the prior. In Bayesian
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statistics, the Dirichlet distribution of order C is often used as a distribution over ∆C since
it is the conjugate prior to the categorical distribution. It is defined by the density function

g(π ;α1, · · · , αC) = constant×
C∏

i=1
παi−1

i ,

where the parameters αi satisfy αi > 0 for all i. If π ∈ ∆C is distributed according to a
Dirichlet distribution with parameters α = (α1, · · · , αC), we will write π ∼ Dir(α). A very
natural first step to define our data-dependent prior p(θ |X) is to let fθ(xi) ∼ Dir(α(xi))
for each xi in the training set and where α(x) is a function of x. We then need to define a
joint distribution over the vector (fθ(x1), · · · , fθ(xn)). We will simply choose to have the
fθ(xi)’s mutually independent. We then have a joint distribution over the outputs of fθ

on the training data. This does not lead immediately to a distribution on θ however since
many different θ’s can have the same vector of outputs (fθ(x1), · · · , fθ(xn)). We define an
equivalence class on θ as follows:

[θ]X = [θ′]X if and only if fθ(xi) = fθ′(xi) for all 1 ≤ i ≤ n.

So far, we have defined a distribution p([θ]X |X). It is given by a product of Dirichlet
distributions (to be technically correct, we have to take the restriction of this product of
Dirichlet to the subset of ∆n

C that can be realized with the hypothesis class {fθ}). We can
then write

p(θ |X) =
∫

[θ′]X

p(θ | [θ′]X , X)p([θ′]X |X)d[θ′]X = p(θ | [θ]X , X)p([θ]X |X).

We are therefore left with defining a distribution for θ inside of its equivalence class i.e.
p(θ | [θ]X , X). A possible example would be to choose a uniform distribution. This would
lead to p(θ | [θ]X , X) = 1

m([θ]X ) , where m([θ]X) is the measure of the set {θ′ s.t. [θ′]X = [θ]X}.
Up to an additive constant the negative log posterior is then given by

n∑
i=1

− log(p(yi |xi, θ)) +
n∑

i=1

C∑
k=1

−(αk(xi) − 1) log(p(k |xi, θ)) − log(p(θ | [θ]X , X)).

If we denote by l(h(x), y) the negative log likelihood loss (l(h(x), y) = − log(p(y |h(x))), where
h(x) is the score vector) and if we drop the extra regularization term − log(p(θ | [θ]X , X)),
then the quantity above is the sum over all examples of

lDir(h(x), y) := l(h(x), y) +
C∑

k=1
(αk(x) − 1)l(h(x), k).

Lemma E.1 Assume that αk(x) = α is constant. Then, the loss lDir is symmetric if and
only if α = C−1

C or l is already symmetric.

Proof: If αk(x) = α, we have

C∑
y=1

lDir(h(x), y) =
[
1 + C(α− 1)

] C∑
y=1

l(h(x), y).

Therefore, if l is not already symmetric, we must have 1 + C(α − 1) = 0 for lDir to be
symmetric. That is, we must have α = C−1

C .■

The special case of lDir with αk(x) = C−1
C leads to the same loss as lsym, that is, the

symmetrization of l. An illustration for the binary case (Beta distributions) is given in
Figure 1. The added prior encourages more confident outputs.
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Figure 1: The added regularization (induced from a Beta( 1
2 ,

1
2 ) prior in the binary case)

favours probability vectors with less entropy.

F Regression

The present paper focused on extending decomposition, symmetrization and the binary
unhinged loss function to the multi-class case. It is also possible to extend these ideas
to regression. Suppose that we are now trying to predict a continuous variable y ∈ R
and that the data collection process is noisy. The training data comes from a different
distribution (corrupted distribution, cheaper to obtain samples from) than the test data
(clean distribution). A formalization is given below:

Definition F.1 Consider the problem of regression. Define the corrupted distribution D to
have the same marginal distribution as D (that is Dx = Dx) but with conditional distribution
Dy|x given by

pqx(y) + (1 − p)Dy|x,

where 0 ≤ p < 1 and qx(y) is the corruption distribution. Two examples are N (µx, σ
2
x) (a

Gaussian distribution with mean µx and variance σ2
x) and a uniform distribution (when the

domain of y is a bounded interval in R).

Lemma F.2 Let qx(y) be the density for the corruption distribution. Define γh(x) =∫
qx(y)l(h(x), y)dy and Γh = EDγh(x). For any h ∈ H ,

LD(h) = pΓh + (1 − p)LD(h).

Proof: We have

LD(h) = p

[
E

x∼Dx

∫
qx(y)l(h(x), y)dy

]
+ (1 − p)LD(h) (5)

= p E
x∼Dx

γh(x) + (1 − p)LD(h). (6)

Definition F.3 We say that a regression loss function satisfies the continuous symmetry
condition with respect to density qx(y) if∫

qx(y)l(h(x), y)dy = constant.

Corollary F.4 If l satisfies the continuous symmetry condition with respect to qx(y) then
minimizing LD(h) is equivalent to minimizing LD(h).

There is also a unique decomposition of any regression loss function as a sum of a qx(y)-
symmetric loss function and a label-insensitive term. The proof is almost identical to the
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proof for classification and is omitted. Consider the simpler case where qx(y) = q(y) is
independent of x. Define Lsym(z, y) by the following formula:

Lsym(z, y) = L(z, y) −
∫
q(y)L(z, y)dy.

Then Lsym(z, y) satisfies the continuous symmetry condition with respect to q(y) and is the
symmetric loss function in the unique decomposition of L. The closest generalization of
the classification case is to take a uniform distribution on a bounded domain [−I, I]. We
investigate this case in conjunction with the squared error loss in the example below.

Example F.5 Consider the squared error loss L(z, y) = (z−y)2. A direct computation leads
to a loss equivalent (up to an additive and a multiplicative constant) to −zy for Lsym(z, y).
We could refer to this loss as the regression unhinged loss function. It is unbounded and
would suffer from numerical overflows without proper regularization. In the case of linear
classifiers, we can give an explicit solution. The regularized objective (with l2-regularization)
is given by

1
N

∑N
i=1 −yiwψ(xi) + λ

2 ||w||22.

Here, w is a row vector and ψ(xi) is a column vector after applying a feature map ψ to xi.
Finding when the gradient is 0 leads to:

w = 1
λN

∑N
i=1 yiψ(xi)T .

This means that w depends only on the data centroid (for regression)

µS = 1
N

∑N
i=1 yiψ(xi)T

and a scaling factor 1
λ . Interestingly, the linear approximation at 0 of the squared error loss

is also the regression unhinged (−2yz).

If L(z, y) is symmetric, the linear approximation at any points z′ is also symmetric as can
be shown by differentiating both sides of the symmetry condition and multiplying by z. We
only need to differentiate under the integral for this result to be true, which can be done if
we assume that, for example, q(y)L(z, y) and its derivative with respect to z are continuous
in z and y. It is also true in the regression case that a symmetric and convex loss function
must be affine.

Proposition F.6 Assume that L(z, y) is a twice differentiable function of z for any y and
that the second derivative is continuous in z and y. If L(z, y) is symmetric and convex for
any y then it is an affine function of z for any y.

Proof: Differentiating under the integral twice with respect to z in the symmetry condition
leads to ∫

q(y)L′′(z, y)dy = 0,

where L′′(z, y) denotes the second derivative with respect to z. Since, L(z, y) is convex for
any y, we must have L′′(z, y) ≥ 0 for any z and y. Since the integral above is 0, it follows
that L′′(z, y) is identically 0. We conclude that L(z, y) is an affine function of z for any y. ■

A linear regression loss (from the point of view of z) is of the form f(y)z for some function
f . Such a loss function is symmetric if and only if

Ey∼q(y)f(y) = 0.

We have shown in this section that the theory of symmetric loss functions can be extended
to regression to a large extent with very similar results to classification.
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Table 5: Hyperparameters and training configuration for SGCE.

CIFAR10
(Tables 1,2)

CIFAR100
(Tables 1,2)

CIFAR100
(Table 4)

WebVision
(Table 3)

q 0.80 0.65 0.35 0.25
train batchsize 128 128 128 32

total epoch 120 200 200 250
optimizer SGD SGD SGD SGD+Nesterov

learning rate 0.01 0.1 0.1 0.1
momentum 0.9 0.9 0.9 0.9

weight decay 0.005 0.0005 0.0005 0.00005
gradient bound 5.0 5.0 5.0 5.0

scheduler cosine cosine steplr steplr
T max 120 200 N/A N/A
eta min 0.0 0.0 N/A N/A
step size N/A N/A 190 240
gamma N/A N/A 0.1 0.1

Table 6: Hyperparameters and training configuration for α-MAE.

CIFAR10
(Tables 1,2)

CIFAR100
(Tables 1,2)

CIFAR100
(Table 4)

α 2.0 2.0 0.25
train batchsize 128 128 128

total epoch 120 200 200
optimizer SGD SGD SGD

learning rate 0.01 0.1 0.1
momentum 0.9 0.9 0.9

weight decay 0.005 0.0005 0.0005
gradient bound 5.0 5.0 5.0

scheduler cosine cosine steplr
T max 120 200 N/A
eta min 0.0 0.0 N/A
step size N/A N/A 190
gamma N/A N/A 0.1

G Training configuration and hyperparameters

The hyperparameters used in order to obtain our results are given in Table 5 (SGCE), Table
6 (α-MAE) and Table 7 (multi-class unhinged). The scheduler “steplr” refers to the scheduler
torch.optim.lr scheduler.StepLR with parameters “step size” and “gamma”. The scheduler
“cosine” refers to the scheduler torch.optim.lr scheduler.CosineAnnealingLR with parameters
“T max” and “eta min”. The weight decay parameters for the different loss functions are
given in Table 8.
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Table 7: Hyperparameters and training configuration for the multi-class unhinged loss
function.

CIFAR10
(Tables 1,2)

CIFAR100
(Tables 1,2)

CIFAR100
(Table 4)

train batchsize 128 128 128
total epoch 120 200 200
optimizer SGD SGD SGD

learning rate 0.01 0.1 0.1
momentum 0.9 0.9 0.9

weight decay 0.01 0.001 0.0005
gradient bound 5.0 5.0 5.0

scheduler cosine cosine steplr
T max 120 200 N/A
eta min 0.0 0.0 N/A
step size N/A N/A 190
gamma N/A N/A 0.1

Table 8: Weight Decay Parameters for Different Loss Functions and Datasets

Loss Function CIFAR10 CIFAR100 (cosine) CIFAR100 (steplr)
SGCE 0.005 0.0005 0.0005
α-MAE 0.005 0.0005 0.0005
Unhinged 0.01 0.001 0.0005
CE 0.005 0.001 0.0005
MAE 0.0001 5e-5 None
GCE 0.005 0.001 0.0001
SCE 0.01 0.0005 None
NCE+RCE 0.0001 1e-5 None
NCE+AGCE 0.0001 1e-5 None
ANL-CE 0.0 0.0 1e-5
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