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Abstract
Many control policies used in applications compute the input or action by solving a convex opti-
mization problem that depends on the current state and some parameters. Common examples of
such convex optimization control policies (COCPs) include the linear quadratic regulator (LQR),
convex model predictive control (MPC), and convex approximate dynamic programming (ADP)
policies. These types of control policies are tuned by varying the parameters in the optimization
problem, such as the LQR weights, to obtain good performance, judged by application-specific met-
rics. Tuning is often done by hand, or by simple methods such as a grid search. In this paper we pro-
pose a method to automate this process, by adjusting the parameters using an approximate gradient
of the performance metric with respect to the parameters. Our method relies on recently developed
methods that can efficiently evaluate the derivative of the solution of a convex program with respect
to its parameters. A longer version of this paper, which illustrates our method on many examples, is
available at https://web.stanford.edu/˜boyd/papers/learning_cocps.html.
Keywords: Stochastic control, convex optimization, approximate dynamic programming

1. Introduction

We consider the control of a stochastic dynamical system with known dynamics, using a control
policy that determines the input or action by solving a convex optimization problem. We call such
policies convex optimization control policies (COCPs). Many practical policies have this form,
including the first modern control policy, the linear quadratic regulator (LQR) (Kalman, 1960). In
LQR, the optimization problem has quadratic objective and linear equality constraints, and so can be
solved explicitly, yielding a linear policy. More modern examples, relying on more general convex
optimization problems such as quadratic programs (QPs), include convex model predictive control
(MPC) (Borrelli et al., 2017) and convex approximate dynamic programming (ADP) (Bertsekas,
2017). These policies are used in many applications, including robotics (Kuindersma et al., 2014),
vehicle and spacecraft control (Stewart and Borrelli, 2008; Blackmore, 2016), supply chains (Powell
et al., 2012), and finance (Markowitz, 1952; Cornuejols and Tütüncü, 2006; Boyd et al., 2017).

Control policies are judged by application-specific metrics, evaluated in simulation with histor-
ical or synthetic values of the unknown quantities. In some but not all cases, the metrics have the
traditional form of the average value of a given stage cost. In a few cases, the optimal policy for a
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traditional stochastic control problem has COCP form. A well-known case is LQR; another is when
the dynamics are affine and the stage cost is convex, in which case the Bellman value function is
convex, and evaluating the optimal policy reduces to solving a convex optimization problem (Ke-
shavarz, 2012, §3.3.1). Unfortunately, we cannot in general express the value function in a tractable
form. In a far wider set of cases, a COCP policy is not optimal, but only a good, practical heuristic.

COCPs have some attractive properties compared to other parametrized control policies. For
one, COCPs can be evaluated quickly enough for real-time applications, thanks to fast embedded
solvers (Domahidi et al., 2013; Stellato et al., 2020; Wang and Boyd, 2010) and code generators
(Mattingley and Boyd, 2012; Chu et al., 2013; Banjac et al., 2017). Additionally, when the convex
problem to be solved is well chosen, the policy is reasonable for any choice of the parameter values
over the allowed set. As a specific example, consider a linear control policy parametrized by the
gain matrix, seemingly the most natural parametrization of a linear policy. The set of gain matrices
that lead to a stable closed-loop system (a minimal requirement) can be very complex, even discon-
nected. In contrast, consider an LQR control policy parametrized by a positive definite control cost
matrix. In this case any choice of policy yields a stable closed-loop system. It is far easier and safer
to tune parameters when any feasible choice leads to a reasonable policy.

All control policies are tuned by adjusting parameters that appear in them. In the case of COCPs,
the parameters are in the optimization problem that is solved to evaluate the policy. The tuning is
often done by hand, or by a grid search. In this paper we present an automated method for tuning
parameters in COCPs to achieve good values of a performance metric. Our method simulates the
system with the policy in the loop, and computes a stochastic gradient of the expected performance
with respect to the parameters. It then updates the parameters via a projected stochastic gradient
method. Central to our method is the fact that the solution map for convex programs is often
differentiable, and its derivative can be efficiently computed (Amos, 2019; Agrawal et al., 2019a).

Our method is not guaranteed to find the best parameter values, since the performance metric is
not a convex function of the COCP parameter, and we use a local search method. This is not a prob-
lem in practice, since in a typical use case, the COCP is initialized with reasonable parameters, and
our method is used to tune these parameters to improve the performance (sometimes considerably).

1.1. Related work

Dynamic programming. The Markov decision process is a stochastic control problem that can
be solved in principle using dynamic programming (DP) (Bellman, 1957a,b; Bertsekas, 2017). The
optimal policy is evaluated by solving an optimization problem, one that includes a current stage
cost and the expected value of cost-to-go at the next state. This optimization problem corresponds
to a COCP when the system dynamics are affine and the stage cost is convex (Bertsekas, 2017).
Unfortunately, the value function can be found in a tractable form in only a few cases, e.g., when
the cost is a convex extended quadratic and the dynamics are affine (Barratt and Boyd, 2018).

Approximate dynamic programming. ADP (Bertsekas and Tsitsiklis, 1996; Powell, 2007) refers
to heuristic solution methods for stochastic control problems that replace the value function in DP
with an approximation, or search over a parametric family of policies (Bertsekas, 2019, §2.1).

In many ADP methods, an optimization problem is solved offline to approximate the value func-
tion. When there is a finite number of states and inputs, the problem can be expressed as a linear
program (De Farias and Van Roy, 2003). When the dynamics are linear, the cost is quadratic, and
the input lies in a convex set, an approximate convex quadratic value function can be found by solv-
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ing a particular semidefinite program (Wang and Boyd, 2009), and optionally iterating the Bellman
inequality (Wang et al., 2014; Stellato et al., 2017). The resulting policy is a COCP. Other methods
iteratively adjust the approximate value function to satisfy the Bellman equation. Examples include
projected value iteration or fitted Q-iteration (Gordon, 1995), temporal difference learning (Sutton,
1988; Bertsekas et al., 2004), and approximate policy iteration (Nedić and Bertsekas, 2003). Exam-
ples of COCPs here include the use of quadratic approximate cost-to-go functions for input-affine
systems with convex cost (Keshavarz and Boyd, 2014), and modeling the state-action cost-to-go
function as an input-convex neural network (Amos et al., 2017, §6.4).

Still other ADP methods parametrize the policy and tune the parameters directly to improve per-
formance (Bertsekas, 2019, §5.7). The most common method is stochastic gradient search (Powell,
2007, §7.2); this is the method we employ in this paper, using a parametrized COCP as the policy.

Reinforcement learning. Reinforcement learning (Sutton and Barto, 2018) is similar to ADP
(Bertsekas, 2019, §1.4), but emphasizes problems in which mathematical models of the dynamics
or cost are absent. Instead, one has a computational simulator for both. Our method might be used in
this setting after learning suitable models. COCPs could also be used as part of the policy in policy
gradient or actor-critic methods (Williams, 1987; Lillicrap et al., 2015; Schulman et al., 2017; Fazel
et al., 2018).

Learning optimization-based policies. Other work has considered tuning optimization-based
control policies. For example, there is prior work on learning for MPC, including nonconvex MPC
(Amos et al., 2018), cost shaping (Tamar et al., 2017), differentiable path integral control (Okada
et al., 2017), and identification of terminal constraint sets and costs (Rosolia and Borrelli, 2017). To
our knowledge, our work is the first to consider the specific class of parametrized convex programs.

1.2. Outline

In §2, we introduce the controller tuning problem that we wish to solve. In §3, we describe some
common forms of COCPs. In §4, we propose a heuristic for the controller tuning problem. In §5,
we apply our methodology to LQR problems and a problem in vehicle control. A longer version of
this paper, with additional discussion and examples, is available online (Agrawal et al., 2019c).

2. Controller tuning problem

We consider a dynamical system with dynamics given by

xt+1 = f(xt, ut, wt), t = 0, 1, . . . . (1)

At time period t, xt ∈ Rn is the state, ut ∈ Rm is the input or action, wt ∈ W is the disturbance,
and f : Rn×Rm×W → Rn is the state transition function. The initial state x0 and the disturbances
wt are random variables.

The inputs are given by a state feedback control policy φ : Rn → Rm, i.e.,

ut = φ(xt), t = 0, 1, . . . . (2)

We specifically consider COCPs, which have the form

φ(x) = argmin
u

f0(x, u; θ)

subject to fi(x, u; θ) ≤ 0, i = 1, . . . , k,
gi(x, u; θ) = 0, i = 1, . . . , `,

(3)
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where fi are convex in u and gi are affine in u. To evaluate a COCP we must solve a convex
optimization problem, which we assume has a unique solution. The convex optimization problem
(3) is given by a parametrized problem description (Boyd and Vandenberghe, 2004, §4.1.4), in
which the vector θ ∈ Θ ⊆ Rp is the parameter (Θ is the set of allowable parameter values). The
problem we address in this paper is the choice of the parameter θ.

Performance metric. We judge the performance of a control policy, or choice of parameter θ,
by the average value of a cost over trajectories of length T . The horizon T is chosen large enough
so that the average over T time steps is close enough to the long term average. We denote the
trajectories over t = 0, . . . , T as

X = (x0, x1, . . . , xT ) ∈ RN ,

U = (u0, u1, . . . , uT ) ∈ RM ,
W = (w0, w1, . . . , wT ) ∈ WT+1,

where N = (T + 1)n and M = (T + 1)m. These state, input, and disturbance trajectories are
random variables, with distributions that depend on the parameter θ.

The cost is provided by a function ψ : RN × RM ×WT+1 → R ∪ {+∞}. Infinite values of ψ
place constraints on the trajectories. Traditionally, the cost function is separable, with the form

ψ(X,U,W ) =
1

T + 1

T∑
t=0

g(xt, ut, wt), (4)

where g : Rn × Rm ×W → R ∪ {∞} is a stage cost function. We do not require this.
A policy is judged by the expected value of the cost,

J(θ) = Eψ(X,U,W ).

Note that J depends on θ, since x1, . . . , xT and u0, . . . , uT depend on θ.
We generally cannot evaluate J(θ) exactly. Instead, if we can sample the initial state and the

disturbances, we can compute an unbiased Monte Carlo approximation of it. In the simplest version,
we generate K independent trajectories (X1, U1,W 1), . . . , (XK , UK ,WK) and compute

Ĵ(θ) =
1

K

K∑
i=1

ψ(Xi, U i,W i).

This computation requires solving K(T + 1) convex programs.

Controller tuning problem. The controller tuning problem has the form

minimize J(θ)
subject to θ ∈ Θ,

(5)

with variable θ. This is the problem we seek to solve in this paper.

3. Examples of COCPs

In this section we describe some paradigmatic COCPs.

4



LEARNING CONVEX OPTIMIZATION CONTROL POLICIES

Optimal (DP) policy. In the traditional stochastic control setting, the cost resembles (4) and
x0, w0, w1, . . . are independent. Under some technical conditions, the optimal policy for T → ∞,
i.e., the policy minimizing J over all possible state feedback policies, not just COCPs, has the form

φ(x) = argmin
u

E (g(x, u, w) + V (f(x, u, w))) , (6)

where V : Rn → R is the Bellman value function. When f is affine in (x, u) and g is convex in
(x, u), V is convex and the optimal policy is a COCP (but usually cannot be evaluated tractably).

Approximate dynamic programming policy. An ADP (Powell, 2007) or control-Lyapunov (Cor-
less and Leitmann, 1988) policy has the form

φ(x) = argmin
u

E(g(x, u, w) + V̂ (f(x, u, w))), (7)

where V̂ is an approximate value function for which the minimization over u is tractable. When
g is convex in u, f is affine in u, and V̂ is convex, the minimization is a convex optimization
problem (Boyd and Vandenberghe, 2004), and this policy has COCP form (Keshavarz, 2012).

Model predictive control policy. In MPC, the cost has the form (4), and the policy solves an ap-
proximation to the control problem over a short horizon H (Rawlings and Mayne, 2009), applying
only the first input. A terminal cost function gH is often included. The policy has the form

φ(x) = argmin
u0

∑H−1
t=0 g(xt, ut, ŵt) + gH(xH)

subject to xt+1 = f(xt, ut, ŵt), t = 0, . . . ,H − 1,
x0 = x,

where ŵ0, . . . , ŵH−1 are predictions of the disturbances and the variables are u0, . . . , uH−1 and
x0, . . . , xH . When f is affine in (x, u), g is convex in (x, u), and gH is convex, this is a COCP.

4. Solution method

Solving the controller tuning problem (5) exactly is in general hard, so we will solve it approxi-
mately. Historically, many practitioners have used derivative-free methods to tune parameters in
control policies. Some of these methods include evolutionary strategies (Hansen and Ostermeier,
2001; Salimans et al., 2017), Bayesian optimization (Močkus, 1975), grid search, and random
search (Anderson, 1953; Solis and Wets, 1981; Bergstra and Bengio, 2012). These methods can
certainly yield improvements over an initialization, but they often converge very slowly.

It is well-known that first-order optimization methods, which make use of derivatives, can out-
perform derivative-free methods. In this paper, we apply the projected stochastic (sub)gradient
method (Robbins and Monro, 1951) to approximately solve (5). That is, starting with initial param-
eters θ0, at iteration k, we simulate the system and compute Ĵ(θk). We then compute an unbiased
stochastic gradient of J , gk = ∇Ĵ(θk), by the chain rule, and update θk+1 = ΠΘ(θk − αkgk),
where ΠΘ(θ) denotes the Euclidean projection of θ onto Θ and αk > 0 is a step size.

Computing gk requires differentiating through the dynamics f , the cost ψ, and the solution
map φ of a convex program. Methods for differentiating through special subclasses of convex op-
timization have existed for many decades; for example, literature on differentiating through QPs
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dates back to at least the 1960s (Boot, 1963). Similarly, it is well known that if the objective and
constraints of a convex optimization problem are all smooth, and some regularity conditions are sat-
isfied, then its derivative can be computed by differentiating the KKT optimality conditions (Kuhn
and Tucker, 1951; Barratt, 2018). Until very recently, however, it was not generically possible to
differentiate through a convex optimization problem with nondifferentiable objective or constraints;
recent work (Busseti et al., 2019; Agrawal et al., 2019b,a; Amos, 2019) has shown how to efficiently
compute this derivative, by implicitly differentiating optimality conditions for a cone program.

Until this point, we have assumed the differentiability of all of the functions involved (f , ψ, and
φ). In real applications, this assumption might not hold. So long as the functions are differentiable
almost everywhere, however, it is reasonable to speak of applying a projected stochastic gradient
method to (5). At non-differentiable points, we compute a heuristic quantity. For example, at some
non-differentiable points of φ, a certain matrix fails to be invertible, and we compute a least-squares
approximation of the derivative instead, as in (Agrawal et al., 2019b). In this sense, we overload
the notation ∇f(x) to denote a gradient when f is differentiable at x, or some heuristic quantity (a
“gradient”) when f is not differentiable at x. In practice, as our examples in §5 demonstrate, we
find that this method works well. Indeed, most modern neural networks are not differentiable, but it
is possible to successfully train them using stochastic “gradient” descent (Goodfellow et al., 2016).

5. Examples

Here, we illustrate our method with examples. Our COCPs were implemented using CVXPY (Dia-
mond and Boyd, 2016; Agrawal et al., 2018), and we use SCS (O’Donoghue et al., 2016) to solve the
convex programs and cvxpylayers (Agrawal et al., 2019a) and PyTorch (Paszke et al., 2019) to dif-
ferentiate through them. Evaluating each COCP takes about 3 ms, which could be made smaller us-
ing a more specialized solver. Our code is available at https://github.com/cvxgrp/cocp.

5.1. LQR

We first apply our method to the classical LQR problem, with dynamics and cost

f(x, u, w) = Ax+Bu+ w, ψ(X,U,W ) =
1

T + 1

T∑
t=0

xTt Qxt + uTt Rut,

where A ∈ Rn×n, B ∈ Rn×m, Q ∈ Sn+, R ∈ Sm++, and w ∼ N (0,Σ).
We use the COCP

φ(x) = argmin
u

uTRu+ ‖θ(Ax+Bu)‖22, (8)

with parameter θ ∈ Rn×n. This policy has an analytical solution, which is linear. (This COCP is
clearly over-parametrized.) If the matrix θT θ satisfies a particular algebraic Riccati equation, then
(8) is optimal (over all control policies) when T →∞ (Bertsekas, 2017).

Numerical example. We consider a numerical example with n = 4 states, m = 2 inputs, and
T = 100. The entries of A and B were sampled from N (0, 1), with A scaled such that its spectral
radius is one. The cost matrices are Q = I and R = I , and the noise covariance is W = (0.25)I .
We initialize θ with the identity. We trained our policy for 50 iterations, using K = 6 simulations
per step, with an initial step size of 0.5 that was decreased to 0.1 after 25 iterations. Figure 1 plots
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Figure 2: Box-constrained LQR.

the cost of the COCP during learning on a held-out random seed and the cost of the optimal LQR
policy (for T →∞). Our method appears to converge to near the optimal cost in just 10 iterations.

5.2. Box-constrained LQR

A box-constrained LQR problem has the same dynamics as LQR, with cost

ψ(X,U,W ) =
1

T + 1

T∑
t=0

g(xt, ut, wt), g(xt, ut, wt) =

{
xTt Qxt + uTt Rut, ‖ut‖∞ ≤ umax,

+∞ otherwise.

Unlike LQR, in general, there is no known solution to this problem, analytical or otherwise.-
Our COCP is an ADP policy (7) with a quadratic value function and parameter θ ∈ Rn×n:

φ(x) = argmin
u

uTRu+ ‖θ(Ax+Bu)‖22
subject to ‖u‖∞ ≤ umax.

A non-trivial lower bound on the optimal cost yields a policy of this form (Wang and Boyd, 2009).

Numerical example. We use n = 8, m = 2, T = 100, umax = 0.1, and data generated as in
the LQR example above. The technique from (Wang and Boyd, 2009) yields a lower bound on the
optimal cost of around 11. It also suggests a value of θ that gives average cost around 13, an upper
bound on the optimal cost. We initialize our COCP with θ = P 1/2, where P comes from the cost-
to-go function for the unconstrained problem. Figure 2 plots the expected cost of our COCP, and
the upper and lower bounds. Our method converges to roughly the same cost as the upper bound.

5.3. Tuning a vehicle controller to track curved paths

We consider a vehicle moving relative to a smooth path, with state and input

xt = (et,∆ψt, vt, v
des
t , κt), ut = (at, zt).

At time t, et is the lateral path deviation (m), ∆ψt is the heading deviation from the path (rad),
vt is the velocity (m/s), vdes

t is the desired velocity (m/s), κt is the current curvature (i.e., inverse
radius) of the path (1/m), at is the acceleration (m/s2), and zt := tan(δt) − Lκt, where δt is the
wheel angle (rad) and L is the vehicle’s wheelbase (m).
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Figure 3: Tracking curved
paths. Left: untuned
policy; right: tuned
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the path, and triangles
are the vehicle posi-
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For the dynamics, we use a kinematic bicycle model in path coordinates (Gerdes, 2019), dis-
cretized at h = 0.2 s, with random processes for vdes

t and κt. The dynamics are

et+1 = et + hvt sin(∆ψt) + w1, w1 ∼ N (0, .01),

∆ψt+1 = ∆ψt + hvt

(
κt +

zt
L
− κt

1− etκt
cos(∆ψt)

)
+ w2, w2 ∼ N (0, .0001),

vt+1 = vt + hat + w3, w3 ∼ N (0, .01),

vdes
t+1 = vdes

t w4 + w5(1− w4), w4 ∼ Bernoulli(0.98), w5 ∼ U(3, 6),

κt+1 = κtw6 + w7(1− w6), w6 ∼ Bernoulli(0.95), w7 ∼ N (0, .01).

Our goal is to travel the desired speed (vt ≈ vdes
t ), while tracking the path (et ≈ 0, ∆ψ ≈ 0)

and expending minimal control effort (at ≈ 0, zt ≈ 0). We consider the cost

ψ(X,U,W ) =
1

T + 1

T∑
t=0

(vt − vdes
t )2 + λ1e

2
t + λ2∆ψ2

t + λ3|at|+ λ4z
2
t + I(at, zt, κt),

for positive λ1, . . . , λ4. Here, I(a, z, κ) is 0 when |a| ≤ amax and |z + Lκ| ≤ tan(δmax), for a
maximum absolute acceleration amax and maximum absolute wheel angle δmax, and +∞ otherwise.

We consider a COCP that computes (at, zt) as

φ(xt) = argmin
a,z

λ3|a|+ λ4z
2 + ‖Sy‖22 + qT y

subject to y =


et + hvt sin(∆ψt)

∆ψt + hvt

(
κt + z

L − κt
1−etκt cos(∆ψt)

)
vt + ha− (0.98)vdes

t − (0.02)4.5

y1 + hvt sin(y2 − hvt zL) +
h2v2t
L z


|a| ≤ amax

|z + Lκt| ≤ tan(δmax),

with parameters θ = (S, q), where S ∈ R4×4 and q ∈ R4. The variable y ∈ R4 represents portions
of the next state, since y1 = et+1, y2 = ∆ψt+1, y3 = vt+1 − E[vdes

t+1], and y4 ≈ et+2 (since it
assumes at = 0). This is an ADP policy, with approximate value function V̂ (x) = ‖Sx‖22 + qTx.

Numerical example. We apply our method to a numerical example with L = 2.8 m, λ1 = λ2 =
1, λ3 = λ4 = 10, amax = 2 m/s2, δmax = 0.6 rad, and T = 100, with initial state x0 =
(.5, .1, 3, 4.5, 0). We run the stochastic gradient method for 100 iterations using K = 6 simulations
and a step size of 0.1. We initialize the parameters with S = I and q = 0. Tuning decreased the
cost from 3.978 to 0.971. Figure 3 plots untuned and tuned sample paths on a held-out instance.
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