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ABSTRACT

Current unsupervised domain adaptation (UDA) methods for semantic segmen-
tation typically assume identical class labels between the source and target do-
mains. This assumption ignores the label-level domain gap, which is common in
real-world scenarios, thus limiting their ability to identify finer-grained or novel
categories without requiring extensive manual annotation. A promising direction
to address this limitation lies in recent advancements in foundation models, which
exhibit strong generalization abilities due to their rich prior knowledge. How-
ever, these models often struggle with domain-specific nuances and underrepre-
sented fine-grained categories. To address these challenges, we introduce Dy-
nAlign , a framework that integrates UDA with foundation models to bridge both
the image-level and label-level domain gaps. Our approach leverages prior seman-
tic knowledge to align source categories with target categories that can be novel,
more fine-grained, or named differently (e.g., ‘vehicle’ to { ‘car’, ‘truck’, ‘bus’}).
Foundation models are then employed for precise segmentation and category reas-
signment. To further enhance accuracy, we propose a knowledge fusion approach
that dynamically adapts to varying scene contexts. DynAlign generates accurate
predictions in a new target label space without requiring any manual annotations,
allowing seamless adaptation to new taxonomies through either model retraining
or direct inference. Experiments on the street scene semantic segmentation bench-
marks GTA—Mapillary Vistas and GTA—IDD validate the effectiveness of our
approach, achieving a significant improvement over existing methods.

1 INTRODUCTION

Semantic segmentation is a crucial computer vision task that assigns category labels to each pixel in
an image, enabling detailed scene understanding. Driven by advancements in deep learning, the field
has recently seen significant progress, with applications ranging from autonomous driving (Cheng
et al., 2022; Jain et al., 2023) to medical image diagnosis (Cao et al.| [2022). Despite this progress,
models trained on labeled source datasets often struggle to generalize to data with different distri-
butions due to variations in weather, illumination, or object appearance, resulting in degraded per-
formance. While re-training or fine-tuning models can address this issue, these approaches require
annotated in-domain data, which is particularly costly for semantic segmentation.

Unsupervised Domain Adaptation (UDA) addresses the challenge of adapting a model trained on a
labeled source domain to an unlabeled target domain by mitigating the adverse effects of domain
shift without requiring costly data annotations. However, most UDA are constrained by domain-
specific knowledge from the available datasets and typically operate under closed-set assumptions,
where the label spaces of the two domains are identical. This assumption limits their applicability
in real-world scenarios, where source and target datasets often exhibit the label-level taxonomy gap
- including variations in class categories, semantic contexts, and category granularity.

To overcome this limitation, open-set Domain Adaptation (DA) methods have been developed to
recognize novel classes in the target domain (Saito & Saenkol 2021} [Li et al) [2023). However,
these methods are only capable of distinguishing unknown classes from known ones and do not
provide detailed classifications for new target classes. To solve this, taxonomy-adaptive domain
adaptation has been proposed, enabling UDA in settings where the target domain adopts a label space
different from that of the source domain (Gong et al., 2022; |Fan et al.| 2023a). These methods aim
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Figure 1: DynAlign and taxonomy adaptation. Current UDA methods focus solely on domain-
specific knowledge transfer and assume consistent class labels across domains, limiting their flexi-
bility in adapting to different taxonomies. Open-vocabulary segmentation models excel with broader
taxonomies through large-scale pretraining but lack the precision of domain-specific models for spe-
cialized tasks. In contrast, DynAlign integrates with any UDA model and flexibly adapts to diverse
taxonomies and scene contexts, leveraging the prior knowledge of foundational models.

to align differing taxonomies by leveraging relationships between source and target classes but still
require prior knowledge about the target labels through annotated samples from the target domain.
These challenges highlight the need for a more flexible approach that can simultaneously manage
domain shifts while accommodating new taxonomies without requiring additional annotations from
the target domain. Despite the significance of this problem, fully unsupervised methods that can
address both domain shifts and taxonomy discrepancies remain largely underexplored.

Recent advancements in foundation models offer a promising direction to overcome these limita-
tions. By leveraging large-scale pretraining on diverse datasets, these models can generalize across
varied domains, tackling the challenges posed by limited domain knowledge and unseen categories.
For instance, recent open-vocabulary semantic segmentation works (Ghiasi et al., 2022} [Yuan et al}
leverage the knowledge in foundation models like CLIP (Radford et al.,|2021) and Segment
Anything (SAM) (Kirillov et al.| 2023)), enabling segmentation across a broad range of unbounded
class labels. However, despite their strong generalization ability, foundation models often strug-
gle with inferior performance compared to domain-specific models trained on in-domain datasets.
Their broad focus can limit their effectiveness in specialized tasks, such as street scene understand-
ing, where fine-grained segmentation requires detailed, domain-specific knowledge.

In this paper, we address the challenge of unsupervised taxonomy-adaptive cross-domain semantic
segmentation, bridging both image-level and label-level domain gaps without supervision, as shown
in Figure[T] (c). To achieve this, we propose a novel approach that integrates both domain-specific
knowledge and rich open-world prior knowledge from foundation models. In the first stage, we
leverage domain-specific knowledge by aligning the data distributions of the source and target do-
mains using the UDA paradigm. In the second stage, we propose DynAlign , which fuses prior
knowledge from foundation models to mitigate the label-level domain gap. DynAlign dynamically
adapts to new scene contexts by retrieving in-domain predictions and extending the knowledge with
foundation models to generate predictions in the new target label space, accommodating the differ-
ent taxonomy in the target domain. In DynAlign , three foundational models are leveraged. First,
Large Language Model (LLM) is used for semantic taxonomy mapping and context-aware descrip-
tions. For instance, the source domain label ‘road’ is mapped to { ‘road’, ‘sidewalk’, ‘lane marking’,
etc.} in the target domain, and then each label such as ‘lane marking’ can be further enriched with
more precise descriptions like { ‘traffic lane marking’, ‘double lines’} to capture the current context
and improve semantic granularity. Next, SAM is employed to refine the coarse semantic masks
generated by the UDA model, providing more fine-grained masks within precise boundaries (e.g.,
segmenting ‘lane marking’, ‘catch basin’ within the ‘road’ region). Lastly, CLIP extracts textual
feature embeddings based on the context-aware taxonomy provided by LLM and reassigns seman-
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tic labels to the proposed mask regions, effectively fusing UDA knowledge with prior knowledge.
Predictions from DynAlign can be directly used or leveraged as pseudo-labels to train an offline seg-
mentation model on the target domain, enabling instant inference without the need for target domain
annotations.

Our approach operates in a fully unsupervised manner, integrating with any UDA-based semantic
segmentation models and flexibly adapting to new classes and scene contexts. When the target label
set changes, only the taxonomy mapping needs to be updated to instantly predict on the target dataset
without requiring additional training. This adaptability offers a highly flexible solution for cross-
domain semantic segmentation in dynamic, real-world environments with changing taxonomies.
We conduct extensive experiments on the GTA— Mapillary Vistas and GTA — IDD street scene
semantic segmentation benchmarks. The results demonstrate that our method effectively combines
domain-specific knowledge with prior knowledge from foundation models, achieving superior per-
formance in the unsupervised taxonomy-adaptive domain adaptation task.

2 RELATED WORKS

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) aims to minimize the domain gap and transfer knowledge
from a labeled source domain to an unlabeled target domain. Due to the ubiquity of domain gaps,
UDA methods have been widely applied to major computer vision problems including image and
video classification (Zhang et al.l 2023} [Lai et al., 2023}, Zara et al., [2023)), object detection (Chen
et al., 2018}, [L1 et al.l 2022bjc} [Fan et al., [2023b), and semantic segmentation (Tsai et al.l 2018}
Hoyer et al., [2022a; [2023). UDA approaches typically minimize domain gaps through methods like
discrepancy minimization (Long et al.,[2015)), adversarial training (Ganin et al [2016; [Long et al.,
2018;[Shi & Liul|2024)), self-training (Pan et al., 2019;|Mei et al.| |2020;|Zhang et al.,[2021). Recently,
foundation models have been used to further enhance the adaptation performance by leveraging
large-scale pretraining (Fahes et al.| 2023} Tang et al.| 2024} |Gondal et al., 2024)).

While traditional UDA methods assume a consistent label space between the source and target do-
mains , this assumption is often violated in real-world scenarios. To address this, several specialized
UDA methods have been developed to handle different label shift scenarios (Tachet des Combes
et al., 2020; |Garg et al.l [2023]; [Westfechtel et al., [2023). Partial DA (Cao et al., 2018 |Guo et al.,
2022)) addresses situations where the target domain contains a subset of the source domain’s classes.
Open-set DA (Saito & Saenko, 2021} |Li et al.,2023)) handles cases where the target domain includes
unknown classes not present in the source domain. Universal DA (You et al., 2019; |Qu et al., 2024)
aims to adapt to target domains with any combination of known and unknown classes.

Typically, In the field of cross-domain semantic segmentation, various UDA approaches have been
proposed to address the challenges posed by the fine-grained task. Class-incremental DA (Kundu
et al.| 2020) focuses on adding new classes while preserving knowledge of previously learned ones.
Open-set adaptation methods (Bucher et al.| 2021 |Choe et al.,[2024) aim to predict the boundaries of
unknown classes. However, these works can only distinguish between the unknown classes and the
known ones and do not perform further classification on the unknown classes. Taxonomy adaptive
DA (Gong et al.| 2022} [Fan et al.,[2023a)) utilizes a more flexible taxonomy mapping where the target
label space differs from the source domain. Despite being able to distinguish novel target classes
further, these methods cannot be applied in a fully unsupervised DA setting as they rely on few-shot
labeled samples from the target domain.

2.2 OPEN-VOCABULARY SEMANTIC SEGMENTATION

Open-vocabulary semantic segmentation aims to assign a semantic label to each pixel of an im-
age using an arbitrary open-vocabulary label set (Xian et al., 2019; |Bucher et al., 2019). Recent
advancements in vision-language models like CLIP (Radford et al., 2021)) have enabled zero-shot
classification with enhanced generalization ability from large-scale pretraining, leading to their wide
application in open-vocabulary tasks, including semantic segmentation (L1 et al.| [2022al).

To adapt CLIP for better performance in dense prediction tasks, different approaches have been
explored, including fine-tuning CLIP (Liang et al.| 2023} |Cho et al.| [2024) and modifying CLIP’s
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model architecture (Wang et al.| [2023; [Yu et al., 2024). For finer segmentation boundaries, two-
stage frameworks involving mask proposal generation followed by classification remain prominent
in open-vocabulary semantic segmentation (Kirillov et al.,[2023;Wu et al.,|2023a} Ding et al.,{2022)).
The recent advent of Segment Anything Model (SAM) (Kirillov et al., 2023) provides a free and
precise mask proposal generation approach and thus integrated by several works to enhance the
performance (Yuan et al.| [2024; [Shi & Yang| 2024; L1 et al., [2024)). Despite these advancements,
open-vocabulary methods struggle with domain-specific nuances and fine-grained categories (Zhou
& Beyerer,2023;|Wu et al.| |2023b). [Wei et al.| (2024) leverages vision foundation models to improve
the generalization ability of task-specific semantic segmentation models. |Yilmaz et al.|(2024) incor-
porates domain-specific knowledge into the open-vocabulary framework through supervised prompt
fine-tuning, whereas our work focuses on fully unsupervised adaptation.

3 PROBLEM DEFINITION

We formulate the problem of unsupervised taxonomy adaptive cross-domain semantic segmentation
as follows: given a labeled source domain D, with a label set C;, our goal is to achieve semantic
segmentation on an unlabeled target domain D; with a known label set C;. Specifically, we have:

* alabeled source domain Dy = {X,,Y,}, where X, € R¥”*Wx3 represents RGB images and

Y, denotes pixel-wise annotations in the source label set Cs = {cl, c2,... c™

* an unlabeled target domain D; = {X;}. The ground truth pixel-wise annotations belong to the
known target label space C; = {c},c7, ..., '} and are not available during training.

¢ C4 and C; may have inconsistent taxonomies. This inconsistency may involve differences
in label granularity, hierarchical class structures (such as subclasses), or the introduction of
entirely new categories in C,, as illustrated in Figure[I] (d).

Formally: Let Ps and P, represent the distributions of source domain data X and target domain
data X}, respectively. In the context of taxonomy-adaptive cross-domain semantic segmentation,
three primary challenges need to be addressed:

* Image-level domain gap: the source and target data have distinct data distributions (Ps # P).
* Label-level taxonomy inconsistency: the source and target label sets are different (Cg # C,).
» Absence of target domain annotations: no labeled data is available for the target domain.

We aim to train a model using both the labeled source domain D, and the unlabeled target domain
D, and evaluate the performance on the target dataset D; within the label space C;.

4 METHOD

Method Overview In this work, we propose DynAlign, a novel framework for unsupervised
taxonomy-adaptive cross-domain semantic segmentation that fuses domain-specific knowledge with
text and visual prior knowledge, as illustrated in Figure 2]

Our method comprises three main stages: In the first stage, we integrate domain-specific knowledge
by training a domain-specific model on the available labeled source domain and unlabeled target do-
main, which generates predictions within the source label space (Section d.T)). In the second stage,
we incorporate both text & vision prior knowledge to address the label-level taxonomy inconsis-
tency. Specifically, we use LLM to construct a taxonomy mapping to link the source labels with the
target labels and further enrich the target labels with context descriptions (see Section4.2). Then we
utilize SAM to generate mask proposals that segment the image into fine-grained semantic regions
and extract multi-scale visual information for each region (see Section[d.3). Then in the final stage,
the domain-specific predictions and prior knowledge are integrated through our proposed knowl-
edge fusion based on CLIP, as shown in Figure [3] For each mask proposal from SAM, we take the
majority pixel label of in-domain prediction as the initial source label and retrieve the correlated
target classes from the taxonomy mapping. CLIP is then used to extract the multi-scale regional
visual features and the context-aware text features for the mapped target classes. Finally, each fine-
grained mask region is reclassified based on CLIP feature similarity. We explain this knowledge
fusion mechanism in more detail in Section [£.4]
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Figure 2: DynAlign overview. DynAlign integrates with any UDA semantic segmentation model,
leveraging its domain-specific knowledge and enhancing it with prior knowledge from foundation
models. DynAlign starts with coarse UDA model predictions, followed by: 1) LLM constructing
taxonomy mappings to align source and target domains; 2) SAM generating fine-grained masks; 3)
CLIP fusing the visual knowledge from SAM with the semantic knowledge from LLM to reassign
accurate labels. The predictions can be used as pseudo-labels to further fine-tune the UDA model.

4.1 DOMAIN-SPECIFIC KNOWLEDGE

To gain domain-specific knowledge, given a labeled source domain D, and an unlabeled target do-
main Dy, we train a domain-specific model f,_,; by leveraging data from both domains. Specifically,
we follow the UDA paradigm, which aligns the data distribution of the source and target domains.
This adapted model integrates supervised knowledge from the source domain with visual informa-
tion from the target domain, enabling it to generate accurate predictions on the unlabeled target
dataset D, within the source label space Cs.

In our experiments, we develop an UDA model inspired by the architecture proposed by Hoyer et al.
2022b). The model comprises a hierarchical transformer encoder, based on the design of [Xie et al.
2021)), combined with a multi-scale decoder that effectively integrates contextual information from
low-level features. Initially, the model is trained using a supervised cross-entropy loss on the labeled
source domain D,. Then, we adapt it to the unlabeled target domain D, through an unsupervised
self-training. This adaptation process incorporates a teacher network that generates pseudo-labels
for the target domain, which are then weighted based on confidence estimates to account for uncer-
tainty. These weighted pseudo-labels are used to further refine the model’s performance on the target
domain. The adapted model learns shared feature representations for both domains, enabling it to
effectively handle image-level domain shifts. Detailed model architecture and training procedures
are provided in the Appendix We leverage the knowledge learned by f;_,; to generate initial
predictions ¢, for the target images within the source label set Cs.

4.2 SEMANTIC TAXONOMY MAPPING

The acquired domain-specific model is constrained by the in-domain knowledge they have acquired,
thus limiting their ability to generalize beyond the learned source label space to a new target label
space. To bridge this gap, we introduce a hierarchical taxonomy reasoning process that adapts the
label space from C; to C;. This taxonomy mapping enables the model to semantically link source
domain labels to the known target domain label set C;. For instance, the source domain label ‘road’
can be mapped to more granular target domain labels such as {‘road’, ‘sidewalk’, ‘curb’, ‘lane
marking’, ‘rail track’, etc.}. We construct a taxonomy mapping for each source label to connect the
source and target label spaces. This mapping is flexibly defined, allowing for differences in label
granularity, hierarchical class structures (such as subclasses), or the introduction of entirely new
categories, as illustrated in Figure[T](d).
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Formally, given the source domain label set Cs = {c!,c2,..., ¢} and the target domain label set
Ct = {ct,c?,...,c?}, we define the taxonomy mapping for each source domain label ¢, as:
e —>CiCCy 1<i<m (1)

where Ci represents an arbitrary subset of C; that semantically correlates with the source domain
label c. For novel classes that are not present in the source domain, we map them to each source
label, enabling better discovery of these new classes. Further details about the taxonomy mapping
can be found in the Appendix[A.4]

To extract meaningful semantic features, we use the CLIP text encoder to encode text features for
each target label. Original class labels often lack sufficient context and semantic richness, leading to
ambiguity and imprecision. For example, the label ‘bridge’ in street scene segmentation datasets is
too generic and might be interpreted as a bridge over a river rather than a pedestrian bridge in urban
environments. This lack of specificity can cause confusion and misclassification in the segmentation
process, resulting in inferior performance. To address this, we enhance the semantic clarity of each
target class label by expanding it with contextually relevant synonyms or related phrases. For each
target class label, we use GPT-4 (Achiam et al., [2023) to generate a set of contextually relevant
terms, such as ‘bridge’ — { ‘road bridge’, footbridge’, ‘pedestrian bridge’, etc.}. These terms are
generated by prompting GPT-4 with descriptions of the dataset context and the original class label.
This additional contextual information helps reduce ambiguity and improve the accuracy of mask
region classification. Specifically, for each target domain label ¢; € C;, we generate a context
description set C’ We then compute the context-aware text feature for each target domain

context*
label as the average over all the CLIP-encoded contextual descriptions:

Jo_ T J
Ft = averageq) (ccantezt)y Ccontext € (Cconte:rt (2)

where ®7'(-) represents CLIP text encoder. We then aggregate these features to form the final text
feature representations of the target domain label space denoted as Fiorget = {F}, F2, ..., FJ'}.
For each source label ci, we retrieve its mapped target labels C¢ and the corresponding feature
representation set IFZT C Fiarget as the semantic representation. Details for the context names are
provided in the Appendix [A.3]

4.3  VISUAL PRIOR KNOWLEDGE

To identify new labels in the target domain, it is essential to align visual information with the target
domain label set and its novel semantic categories. Therefore, we incorporate prior knowledge from
general-purpose foundation models to enhance visual understanding. We first generate mask pro-
posals using the Segment-Anything-Model (SAM) (Kirillov et al.2023)), which is renowned for its
zero-shot capability to produce high-quality, fine-grained masks with precise segmentation bound-
aries. With SAM, we are able to obtain a set of mask regions that likely correspond to semantically
meaningful object boundaries.

Next, we capture semantic visual information for each mask region by extracting visual embeddings
using CLIP, which requires capturing both fine-grained details and broader contextual information.
To obtain more representative features, we propose multi-scale visual feature extraction, concate-
nating local and multi-scale global features. Given a target domain image x;, and a binary mask
proposal m from SAM, we obtain the masked local region » = z; ® m and a bounding box b that
crops the masked region. The local feature is extracted with CLIP vision encoder ®" (-), as:

F=aY(b) 3)

Specifically, we use ConvCLIP (Yu et al.l|2024) vision encoder due to its advantage in dense predic-
tion tasks. To capture broader contextual information, we incorporate global features by averaging
embeddings across multiple scales. This is achieved by adding multi-scale padding around each
local bounding box region b, as illustrated in Figure |3} The padding size is adjusted based on the
class labels, with larger objects like ‘road’ assigned larger padding sizes, and smaller objects like
‘bicycle’ assigned smaller padding sizes. For each bounding box b, we create a set of padded global
regions B and extract the corresponding global feature:

F,={®V(bx)}, brL€B 4)
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We then calculate the cosine similarity between the local feature F; and each global feature
Fy, € IFy. The similarity scores ¢, are computed as follows:

(R)" Fy,

= (F,F,) = —o U o
o = i For) = TRl T e

Iy, cF,. (5)
where € is a small constant. Subsequently, we derive the final multi-scale visual feature Fy, for the
current mask region by aggregating the local feature F; with the global features F,, weighted by
their respective cosine similarities ¢. This aggregation ensures that both local details and broader
contextual information contribute effectively to the visual feature representation:

_ E(OrFy + (1 = 9r)FY)

Fy - , F, €F,. (6)
||
R s
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Figure 3: Foundational models and knowledge fusion. The fine-grained mask proposals from
SAM are encoded into multi-scale visual features using CLIP’s vision encoder, while the enriched
target domain taxonomies from LLM are encoded as context-aware text features via CLIP’s text
encoder. The similarity between these visual and text embeddings is then calculated to reassign
semantic taxonomies accurately to the fine-grained masks in the target domain.

4.4 KNOWLEDGE FUSION

Given the domain-specific knowledge and prior knowledge from foundation models, we aim to
fuse them to bridge both image-level and label-level domain gaps. The general fusion process of
DynAlign is shown in Figure[3]

Given a target image x;, we generate mask proposals that segment the image into fine-grained re-
gions using SAM. For each mask region m, we first associate it with the source domain label space
by retrieving in-domain knowledge from the label prediction g; generated by model fs_,; (as de-
scribed in Section The initial label ¢ for mask region m is determined by the majority of
predicted pixel labels within that mask area. To reassign each mask region with new target labels,
given the source label ci, we retrieve its related target domain label subsets ¢i — Ci C C; and the
corresponding feature representation set F C 4y g0 using prior knowledge from the taxonomy
mapping (see Section . Additionally, based on the initial label ci, we adjust the appropriate
padding size of the global region B (see Section[d.3) accordingly to enrich the visual context and ex-
tract the multi-scale visual feature Fy-, serving as the regional visual feature representation. Finally,
each mask region is reassigned a new target label based on the largest visual-text similarity:

¢ = <FV7FT> ’ gt = argmax(qS) (N

We reassign the label of each mask region from g to the newly estimated g; when the confidence
exceeds 0.5. This reassignment is applied to every mask proposal within the image sample x,
thereby updating the pixel-wise semantic pseudo-labels in the target domain.

DynAlign generates predictions for new classes in the target domain that were not present in the
source domain, eliminating the need for manual annotations. This capability allows the model to
adapt flexibly to new target classes and when the target label set changes, we simply redefine the
taxonomy mapping to generate new predictions for the target domain dataset. This two-step process—
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mapping known classes and discovering new ones — enables our framework to effectively adapt to
the target domain’s taxonomy in a fully unsupervised manner.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

Datasets We evaluate our method using the synthetic dataset GTA with pixel-wise annotations as
the source domain and two real-world datasets, Mapillary Vistas and India Driving Dataset (IDD),
as target domains. GTA (Richter et al., [2016) is a synthetic dataset with pixel-level annotations
for 19 semantic classes. It serves as the labeled source domain in our experiments. Mapillary
Vistas (Neuhold et al., |2017) contains 25k high-resolution images collected from a wide variety
of environments, weather conditions, and geographical locations. It is annotated with 66 object
categories, providing a highly challenging real-world target domain. IDD dataset (Varma et al.,
2019)), captured from Indian urban driving scenes, is characterized by complex and varied road
environments. It contains 10,003 images annotated with 25 semantic classes at level 3 granularity.
For evaluation, we focus on 45 classes from Mapillary Vistas and 24 from IDD, excluding small-
scale or less informative categories.

Experimental setup For the unsupervised taxonomy-adaptive domain adaptation task, we use the
GTA training set as the labeled source domain and the training sets of Mapillary Vistas and IDD
as the unlabeled target domains. No target domain annotations are used during training, ensuring
a fully unsupervised domain adaptation setup. We perform image-level adaptation by training the
model fs_,; on the labeled source domain and each of the unlabeled target domains separately. For
label-level adaptation, we define a taxonomy mapping between the source and target labels (see
Appendix [A.4). The performance is reported on the validation set of each target dataset.

Evaluation metrics We evaluate the performance using two standard semantic segmentation met-
rics. Mean Intersection over Union (mloU) calculates the average intersection over union for each
class and then averages across all classes. Mean Accuracy (mAcc) calculates the percentage of
correctly predicted pixels for each class and then averages the results across all classes.

5.2 EXPERIMENTAL RESULTS

To the best of our knowledge, our work is the first to investigate the fully unsupervised taxonomy-
adaptive domain adaptation problem. Traditional DA methods are limited to fixed label spaces,
making them inapplicable to our problem setting. Therefore, we compare our proposed method,
DynAlign , with open-vocabulary segmentation methods, Grounded-SAM (Ren et al. 2024) and
OWL-VIT (Matthias Minderer}, [2023)). Additionally, we evaluate the naive combination of these
methods with HRDA, where HRDA generates predictions for classes matching the source labels,
while open-vocabulary methods are employed to predict new classes (see Appendix for more
illustration). The comparative results are summarized in Table

Table 1: Open-vocabulary semantic segmentation comparisons on Mapillary Vistas and IDD

all classes known classes unknown classes
Dataset Methods
mACC  mloU | mACC  mloU | mACC  mloU
Grounded-SAM 33.1 28.6 46.7 43.0 24.0 18.3
OwlVIT-SAM 29.6 19.5 32.7 26.7 27.5 14.7

Mapillary Vistas | HRDA + Grounded-SAM | 40.4 32.9 63.6 53.1 25.0 19.4
HRDA + OWIVIT-SAM 40.2 28.8 56.1 48.4 29.5 15.6

Ours 53.0 36.7 72.6 62.4 39.9 19.6

Grounded-SAM 36.0 30.8 43.7 372 16.1 14.1

OwlVIT-SAM 31.6 20.9 33.3 23.1 27.3 15.2

IDD HRDA + Grounded-SAM 517 39.4 65.6 49.3 16.1 14.1
HRDA + OwIVIT-SAM 55.9 40.2 67.1 49.9 27.3 15.2

Ours 57.7 41.7 66.8 50.9 34.3 18.1
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Mapillary Vistas: On the Mapillary dataset, open-vocabulary methods alone demonstrate lim-
ited performance, with Grounded-SAM achieving an mIoU of 28.6% and OWL-ViT-SAM reaching
19.5%. By integrating domain-specific knowledge through HRDA, the performance improves, with
HRDA + Grounded-SAM reaching 32.9% and HRDA + OWL-ViT-SAM achieving 28.8% mloU.
This improvement demonstrates the value of incorporating domain-specific knowledge. Notably, our
method, DynAlign , significantly outperforms all baselines, achieving the highest mIoU of 36.7%.

IDD: Results on IDD show consistent trends. Open-vocabulary methods alone perform modestly
with mloUs of 30.8% for Grounded-SAM and 20.9% for OWL-ViT-SAM. When combined with
HRDA, performance improves to 39.4% and 40.2%, respectively. DynAlign demonstrates again
superior performance with the highest mloU of 41.7%. Notably, for unknown classes, DynAlign
achieves an mloU of 18.1%, surpassing HRDA + Grounded-SAM at 14.1% and HRDA + OWL-
ViT-SAM at 15.2%, showing a substantial improvement in accurately segmenting unseen categories.

We present qualitative comparison results on the Mapillary Vistas dataset in Figure[5] The key new
classes are highlighted under each set of results. Our method clearly outperforms the baselines by
producing more precise boundaries, better detection of new classes, and more accurate predictions.

5.3 PSEUDO-LABEL TRAINING FOR SEGMENTATION MODEL

60

While DynAlign demonstrated superior perfor-
mance over baseline open-vocabulary methods

L . ) 55
during inference, we also explored its capabil- 53.0
ity to generate pseudo-labels for training a new 50
segmentation model on the target domain’s tax-
onomy. This approach aims to reduce infer-
ence time and potentially boost segmentation
accuracy. By generating pseudo-labels on the
Mapillary Vistas training set using DynAlign
, wWe train a semantic segmentation model in
the new label space (details provided in Ap-
pendix [AT). Figure @] compares direct infer-
ence using DynAlign and performance of the
trained segmentation model on the validation

56.2 DynAlign (Direct inference)
Il DynAlign (Pseudo-labels)

45

Percentage (%)
w w »
=] 3 =

N
o

20

set. The pseudo-label trained model outper- mACe Metric iy

forms direct inference, with mACC improving  Figure 4: Performance comparison between di-
from 53.0% to 56.2% and mloU from 36.7%  rect inference and pseudo-label training using Dy-

to 38.9%. These results suggest that DynAlign  pAlign on the Mapillary Vistas dataset.
can generate high-quality pseudo-labels, en-

abling the training of efficient models that maintain improved performance on the target domain.

5.4 ABLATION STUDIES

Multi-scale visual feature & context-aware text feature ablation In contrast to the basic CLIP
features, we enhance feature representations by introducing context-aware text feature (CA-Text)
and multi-scale visual feature (MS-vision). As shown in Table|2[, these two strategies have distinct
impacts on the performance. Incorporating multi-scale visual features leads to substantial improve-
ments, increasing the Mapillary mIoU from 29.0% to 35.6% and the IDD mloU from 37.9% to
39.9%. The context-aware text feature shows modest gains, particularly on Mapillary, where mIoU
rises from 29.0% to 29.4%. Combining both components yields the best results (Mapillary mIoU:
36.7%, IDD mloU: 41.7%).

Table 2: Ablations on multi-scale visual feature and context-aware text feature

Modules | Mapillary Vistas IDD
MS (vision)  CA(text) | mACC  mloU | mACC  mloU
X X 44.0 29.0 52.9 37.9
X v 454 29.4 52.5 38.0
v X 50.2 35.6 57.0 39.9
v v 53.0 36.7 57.7 41.7
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CLIP backbone Table [3] compares the per- Table 3: Ablation study: comparing CLIP vision

formance of various CLIP backbones in our encoders as backbone networks

DynAlign framework. ConvCLIP

[2024), the only convolution-based model, model | Mapillary Vistas IDD

achieves the best results, with a Mapillary Vis- | mACC mloU | mACC mloU

smobolseradmD el oy
MaskCLIP 50.5 34.7 54.1 37.5

CLIP (Radford et al, 2021), MaskCLIP SCLIP 50.9 36.0 56.8 394

2023), and SCLIP (Wang et all 2023),  convcrLp | 530 367 | 577 417
showing its advantage in dense prediction

tasks, where convolutional architectures have
shown better generalization ability when input sizes scale up.

I road NN sidewalk NN sky I vegetation terrain I wall
I person traffic sign traffic light W pole I Huilding N uniabeled

utility pole

(d) HRDA (e) HRDA
+ Grounded-SAM + OwlVIT-SAM

(a) Image (b) Ground Truth (c) DynAlign (ours)

Figure 5: Qualitative comparisons on Mapillary Vistas dataset. DynAlign effectively segments
new and fine-grained classes on the target domain, showing strong taxonomy adaptation capabilities.

6 CONCLUSION

In this paper, we propose DynAlign to address the challenge of unsupervised taxonomy-adaptive
cross-domain semantic segmentation, effectively segmenting images across domains with differ-
ent taxonomies without requiring target domain annotations. DynAlign integrates domain-specific
knowledge by utilizing UDA models to bridge the image-level domain gap, and leverages foundation
models to resolve label-level taxonomy inconsistencies between domains. The approach demon-
strates significant improvements over existing methods on the Mapillary Vistas and IDD street scene
datasets, consistently achieving higher mloU scores for both known and unknown classes.

To the best of our knowledge, we are the first to define and address the unsupervised taxonomy-
adaptive domain adaptation problem. Our results demonstrate that DynAlign outperforms not only
open-vocabulary segmentation methods but also their naive combinations with domain adaptation
techniques. While our research focuses on road scene understanding, the framework has the poten-
tial to be extended to other domains with evolving taxonomies.
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A APPENDIX

A.1 MODEL ARCHITECTURE AND TRAINING

HRDA for UDA segmentation model For the UDA segmentation model, we follow HRDA
2022b). We follow the HRDA framework, which combines large low-resolution (LR) crops
for capturing scene context with small high-resolution (HR) crops for fine detail. These two types
of inputs are combined using a learned scale attention mechanism, which enables the model to
effectively handle multi-resolution information. In addition, HRDA uses overlapping slide inference
to refine the generated pseudo-labels, ensuring that the context and details of the images are well-
represented in the segmentation maps. The HRDA framework builds on the DAFormer (Hoyer et al ]
architecture, which incorporates a domain-robust transformer backbone to extract features
and perform segmentation. A self-training strategy with a teacher-student model is used, where the
teacher generates pseudo-labels for the target domain, and these pseudo-labels are weighted based on
a confidence score to prevent error accumulation during training. The teacher model is updated using
an exponential moving average (EMA) of the student model’s weights, ensuring stable pseudo-labels
over time. In our experiments, we follow the default training parameters in the GTA — CityScapes
setting and adapt from the labeled GTA dataset to the unlabeled Mapillary Vistas/IDD respectively.
The labeled GTA training set and unlabeled Mapillary Vistas/IDD training set are used to train the
UDA Framework.

Mask2Former for target domain segmentation To train a domain-specific model on the target
domain, we utilize the Mask2Former architecture. The model comprises a backbone network that
extracts low-resolution features, a pixel decoder that upscales these features, and a transformer de-
coder for processing object queries. It deploys masked attention, which focuses on local regions
of the predicted mask, improving convergence and handling small objects. In our experiment, we
generate pseudo-labels on the target training set using DynAlign and train Mask2Former with these
labels on the target dataset to improve segmentation performance.

All experiments are conducted on NVIDIA A100-SXM4-80GB GPU.

A.2 EXAMPLES OF NAIVE COMBINATION OF HRDA WITH OPEN-VOCABULARY
APPROACHES

For a naive combination of in-domain predictions with prior knowledge as baseline methods, we
take the in-domain segmentation results produced by HRDA and layer them with the new class
predictions from open-vocabulary models. As demonstrated in Figure |6} the open-vocabulary pre-
dictions for known classes in the source domain label space are discarded. This ensures that only
novel class predictions from the open-vocabulary model are added on top of the HRDA predictions,
preserving in-domain knowledge from HRDA.

(a) Image (b) HRDA (c¢) Grounded-SAM (d) HRDA
+ Grounded-SAM

Figure 6: Illutration on HRDA+Grounded-SAM baseline
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A.3 PER-CLASS EVALUATION RESULTS

For experimental results in Table [T} we provide the corresponding per-class evaluation in Table [
and Table[3l

Table 4: Per-class semantic segmentation evaluation results on Mapillary. (lane marking is refered
as lm).

Grounded- Grounded- OwlVIT- OwlVIT-SAM Ours ‘
SAM SAM + HRDA SAM + HRDA

IoU | Acc IoU Acc IoU | Acc IoU Acc IoU | Acc

curb 1.6 1.6 1.6 1.6 187 27.0 |18.7 27.0 16.344.9

fence 30.3| 333 [40.0 48.1 189 223 (329 37.8 45.6(53.2

guard rail 21.3] 28.8 [21.3 28.8 179 36.1 |[17.9 36.1 15.3|21.1
wall 1.3 1.4 35.5 55.2 114 193 (304 41.8 39.3159.0

rail track 10.7| 120 |[10.7 12.0 2.2 4.3 2.2 4.3 17.0 ] 18.1
road 819| 937 |[79.0 93.5 54.0| 58.6 |58.5 65.9 70.2 1 77.1

sidewalk 33.0| 346 (427 64.0 322 43.0 (403 53.7 27.8133.3
bridge 41.7| 46.8 |41.7 46.8 30.7| 43.6 |30.7 43.6 20.8 123.3

building 70.1] 81.6 |80.3 94.5 44.0| 52.8 |71.8 81.1 76.5|85.6
tunnel 0.0 0.0 0.0 0.0 1.2 3.6 1.2 3.6 13.4179.5

person 67.9| 78.6 |749 85.6 29.5] 333 [69.0 78.3 77.7189.3
bicyclist 8.3 9.4 21.6 36.4 106 126 |[35.1 66.8 53.8172.0

motorcyclist 13.9| 321 |139 32.1 9.9 11.7 | 9.9 11.7 51.6|58.3
Im - crosswalk |20.3| 244 [20.3 24.4 8.9 14.8 8.9 14.8 20.0 [ 56.6
Im - general 1.6 1.6 1.6 1.6 124| 198 |124 19.8 18.0 141.8
mountain 29.1| 329 |29.1 329 16.1| 37.8 |16.1 37.8 43.8|56.5

sand 29.6| 357 |29.6| 357 |24.1| 381 |24.1 38.1 18.449.2
sky 91.7] 929 |948| 99.0 |69.0| 705 |732| 76.1 95.1|97.8
snow 34.1] 345 |34.1 34.5 269| 389 [269| 389 (409|775
terrain 123 125 |48.1 93.1 0.3 03 |47.6 827 |48.5|844
vegetation 28.0| 283 |81.2 85.3 19.1] 203 |723 75.5 82.0(85.7
water 81.1| 81.7 |81.1 81.7 722 879 |722 879 [47.3]156.0
banner 53 54 53 54 6.8 100 | 6.8 10.0 0.5 | 0.7
bench 443 | 4877 |443| 487 |23.7| 464 |23.7| 464 1.2 |78.9

billboard 129| 151 |129 15.1 153 321 |153| 321 28.1|55.8
catch basin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 |18.1
manhole 193] 19.8 |19.3 19.8 |204| 40.5 [204| 405 |23.7]253
phone booth 128 26.6 |12.8| 26.6 19| 357 |19 35.7 0.8 |57.8
street light 80| 464 | 8.0 46.4 30| 326 | 3.0 32.6 15.2)21.2
pole 224| 249 |33.0] 436 155] 166 |29.1 372 |41.9|57.6
traffic sign frame | 0.4 0.9 0.4 0.9 32 7.6 32 7.6 0.1 | 0.1
utility pole 27.0| 31.1 |[27.0] 3I.1 232| 295 [232] 295 238|252
traffic light 60.3| 645 |564| 65.1 26.2| 281 [535] 61.0 [59.8]|73.0
traffic sign (back) | 0.0 0.0 0.0 0.0 7.8 | 199 |78 19.9 34151
traffic sign (front) | 30.7 | 32.5 [40.4| 43.1 29.2| 32.0 |45.8]| 48.1 61.8|66.8
trash can 48.5| 49.8 |48.5| 498 [28.0| 429 |28.0| 429 15.0]19.4

bicycle 57.1| 63.6 |[499| 543 |28.1| 581 |49.0| 533 |57.1|629
boat 40.0| 629 |40.0| 629 124 63.8 |12.4| 63.8 74 128
bus 76.0| 81.7 |609| 67.1 39.71 60.6 |51.8| 56.7 |68.3|73.1
car 62.1| 645 |65.1 68.1 269| 34.6 |49.6| 51.7 |88.1192.0
caravan 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 24.1|82.6
motorcycle 49.2| 528 |532| 614 |372| 397 |549| 629 |65.1|76.6
on rails 0.0 0.0 9.0 10.2 0.0 00 |28.1 304 533|593
trailer 0.0 0.0 0.0 0.0 0.1 5.7 0.1 5.7 1.4 |20.0
truck 0.0 00 |115 13.5 0.0 00 |143 16.5 |65.0]80.4

| Average  [28.6] 33.1 [329] 404 |19.5] 29.6 [28.8| 402 |[36.7]53.0|

A.4 TAXONOMY MAPPING

We provide the detailed taxonomy mapping that maps each source label to its correlated target labels
in Table [] and Table[7} The mapping is decided by asking GPT-4 on the potentially related classes
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Table 5: Per-class semantic segmentation evaluation results on IDD

Grounded- Grounded- OwIVIT- OwlVIT-SAM Ours ‘

SAM SAM + HRDA SAM + HRDA
IoU Acc IoU Acc IoU Acc IoU Acc IoU | Acc
road 83.5| 889 |[84.6 94.5 76.0| 819 |849 96.4 85.9199.1
drivable fallback 1721 239 |[172 23.9 0.0 0.0 0.0 0.0 29 | 34
sidewalk 15.8| 18.8 |12.8 68.9 3.6 177 |15.6 74.6 17.0]72.2
non-drivable fallback | 13.8 | 18.8 |13.7 14.2 1.9 2.4 14.1 14.6 49 | 5.1
person 25.1| 718 |57.3 72.7 13.6| 274 |56.8 71.8 59.5|74.6
rider 0.2 0.2 64.4 78.4 0.6 0.6 63.5 77.2 67.7180.3
motorcycle 5741 629 |644 77.4 3421 364 |64.1 77.0 67.2 1 80.1
bicycle 337 362 |15.2 38.5 2.6 340 |16.2 384 15.8139.5
autorickshaw 0.0 0.0 0.0 0.0 347 46.0 |34.7 46.0 36.5|81.4
car 84.5| 889 |63.8 96.8 22.81 23.1 [69.0 96.0 70.2 180.9
truck 723 77.8 |86.2 91.7 31.6| 352 [80.7 84.9 86.891.9
bus 74.8| 81.6 |684 71.4 42.8| 47.8 |63.6 66.1 68.8|71.9
curb 6.8 7.3 6.8 7.3 149| 306 |149 30.6 14.7]18.2
wall 4.7 4.7 40.8 66.5 8.0 8.9 40.8 59.8 41.9]67.6
fence 8.3 21.2 |20.2 33.8 5.5 134 |21.5 34.9 22.3135.1
guard rail 8.2 13.0 8.2 13.0 9.3 28.5 9.3 28.5 13.9]22.1
billboard 223 237 [223 23.7 16.1| 25.8 |16.1 25.8 43.9160.7
traffic sign 14.8| 160 |10.3 33.1 16.3] 704 [233 78.2 31.0180.3
traffic light 2371 245 |19.5 22.5 6.4 13.1 |193 22.3 2391272
pole 8.7 8.8 34.1 394 192 215 [33.8 38.9 354141.0
obs-str-bar-fallback | 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 6.4 | 9.5
building 453 60.0 |51.8 87.1 26.1| 49.0 |520 83.9 54.3182.6
bridge 433 | 442 |433 44.2 31.6| 604 |31.6 60.4 8.1 [44.7
vegetation 124 124 |84.5 94.5 21.5| 226 |84.3 94.0 80.6 | 87.0
sky 91.4| 928 |94.6 98.8 84.1| 93.8 [94.7 98.7 82.3|85.3
\ Average \ 30.8 \ 36.0 \ 394 \ 51.7 \ 20.9 \ 31.6 \ 40.2 \ 55.9 \ 41.7 \ 57.7 \

and then modified according to human prior knowledge. We highlight the identical classes in source

and target domains in blue.

Table 6: Taxonomy mapping from GTA to Mapillary

Source Label

Target Label Set

road

sidewalk
building
wall
fence
pole
traffic light
traffic sign
vegetation
terrain
sky
person
rider
car
truck
bus
train
motorcycle
bicycle
unlabeled

road, sidewalk, snow, sand, water, catch basin, manhole,
rail track, lane marking-crosswalk, lane marking-general
sidewalk, curb, snow, sand, water
building, bridge, tunnel, phone booth, billboard,
wall, bridge, tunnel, trash can, banner, billboard
fence, guard rail
pole, utility pole, trash can, banner, street light, traffic sign frame
traffic light, street light
traffic sign (front), traffic sign (back), billboard, banner
vegetation, snow
terrain, mountain, snow, sand, water
sky
person
bicyclist, motorcyclist
car, trailer, boat
truck, caravan
bus
on rails
motorcycle
bicycle
bench, billboard, bridge, tunnel
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Table 7: Taxonomy mapping from GTA to IDD

Source Label | Target Label Set
road road, sidewalk, drivable fallback
sidewalk sidewalk, curb, drivable fallback, non-drivable fallback
building building, bridge, billboard,
wall wall, obs-str-bar-fallback, bridge, billboard
fence fence, guard rail, obs-str-bar-fallback
pole pole
traffic light traffic light
traffic sign traffic sign, billboard, banner
vegetation vegetation, obs-str-bar-fallback
terrain terrain, non-drivable fallback, obs-str-bar-fallback
sky sky
person person
rider bicyclist, motorcyclist
car car, autorickshaw
truck truck, caravan
bus bus
train other vehicles
motorcycle motorcycle
bicycle bicycle
unlabeled billboard, bridge

A.5 CONTEXT NAMES

We provide the context names used to describe the target names under the scene context in Table
[ and [I0] We generate those names by providing GPT-4 with the instruction:

Generate new class names within the context of street scene semantic segmentation, using the orig-
inal class name as the head noun. Use synonyms or subcategories of the original class that make
sense within this context, and if the class has multiple meanings, add specific context to avoid ambi-
guity. Please provide the original class names along with context names.

For each label, we generate 10 context names. For labels without ambiguity, e.g. sky, we only use
the original label for the text feature extraction.
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Table 8: Context names for IDD labels

| Target Label | Context Names |

road road, main road, driving lane, paved road, highway, residential street, arterial road, rural road, city
road, thoroughfare

drivable fallback |drivable terrain, traffic lane, vehicle lane, driveable path, car lane, driveable street, urban roadway,
paved path, driveable surface, roadway

sidewalk sidewalk, pavement, footpath, walkway, pedestrian path, side path, sidewalk pavement, urban side-

walk, street sidewalk, sidewalk lane, sidewalk area

non-drivable fall-
back

non-drivable terrain, pedestrian area, park path, garden path, bike lane, footpath, public plaza, grass
area, green space, pedestrian walkway, non-driveable zone

person person

rider rider

motorcycle motorcycle

bicycle bicycle

autorickshaw autorickshaw, three-wheeler, tuk-tuk, auto-rickshaw, motorized rickshaw, auto taxi, rickshaw, three-
wheeled taxi, auto, motor tricycle, auto rickshaw

car car, sedan, hatchback, coupe, convertible, SUV, sports car, station wagon, compact car, electric car,
luxury car

truck truck, pickup truck, semi-truck, delivery truck, dump truck, fire truck, tow truck, box truck, flatbed
truck, garbage truck, tanker truck

bus bus

vehicle fallback other vehicles, train, tram, metro, trolleybus, light rail, cable car

curb curb, road curb, sidewalk curb, curbside, street curb, pavement curb, curb edge, curb line, curb
boundary, urban curb, curb strip

wall wall, barrier wall, protective wall, retaining wall, boundary wall, perimeter wall, dividing wall,
sound barrier wall, security wall, freestanding wall, partition wall

fence fence, building fence, road fence, vehicle separation fence, pedestrian fence, safety fence, boundary
fence, traffic fence, divider fence, protective fence, barrier fence

guard rail guard rail, road guard rail, highway guard rail, safety guard rail, traffic guard rail, barrier guard rail,
roadside guard rail, protective guard rail, metal guard rail, crash barrier, median guard rail

billboard billboard, advertising billboard, roadside billboard, digital billboard, outdoor billboard, highway

billboard, commercial billboard, urban billboard, street billboard, electronic billboard, large bill-
board

traffic sign

traffic sign, road sign, highway sign, street sign, regulatory sign, warning sign, directional sign,
informational sign, traffic control sign, signpost, traffic marker

traffic light traffic light, traffic signal, stoplight, traffic control light, intersection signal, traffic lamp, signal light,
road signal, street light, traffic signal light, traffic control signal

pole pole, street pole, lamp pole, traffic pole, sign pole, light pole, support pole, signal pole, flag pole,
decorative pole, banner pole

obs-str-bar- obstructive structures and barriers, construction barrier, roadblock, traffic cone, temporary fence,

fallback safety barrier, barricade, obstruction, traffic barricade, road barrier, construction zone marker

building building, structure, edifice, construction, residential building, commercial building, office building,
apartment building, skyscraper, public building, urban building

bridge road bridge, footbridge, pedestrian bridge, walking bridge, footpath bridge, foot crossing, small
bridge, pedestrian crossing, walkway bridge, urban footbridge, trail bridge

vegetation vegetation, urban vegetation, city greenery, roadside plants, street vegetation, urban foliage, city
flora, park vegetation, public greenery, urban plants, green space

sky sky
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Table 9: Context names for Mapillary labels (Part 1)

| Target Label | Context Names |

Road road, main road, driving lane, paved road, highway, residential street, arterial road, rural road, city
road, thoroughfare

Snow snow, snow pile, street snow, roadside snow, accumulated snow, snowbank, plowed snow, urban
snow, compacted snow, snow drift, snow on pavement

Sand sand, sand pile, street sand, roadside sand, piled sand, sandbank, accumulated sand, urban sand,

sand on pavement, construction sand, loose sand

Catch Basin

catch basin, road catch basin, street catch basin, roadside catch basin, storm drain, drainage basin,
sewer catch basin, street drain, gutter catch basin, road drain, stormwater basin

Manhole manhole, road manhole, street manhole, sewer manhole, manhole cover, utility manhole, drainage
manhole, storm drain manhole, roadside manhole, underground access, inspection manhole

Pothole pothole, road pothole, street pothole, asphalt pothole, pavement pothole, highway pothole, surface
pothole, pothole damage, roadway pothole, pothole crater, pothole on pavement

Bike Lane bike lane, marked bike lane, roadside bike lane, main road bike lane, dedicated bike lane, paved bike
lane, urban bike lane, bike path, protected bike lane, street bike lane, lane-marked bike lane

Rail Track rail track, tram rail track, train rail track, street rail track, road rail track, urban rail track, tramway

track, railroad track, commuter rail track, embedded rail track, rail track on pavement

Lane Marking
Crosswalk

crosswalk lane marking, street crosswalk marking, pedestrian crosswalk marking, zebra crossing
marking, road crosswalk marking, intersection crosswalk marking, painted crosswalk, crosswalk
lines, crosswalk road marking, sidewalk crosswalk marking

Lane Marking
General

general lane marking, road lane marking, street lane marking, highway lane marking, pavement lane
marking, lane divider marking, traffic lane marking, lane line marking, roadway lane marking, lane
boundary marking, asphalt lane marking

‘Water water, urban water, river water, lake water, city river, roadside pond, street water, urban pond, city
lake, small urban river, stormwater

Sidewalk sidewalk, pavement, footpath, walkway, pedestrian path, side path, sidewalk pavement, urban side-
walk, street sidewalk, sidewalk lane, sidewalk area

Curb curb, road curb, sidewalk curb, curbside, street curb, pavement curb, curb edge, curb line, curb

boundary, urban curb, curb strip

Pedestrian Area

pedestrian area, street pedestrian area, pedestrian zone, pedestrian walkway, pedestrian street, urban
pedestrian area, pedestrian plaza, pedestrian path, sidewalk pedestrian area, pedestrian crossing area,
designated pedestrian area

Building building, structure, edifice, construction, residential building, commercial building, office building,
apartment building, skyscraper, public building, urban building

Bridge road bridge, footbridge, pedestrian bridge, walking bridge, footpath bridge, foot crossing, small
bridge, pedestrian crossing, walkway bridge, urban footbridge, trail bridge

Billboard billboard, advertising billboard, roadside billboard, digital billboard, outdoor billboard, highway
billboard, commercial billboard, urban billboard, street billboard, electronic billboard, large bill-
board

Tunnel tunnel, road tunnel, tunnel entrance, highway tunnel, urban tunnel, vehicle tunnel, tunnel passage,
tunnel opening, subway tunnel, underground tunnel, traffic tunnel

Wall wall, barrier wall, protective wall, retaining wall, boundary wall, perimeter wall, dividing wall,
sound barrier wall, security wall, freestanding wall, partition wall

Traffic Sign Frame | traffic sign frame, signpost frame, traffic sign holder, sign frame, sign support frame, road sign
frame, traffic sign structure, sign mounting frame, sign frame support, traffic sign bracket

Trash Can trash can, street trash can, public trash can, roadside trash can, outdoor trash can, urban trash can,
sidewalk trash can, street garbage can, public waste bin, street litter bin, municipal trash can

Banner banner, advertising banner, promotional banner, street banner, event banner, hanging banner, outdoor
banner, banner sign, vertical banner, display banner, publicity banner

Fence fence, building fence, road fence, vehicle separation fence, pedestrian fence, safety fence, boundary
fence, traffic fence, divider fence, protective fence, barrier fence

Guard Rail guard rail, road guard rail, highway guard rail, safety guard rail, traffic guard rail, barrier guard rail,
roadside guard rail, protective guard rail, metal guard rail, crash barrier, median guard rail

Pole pole, street pole, lamp pole, traffic pole, sign pole, light pole, support pole, signal pole, flag pole,

decorative pole, banner pole

Utility Pole

utility pole, electric pole, telephone pole, power pole, transmission pole, cable pole, utility line pole,
utility post, service pole, communication pole, distribution pole

Traffic Sign

Street Light street light, street lamp, road light, streetlight, lamp post, street lighting, urban street light, sidewalk
light, public street light, street lantern, street illumination

Front Side Of|front side of traffic sign, traffic sign front, front face of traffic sign, sign front, traffic sign face, front

Traffic Sign panel of traffic sign, signboard front, traffic sign display, front view of traffic sign, sign front side,
traffic sign surface

Back Side Of|back side of traffic sign, traffic sign back, back face of traffic sign, sign back, rear of traffic sign,

signboard back, traffic sign reverse, sign back panel, back side of sign, traffic sign rear view, reverse
side of traffic sign

Traffic Light traffic light, traffic signal, stoplight, traffic control light, intersection signal, traffic lamp, signal light,
road signal, street light, traffic signal light, traffic control signal
Vegetation vegetation, urban vegetation, city greenery, street vegetation, roadside vegetation, urban plants, city

foliage, urban flora, street greenery, public vegetation, cityscape vegetation
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Table 10: Context names for Mapillary labels (Part 2)

| Target Label | Context Names

Terrain terrain, urban terrain, city landscape, street terrain, roadside terrain, urban ground, cityscape terrain,
urban land, urban surface, city terrain, urban topography

Mountain mountain, mountain peak, mountain range, mountain slope, rocky mountain, highland mountain,
mountain summit, alpine mountain, mountain ridge, forest mountain, mountain terrain

Sky sky

Person person

Bicyclist bicyclist, bike rider, cyclist, bicycle rider, bicycle commuter, mountain biker, road cyclist

Motorcyclist motorcyclist, motorcycle rider, motorcycle driver, motorbike rider, motorcycle commuter, road mo-
torcyclist

Car car, sedan, hatchback, coupe, convertible, SUV, sports car, station wagon, compact car, electric car,
luxury car

Trailer trailer, utility trailer, travel trailer, cargo trailer, flatbed trailer, camper trailer, enclosed trailer, live-
stock trailer, dump trailer

Boat boat, sailboat, motorboat, fishing boat, speedboat, yacht, canoe, kayak, pontoon boat, dinghy, house-
boat

Truck truck, pickup truck, semi-truck, delivery truck, dump truck, fire truck, tow truck, box truck, flatbed
truck, garbage truck, tanker truck

Caravan caravan, travel caravan, camper caravan, motorhome, touring caravan, RV (recreational vehicle),
fifth-wheel caravan, pop-up caravan, teardrop caravan, static caravan, off-road caravan

Bus bus

On Rails on rails

Motorcycle motorcycle

Bicycle bicycle

Bench bench, street bench, public bench, park bench, sidewalk bench, outdoor bench, urban bench, pave-
ment bench, city bench, public seating bench, roadside bench
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