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Tripartite Graph Regularized Latent Low-Rank
Representation for Fashion Compatibility Prediction

Peiguang Jing

Abstract—In recent years, an increasing online shopping
demand has greatly promoted the innovation and development
of the fashion industry. Visual fashion analysis has become a
prospective research topic in computer vision and multimedia
fields. Among these studies, fashion compatibility analysis
is required in many real applications, such as fashion
recommendation, matching, and retrieval. However, learning
fashion compatibility is nontrivial, not only due to the uncertain
and sparse dependencies among fashion items but also the
latent and mutual associations among multiple factors such
as color, texture, style, and functionality. To better predict
fashion compatibility, in this paper, we proposed a tripartite
graph regularized latent low-rank representation method, named
TGRLLR, for fashion compatibility prediction. In TGRLLR,
to learn more low-dimensional and effective representations, we
considered the latent low-rank representation by decomposing the
original feature matrix in both the column and row directions
to tackle the problem of insufficient observations. On this basis,
we simultaneously exploited different regularization strategies to
encode the structured correlations among features, the high-order
relationships among items, and the geometrical structures of outfits
for more informative representations. Extensive experiments
conducted on a real-world dataset demonstrate the effectiveness
of our proposed method compared with state-of-the-art methods.

Index Terms—Correlation, fashion compatibility,
regularization, latent low-rank representation.

graph

1. INTRODUCTION

N RECENT years, intelligent fashion analysis has attracted
broad attentions due to the flourishing of e-commerce ser-
vices and the increasing expansion of online shopping demand.
Statistics show that the fashion industry generated a world-
wide revenue of $481 billion in 2018, and this number is pro-
jected to rise to $713 billion by 2022.! Additionally, many
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Fig. 1. Examples of compatible and incompatible outfits.

interactive fashion communities, such as Pureple,2 Looklet,? and
ShopLook,* have also been developed to enhance connections
among shoppers, stylists, and brands or offer personalized fash-
ion experience and suggestions.

In response to this tendency, emerging research efforts have
begun to address the increasingly urgent problems that occur
in both the fashion industry and academia. Particularly, several
standard fashion benchmarks with rich annotations are presented
to promote fashion-related research, including fashion retrieval
and recommendations, category classification, outfit composi-
tion, and fashion trend forecasting. For example, Hadi ez al. [1]
presented the Street2Shop dataset to address the matching prob-
lem between real-world garment items and the items presented
in online shops. Ak et al. [2] developed the Shoppingl00 k
dataset to facilitate fashion search and retrieval, where each im-
age consists of only clothing items with a simple background.
Zou et al. [3] exploited an iterative process to build the FashionAl
dataset for fine-grained attribute recognition tasks. Ge et al. [4]
developed the DeepFashion2 dataset to tackle clothes detection,
pose estimation segmentation, and retrieval tasks. Among these
tasks, fashion compatibility is a fundamental but significant re-
search topic that measures whether two or more fashion items
are visually compatible. For example, when designing a fash-
ion recommender system, one major problem that needs to be
considered is learning the visual compatibility of fashion items.
Examples of compatible and incompatible fashion outfits have
been shown in Fig. 1.

An increasing number of fashion communities have emerged
to encourage users to compose and share their favorite out-
fits for various occasions. However, not everyone specializes
in matching clothes, making it a tedious and even annoying

2[Online]. Available: https://purepleapp.wordpress.com
3[Online]. Available: http://www.looklet.com
4[Online]. Available: https://shoplook.io
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Fig. 2. Schematic illustration of our proposed TGRLLR method for fashion compatibility prediction. TGRLLR first exploits LatLRR to learn the principal
feature part Z = [z1,22,...,2N] € RN*N and the salient feature part G = [gf; g2T; e ;gg] € RP*PD from the original feature matrix X € RP*N  and
then encodes three different types of latent correlation patterns by mapping outfits as points on a Grassmann manifold G(m, D), preserving the complex relationship
of items through a hypergraph regularizer, and capturing the feature dependency through an inverse covariance matrix estimation term. Specifically, the original
feature matrix X is the concatenated result of 1000D deep features extracted from the output of fc8 layer in VGGNet19 and 634D shallow features involving color,

edge, and texture properties.

daily routine. To tackle this issue, several studies have recently
been developed to analyze fashion compatibility automatically.
For example, Han et al. [5] developed a fashion compatibility
learning method by jointly considering the visual-semantic em-
bedding and the compatibility relationships of fashion items.
Vasileva et al. [6] presented an end-to-end type-aware fashion
compatibility prediction method to learn an image embedding
representation that respects the item type. Yin et al. [7] intro-
duced a fashion compatibility knowledge learning method by
taking visual compatibility relationships and fashion style in-
formation into account. Song et al. [8] proposed an attentive
knowledge distillation-based neural compatibility method for
fashion compatibility modeling. Cucurull ef al. [9] introduced a
context-aware graph neural network by leveraging the relational
information between items. Yang et al. [10] developed a novel
translation-based neural fashion compatibility modeling frame-
work by exploiting a multi-relational knowledge representation
learning strategy.

Previous studies on fashion compatibility aim to obtain visual
embedding by leveraging the relationships among fashion items.
However, inferring fashion compatibility not only incorporates
more complex relationship patterns that can benefit fashion com-
patibility prediction, including patterns of features, items, and
outfits, but also encounters uncertain and sparse dependency
problems that are induced by small proportions of groups of
items. Moreover, fashion compatibility analysis also involves
the latent and mutual associations among multiple factors that
are difficult to directly integrate, such as color, texture, style, and
functionality. In this paper, we proposed a tripartite graph reg-
ularized latent low-rank representation (TGRLLR) method to
make better fashion compatibility predictions. Inspired by the

recent progress in low-rank representation techniques, we ex-
ploited the latent low-rank representation mechanism to decom-
pose the original feature matrix in the column and row directions
so that the more low-dimensional intrinsic representations and
the impact of the unobserved information can be approached
simultaneously. On this basis, we exploited different regulariza-
tion strategies to explore different correlation patterns embedded
in features, items, and outfits for more informative representa-
tions. In particular, we estimated a sparse inverse-covariance
matrix to encode the latent dependencies among features and
constructed a hypergraph regularizer to capture the high-order
relationships among items. Furthermore, the local geometrical
structure of fashion outfits was preserved by computing the prin-
cipal angles among outfits. Fig. 2 gives a schematic illustration
of our proposed TGRLLR method. Extensive experiments con-
ducted on a real-world dataset demonstrate the effectiveness of
our proposed method compared with state-of-the-art methods.
1) We proposed a tripartite graph regularized latent low-rank
representation method to predict the compatibility scores
of fashion outfits, in which the global low-rank structure
and the latent effect of insufficiently labeled samples can
be jointly considered to ensure more comprehensive and
effective representations.
2) Tomake full use of the complex relations embedded in fea-
tures, items, and outfits, we exploited different strategies,
i.e., sparse inverse-covariance estimation, hypergraph reg-
ularization, and geometric structure preservation, to ad-
dress the uncertain and sparse dependency problems.
3) We developed an effective optimization algorithm
based on the alternating direction method of multipli-
ers (ADMM) to optimize our proposed method. The
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experimental results demonstrated the effectiveness of our
method compared with state-of-the-art methods.

The rest of this paper is organized as follows. In Section II,
we briefly review the pioneering efforts related to fashion anal-
ysis and low-rank representation learning. In Section III, our
proposed method is presented. In Section IV, we report the ex-
perimental results, followed by the conclusions and future work
in Section V.

II. RELATED WORK
A. Fashion Analysis

The flourishing development of the online fashion indus-
try has attracted increasing research attentions in fashion ap-
plications, such as clothes semantic understanding [4], [11],
[12], fashion retrieval [2], [13], [14], and fashion recommen-
dation [15]-[17].

Regarding clothes semantic understanding, there are many
attributes used to characterize middle-level semantics of fash-
ion items, such as style, pattern, texture, and fabric. In the ear-
lier stage of fashion studies, some of the work employed hand-
crafted features to solve attribute recognition and classification,
landmark detection, and clothes segmentation. Inspired by the
great success of deep learning techniques, recent research has
focused on learning more effective and compact feature rep-
resentations by leveraging deep neural networks. For exam-
ple, Ak et al. [2] proposed an attribute manipulation genera-
tive adversarial network (AMGAN) to conduct multi-domain
image-to-image translation and attribute-relevant region find-
ing. Mall et al. [18] provided an expressive parametric model
to automatically understand fashion styles and trends. Fashion
retrieval selects similar garments from a gallery of candidate
items. For instance, Gu et al. [19] designed a multi-modal em-
bedding learning framework by jointly considering both the ho-
mogeneous and heterogeneous similarity constraints on multiple
views. Valle et al. [13] presented a semantic compositional net-
work (Comp-Net) in which clothing items are detected from an
image and the probability of each item is used to compose a
vector representation for the outfit. Kuang ef al. [14] developed
a graph reasoning network (GRNet) by formulating the local
clothing regions as nodes, and the matching result between the
query and gallery images can be achieved by reasoning on this
graph.

Fashion recommendation refers to providing harmoniously
matching clothes for the given queries, which can be roughly
categorized into scenario-based [16], [20] and style-based meth-
ods [17], [21]. In particular, Zhang et al. [16] proposed com-
bining a hybrid multi-label convolutional neural network with a
support vector machine to recommend clothes for different travel
scenarios. Jo et al. [20] applied a cross-domain generative ad-
versarial network to recommend fashion designs that fit target
scenarios. Hou er al. [22] introduced a semantic attribute ex-
plainable recommender that incorporates a semantic extraction
network to learn the region-specific attribute representations.
Remarkably, fashion compatibility plays a fundamental but sig-
nificant role in fashion recommendation tasks. Although several
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significant efforts were devoted to exploring fashion compati-
bility prediction [5], [6], [23], [24], the above approaches only
used the relationship of fashion items and neglected the correla-
tion patterns embedded in the features and outfits. In addition, the
uncertain and sparse dependency problems induced by very lim-
ited labeled samples have not been considered. In contrast, we
exploited a latent low-rank representation mechanism to learn
more comprehensive representations and take full advantage of
inner correlation patterns among features, items, and outfits.

B. Low-Rank Representation Learning

Low-rank representation learning has recently attracted exten-
sive research attention due to the intuitively pleasing property in
exploring low-dimensional structures, especially for corrupted
data. The classical low-rank representation (LRR) [25] method
aims to uncover the underlying low-dimensional subspace struc-
tures by imposing the nuclear-norm constraint on the latent rep-
resentation component. Essentially, LRR takes the observed data
itself as the dictionary to learn the lowest-rank representation,
which is easily affected by insufficient and grossly corrupted ob-
servations. To capture the nonlinear geometrical structure that is
easily ignored by LRR, Yin et al. [26] presented a non-negative
sparse hyper-Laplacian regularized LRR model to solve image
classification and clustering tasks. Xie et al. [27] introduced
novel low-rank sparse preserving projections (LSPP) by iterat-
ing manifold learning and low-rank sparse representation to pre-
serve the intrinsic geometric structure and reduce the negative
effects of corruption. Wen et al. [28] presented a low-rank repre-
sentation with an adaptive graph regularization method to derive
a nonnegative graph structure for image clustering. To resolve
this deficiency, Liu and Yan [29] proposed an improved ver-
sion of LRR, named latent low-rank representation (LatLRR),
in which the dictionary is constructed by using both observed
and hidden data. Ren ef al. [30] developed a latent low-rank and
sparse embedding method for image feature extraction to ensure
that the extracted representations benefit the classification tasks.
However, the aforementioned works are generally suitable for
classical classification and clustering tasks. Our fashion compat-
ibility prediction task usually contains more complex structures
represented by multiple types of group data behaviors. In our
proposed method, we not only pursued low-rank intrinsic fea-
ture representation learning, but also concentrated on exploring
the correlation patterns to distinguish more informative features
for performance improvement.

III. PROPOSED FORMULATION
A. Problem Formulation

We assume that the collection of N fashion items
{1, 29, ...,z N }ischaracterized by various types of feature ex-
tractors for comprehensively representing images. We normal-
ize each type of features and concatenate them for generating a
larger feature representation as input. Without loss of generality,

we denote the final feature matrix as X = |x1,Xs,...,Xn| €

RP*N where x; € RP is the feature vector of the ith item and
D is the dimension of the concatenated features. In particular,
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LatLRR factorizes the original feature matrix into a principal
feature part, a salient feature part, and a sparse error part by
minimizing the following formulation:

Juin || Z], + |Gl + 2 [E[],
G, ey
S.t.X = XZ+GX+E3

where Z € RV*N and G € RP*P are used to encode the
principal feature part and the salient feature part, respectively;
E € RP*N is the sparse noise part that fits the noise; || - || is
the ¢;-norm chosen for sparse noise; and A > 0 is a weighting
parameter; || - ||, denotes the nuclear norm, i.e.,the sum of the
singular values of the target matrix. Specifically, we follow a
commonly used practice in rank minimization and approximate
the rank constrain by the nuclear norm [25].

An intuitive explanation of LatLRR is that it uncovers the
low-rank intrinsic structures by imposing low-rank constraints
on both the feature and sample spaces and a sparse constraint on
the error space. Although LatLRR is designed to handle specific
scenarios such as insufficient samples and missing observations,
it cannot cope well with tasks that exhibit complex structures,
such as fashion compatibility prediction. For fashion compatibil-
ity prediction, more than one factor affects the harmony among
items in an outfit. In particular, fashion compatibility prediction
can be considered a kind of ternary relation task that connects
features, items, and outfits. Motivated by manifold theory, we
develop a tripartite graph regularized latent low-rank representa-
tion learning model to capture the structures of different kinds of
relationships, i.e., the geometric structures in terms of features,
items, and outfits.

1) Feature Correlation Modeling: In LatLRR, matrix G is

used to encode the salient features from the perspective of row
T

projection. We assume G = [gl, go,. . and each row

! gD:|
of G can be deemed as a latent factor spanned by row space.
When the number of factors is large, the pairwise factor relations
exhibit sparse patterns since a factor cannot be helpful to all of
the other factors. Moreover, sparse relations are beneficial to
reduce the risk of overfitting problems compared with dense
settings. To achieve this, we present a regularization term to
model multiple factors and their latent relations simultaneously
as follows:

min7Tr (G'Q'G) +¢||Q o H|;,
Q-0 )

D(2,G) R(Q2,H)

where D(2, G) is the data-fidelity term based on the target
matrix €2, R(Q, H) is the ¢;-norm regularized term obtained
by multiplying €2 by the prior matrix H in an elementwise way,
€ is a tuning parameter controlling the amount of /; shrinkage.

It should be noted that when €2 o I, where I denotes an iden-
tity matrix, D(£2, G) is reduced to the Frobenius norm regular-
ization on G, and if €2 is set as a diagonal matrix, it becomes the
weighted Frobenius norm regularization on G. As pointed out
in [31], when €2 is restricted to be positive semidefinite, it can
be regarded as a covariance matrix to characterize the pairwise
relations between factors. Without loss of generality, in our case,
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we set {2 to be positive semidefinite and H to be an identity ma-
trix. The correlation patterns at the feature level are formulated
as follows:

glé%Tr (GTQ'G) +<|9|, . 3)

2) Item Correlation Modeling: Hypergraphs are widely used
in various visual tasks, such as clustering, classification, and re-
trieval. In contrast to a traditional graph, a hypergraph is able
to capture group information that incorporates the high-order
relationship among three or more vertices. Specific to fashion
compatibility prediction, the complex relationship among fash-
ion items can be naturally modeled by hypergraphs since each
fashion item belongs to at least one fashion outfit and each fash-
ion outfit contains varying amounts of items.

Hypergraph G(V, E, W )involves a set of vertices V, hyper-
edges F, and diagonal hyperedge weight matrix W. Each hyper-
edge e is a subset of the vertices and is assigned a positive weight
w(e). We denote the incident matrix H € RIVI*I®|, where |V|
and | | are the number of vertices and edges, respectively. The
element h(v,e) = 1 if e is said to be incident with a vertex v,
i.e., v € e, and h(v,e) = 0 otherwise. We also denote D,, and
D. as the diagonal matrices of the vertex and the hyperedge de-
grees, respectively. Based on H, the vertex degree and the edge
degree are calculated as follows:

d(v) =Y w(e)h(v,e)andd(e) = > h(v,e). (4
eell veV

In our case, vertex v; corresponding to fashion item x; rep-
resents the i-th column of feature matrix X. Hyperedge e; is
encoded as the j-th fashion outfit and binary incidence matrix
A € RM*N js signed to the incident matrix H, characterizes
the correspondence between fashion items and outfits, where
M denotes the total number of fashion outfits. For the hyper-
edge weight, we adopt a similar scheme in [32] by considering
the hyperedge e as a clique and computing the cumulative heat

kernel of pairwise vertices in this clique as follows:

w(e) = 1 Z exp _M (5)
d(e) (6(e) — 1) 202 ’

where radius parameter o is simply set as the median of the
Euclidean distances over all the pairwise vertices.

By denoting Z = [z1,...,zy]|, which uncovers the global
low-rank structure of all samples in a latent feature space, nor-
malized hypergraph Laplacian regularizer {2(Z) is obtained as
follows:

1 w(e)
2(2) =3 XI;Z 5(e)

=Tr (ZLAZ"),

2

|\/d ) /d(v)

,. (6)

whereLg =1 — D171/2HWD(;1AD;1/2 is defined as the nor-
malized hypergraph Laplacian matrix and W denotes diagonal
matrix of the hyperedge weights

~ Juw(e)ife=7j
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3) Outfit Correlation Modeling: To obtain the latent rep-
resentations of fashion outfits, a straightforward and efficient
strategy is to build a connection between a fashion outfit and
fashion items through the prior binary incidence matrix A,
that is

. . T2
ménHC— [XZ; GX] A HF, (7)
where ||- || is the Frobenius norm; C = |[cy,...,cn| €
R?DP*M i the latent low-dimensional representation of the fash-

jon outfits; and ¢; € R?P is the feature vector of the ith fashion
outfit. It is noted that principal feature part XZ and salient fea-
ture part GX represent the original feature matrix from different
perspectives; therefore, we concatenate them together to utilize
the complementary information.

To further guide the process of feature representation, it is
reasonable to assume that if two fashion outfits are close to each
other in the original space, then the representations of these two
fashion outfits should be kept close together in a new space. A
general scheme is to minimize the following objective function:

min Y lei - ¢;[3 8y = Tr(CL,CT), (8

where Ly = D — § is the graph Laplacian matrix; S € RM*M
is a weight matrix obtained by the sum of the canonical correla-
tions and D is the diagonal degree matrix with D;; = > j S; e

Let Q; and Q5 be two orthogonal matrices of size D by m,
which represent two points on Grassmann manifold G(m, D),
the distance between them can be measured by principal angles
0 = [01,02,...,0,,]T, which can be directly obtained from the
singular value decomposition (SVD) of matrix Q7 Q. as fol-
lows:

Q7' Q. = UAVT, 9)

where U,V € RP*™ are the left and right singular matrices and
A = diag{cosf, ..., cosb,}. The cosines of the principal an-
gles are also known as canonical correlations, and the similarity
between two points is calculated by the sum of the canonical
correlations.

Specifically, we have M outfits {X, X5, ..., X/}, where
X, € RP*mi represents the feature matrix of the ith outfit and
my; is the number of items contained in this outfit. Taking the ¢th
fashion outfit as an example, it is characterized by an orthogonal
basis matrix P; € RP*™ s.t. XZXZT ~ PiAiPiT,Where A;and
P; correspond to the top m largest eigenvalues and eigenvec-
tors of X; X7, respectively. Based on this approach, the weight
matrix S can be obtained by extending original feature space to
an underlying Grassmann manifold.

By combining Eq. (7) and Eq. (8), the correlation pattern
embedded in outfits can be modeled as follows:

min[|C — [XZ; GX] A |}, + aTr(CL,CT).  (10)

where « is a trade-off parameter.
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B. Incorporating Supervised Information

The latent feature representations of fashion items can be
learned by making full use of the correlation pattern in terms
of the feature, item, and outfit. However, a correlation pattern is
not sufficient due to the lack of label information. To address this
issue, we regard the compatibility prediction of fashion outfits
as a regression problem since the fashion compatibility scores
are continuous. We adopt the widely used Lasso-type regres-
sion approach, which considers linear dependencies w € R2P
to build the connections between latent feature matrices C and
output score vector y € R!(I < M), where [ is the number of
labeled fashion outfits. After adding a sparsity regularization to
the least squares loss part, we obtain a typical Lasso problem as
follows:

min [|CTw — y]|; + ¢ Wl , (1
where ¢ is to balance the tradeoff between the empirical loss
and the regularization penalty.

By integrating the functions in Egs. (1), (3), (8) and (10) with
Eq. (11), we propose the following objective function:

zcmmo I1Z]l, + G, + 2Bl + [, + ¢ lwl,
+0Tr(GTQ'G) + fTr(ZLAZ") + oTr(CL,CT)

(12)
+7]C - [XZ;GX] AT} + ¢ || CTw -y

st.X=XZ+GX+E,Q>0,

where ¢, (3, 1, and ~y are trade-off parameters.

C. Optimization

We apply the alternating direction method of multipliers
(ADMM) to solve Eq. (12) by dividing a complex problem into
easily handled subproblems. We first introduce auxiliary vari-
able S to relax G. By introducing two Lagrange multipliers, Y1
and Y5, and penalty parameter x> 0, we then obtain the aug-
mented Lagrangian function £(Z, G, S, E, C, Q, w). For sim-
plicity, we merge all of the quadratic terms into a single term
and formulate the following:

£(Z,G,S,E,C,Q,w)
= |Z|l, + ISIl, + ~ B[, +< 12, + ¢ llwll,
+Tao(Q) + H(Z,G,S,E,C,Q,w),

(13)

where H(Z,G,S,E,C,Q,w)=nTr(GTQ'G) + oTr
(CL,CT) + ¢||CTw — y 3+ BTr(ZLAZT) 4+ C— [XZ:
GXJAT 2+ 1/2]|G — S + Yo /|2 +11/2 X~ XZ~ GX
—E+ Y1 /ul

To better interpret the iteration process, we define Z;, Gy,
Cy, Ey, Oy, wy, Y14, Yo u, and g as the variables updated
in the tth iteration. Under the ADMM framework, problem
L(Z,G,S,E,C,Q,w) w.r.t. each variable in the (¢ + 1)th it-
eration is optimized with the following scheme:
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For Z: We can update Z by dropping the terms independent
of Z as follows:

Zt+1 = argmzin HZH* + H(Z7Gvsta C7QaW)
2 (14)

7

F

= argminL \Z], + E ‘ Z—-7,+-vVzL
Z Ty 2 T

where VzL is the partial derivative of £ with respect
to Z defined as VzL =2BZ;La+2y(XTXZ,ATA —
XTCtA) -+ [LtXTXZt — ,LLtXT(X — GtX — Et -+ Yl,t//lt)
and 7 = 1.25||X]|%.

For S: We can update S by dropping the terms independent
of S as follows:

St+1 = argmsin ||SH* + H(Z7G787Ea Ca Q,W)

Y, 2 (15)
Mt
Eq. (14) and Eq. (15) are standard nuclear norm minimization
problems, which can be approximately solved by the singular
value thresholding (SVT) algorithm [33].
For G: By setting the derivative of £ regarding G to zero,
we have

27]Qt_1Gt+1 + G (eI + e XXT + 27XATAXT)

St — Gt —

1 1
— arg min— ||Sq||, + = .
argmsln'ut IIS:]], + 3 ‘ .

Y Y
= Mt |:St+1 + (X — th+1 — Et =+ M) XT _ 2’t:|
Ht e

+29C,AXT. (16)

For C: By setting the derivative of £ regarding C to zero, we
have
(2¢wyw{ + 29I) C; + 2aC,L,
a7
=27 [XZi11; Ge11X] AT 4 20wyt
Then, Eq. (16) and Eq. (17) can be optimized by solving the
Lyapunov equation.
For w: We can optimize w by dropping the terms independent
of w as follows:

Wit = argn&i}n HC?HWt - sz + g ||Wt||1 - (18)

The optimization of Eq. (18) can be solved by the well-known
soft-shrinkage operator [34].

For E: We can optimize E by dropping the terms independent
of E as follows:

1 ITEIY
Eiyql — i fHE—E H 2N, a9
t+1 = argming tl .+ o 1El, (19)

where B, = X — XZiy1 — Gi1 X + Y ¢ /g The optimiza-
tion of Eq. (19) can be solved by using the shrinkage operator.

For 2: We can optimize 2 by dropping the terms independent
of € as follows:

Q1 = argminnTr(G Q7 Gin) +2 20+ 20)

Similar to the optimization of Z, we solve Eq. (20) by applying
the fast iterative shrinkage thresholding algorithm (FISTA) [35],
which minimizes a combination of two convex functions. By
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Algorithm 1: The Optimization Procedure of the Proposed
TGRLLR.
Input: Feature matrix X, fashion compatibility score y
Initialize: GO = So = CO = Eo = Yl,O = Y270 = 0,
wo = 0, g = 0.1, fymae = 1010, p = 1.1.

While not converged do;

1) Fixed others and update Z; ; using Eq. (14);

2) Fixed others and update S, using Eq. (15);

3) Fixed others and update G using Eq. (16);

4) Fixed others and update C;. ; using Eq. (17);

5) Fixed others and update w,; using Eq. (18);

6) Fixed others and update E;; using Eq. (19);

7) Fixed others and update €2, using Eq. (21);

8) Update Lagrangian multipliers Y1 11, Y2 (41 by:
Yipp1 =Y+ (X =XZip1 — G X — Egyq)
Yoii1=Y2:+ pe(Giy1 — Set1)

9) Update parameter f;,; = min(ppis, fimaz )

End while

Output: Z, G, w.

defining f(2) = nTr(GL1Q 'Gi11), Eq. (20) can be equiv-
alently solved as follows:
2

l 1
min (12— (Q, — =V f(Q))|| +elQl,, @D
Q 2 l F

where Vo f(2) = =€, ' G141 G ;! is the partial deriva-
tive of f(£2) with respect to ; and | = 7||2, °GL, ||%.

The optimization process of our proposed method is summa-
rized in Algorithm 1.

D. Computational Complexity

To analyze the complexity of the proposed model, we consider
that the number of samples is much larger than the dimension-
ality of the data. We find that the complexity of the algorithm
mainly comes from the following aspects: 1) the calculation of
the nuclear norm in steps 1 and 2; 2) solving the Lyapunov equa-
tion in steps 3 and 4; 3) the calculation of the inverse matrix in
step 7. The computational complexity of the nuclear norm steps
1 and 2 are O(N?) and O(D?), respectively. The total compu-
tational complexity of solving the Lyapunov equation in steps
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Fig. 3.
datasets.

Three samples of fashion outfits randomly selected from the Polyvore

3 and 4 are O(2D?). The computational complexity of the in-
verse matrix in step 7 is O(D?). If the algorithm converges af-
ter ¢ iterations, the computational complexity is approximately
O(4tD3 +tN3).

IV. EXPERIMENTS AND RESULTS
A. Experimental Settings

We investigated the effectiveness of our proposed method on
the Polyvore dataset [5], which contains a total of 21889 fash-
ion outfits that were formed with 164379 fashion items. Many
high-quality fashion outfits were constructed by fashion experts
and are favored by Polyvore users. Particularly, to evaluated the
predicted performance of our proposed method with a small
number of samples, we constructed a refined version of this
dataset by selecting 4800 outfits with uniform probability and
split them into 3 parts. Fig. 3 shows three fashion outfits with
different compatibility scores. For each of the parts, 1200 fash-
ion outfits were selected for training, and the remaining were
selected for testing. Each outfit had several fashion items, and
we removed the interference items and only kept 3 items, most
of which included tops, bottoms and shoes. We considered the
normalized ratio of the number of likes to views as the com-
patibility score. To obtain comprehensive descriptions for each
fashion item, we not only extracted 1,000D middle-level features
from the output of fc8 layer in VGGNet19 [36] but also consid-
ered five types of low-level visual features, including 144D color
auto-correlogram features [37] capturing the spatial correlation
of colors, 225D block-wise color moment features [38] repre-
senting color distributions of images through three statistics,
64D color histogram features quantized in LAB color space [39],
73D edge direction histogram features [40] encoding the distri-
bution of the directions of edges, and 128D wavelet texture fea-
tures [41] characterizing texture prosperities at multiple resolu-
tions. Before training our model, we first exploited the ¢5-norm
to address each type of feature and then concatenated all the
features to generate new 1,634D feature vectors. Eventually, all
feature vectors were further normalized to the same unit length
under the same strategy. We empirically set the parameters as
A=le—3,e=le—-2,y=le—1,p=1le—T,p=1le—5,
and p = lel. The trade-off parameters 7, €, and (5 in our model
were selected by a grid-search approach. We first performed
a grid search at a coarse level and then conducted a finer grid
search to identify an ideal parameter. Finally, we setaw = le — 5,
n = 25, and S = 30 by default.
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Fig. 4. The convergence curve of our proposed TGRLLR method. (The hor-
izontal axis represents the number of iterations, and the vertical axis shows the
objective function values).

To measure the consistency between the prediction results
and ground truths, we employed the typical normalized mean
squared error (nMSE) [42] as the measurement. The nMSE
value, which is equal to the mean squared error divided by the
variance of the ground truth, is defined as

M
1 .12
nMSE = WZ (yi — 5i)" (22)

=1

where M is the total number of fashion outfits; o is the standard
deviation from the ground truth; y; and ¢; are the real and the
predicted score of the i-th outfits, respectively. The smaller the
value of the nMSE is, the better the performance of the model.

B. Experimental Results

In our experiments, we evaluated our proposed method with
respect to convergence, component analysis, parameter sensitiv-
ity, a case study, and a comparison with state-of-the-art methods.
According to their predicted results, we sorted all fashion out-
fits in descending order and selected the top {50, 100, 150, 200}
and bottom {50,100, 150,200} fashion outfits to report their
averaged fashion compatibility scores.

1) Evaluation of Convergence: It is essential to investigate
the convergence of optimization algorithm to guarantee the relia-
bility of the experimental results. We randomly selected one trial
to display the results. Since Z and G span the latent low-rank
subspaces along the row and column directions to provide com-
plementary feature representation, we calculated the variance
between two sequential concatenated feature matrices with the
following scheme:

D(t) = || [th, GtX] — [thfl; Gt,1X] ||F . (23)

Fig. 4 shows the convergence curve with an increasing num-
ber of iterations. From the figure, we can observe that the curve
has a dramatic drop during the first few iterations and tends to be
steady after 40 iterations, meaning that the feature representa-
tions become increasingly insensitive to the number of iterations.
Thus, we used the relative change falling below a threshold of
0.6084 and a maximum of 40 iterations as the stopping criteria
for our proposed method.
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TABLE I
PREDICTION PERFORMANCE COMPARISON OF THE INVOLVED COMPONENTS
IN OUR PROPOSED METHOD
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TABLE II
PERFORMANCE COMPARISON WITH VARIOUS VALUES OF @ ON OUR
PROPOSED METHOD

noGC noHR noFC noReg TGRLLR le-7 le-6 le-5 le-4 le-3 le-1
Top 50 0272 0278 0266  0.291 0.272 Top 50 0287 0273 0272 0268 0263 0.287
Top 100 0282 0276 0268  0.276 0.275 Top 100 0279 0274 0275 0278 0257 0.268
Top 150 0266 0262  0.251 0.261 0.268 Top 150 0267 0267 0268 0266 0258  0.259
Top 200 0259 0259 0250  0.260 0.263 Top 200 0259 0261 0263 0262 0252 0255
Bottom 200 0210 0210 0218  0.209 0.206 Bottom 200 0210 0208 0206 0207 0217 0215
Bottom 150 0.204 0.204 0.210 0.207 0.201 Bottom 150 0.206 0.203 0201 0206 0.209 0.207
Bottom 100 0.200 0.199 0.207 0.203 0.201 Bottom 100 0200 0.199 0201 0201 0200 0.202
Bottom 50 0.186 0.186 0.202 0.187 0.182 Bottom 50 0.186 0.182  0.182  0.197 0.189 0.188
nMSE 0.347 0351 0.369 1.027 0.347 nMSE 0348 0348 0347 0357 0358 0.387

TABLE 11

2) Evaluation of Components: To illustrate the effectiveness
of each component involved in our proposed method, we con-
ducted experiments from the following perspectives:

® noGC: We considered the influence of the local geomet-
ric structure consistency constraint on fashion outfits by
setting o = 0.

e noHR: We considered the influence of the hypergraph reg-
ularization term by setting 3 = 0.

® noFC: We considered the effect of feature correlation pat-
tern learning by setting n = 0.

* noReg: We considered separating feature representation
learning and Lasso-type regression learning into two sep-
arate steps.

Table I shows the prediction performance comparison of the
involved components in terms of the nMSE. From the table,
we can see that the predicted compatibility scores over differ-
ent ranges satisfy Top 50>Top 100>Top 150>Top 200> Bot-
tom 200>Bottom 150>Bottom 100> Bottom 50, which is in
accordance with our expectation. Moreover, we sorted the val-
ues of the nMSE and found noReg> noFC>noHR> noGC.
noReg generates the greatest impact on the prediction perfor-
mance, illustrating that the colearning of feature representation
and Lasso-type regression is necessary to improve the effec-
tiveness of our model. noFC achieves unsatisfactory results,
indicating that exploiting latent correlation patterns embedded
in features is beneficial for more robust and intrinsic feature
representation. The prediction results of noHR and noGC are
inferior to those of TGRLLR, illustrating that the relationship
information among items and outfits plays an indispensable role
in fashion compatibility prediction tasks.

3) Evaluation of Parameters: In this part, we evaluated the
influence of parameters «, 3, and 7 on our proposed method.
Particularly, parameter « controls the strength of the local geo-
metric structure consistency, whichranges from le — 7to le — 1
with an interval of 10 times. Table Il reports the nMSE results for
various values of a.. From the table, we can see that the predic-
tion results are sensitive to . The best prediction performance
is achieved when av = le — 5. Too large or too small values of «
easily lead to suboptimal nMSE results. Similarly, parameters 3
and 7 are also investigated in the same way and are selected from
{15, 20,25, 30, 35,45} and {5, 15, 20, 25, 30, 35}, respectively.
Table IIT and I'V show the corresponding prediction results. From
the table, we can observe that the best prediction performance
is obtained when 8 = 30 and 1, = 25. Furthermore, when (5 and

PERFORMANCE COMPARISON WITH VARIOUS VALUES OF [3 ON OUR
PROPOSED METHOD

15 20 25 30 35 45
Top 50 0281 0277 0276 0272 0.268  0.280
Top 100 0279 0265 0272 0275 0276 0.276
Top 150 0266 0.266  0.268 0268 0.270  0.259
Top 200 0261 0.263 0.261 0263 0.265 0.257
Bottom 200 0208 0.206  0.207 0206  0.204 0212
Bottom 150 0202 0203 0.204 0201  0.204  0.208
Bottom 100 0.198  0.200  0.201 0201  0.200  0.204
Bottom 50 0.188 0.184  0.184 0.182  0.180  0.194
nMSE 0355 0352 0348 0347 0356 0.356
TABLE IV

PERFORMANCE COMPARISON WITH VARIOUS VALUES OF 17 ON OUR
PROPOSED METHOD

5 15 20 25 30 35
Top 50 0267 0291 0251 0272 0.276  0.289
Top 100 0259 0279 0247 0275 0275 0.271
Top 150 0260 0.267 0.253 0268 0.266  0.256
Top 200 0250 0.259 0254 0263 0.260 0.256
Bottom 200 0.218 0.210 0214 0206 0209 0.213
Bottom 150 0222 0204 0.220 0201  0.200  0.201
Bottom 100 0212 0204 0.222 0201  0.204  0.206
Bottom 50 0.192  0.183  0.196  0.182  0.179  0.196
nMSE 0440 0362 0351 0347 0.347  0.462

n are set to 0, our proposed method becomes to discard the item
correlation and feature correlation terms, which easily causes
unsatisfactory results.

4) Comparison With State-of-The-Art Methods: We com-
pared our proposed method with several state-of-the-art
methods, including ridge regression (Ridge), Lasso, support
vector regression (SVR) [43], low-rank linear regressions
(LLR) [44], multi-feature learning via hierarchical regression
(MLHR) [45], supervised regularization-based robust subspace
(SRRS) [46], discriminative elastic-net regularized linear re-
gression (DENLR) [47], regularized label relaxation linear re-
gression (RLRLR) [48], interclass sparsity-based discriminative
least square regression (ICS_DLSR) [49], supervised approxi-
mate low-rank projection learning (SALPL) [50], bidirectional
LSTM (Bi-LSTM) [5], and bidirectional GRU (Bi-GRU) [5].

Table V shows the prediction results of TGRLLR and state-
of-the-art methods. From the table, we can derive the follow-
ing conclusions: 1) Our proposed TGRLLR outperforms the
compared methods in terms of the nMSE. 2) The Ridge and
Lasso methods perform the worst, indicating that the simple
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TABLE V
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD AND
STATE-OF-THE-ART METHODS (P-VALUE<0.001:% % *, P-VALUE
<0.05: %%, P-VALUE<0.1:%)

Methods nMSE p-value
Ridge 0.999+ 1.05E-02 * * *
Lasso 0.982+ 4.99E-02 * % *
SVR 0.362 4+ 6.70E-03 * % *
LLR 0.355 4+ 1.60E-03 *%
MLHR 0.354 4+ 2.90E-03 *%
SRRS 0.653 + 3.35E-02 *%

DENLR 0.757 + 1.92E-01 * K Kk

RLRLR 0.540 + 3.69E-02 *%
ICS_DLSR  0.353 £ 1.21E-03 *%
SALPL 0.377 4+ 7.13E-03 *x

Bi-LSTM 0.443 £+ 1.12E-03 *%

Bi-GRU 0.436 4+ 1.94E-03 Hok

TGRLLR 0.347 + 4.52E-03 -

combination of feature selection and regression analysis is in-
sufficient for fashion compatibility prediction tasks. 3) SRRS,
DENLR, and RLRLR obtain unsatisfactory results, indicating
that more robust and intrinsic feature representation is of vital
importance to fashion compatibility prediction. 4) After exploit-
ing the radial basis function (RBF) kernel to the original feature
space, SVR achieves a better prediction performance. 5) SALPL,
LLR, MLHR, and ICS_DLSR are low-rank-based methods and
achieve prediction results that are superior to the results of other
methods. In particular, although SALPL learns two projection
matrices from different directions but is still inferior to our pro-
posed method due to its deficiency in exploiting complex cor-
relation patterns. MLHR uses a multifeature fusion strategy to
explore the structural information. ICS_DLSR exploits the as-
sumption that the transformed samples have a common sparsity
structure. These results show that our proposed method is more
suitable than these other methods for characterizing the com-
plex relationships in fashion compatibility prediction tasks; 6)
We compared our proposed model with Bi-LSTM and Bi-GRU,
which only consider a bidirectional LSTM and GRU without in-
corporating any semantic information in an end-to-end fashion.
The results indicate that our proposed method outperforms both
deep models since the limited labeled samples are not enough
for robust and effective model training. 7) Furthermore, we used
a P-value [51] to assess the differences between TGRLLR and
the other methods. We discovered that the P-values are smaller
than the significance level of 0.05, which indicates that the
null hypothesis is clearly rejected and that the improvements of
our proposed method are statistically significant. Furthermore,
we conducted a qualitative comparison by randomly selecting
three fashion outfits. Fig. 5 shows the qualitative comparison
of various methods, in which we calculated the absolute devia-
tions between their predicted and the real fashion compatibility
scores. From the figure, we can see that our proposed TGRLLR
method exhibits higher consistency with the ground truth than
the other methods. Moreover, we selected two classical match-
ing problems, i.e., bottom-to-top and top-to-bottom, and showed
the ranking results in descending order according to predicted
compatibility scores in Fig. 6. From the figure, we found that
the outfits that have been matched in this dataset are visually
compatible.

SALPL  —
ICS_DLSR  ee——
RLRLR
DENLR
SRRS
MLHR e
LLR
Our_Model mmmm

0.02 0.04 0.06 0.08 0.1 0.12 0.14
SALPL

——————————
ICS_DLSR  ee——
RLRLR
DENLR
SRRS
MLHR ——
—

LLR
Our_Model

SALPL me—
ICS_DLSR  ee——
RLRLR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Fig. 5. Qualitative comparison of fashion compatibility prediction results us-
ing different methods.
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Fig. 7. A visual comparison of two feature correlation matrices. The higher
values correspond to higher correlations.

5) Feature Correlation Analysis: In Fig. 7, we visualized the
normalized the feature correlation matrix Q! learned from the
overall method and the feature correlation matrix €2~ learned by
discarding the local geometric structure consistency constraint
imposed on fashion outfits. From the figure, we can see that
Fig. 7(a) exhibits more distinct correlations among features, es-
pecially at the right of the diagram in comparison with Fig. 7(b),
indicating that more intrinsic representation of data can be ben-
efited from the preservation of correlation between outfits.

C. Case Study

In this section, we reported findings from a user study. We
constructed 5 sets of fashion samples, and each set involves four
fashion outfits that are sorted in ascending order relying on the
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TABLE VI
PARTICIPANT’ SATISFACTION-BASED RATING

setl set2 set3 setd set5 Average
Male 2234 2326 2225 2332 2124 2.248
Female 2.197 2278 2.029 2438 2.057 2.200
Average 2.219 2307 2.146 2.374  2.097 2.229

predicted fashion compatibility scores. We conducted a survey
of 200 participants, including 119 males and 81 females rang-
ing in age from 20 to 30 and reported their subjective preference
with the sorting results of five groups. A participant’s subjective
preference was assigned a score of 0 to 3 (“0” is disapproval,
“1” is borderline, “2” is approval, and “3” is full approval) to re-
flect their relative satisfaction. Table VI shows the participants’
satisfaction-based ratings of various groups. From the table, we
observe that the average rating scores are greater than 2, indi-
cating that the ranking lists produced by our proposed method
are acceptable to the participants.

V. CONCLUSION

In this paper, we proposed TGRLLR to predict the compati-
bility scores of fashion outfits. TGRLLR firstly exploited a latent
low-rank representation mechanism to tackle insufficient train-
ing samples and sparsity problems. And then TCRLLR con-
structed three graph regularization terms to capture the corre-
lation patterns embedded in features, items, and outfits. The
experiments demonstrated the positive effect of the involved
graph regularization terms. Despite this, we found that the pro-
posed method has insufficient generalization ability when used
for large-scale scenarios and the sparsity problem is still a chal-
lenge for high performance. In the future, we will focus on de-
veloping an end-to-end convolutional neural network to better
deal with fashion compatibility prediction tasks. Moreover, we
will emphasize more on the exploration of transmission of rela-
tionship among fashion items.
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