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Abstract

The text produced by language models (LMs) can exhibit specific ‘behaviors,’
such as a failure to follow alignment training, that we hope to detect and react
to during deployment. Identifying these behaviors can often only be done post
facto, i.e., after the entire text of the output has been generated. We provide
evidence that there are times when we can predict how an LM will behave early
in computation, before even a single token is generated. We show that probes
trained on the internal representation of input tokens alone can predict a wide
range of eventual behaviors over the entire output sequence. Using methods from
conformal prediction, we provide provable bounds on the estimation error of our
probes, creating precise early warning systems for these behaviors. The conformal
probes can identify instances that will trigger alignment failures (jailbreaking) and
instruction-following failures, without requiring a single token to be generated.
An early warning system built on the probes reduces jailbreaking by 91%. Our
probes also show promise in pre-emptively estimating how confident the model will
be in its response, a behavior that cannot be detected using the output text alone.
Conformal probes can preemptively estimate the final prediction of an LM that uses
Chain-of-Thought (CoT) prompting, hence accelerating inference. When applied
to an LM that uses CoT to perform text classification, the probes drastically reduce
inference costs (65% on average across 27 datasets), with negligible accuracy loss.
Encouragingly, probes generalize to unseen datasets and perform better on larger
models, suggesting applicability to the largest of models in real-world settings. 1

1 Introduction

Language models (LMs) have emerged as the dominant approach to general language tasks [88, 22],
seeing widespread adoption in chatbots [3, 68], code generation [18] and reasoning systems [67].
However, they have been known to ‘misbehave,’ hallucinating false information [98], failing to adhere
to output specifications [59], or, most concerningly, producing content that is misaligned with human
values [75], sometimes dangerously so [35]. In practice, such misbehavior is mitigated by deploying
post-hoc guardrails on the output of the LM [92, 24, 16, 101, 8, 53]. For example, a chatbot LM may
exhibit harmful behavior by complying with a malicious request [41, 90]; developers will typically
attempt to detect this behavior in the output [101] and return an abstention message instead of the
original LM content. Such a framework suffers the economic [100] and environmental [83, 76]
expense of generating every output token, a cost that threatens to grow exponentially as frontier labs
continue to scale both model sizes [37, 49] and the number of tokens generated during inference [91,
95, 67, 32].

In this paper, we show that the internal representations of LMs can be used to preemptively predict
behaviors that will emerge over the entire output sequence. This information becomes accessible

1Our code is accessible at: https://github.com/DhananjayAshok/LMBehaviorEstimation
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Figure 1: Overview of our method as applied in preemptive safety alignment failure detection. During
training, we use many input prompts to collect a dataset consisting of the hidden states of the input
tokens and eventual output behavior (in this example, the behavior is whether the LM fails to abstain
on a malicious prompt). The dataset is used to train a probe on the hidden states. With a validation set,
we calibrate the probes for conformal prediction by identifying a threshold for confident predictions.
During inference, if the probe is confident in its estimate of the eventual LM behavior, we stop
computation early (in this example, overriding the LM and abstaining).

before the LM has generated a single token, enabling the system to take appropriate actions
without suffering inference costs on those instances. Concretely (Figure 1), we train linear classifiers
(probes) [4] that use an LM’s internal representation of input tokens to predict the eventual behavior
of its output. We then calibrate the probes using methods from conformal prediction [81]. During
inference, we look to probes to make a prediction only when there is a provable guarantee on the
estimation error, ensuring precise early warning signals for various model behaviors.

We show that these probes can preemptively identify degenerate behavior, such as instruction-
following failures (Section 3). Across multiple datasets and output formats, our probes give precise
early warning signals for cases where the LM will fail to follow specified output format instructions.

Conformal probes can also detect deeper, ‘self-reflective’ properties, like whether an LM’s behavior
conflicts with its safety alignment. We demonstrate this (Section 4.1) by applying our method to
enhance the safety of an LM that is instructed to abstain from complying with malicious requests.
Probes are trained to identify cases where this will not happen—the request will be malicious and the
model will not abstain. Once again, our probes are able to precisely detect (with over 92% accuracy)
cases where the LM complies with malicious requests. An early warning system built on these
conformal probes reduces the jailbreak success rate from 30% to 2.7%, a 91% reduction.

We further show that conformal probes can identify behaviors that cannot be measured with output
text. We show (Section 4.2) that our probes can a priori estimate an LM’s confidence as measured
by the per-token perplexity of the output; as this model-specific property cannot be inferred from just
the text sequence alone, we show the wide scope of applicability of our probing approach.

Finally, we apply our method to an LM that tackles text classification by generating several explanation
tokens before a class prediction, i.e. using Chain-of-Thought (CoT) reasoning [91] (Section 5). The
probes estimate the final class prediction that will appear after the reasoning chain and exit early if
confident in their estimate. On 27 datasets, spanning the tasks of Multiple Choice QA, Sentiment
Analysis, Topic Classification, Toxicity Detection and Fact Verification, our method reduces inference
costs by 65% on average, while suffering accuracy losses of no more than 1.4% (worst case). The
probes generalize to unseen datasets, reducing the inference cost of CoT on OpenBookQA [63] by
68% with minimal loss to accuracy (0.4%), despite only training on other MCQA datasets.

We demonstrate that often fewer than 500 training instances are sufficient for the probes to attain high
estimation consistency, while ablations on the probing layer present a more complicated, task-specific
story. Encouragingly, increasing the scale of the LM improves the performance of our technique,
suggesting it may scale favorably with ever-increasing model sizes [15, 37, 19, 26].

We hope our findings enable practitioners to build efficient early warning systems on language models
and enable further research into the information encoded in their hidden states [71, 10, 66].
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2 Background

Hidden State Probing: Lightweight probes have long been used to interpret the internal activations
of neural networks [4] and language models [71, 10]. Given a set of input prompts, we compute the
generated outputs and store the internal activations computed during the forward passes of an LM
(e.g. the outputs of a specific Transformer [88] layer). The instances are then assigned a classification
label meant to capture some property of the input and output. The probes are then trained to predict
the label using only the internal activations as input. For example, Azaria and Mitchell [10] collect
the activations of the middle layer of an LM when processing the output tokens, and manually label
the generations as true or false. They then train a small neural network which can identify whether
the model output is truthful, given the internal activations of the generated tokens. Prior work in
probing uses the internal states of all tokens, even generated ones, which incurs the cost of inference.
In this work, we explore an alternate approach, training probes on the internal states of the input
tokens alone, allowing us to predict properties of the output tokens before they have been generated.

Conformal Prediction: Given a validation set, conformal prediction can be used to precisely calibrate
the model’s confidence [29, 52]. During inference, the conformal system makes a prediction if and
only if the probability of the prediction being accurate is above a user-specified probability [81].

In the classification setting, we are given a validation set {(x1, . . .xn), (y1, . . . yn)},xi ∈ Rd, yi ∈
{1, 2, . . . , c} (where d is the dimension of the input vector and c is the number of classes), a classifier
which maps the input to scores for each class f : Rd → Rc and a user-defined confidence level α ∈
(0, 1). To form a well-calibrated prediction set, we define a score function S : Rd×{1, 2, . . . c} → R
that measures how poor a prediction is e.g. S(x, y) = 1 − ( exp f(x)∑

i exp f(x)i
)y. Using scores on the

validation set (s1, . . . sn) we calibrate by calculating threshold q̂α, the 1− α quantile of the scores:

q̂α = Quantile({s1, s2, . . . sn},
⌈(n+ 1)(1− α)⌉

n
) (1)

At inference time, the prediction set for a test instance x is {ĉ|S(x, ĉ) ≤ qα}. For the above score
function, no two classes can score greater than 0.5 simultaneously, implying that with α > 0.5 the
prediction set at inference time is either empty (deferral/abstention) or consists of a single class label.

If the validation set is exchangeable (a slightly weaker assumption than the typical I.I.D assump-
tion [12]) with the test set, then a prediction at inference time is provably guaranteed [81] to satisfy

P[ytest = ĉtest] ≥ 1− α (2)

3 Can Internal States Predict Eventual Behavior?

In this section, we ask whether the internal representations of the LMs input can be used to predict
eventual behavior, even before any output token has been generated. We explain our methodology
with the running example of an LM instructed to answer a question in bullet point format.

The LM is expected to provide an answer in two bullet points, with any fewer or greater bullets in the
answer being a failure to follow instructions. Suppose we are given an input prompt:

Question: What do Osteoclasts do?

A LM may respond to this with:

1. Decompose bone 2. Differentiate from monocyte 3. Create space for tissue

We can identify that the LM has behaved contrary to its instructions when it generates the ‘3’. The
previous tokens give no indication that a failure was imminent; however, is it possible that the model
contains signals that can identify this eventual failure by the time it generates the first token, i.e. ‘1’?

To test this, we collect three QA datasets—NaturalQA [54], MSMarco [65] and TriviaQA [47] and
prompt the LM to answer questions in a specific format. One format requires the answer to be
organized in exactly three bullet points, while the other requires a JSON output with pre-specified
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Figure 2: Estimation consistency, i.e. accuracy when preemptively predicting whether the LM will
fail to follow format instructions. Numbers inside the bars in bold italics are the coverage percentages
for conformal probes that engage in selective prediction. All probe results are means over 5 random
seeds, with error bars showing the 2σ confidence interval. The probes not only outperform the
random baseline, but consistently match or outperform fine-tuning on a BERT model despite using
fewer than 0.003% of the parameters. The conformal probes have significantly higher consistency,
and give users the flexibility to trade off precision and coverage based on the confidence level α.

fields. We evaluate whether the output format has been followed, and then sample this data to obtain
training and testing splits that have an equal number of failures and successes.

We collect the output of the middle Transformer layer of Llama3.1-8B [26] when processing the final
token of the input (in the example above, the ‘?’), then train linear classifiers to predict whether the
output will eventually fail to follow instructions. We ablate layers in Section 6, reproduce results on
other LMs in Appendix A, and provide the prompts that specify the format in Appendix C.

We also fine-tune a bert-large-uncased [22] model for text classification, which involves tuning 340M
parameters, 4× 104 times the number of trainable parameters of the linear model. The BERT model
is trained to predict whether the output will fail to follow formatting instructions given the text of
the input prompt alone, and is a measure of how a significantly stronger model performs when
attempting to establish a pattern between the inputs to the model and the output behavior. Methods
are evaluated on the metric of estimation consistency, i.e, how accurate they are at preemptively
predicting whether or not the formatting instructions will be followed.

The probes (Figure 2, navy blue bar) outperform the random baseline in all settings, showing that an
LM’s representation of the input tokens contains information on behavior that will emerge over the
entire output sequence. Moreover, the probes also outperform fine-tuning on BERT in all but one of
the settings, despite using around only 0.0025% as many parameters.

However, despite outperforming the baselines, the average estimation consistency of the probes is
less than 75%. A naive attempt to act on the probes estimate would result in catastrophic failure.

3.1 Creating robust behavior estimators with conformal prediction

Internal states may occasionally be insufficient to estimate eventual behavior. The ideal system
handles such cases, making consistent predictions when confident and deferring otherwise. Hoping
to impart such a capability to our probes, we use the probes learned above in a conformal prediction
framework. Specifically, we use a held-out validation set Dvalid to calibrate the probe after training. We
compute the probes’ prediction probabilities ŷ ∈ [0, 1]|c| for each class with true label y ∈ {1, . . . c}
on the validation set, and find the lowest threshold quantile q that satisfies:

∑
yi∈Dval

I[(max (ŷi) ≥ q) ∧ (argmax(ŷi) = yi)]∑
yi∈Dvalid

I[max (ŷi) ≥ q]
≥ α (3)

During inference, when a probe predicts a behavior with probability vector ŷtest, we return the
prediction if and only if max (ŷtest) ≥ q, otherwise we defer to the LM. Unless specified otherwise,
we set α = 0.9. If no satisfying q can be found, we defer on all instances. We ablate α in Section 6.
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Conformal Probe (α = 0.9) BERT
Dataset Coverage Consistency Prec. Rec. Consistency Prec. Rec.

SelfAware 100.0 98.0 94.5 94.5 93.3 91.7 84.4
KnownUnkown 92.3 92.6 75.1 72.8 67.1 64.4 93.1
WildJailbreak 100.0 94.0 90.0 91.0 83.4 73.8 33.3

Table 1: Probes estimate whether the LM will fail to abstain when it should have with significantly
higher precision and recall than a BERT baseline. On WildJailbreak, where 30% of malicious prompts
are mistakenly complied with, using the probe as an early warning signal reduces successful jailbreaks
to 2.7%. In comparison, using the BERT model would leave jailbreak success rate at 20%.

Using conformal probes (Figure 2) significantly increases performance across all datasets. At α = 0.8,
the probes have a test coverage of 40% and, for the covered datapoints, estimation consistency is
80.7%, showing that the conformal probes are well calibrated to the user-specified confidence level.
Raising α to 0.9 results in a reduced average coverage of 10%, but an increased average consistency
of 89.2%. This allows users to flexibly trade off between coverage and consistency, enabling precise
and trustworthy early warning systems that do not offer an opinion when confidence is low.

4 Creating Early Warning Systems for Other Behaviors of Interest

In this section, we demonstrate that probes are not limited to preemptively identifying degenerate
behavior, such as failing to follow instructions. We show that conformal probes can serve as early
warning systems for instances that will trigger failures to follow safety alignment, and those that will
result in the model giving a low-confidence response. We describe the key experiment designs below,
with exact prompts and details in the Appendix C.

4.1 Detecting failures to follow safety alignment

The deployment of LM-powered chatbots raises concerns of harmful behavior that is unaligned with
human interests [28]. One common setting where such behaviors arise is when the user requests
information that does not exist, with models often hallucinating an answer regardless, misleading the
user in the process [9]. Another common occurrence is when the user themselves requests the model
to help them complete malicious tasks, such as building a weapon of mass destruction [90].

We collect two datasets (SelfAware [96], KnownUnknown [5]), which have answerable and unan-
swerable questions. The LM reasons as to whether the question is answerable, providing a response
if it is and abstaining otherwise. Similarly, we collect malicious and benign prompts from WildJail-
break [45], and prompt the LM to refuse to comply with a request if it is malicious. Inspired by
work in AI safety and alignment, we adopt the viewpoint that answering an unanswerable question or
complying with a malicious request is disproportionately problematic [11]. We filter our training set
to only include the instances where the LM answers or complies with the request, and train probes to
identify the cases where the LM should have abstained (i.e. fails to avoid answering an unanswerable
question or falls victim to jailbreaking). During inference, if the probe is confident (α = 0.9) that the
LM has failed to abstain when it should have, we override the LM and abstain instead.

Results show (Table 1) that probes greatly enhance the safety of the LMs, outperforming the BERT
baseline on consistency, precision and recall. Across all datasets, probes identify over 72% of the
failures to abstain (over 90% for 2/3 datasets). This safety comes at little cost; when the probes force
an abstention, they are correct over 86% of the time (on average). They make confident estimations
on at least 92% of the samples, and maintain conformal estimation consistency of at least 92%.
Concretely, on WildJailbreak the use of conformal probes reduces the percentage of successful
jailbreaks from 30% to 2.7%, a significant safety improvement.

4.2 Quantifying LM uncertainty

Language models are prone to hallucination [98] and often have gaps in their knowledge [38], making
methods that estimate the trustworthiness of specific outputs vital. Recent work [48, 46] approaches
this problem by using the model itself to quantify how certain it is in its answer, either by explicitly
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Figure 3: Estimation consistency when preemptively predicting an LM’s confidence in its response.
Numbers inside the bars in bold italics are the coverage for conformal probes that engage in selective
prediction. Probes outperform all other methods, with the confidence estimation tasks proving
more challenging for BERT. Conformal probes have lower coverage rates than the format following
(Section 3) and safety alignment (Section 4.1) tasks. However, they maintain consistency at the
user-defined confidence level, ensuring that their early warning signals are reliable.

prompting it to verbalize its confidence or using the per-token perplexity of the output. If we detect
an untrustworthy response, we may abstain from answering or escalate the query to a more capable
model. An early warning system that preemptively detects such responses before they are even
generated would allow us to take these actions more efficiently.

We train conformal probes to preemptively estimate how confident the LM will be in its response
using both of these uncertainty quantification methods on NaturalQA, MSMarco and TriviaQA. In
the case of the perplexity measure, we consider the bottom 25% of scores to be ‘high confidence,’
and the top 25% to be ‘low confidence’ (discarding the rest). In both cases, the probes attempt
to identify whether the model will be confident in its output. This task proves more challenging
for all methods, however, probes continue to outperform both the random baseline and the much
larger BERT model. Despite this, the conformal probes maintain high consistency, making the early
warning and redirection system feasible in practice.

5 Selective Inference-Scaling with Conformal Probes

In this section, we show how our method can be used to accelerate systems that use CoT prompting
with an LM to perform text classification. We collect 27 text classification datasets, spanning the tasks
of Multiple Choice Question Answering, Sentiment Analysis, Topic Analysis, Toxicity Detection and
Fact Verification. Details on dataset setup are in Appendix C.

We use Llama3.1-8B under CoT prompting to perform text classification, i.e., outputting an expla-
nation before the final class prediction. We train a linear probe that uses the internal representation
of the final input token at the 18th layer (based on results from previous experiments) to predict the
class that the CoT model will eventually output, and then perform conformal calibration. During
inference, if the conformal probe is confident, we interrupt generation and use the probe estimation
as the final answer. If not, we allow the model to continue its CoT generation and provide the final
answer. We note that this method of acceleration is synergistic with other inference optimization
algorithms such as Speculative Decoding [55] or architectural changes [27]. This is because in the
cases where the probe does not interrupt the LM, it does not influence the remaining forward passes,
hence conformal probes can be flexibly added on top of any inference paradigm for further efficiency.

We compare to vanilla CoT on two metrics—Accuracy Loss (Accuracy of CoT - Accuracy of Method)
and Inference Cost Reduction (#CoT Forward Passes - #Method Forward Passes

# CoT Forward Passes ).

The results (Figure 4, in blue) show that the method is highly effective at reducing the inference
cost with minimal cost to accuracy. The minimum inference cost reduction is 4.7%, with an average
reduction of 65% across all datasets. Despite this significant speedup, the average accuracy loss
is near zero (−0.46%), with the worst loss at 1.34%. Surprisingly, accuracy increases on several
datasets. Finally, we investigate the out-of-distribution generalization capabilities of the conformal
probes. For each test dataset of the MCQ and Sentiment tasks, we train and calibrate using data
from every other dataset. The results (Figure 4, in orange) show that the probes do exhibit OOD
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Figure 4: Tradeoff between accuracy loss and inference cost when using probes to accelerate CoT
Prompting in IID and OOD settings. Using IID probes leads to a 1.34% accuracy loss (worst case)
and a negative accuracy loss on average (i.e. accuracy improves). Inference cost reductions are 65%
on average. Probes generalize to OOD data, inference cost reductions are higher at 81% on average,
with a small accuracy loss of 2.3% on average.

generalization, suggesting the method may be applicable even when there are slight shifts between
training and test distributions.

6 Analysis and Ablations

Why does accuracy improve when using probes? Seeking to explain the surprising increase in
accuracy when accelerating CoT models (Figure 4), we plot (Figure 5, left) the correlation between
the CoT model’s accuracy and the probe’s estimation consistency. It is generally positive, which
suggests that incorrect probe estimation correlates with incorrect CoT generation. This minimizes the
harm of an inconsistent estimation of the CoT decision, as the cases where estimates are likely to be
inconsistent coincide with cases where a consistent estimate does not benefit accuracy.
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Figure 5: Left: Density plot of the correlation coefficient between the CoT LM accuracy and the
consistency of the probe. The coefficient is often positive, indicating that instances where the probe
inaccurately estimates the LM decision are also instances where the LM is more likely to be incorrect.
Right: On CosmoQA, probes that use the initial tokens of the input prompt have near-random
consistency, with performance increasing considerably as we use later tokens in the prompt.

How early in the computation does the model show signs of the final behavior? We have shown
that the final input token often contains sufficient information to predict output behavior, but at which
token does this information start becoming clear and accessible? To investigate this, we collect
activations from every input token (after the FewShot example tokens) of the CSQA dataset and train
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a linear classifier to map these internal activations to the eventual CoT prediction. Probing (Figure 5,
right) using the embeddings of tokens in the first quarter of the question leads to near-random
performance, showing that this information is not readily accessible at initial tokens. Consistency
increases steadily as we use later tokens, with a sharp rise around the final tokens.
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Figure 6: Left: Ablations on MMLU. Within 500 training datapoints, probes (α = 0.9) often
approach the consistency and coverage they will attain when trained on the entire dataset. Layer
ablations (α = 0.9) show that early layers perform poorly. Increasing the confidence threshold α has
no effect until a point, after which conformal consistency increases while the coverage tends to zero.
Right: Estimation consistency increases with LM size, suggesting the method may scale favorably

Ablations on probe parameters: We ablate the parameters involved in the design of the conformal
probing system: number of training datapoints, probing layer and the conformal confidence threshold
α. We show results (Figure 6, left) for the MMLU dataset, however, all trends discussed hold for the
majority of the datasets we explored, with more examples in Appendix B.

We ablate the amount of data used to train the probe and find (Figure 6, top left) that probes can
approach the consistency and coverage they will achieve over the entire dataset with only 500
datapoints, suggesting that the method is particularly data efficient. We explore (Figure 6, middle
left) whether the specific layer being probed affects the performance of the probe. Our most general
finding is that early layers offer poor estimation consistency. However, whether mid or late layers
perform better is task and dataset-specific, and cannot be described generally. For more details, see
Appendix B. Increasing the confidence required from the probes has predictable effects (Figure 6,
bottom left). Increasing the confidence threshold has no effect until a point, after which conformal
consistency increases while the coverage tends to zero.

How does model scale affect performance? We varied the size of the LM used (Llama3 3B, 8B
and 70B) and measured probe consistency across several layers. Encouragingly (Figure 6, right), the
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performance of the larger models is consistently better, suggesting that the information encoded in
the internal activations is easier for the probe to ‘read’ when the model is more powerful. This bodes
well for the methods’ ability to scale with models of increasing size and capability.

What are some limitations of the probes? Other experiments we conducted suggest that probes
are limited in the behaviors they can detect. Using the MCQ task, we tried to estimate whether the
LM would output an incorrect answer. The probe accuracies were consistently near random. We
hypothesize that since probes are simple linear classifiers, they can only detect patterns and use
‘knowledge’ that is well encoded in the LM activations. This suggests that probes struggle with output
properties that cannot be identified by the LM itself (without external knowledge). We also observed
that the correlation between the estimation consistency of the probe and the token count of the output
is negative (-6.1%). This suggests probes struggle more with inputs that evoke longer outputs.

7 Related Works

This work takes inspiration from recent methods that probe the hidden states of LMs to observe
interpretable patterns [4, 51, 71, 36, 3] identify false statements [10, 56, 57, 97] and hallucinations [20,
84, 44]. These works use the internal states of every token, even the outputs, to produce signals for
these phenomena. In contrast, our work shows that internal states can predict behaviors before any
output tokens are generated, suggesting that input token embeddings contain rich information on
future LM behavior. Furthermore, while conformal prediction has been used with LMs to guarantee
the quality of generated text [73], robotic trajectories [89, 74] and text classification [52, 17], we are
the first to use it in conjunction with hidden state probes to create precise early warning systems.

Our work also has connections to the literature on early exiting during the forward pass of NN models,
with works often using signals from the hidden states to prematurely exit with a prediction on the
future outputs [93, 99, 94, 80, 42, 70]. While these works focus on the tokens predicted, we show
a more general result: that internal states can predict the future behavior of LMs. These include
behaviors such as whether or not the LM will output a high perplexity answer, or mistakenly comply
with a malicious request, which cannot be inferred just by observing the output token sequence.

While recent work has begun exploring whether LMs exhibit ‘introspective’ properties in the black box
setting [13], or whether LMs can predict ‘global attributes’ of their response [72, 25], we are the first
to show that when internal probes are deployed under conformal prediction they can be used to create
early warning systems for a wide range of behaviors like question abstention to format following
errors. Our work advances research on understanding the nature of the information contained in the
hidden states of LMs [71, 6, 66, 58, 87, 62]. Specifically, we show that the information contained in
the hidden states is relevant not just to the next token, but to behaviors that manifest several tokens
later during the LMs generation.

8 Conclusion

We show that a language model’s hidden representation of input tokens alone contains vital infor-
mation on the behavior of the LM over the entire output sequence. We train linear probes to read
this information and use it in a conformal prediction framework to create precise early warning or
exit systems for a wide range of LM behaviors, including degenerate behaviors, safety alignment
failures and more. The conformal probes can preemptively identify, before a single token is generated,
instances where an LM will fail to abstain from answering an unanswerable question, fall victim to
jailbreaking, fail to follow output format specifications or give low-confidence responses. On 27 text
classification datasets across 5 different tasks, the method can accelerate Chain-of-Thought prompting
by 65% with little accuracy loss. We show that the probes generalize to out-of-distribution test sets
and scale favorably to larger LMs. Finally, we explore the limitations of the method, showing that
the behavior of longer output sequences is harder to estimate and that tasks that require knowledge
external to the model are particularly challenging. With the rising popularity of inference-time scaling
methods, we hope our work can help ameliorate the growing computational cost of running LMs and
provide more insight into the nature of the information contained in their hidden states.
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A Confirming Robustness of Results

A.1 Confirming Robustness to Choice of Model

We conduct experiments on two other language models to ensure that our results hold for language
model families outside of the Llama3 series. We use Mistral-7B-Instruct-v0.3 from MistralAI [43]
and DeepSeek-R1-Distill-Qwen-14B from DeepSeek [32]. The results show that the phenomenon
shown in the main text can be detected robustly across various model families.
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A.2 Data Leakage

Several datasets used in this study have been released before the creation of Llama3, and as such,
might have been pre-exposed to the model during training. We detail our reasons as to why data
leakage is not a concern for the conclusions that we draw from this study:

• There are datasets in our study that have not been leaked. For example, the MMLU test set
is used as an official test benchmark by LLama3[26], and WildJailbreak was released to the
public only after the initial release of Llama3 models [45]. The results are strong on such
datasets as well, showing that data leakage is not behind the performance of the probes.

• Several tasks require the probes to identify behavior that fundamentally does not exist in
text form on the internet. The abstention failure, format following (bullets and JSON) and
confidence estimation tasks require the probes to determine how the model will behave,
regardless of whether the model has seen the input text or not. For example, whether or not
the model was pretrained on MSMarco questions is immaterial for predicting whether or not
it will output answers in a specific JSON format.

B Extended Analysis

B.1 Training Datapoint Ablation

As a general trend (Figure 9), 500 training datapoints are usually sufficient for probes to achieve the
maximum consistency and coverage that they will attain when trained on the entire dataset.

B.2 Layer Ablation

A deeper analysis of the interaction between the performance and the layer used for probing shows
that no consistent patterns can be identified. A subset of the common patterns (Figure 10) shows that
sometimes that apart from early layers being poor, it is unclear whether the middle or final layers are
consistently better for accuracy or confidence.
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Figure 9: Within 500 training datapoints, probes often approach the consistency and coverage
(α = 0.9) they will attain when trained on the entire dataset.

B.3 Confidence Threshold ablation

As a general trend (Figure 11), increasing the confidence threshold α has no impact until a point,
after which it leads to a steady decline in coverage and a steady increase in estimation consistency.

C Experiment Details

C.1 Datasets:

We used the following datasets in our experiments, all usage is in accordance with their respective
licenses. For each dataset, we select a maximum of 50,000 training instances to train (and validate)
our probes, using the full test set to measure all metrics.

C.1.1 Multiple Choice Question Answering:

To test this, we collect 8 MCQ datasets—MMLU [34], CosmoQA [39], PiQA [14], ARC [21],
MedMCQA [69], CommonsenseQA [85], OpenbookQA [63] and QASC [50] and use CoT to
generate outputs with explanations before the answer (for more prompts see Appendix C).

ARC: The AI2 Reasoning Challenge (ARC) [21] is a knowledge and reasoning challenge that
contains 7,787 natural, grade-school science questions (authored for human tests).

CommonsenseQA: The CommonsenseQA [85] dataset contains 12,247 questions with complex
semantics that often require prior knowledge.

MedMCQA: A large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to
address realworld medical entrance exam questions, MedMCQA [69] has 194k AIIMS and NEET
PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects.

MMLU: The Massive Multitask Language Understanding Benchmark [34] is a test to measure a text
model’s multitask accuracy. The test covers 57 tasks including elementary mathematics, US history,
computer science, law, and more.

OpenBookQA: Modeled after an open book examination, OpenBOOkQA [63], OpenBookQA
consists of 6000 questions that probe an understanding of elementary level science facts and their
application to novel situations.
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Figure 10: Layer ablations show that the decision on which layer to use is highly dependant on the
specific task and dataset.

QASC: Question Answering via Sentence Composition [50] tests a models ability to compose
knowledge from multiple pieces of texts. The dataset consists of 9,980 multiple-choice questions
from elementary and middle school level science, with a focus on fact composition;

PiQA: Physical Interaction: Question Answering [14] is a dataset that tests whether AI systems
can learn to reliably answer physical common-sense questions without experiencing the physical
world. The dataset consists of 16,000 training QA pairs with 2,000 and 3,000 examples held out for
validation and training.

CosmoQA: Commonsense Machine Comprehension Question Answering [39] is a dataset of 35,600
problems that require commonsense-based reading comprehension, formulated as multiple-choice
questions. The dataset focuses on reading between the lines with questions that require reasoning
beyond the exact text spans in the context.

C.1.2 Sentiment Analysis:

MTEB: The following datasets were taken from the Massive Text Embedding Benchmark [64].
AmazonReviews: a dataset with 1.7 million Amazon product reviews and a sentiment score ranging
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Figure 11: Increasing the confidence threshold α has no effect until a point, after which conformal
consistency increases while the coverage tends to zero.

from 0-5, TwitterSentiment: a dataset with 30,000 tweets and a sentiment class from positive,
neutral or negative

Yelp Polarity: The Yelp review rating challenge [7] consists of nearly 600,000 yelp reviews with
sentiment classes from positive or negative.

TwitterFinance: The Twitterfinance dataset [2] is an annotated corpus of 11,000 finance-related
tweets. This dataset is used to classify whether the tweet are bullish, bearish, or neutral.

NewsMTC: A dataset for sentiment analysis (TSC) on news articles reporting on policy issues,
NewsMTC [33] consists of more than 11,000 labeled sentences.

IMDB Reviews: A classic sentiment analysis dataset, IMDB Reviews [60] consists of 50,000 highly
polar movie reviews with binary labels.

Financial Phrasebank: A dataset that measures the polar sentiment [61] of sentences from financial
news. The dataset consists of 4840 sentences from English language financial news categorised by
sentiment. The dataset is divided by agreement rate of 5-8 annotators.

AuditorSentiment: Based on Financial Phrasebank, this dataset [40] is additionally annotated by
auditors to reflect bearish, bullish and neutral labels for accounting related sentences.

Emotion: The DAIR-AI Emotion dataset [78] is a dataset of 20,000 Twitter messages with six basic
emotions: anger, fear, joy, love, sadness, and surprise.

SST5: A standard sentiment analysis dataset, SST5 [82] consists of fine grained sentiment labels for
215,154 phrases in the parse trees of 11,855 sentences.

C.1.3 Fact verification:

ClimateFEVER: A dataset that consists of 1,535 real-world claims regarding climate-change
collected on the internet. Each claim In ClimateFEVER [23]is accompanied by five manually
annotated evidence sentences retrieved from the English Wikipedia that support, refute or do not give
enough information to validate the claim totalling in 7,675 claim-evidence pairs.

HealthVER: A dataset for evidence-based fact-checking of health-related claims, HealthVER [79]
consists of 14,330 evidence-claim pairs.

FEVER: Fact Extraction and VERification [86] consists of 185,445 claims generated by altering
sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence
they were derived from.
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C.1.4 Topic Identification:

AGNews: A collection of more than 1 million news articles. AGNews articles have been gathered
from more than 2000 news sources and annotated for Topic [31].

BBCNews: The BBCNews dataset [30] is a dataset consisting of 2,225 articles published on the BBC
News website corresponding during 2004-2005. Each article is labeled under one of 5 categories:
business, entertainment, politics, sport or tech.

NYTimes: The New York Times Annotated Corpus [77] contains over 1.8 million articles written
and published by the New York Times between January 1, 1987 and June 19, 2007 with article
metadata provided by the New York Times Newsroom, the New York Times Indexing Service and
the online production staff at nytimes.com.

C.1.5 Toxicity Detection:

We use two datasets provided by the same organization, JigsawToxicity and JigsawUnintendedBias-
Toxicity [1]. Both datasets have scores for toxicity from a chatroom setting.

C.1.6 Others:

Unanswerable Questions: We use two datasets which contain unanswerable questions, Self-
Aware [96] and KnownUnkown [5]. Selfaware is a dataset consisting of unanswerable questions from
five diverse categories and their answerable counterparts. KnownUnknown is a dataset with questions
on known quantities and unknown quantities. We collect jailbreaking prompts (and benign prompts)
from WildJailbreak [45], a dataset with 262,000 vanilla (direct harmful requests) and adversarial
(complex adversarial jailbreaks) prompt-response pairs. The dataset also has benign prompts that
should be complied with.

Format Following, Confidence Elicitation: Both of these tasks use the same set of datasets -
NaturalQA [54], TriviaQA [47] and MSMarco [65]. These datasets were selected as they are large
question-answering datasets which often require generative output that can vary in length.

C.2 Task Specific Set Up:

C.2.1 Text Classification Tasks:

In all text-classification tasks, the CoT model is first asked to output a reasoning chain and then
finally provide a classification answer. The probes are always trained to preemptively identify what
the prediction will be using only the input token embeddings.

MCQ: For the MCQ tasks, we select two options by randomly sampling an incorrect answer from
the provided options along with the correct option. This is because the MCQ datasets vary in terms
of number of MCQ options, and for the out-of-distribution experiment we require all the datasets to
have the same number of answer classes (note that the topic identification task below is multiclass,
showing that our method is not limited to binary classification). The CoT model is asked to identify
the correct answer option.

Sentiment: For the MCQ task, many datasets are in a binarized format, while others include
continuous scores, or ternary labels (including neutral sentiment. We make all the datasets have a
similar label structure, by keeping only positive and negative labels. Concretely, the label is 1 if and
only if the sentiment is positive (or bullish for finance datasets), and 0 otherwise. The CoT model is
asked to identify whether or not the text has a positive sentiment.

Topic: We keep only a subset of the topics to ensure every topic is fairly represented in the data.
After dropping topics, AGNews has World, Sports, Businsess or Science, BBCNews has Business,
Tech, Sports or Politics, while NYTimes has Health, Fashion, Real Estate or Television. The CoT
model is asked to identify the topic of the article.

Fact Verification: We map all claims to with supported or not supported (includes refuted and
neutral). For ClimateFEVER and HealthVer, we provide evidence along with the claim, while for
FEVER we provide only the claim. The CoT model is asked to identify whether or not the claim is
supported.
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Toxicity Detection: We randomly sample the datasets to ensure a balance of toxic and not toxic
comments. The CoT model is asked to detect whether or not the text is toxic

C.2.2 Other Tasks:

In these tasks, the probes are trained to predict a variety of other behaviors using the input token
embeddings.

LM Abstention: For the unanswerable question datasets of SelfAware and KnownUnknown, the
model is first instructed to give a reasoning chain about the question, and answer only if the question
is answerable (abstaining otherwise). With WildJailbreak, the input need not be a question, but any
request. Hence, we instruct the model to comply with the request if it is not malicious, and abstain
otherwise. We keep only the instances where the LM responds or complies, and train probes to detect
whether or not the LM should have abstained (i.e. unanswerable question or malicious request).

Format Following: Using an input prompt, we specify two different output formats a LM must obey.
In both cases, the probe learns whether the LM will fail to follow format specifications or comply
with them.

• Bullets: The output should be presented in 3 numbered bullet points, no fewer and no more

• JSON: The output should be presented in a JSON string with the following structure:
{[‘short_answer’]: <str>, ‘entities’: List<str>, ‘references’: List<str>}

Confidence Estimation: There are two settings for this task:

• Internal Confidence: The LM is prompted to output an answer to the input question, and we
record the token-normalized perplexity as a proxy of confidence. We keep only the bottom
and top 25% of instances as per normalized perplexity and train the probes to differentiate
between the two.

• Verbal Confidence: The LM is prompted to output an answer, along with a confidence score
(either confident or unsure). The probe is trained to identify what the confidence score will
be.

C.3 Prompts and Inference:

We have written separate prompts for each dataset to ensure the LM follows the instructions and
outputs the text in a way that guarantees we can parse it and infer the behavior we seek to pre-
emptively identify with the probes. For example, a prompt for the MMLU dataset for MCQA is
:

Question: What is true for a type-Ia supernova?
Option A: This type occurs in young galaxies
Option B: This type occurs in binary systems
Give an explanation and then the answer:
Explanation: Type Ia supernova is a type of supernova that occurs when
two stars orbit one another in which one of the stars is a white dwarf
Answer: B
Question: <NEW QUESTION>
Give an explanation and then the answer:
Explanation:

For the JSON task, one such prompt is:

Answer the following questions by giving a short_answer, entities list
and references list. Give the output in JSON format
Question: What is the capital of France?
Answer: { "short_answer": "Paris",
"entities": ["France"], "references": ["https://en.wikipedia.org/wiki/Paris"]}
Question: <NEW QUESTION>
Answer:
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Each task and dataset has a different set of prompts. We have provided a link to the code, and all
prompts can be seen in the file data.py

All LM inference uses greedy decoding and is hence deterministic.

C.4 Hardware:

All of our experiments were run on a compute cluster with 8 NVIDIA A40 GPUs (approx 46068
MiB of memory) on CUDA version 12.6. The CPU on the cluster is an AMD EPYC 7502 32-Core
Processor. Most experiments could be conducted with less than 16GB of GPU RAM.

Generating the hidden states took around 2 hours for every 10,000 points, while training a hidden
state probe takes fewer than 30 seconds.

C.5 Replicability:

To ensure that our code is easy to replicate and our method is easy to extend, we have provided open
access to our code.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are that the internal
states of the input tokens can predict the behavior of the LM on the entire output sequence
as a whole, and that this can be used as a signal to create precise early warning systems for a
variety of important behaviors. We show this through a set of experiments, where probes
trained on the internal states successfully predict the future behavior of LMs, and can be
used to preemptively detect instruction following errors, jailbreaking, etc.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the analysis section (Section 6), we dedicate a section to discuss the
limitations of the probes. We detail how the kinds of behaviors the probes can detect have
limits, and also show that certain kinds of inputs (ones that produce longer outputs) are
harder for the probes to model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: While we use theoretical results from conformal prediction (see Section 2),
these are not our theoretical results, and so we do not provide a proof. There is no original
theoretical result in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have discussed the core implementation details in the Appendix C, includ-
ing the dataset-specific set-up and hardware used. These details are a sufficient high-level
guide to the experiments conducted in the paper, and allow a researcher to reproduce a simi-
lar version of the results even if they do not have access to our code. However, as detailed in
the answer below, to ensure that the prompts, random seeds, generation parameters etc are
transparent, we have released an anonymous version of our code base.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided an anonymous link to our code: https://anonymous.
4open.science/r/LMBehaviorEstimation/. This code allows the reviewers (and fu-
ture researchers) to fully reproduce our results. Since we use only open-sourced models
with fixed random seeds for all stochastic pieces of code, we can guarantee a completely
reproducible pipeline (given differences in hardware). Unfortunately, we cannot submit the
data (specifically the hidden states used to train the probes) due to its size exceeding the
supplemental material limits. However, the code will allow a complete reproduction of these
hidden states, maintaining the reproducibility of our results.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided a sufficient level of detail in the main text (Section 3) and
the Appendix C to comprehend the results. While we have not provided full details as there
are a large number of hyperparameters, the code base contains full details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: There is only one source of randomness in our method: the splitting of
the dataset into training and validation splits for the linear probe training and conformal
threshold learning. We have used 5 different random seeds and present mean-aggregated
results in all figures and tables. The variance across seeds is typically low, and all the results
we show are significant at a 2σ level.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix C explicitly details the hardware that was used to run the experiments,
and gives an estimate on the compute/time required for each of them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research does not involve human subjects and uses only publically acces-
sible data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: A core motivation of this work is that of safety and early detection of harmful
LM behavior. Through our experiments in Section 1, Section 4.1 and Section 4.2 we have
shown that the deployment of our method could potentially have positive societal impacts
by enabling more efficient and pre-emptive guardrails for harmful behaviors.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The code, data and probes that we released are all based on existing releases,
and have little potential for misuse on their own.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in this paper are done so in line with their stated
licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new asset we introduce is a codebase, with documentation that enables
reproduction and use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

31

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This is a paper about LLMs, as such they are central to the research. We have
outlined how we have used the LLMs clearly, and described all relevant design decisions.
LLMs were not used in the writing of this manuscript, or in the creation of the core
method/experiments in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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